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Abstract. The HECKTOR 2025 challenge provides a platform to bench-
mark automatic segmentation methods for Head and Neck (H&N) pri-
mary tumors and lymph nodes in FDG-PET and CT scans (Task 1).
This study presents a challenge submission based on the nnU-Net frame-
work. PET scans were first resampled to the CT resolution, after which
a pseudo brain mask was derived from the PET scan to guide the crop-
ping of both modalities. A custom clipping-based normalization was ap-
plied to the PET scan, and the paired PET and CT volumes were then
processed by a Residual Encoder U-Net. Training was performed us-
ing custom augmentations. The proposed solution, submitted under the
user name sebquet, achieved a mean Dice Score of 75.09% for primary tu-
mors and 77.04% for metastatic lymph nodes on the validation set. These
results demonstrate competitive performance within the challenge and
highlight the effectiveness of combining modality-specific preprocessing
with residual encoder architectures for H&N tumor segmentation.

Keywords: Head and Neck tumor · Deep Learning segmentation · PET
and CT scans.

1 Introduction

Head and Neck (H&N) cancer ranks among the most common cancers worldwide
and remains a major cause of cancer-related morbidity and mortality. Accurate
tumor delineation is essential for treatment planning, particularly in radiother-
apy, where precise localization directly impacts clinical outcomes. Positron Emis-
sion Tomography (PET) has proven to be a valuable modality for guiding H&N
cancer management, as it provides metabolic information that complements the
anatomical detail of Computed Tomography (CT) [3]. However, PET suffers
from lower spatial resolution compared to CT, making the integration of both
modalities crucial for reliable tumor and lymph node segmentation.

Several recent works have explored radiomics approaches based on PET and
CT, with the goal of predicting prognosis in a non-invasive manner while utiliz-
ing routinely available diagnostic and treatment-planning scans [4,12,2]. While
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radiomics approaches based on PET and CT have shown considerable promise,
most studies to date have been conducted on relatively small patient cohorts. To
ensure robust generalization and avoid overestimating predictive performance,
validation on large, multi-institutional datasets is essential [1]. The HECKTOR
2025 challenge addresses this need by providing more than 1,200 PET/CT scans
collected across multiple centers, enabling both reliable benchmarking and the
development of clinically relevant models [10]. Three different tasks are proposed
to tackle in the Hecktor 2025 challenge. This study addresses the first task which
consists in segmenting the primary tumor volume (GTVp) and the metastatic
lymph nodes (GTVn).

Building upon the HECKTOR 2025 dataset, we propose an nnU-Net–based
approach [5,6] that integrates customized preprocessing strategies and augmen-
tations to enable accurate automatic segmentation of tumor regions in H&N
cancer patients.

2 Materials and Methods

The following methods describe the approach submitted to the test phase of the
challenge. Alternative solutions previously explored during the validation phase
are reported in the Results and Ablation sections.

2.1 Dataset

Our work was based solely on the HECKTOR 2025 training dataset [10] com-
posed of 680 examinations from seven different centers with CT and registered
PET scans along with manual expert contours for the GTVp and GTVn. No
external dataset was used to develop our solution. Figure 1 shows a CT and a
registered PET scan for a patient from the training dataset.

2.2 Data preprocessing

Resampling For training, ground truth masks and PET scans were resampled
to the CT original resolution using a nearest neighbor and a Bspline interpola-
tion, respectively, with the SimpleITK toolkit [8].

Cropping To train the deep learning model with the most informative signal,
a preprocessing method was designed to crop the volumes around the head and
neck region. The procedure consisted of two main steps: identifying the brain
using PET Standardized Uptake Values (SUVs) and CT Hounsfiled Units (HUs)
to define cropping in the x and y axes, and refining the z-axis cropping based
on anatomical priors derived from the training dataset. Brain localization was
achieved by first studying PET SUVs within the patient body, defined as values
of PET scan voxels registered with CT scan voxels whose HUs were between –500
and 1000. The 95th percentile of these SUVs was selected as a threshold, and
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Fig. 1: CT scan and the corresponding registered PET scan from a patient in
the HECKTOR 2025 training dataset, with manually annotated ground-truth
masks overlaid. The GTVp contour is shown in green, and the GTVn contour is
shown in yellow.

voxels above this value were masked in the resampled PET scan. The resulting
high-SUV mask was then split into connected components; components smaller
than 100 mm3 were discarded. Among the remaining components, the one with
the highest z-coordinate was selected as the brain, which avoided confusion with
other high-uptake regions such as the bladder. Volumes were cropped above this
brain component, and laterally around its x-y boundaries with a 50 mm margin.

To define the inferior boundary of the z-axis, we measured the distances
between the top of the brain component and all ground-truth contours (GTVp
and GTVn) across the training set. The maximum observed distance was used
to crop along the z-axis below the brain, with an additional 10 mm margin for
safety. The overall cropping process is illustrated in Figure 2.

2.3 Model Training

Normalization The CT scans were normalized using the nnU-Net CT nor-
malization scheme. Foreground voxels, defined as voxels within regions where
the ground-truth mask was non-zero, were used to compute the mean, standard
deviation, and the 0.5th and 99.5th percentiles across the entire training dataset.
Each CT scan was then normalized using these dataset-specific statistics by
first clipping voxel intensities to the range defined by the 0.5th and 99.5th per-
centiles, followed by z-score normalization using the defined mean and standard
deviation.

For the PET scans, the default nnU-Net image-based z-score normalization
was not used. Instead, we applied the same dataset-specific approach as for the
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Fig. 2: Cropping process used in our pipeline. First, a pseudo mask is identified
based on the PET SUVs and the volumes are cropped around a margin of this
pseudo mask. Then the lower body is cropped based on the knowledge of the
contour positions in the training set.

CT scans. Specifically, the mean and standard deviation of the foreground PET
SUVs were estimated across the training dataset. However, instead of percentile-
based clipping, custom thresholds were applied: SUV values were clipped to the
range [0, 15] before z-score normalization.

Model architecture Although the benchmarking of different augmentations,
clipping boundaries, and normalization strategies was conducted using a stan-
dard convolutional U-Net architecture (see Section 4), the final test-phase sub-
mission employed a Residual Encoder U-Net model. In both cases, the architec-
tures were implemented using the nnU-Net framework with the 3D full-resolution
configuration. For the Residual Encoder U-Net, the default parameters were
modified by setting the GPU VRAM target to 16 GB, matching the hardware
constraints of the HECKTOR 2025 challenge. Both U-Net variants were trained
with six resolution levels comprising 32, 64, 128, 256, 320, and 320 feature maps.

Augmentations The default nnU-Net augmentation settings were strength-
ened by modifying both the augmentation probabilities and their application
ranges. Specifically, the probability of applying rotations and scalings was in-
creased from 0.2 to 0.5, while their parameter ranges remained unchanged. For
Gaussian noise, the probability was increased from 0.1 to 0.25 for CT scans and
to 0.5 for PET scans, with the variance left unchanged. The probability of the
multiplicative brightness transform was raised from 0.15 to 0.75 for both modali-
ties. For PET scans, the multiplier range was expanded from (0.75, 1.25) to (0.6,
1.4), while the default range was retained for CT scans. The contrast transform
underwent the same changes as the multiplicative brightness transform.

Optimization For training, all volumes were resampled to the median CT voxel
spacing of 0.98mm × 0.98mm × 3.27mm, as computed from the training dataset.
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The plain convolutional U-Net model was trained with a patch size of 160 × 192
× 64 voxels, while the Residual Encoder U-Net used a larger patch size of 192
× 224 × 80 voxels. Default nnU-Net training hyperparameters were applied: a
learning rate of 0.01, batch size of two, and a total of 1000 training epochs.
Models were trained with five-fold cross-validation to minimize the Dice–Cross
Entropy loss, each fold using 80% of the training set for optimization and 20% as
an internal validation set. For each fold, the model checkpoint that maximized
the exponential moving average of the pseudo-Dice score, computed by the nnU-
Net framework on the internal validation set during training, was selected and
used for inference.

2.4 Inference

At inference time, the PET scan was resampled to the CT scan as described
in Section 2.2 followed by application of the cropping strategy outlined in Sec-
tion 2.2. The distance to crop the inferior portion of the body in the z-axis was
the one defined used in the training dataset.

Ensembling was performed using the five cross-validation models trained
within the nnU-Net framework. For each fold, test-time augmentation was ap-
plied by flipping the input volumes along all three axes. The corresponding model
outputs (logits) were then realigned by resetting the original axes and subse-
quently averaged. This procedure was repeated for the best-performing model
from each fold. The mean logits across all five models were ultimately averaged
and converted into segmentation masks using the argmax operation.

Finally, the predicted mask volume was padded back to match the original
CT scan dimensions. No further post-processing was applied.

2.5 Evaluation

Challenge evaluation Two earlier versions of this work were submitted to
the HECKTOR 2025 challenge platform for evaluation during the validation
phase. These versions differed slightly from the methodology described in the
previous sections. Specifically, both validation submissions employed the default
nnU-Net augmentations rather than the customized augmentations described in
Section 2.3, used a batch size of eight instead of two, and were based on the
plain convolutional U-Net architecture.

Additionally, both submissions employed a different PET normalization strat-
egy than that described in Section 2.3. In the first submission, PET scans were
normalized using the nnU-Net CT normalization scheme, with clipping per-
formed at the 0.5th and 99.5th percentiles of foreground voxels rather than using
fixed boundaries. The second submission applied the default nnU-Net PET nor-
malization, consisting of standard image-specific z-score normalization without
any clipping.

The HECKTOR 2025 challenge platform evaluated our submission on a with-
held testing set of 50 patients using the Dice score for the GTVp, an aggregated
Dice score for the GTVn adapted from the Aggregated Jaccard Index [7], and a
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custom aggregated F1-score for GTVn. For the latter, true positives (TP), false
negatives (FN), and false positives (FP) were accumulated across correctly de-
tected lesions, with a detection considered correct if the intersection-over-union
(IoU) exceeded 30%.

Local evaluation To optimize the segmentation pipeline, the training dataset,
already partitioned into five folds using an 80–20% split, was evaluated fold by
fold on each respective internal validation set (n=136). Performance metrics were
subsequently averaged across folds. Unlike the challenge submission, no ensemble
predictions were performed.

To benchmark the trained models, the HECKTOR 2025 challenge evalua-
tion metrics were replicated to the best of our ability; however, they may dif-
fer from the metrics computed by the official challenge platform. Segmentation
performance for GTVp was assessed using the Dice score. For GTVn, both an
aggregated Dice score and a custom aggregated F1-score were computed. For
the aggregated Dice score, TP, FP, and FN were summed across all patients in
the internal validation set of each fold, and the final metric was calculated using
the standard Dice formula: AggregatedDice = 2 ∗ TP/(2 ∗ TP + FP + FN).

For the GTVn F1-score, both the ground-truth and predicted masks were
separated into connected components. For each predicted component, if its IoU
with a ground-truth GTVn component exceeded 30%, the corresponding TP, FP,
and FN were accumulated. If the IoU did not meet this threshold, the sum of
voxels in the predicted component was added to the FP count. If a ground-truth
component had no overlapping predicted component, the sum of its voxels was
added to the FN count. The final metric was then computed using the same
formula as for the Aggregated Dice.

3 Results

3.1 Challenge evaluation on the validation set

Table 1 summarizes the results of our two submissions to the HECKTOR 2025
challenge validation phase using earlier versions of our pipeline.

It can be seen that the normalization strategy applied to PET scans signifi-
cantly affects the pipeline’s performance on new patients. Specifically, using the
nnU-Net CT normalization scheme for PET scans improves the Dice score for
GTVp (75.09 vs 73.72%), whereas an image-based z-score normalization yields
a higher aggregated Dice score for GTVn (77.86 vs 77.04%).

3.2 Local evaluation on internal validation sets

The two pipelines submitted to the validation phase were also evaluated locally.
Table 1 reports the performance of each pipeline using a single fold, averaged
across folds. Metrics for each fold were computed on the corresponding internal
validation set, which included 136 patients. Overall, the locally computed metrics
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Table 1: Results from our two submissions during the validation phase obtained
directly from the HECKTOR 2025 challenge platform. Challenge metrics are
averaged over the patients of the challenge validation set. Local metrics were
computed over all patients in the internal validation set of each fold and then
averaged across folds. Results are reported as mean ± standard deviation across
fold averages, with the minimum and maximum fold values indicated in brackets
[minimum maximum].

Submission Evaluation GTVp Dice
Score (%)

GTVn
Aggregated

Dice Score (%)

GTVn
Aggregated
F1-score (%)

1 (CT
normalization for

PET scan)
Challenge 75.09 77.04 62.07

2 (z-score
normalization for

PET scan)
Challenge 73.72 77.86 62.07

1 (CT
normalization for

PET scan)
Local 72.59 ± 1.47

[70.77, 75.1]
76.70 ± 0.67
[75.43, 77.25]

61.54 ± 3.41
[57.76, 66.44]

2 (z-score
normalization for

PET scan)
Local 72.21 ± 1.15

[70.75, 73.66]
77.03 ± 0.61
[76.44, 78.11]

62.22 ± 3.58
[56.93, 67.46]

generally correlated with the results obtained during the validation phase. In
particular, a higher average Dice score across folds for GTVp, 72.59% against
72.21%, corresponded to a higher GTVp Dice score in the challenge, with a
similar trend observed for the aggregated GTVn Dice score. For the aggregated
F1-score, although our local implementation produced an average value close to
that obtained in the challenge, higher values for one submission did not translate
to a higher score with the challenge platform evaluation.

4 Ablation Study

To optimize our pipeline prior to submission for the HECKTOR challenge test
phase, we empirically evaluated and benchmarked its components, resulting in
the final configuration presented in Section 2. Unless otherwise specified, all
results reported below were obtained using the plain convolutional U-Net de-
scribed in Section 2.3. Performance metrics were computed locally and follow
the definitions in Section 2.5.

Batch size and Augmentations Data augmentation strategies were bench-
marked using the pipeline from our first validation-phase submission, which em-
ployed the nnU-Net CT normalization scheme for PET scans and a batch size
of two instead of eight. Table 2 presents the performance of the pipeline on
the internal validation set of fold 0, comparing default nnU-Net augmentations
with our custom augmentation scheme. The custom augmentations resulted in
lower Dice scores for GTVp with 74.90% against 75.20%, but improved perfor-
mance for both the aggregated GTVn Dice score and the aggregated F1-score.
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Although evaluation on the remaining four folds is needed to confirm this trend,
the substantially stronger performance on the aggregated F1-score, from 58.65%
to 61.64%, combined with the challenge timeline, motivated the selection of the
custom augmentation strategy.

Table 2: Performance results of the pipeline using nnU-Net augmentations or our
custom augmentations for the training. Results are averaged over all patients in
the internal valdiation set of fold 0.

Augmentations
used for training

and inference

GTVp Dice
Score (%)

GTVn
Aggregated

Dice Score (%)

GTVn
Aggregated
F1-score (%)

nnU-Net default 75.20 78.46 58.65
Custom 74.90 78.84 61.64

Figure 3 presents the training and validation losses for pipelines trained with
custom augmentations and different batch sizes. Training with a batch size of
two, compared to eight, produced a noisier validation loss curve suggestive of
greater model exploration and ultimately resulted in a lower validation loss.
Moreover, a batch size of two reduced overfitting, as indicated by the closer
alignment between training and validation losses.

Fig. 3: Loss curves obtained when training our pipeline with different batch sizes.

Table 3 reports the pipeline performance averaged across the five folds, com-
paring training with nnU-Net default augmentations and a batch size of eight
against training with custom augmentations and a batch size of two. The lat-
ter configuration produced substantially higher Dice scores for GTVp as well as
improved aggregated Dice scores for GTVn, but at the cost of a markedly lower
aggregated F1-score for GTVn. Based on these results, we selected the combina-
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tion of custom augmentations and a batch size of two for subsequent experiments.
All further ablation studies were conducted under this configuration.

Table 3: Performance results of a pipeline using different augmentations, batch
sizes and spacings. Metrics were computed over all patients in the internal val-
idation set of each fold and then averaged across folds. Results are reported as
mean ± standard deviation across fold averages, with the minimum and maxi-
mum fold values indicated in brackets [minimum maximum].

Augmentations
used for training

and inference

Batch
size Spacing GTVp Dice

Score (%)

GTVn
Aggregated
Dice Score

(%)

GTVn
Aggregated
F1-score (%)

nnU-Net default 8 Median 72.59 ± 1.47
[70.77, 75.1]

76.70 ± 0.67
[75.43, 77.25]

61.54 ± 3.41
[57.76, 66.44]

Custom 2 Median 74.70 ± 0.89
[73.77, 76.30]

77.30 ± 1.00
[75.91, 78.84]

58.68 ± 5.90
[47.72, 64.95]

Custom 2 Isotropic 1mm 73.14 ± 2.0
[69.19, 74.47]

74.57 ± 4.4
[65.81, 77.59]

51.98 ± 15.78
[20.66, 63.48]

The effect of voxel spacing on model performance was benchmarked using
a similar pipeline from our first validation-phase submission, which applied the
nnU-Net CT normalization scheme to the PET scans, with a batch size of two
instead of eight and with our custom augmentations. Motivated by previous
work [9,11] reporting the use of an isotropic 1 mm resolution, we investigated
resampling each CT scan to a 1 mm isotropic resolution, followed by resampling
the corresponding PET and mask to this new CT resolution as a preprocessing.
In this experiment, models were trained on isotropic 1 mm volumes, and at
inference, the predicted masks were resampled back to the original CT resolution
using nearest-neighbor interpolation. Table 3 summarizes the performance of the
pipeline under both settings, averaged across folds. It can be seen that a model
trained using the median CT spacing performs consistently better across the
different metrics than a model whose inputs were resampled to a 1mm isotropic
spacing.

Clipping As part of the ablation study, different empirically defined clipping
boundaries for PET normalization were evaluated: [0–5], [0–8], [0–10], and [0–15].
These experiments were conducted using the custom augmentations described in
Section 2.3 and a batch size of two. Table 4 reports the performance on the inter-
nal validation set of each fold, averaged across the five folds. A clear trend was
observed for the GTVp Dice score: a stronger clipping consistently reduced the
average performance. For the GTVn metrics, no consistent trend emerged; how-
ever, custom clipping with lower maximum boundaries than the 99.5th percentile
appeared to improve the segmentation performance. Considering the trade-off
between GTVp and GTVn performance, the [0–15] clipping range was selected
for submission to the test phase.
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Table 4: Performance results of a pipeline using a nnU-Net CT normalization for
the PET scans with different clipping boundaries. Metrics were computed over
all patients in the internal validation set of each fold and then averaged across
folds. Results are reported as mean ± standard deviation across fold averages,
with the minimum and maximum fold values indicated in brackets [minimum
maximum].

Clipping
boundaries

GTVp Dice
Score (%)

GTVn
Aggregated

Dice Score (%)

GTVn
Aggregated
F1-score (%)

[0, 5] 74.43 ± 1.53
[72.67, 76.47]

77.61 ± 1.05
[75.73, 78.66]

61.07 ± 6.27
[48.99, 66.89]

[0, 8] 74.69 ± 1.19
[72.79, 76.34]

77.14 ± 0.92
[75.5, 78.05]

59.36 ± 4.62
[51.51, 65.92]

[0, 10] 74.71 ± 1.33
[73.02, 76.06]

77.51 ± 0.73
[76.4, 78.46]

61.88 ± 6.37
[50.72, 68.58]

[0, 15] 74.80 ± 0.96
[73.26, 75.81]

77.54 ± 1.07
[75.62, 78.65]

61.49 ± 6.74
[49.02, 68.84]

[0.81, 22.66] (0.5,
99.5 percentile)

74.70 ± 0.89
[73.77, 76.3]

77.30 ± 1.00
[75.91, 78.84]

58.68 ± 5.9
[47.72, 64.95]

Model Architecture The final pipeline parameter evaluated was the model ar-
chitecture. Both the Residual Encoder U-Net and the plain convolutional U-Net
described in Section 2.3 were trained using the configuration detailed in Sec-
tion 2. Table 5 summarizes the performance of the two architectures. Although
the Residual Encoder U-Net resulted in a slight decrease in the average GTVp
Dice score which went from 74.80% to 74.22%, it yielded improvements in the
GTVn metrics. In particular, the aggregated F1-score increased from 61.49% to
63.59%, identifying the Residual Encoder U-Net as the stronger candidate for
our test-phase submission.

5 Discussion

This study presents a pipeline submitted to the HECKTOR 2025 challenge for
the automatic segmentation of primary tumor volumes and lymph nodes from
CT and PET scans. We empirically evaluated various training strategies to iden-
tify those that improve segmentation performance. In particular, clipping, voxel
spacing, batch size, and model architecture were found to have a substantial
impact on the overall segmentation performance.

The learning rate was kept constant across experiments with different batch
sizes, and the number of iterations per epoch was identical in all settings. In-
creasing the learning rate for a batch size of eight could potentially enhance
the exploratory capacity of training and reduce the overfitting observed, thereby
providing a more reliable comparison between batch sizes.
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Table 5: Performance results of a pipeline using different model architecture.
Results are averaged over all patients in the internal valdiation set of each fold.
Metrics were computed over all patients in the internal validation set of each
fold and then averaged across folds. Results are reported as mean ± standard
deviation across fold averages, with the minimum and maximum fold values
indicated in brackets [minimum maximum].

Model
architecture

GTVp Dice
Score (%)

GTVn
Aggregated

Dice Score (%)

GTVn
Aggregated
F1-score (%)

Plain
Convolutional

U-Net

74.80 ± 0.96
[73.26, 75.81]

77.54 ± 1.07
[75.62, 78.65]

61.49 ± 6.74
[49.02, 68.84]

Residual Encoder
U-Net

74.22 ± 1.55
[72.18, 76.56]

78.18 ± 1.0
[76.94, 79.6]

63.59 ± 4.83
[55.93, 69.83]

Our experiments indicate that resampling to 1 mm isotropic resolution does
not improve performance, in contrast to the approach reported by [9]. A possible
explanation is that the initial resampling excessively increased the PET resolu-
tion relative to the original spacing along the z-axis, which may have hindered
effective feature learning during training.

The proposed segmentation task appears to exhibit high variability across
different data splits, as indicated by the wide range of average metrics across
folds. This variability may explain why ensembling numerous models, as per-
formed by the HECKTOR 2022 winning team [9], is beneficial for improving
performance.
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