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ABSTRACT

The majority of online continual learning (CL) advocates single-epoch training
and imposes restrictions on the size of replay memory. However, single-epoch
training would incur a different amount of computations per CL algorithm, and
the additional storage cost to store logit or model in addition to replay memory is
largely ignored in calculating the storage budget. Arguing different computational
and storage budgets hinder fair comparison among CL algorithms in practice, we
propose to use floating point operations (FLOPs) and total memory size in Byte as
a metric for computational and memory budgets, respectively, to compare and de-
velop CL algorithms in the same ‘total resource budget.’ To improve a CL method
in a limited total budget, we propose adaptive layer freezing that does not update
the layers for less informative batches to reduce computational costs with a neg-
ligible loss of accuracy. In addition, we propose a memory retrieval method that
allows the model to learn the same amount of knowledge as using random retrieval
in fewer iterations. Empirical validations on the CIFAR-10/100, CLEAR-10/100,
and ImageNet-1K datasets demonstrate that the proposed approach outperforms
the state-of-the-art methods within the same total budget. Furthermore, we vali-
date its effectiveness in the Multi-modal Concept incremental Learning setup with
multimodal large language models, such as LLaVA-1.5-7B. Code is available at
https://github.com/snumprlab/budgeted-cl.

1 INTRODUCTION

In a realistic scenario for continual learning (CL), data arrive in a streaming manner, prompting
interest in online CL, which assumes one or a few samples arrive at a time. To effectively learn from
new data while mitigating catastrophic forgetting (McCloskey & Cohen, 1989) of previously learned
knowledge, various CL methods have been proposed, including replay-based approaches (Bang
et al., 2021; Seo et al., 2024), network expansion methods (Wu et al., 2022; Zhou et al., 2023), and
distillation-based methods (Koh et al., 2023; Wang et al., 2024).

For the practicality of online CL, most online CL methods impose resource restrictions, such as the
single training epoch and limited replay memory, which restrict the number of streamed samples
stored (Koh et al., 2022; Wang et al., 2022a). While the ‘one-epoch training’ may give a rough
sense of the computational constraint, the actual budget varies across methods (Prabhu et al., 2023;
Ghunaim et al., 2023) since each method requires a different amount of computations in a single
epoch. Several rehearsal-based CL methods require additional storage to store the previous models
and logits (Buzzega et al., 2020; Zhou et al., 2023), which was usually not included in the memory
budget, which mainly considers the size of episodic memory to store samples in previous tasks. To
this end, we compare CL methods with the same computational and memory budget considering all
storage and computational costs. We argue that the total budget of memory and computation will
ensure the practicality of the proposed online CL algorithms.

For a fair comparison in computational budget, we use training FLOPs per sample instead of the
number of epochs, as some methods require significantly more computations per epoch than others.

∗Equal contribution. † is affiliated with ECE, IPAI & ASRI and is a corresponding author.
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Figure 1: Comparison of CL methods w/o total constraint (left) and w/ total constraint (right) on CIFAR-
10 Gaussian setup. In the left plot, we compare CL methods with the same number of iterations and the
same episodic memory size, i.e., conventional setup. In the right plot, we compare CL methods with the same
training FLOPs and a fixed storage budget that includes both episodic memory and model storage, i.e., our total-
constrained CL setup. Compared to the conventional setup, aL-SAR shows improved performance under the
total-constrained setup, since it can utilize the saved computational cost for further training. AAUC and ALAST
refer to the area under the curve of accuracy and last accuracy (i.e., accuracy at the end of CL), respectively.

FLOPs provide an exact measure of computational budget regardless of implementation details (Ko-
rthikanti et al., 2023), following Zhao et al. (2023); Ghunaim et al. (2023). For the same memory
budget, we use an aggregated budget for various forms of extra storage, including replay memory,
logits, and model parameters, converting them into bytes to obtain the actual memory cost, follow-
ing Zhou et al. (2023). Upon comparing the results under fair cost, we found that the performances
were often different from what was reported in the original papers proposing each method.

Considering the total memory and computational budget, we propose an online CL method using a
computation-aware layer freezing strategy. Specifically, we propose to selectively learn (or freeze)
layers per a mini-batch based on the previously learned information to reduce computation In partic-
ular, as more layers are frozen, training computation can be saved at the cost of losing information
for the mini-batch since frozen layers cannot acquire any information. Considering this trade-off, we
propose ‘adaptive layer freezing’, which chooses the best layers to freeze by maximizing the Fisher
Information (FI) gained by the model for each batch, given a fixed computation budget. Unlike
previous freezing methods (Lee et al., 2019; Hayes et al., 2020; Yuan et al., 2022), which predefine
the rule of when and which layers to freeze, not generalizing to various datasets and models, we
adaptively select layers to freeze based on the varying information in each batch.

For the loss of accuracy by the reduced computational cost, we propose a novel sample retrieval
method to improve accuracy with negligible training cost. While several online CL methods, such
as MIR (Aljundi et al., 2019a) and ASER (Shim et al., 2021), aim to retrieve more informative
training batches than random retrieval from replay memory, they require forward/backward passes
of a large candidate set to select informative batches, increasing computation by 4 times and 3times
compared to ER (Rolnick et al., 2019), respectively. Applying these methods negates the computa-
tional savings of the proposed adaptive layer freezing approach. To this end, we propose to retrieve
samples that the model has not learned much about information stored in episodic memory for train-
ing without incurring additional computational costs. To quantify the degree of learning, we employ
the frequency of recent usage of each sample in training and the similarity of the gradients between
classes. They are acquired during the training process, i.e., no need for additional inference.

For our empirical validations, we compare the state-of-the-art online CL algorithms under the same
FLOPs of computations and the same bytes of storage in Fig. 1. We observe that several high-
performance CL methods do not maintain competitiveness under fixed FLOPs and memory budget,
unexpectedly trailing behind a simple Experience Replay(Rolnick et al., 2019). On the contrary, the
proposed method outperforms them by a noticeable margin under the same total budget.

We summarize our contributions as follows:
• Proposing to measure computational and memory budgets of CL algorithms by using training

FLOPs and total memory size in Bytes, to fairly compare different algorithms.
• Proposing a computationally efficient adaptive layer freezing that maximizes FI per computation,

as well as a memory retrieval strategy that prioritizes samples that the model has learned least.
• Empirical analysis on the computational and memory costs of various CL algorithms, showing

that many state-of-the-art CL methods are less beneficial under the same budget and showing
that the proposed method outperforms them by a noticeable margin across multiple benchmarks.
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2 RELATED WORK

2.1 ONLINE CONTINUAL LEARNING WITH MEMORY BUDGET

Replay-based online CL methods use episodic memory and consider the memory budget. Since
we also consider using episodic memory, we review them in detail as follows. Replay-based meth-
ods (Aljundi et al., 2019b; Bang et al., 2021; Koh et al., 2022) store part of the past data stream in
episodic memory to replay them in future learning. Although there are simple sampling strategies
such as random sampling (Guo et al., 2020) and reservoir sampling (Vitter, 1985), they are often
insufficient to adapt to changing data distributions. Rather than simple methods, researchers have
developed advanced sampling strategies considering factors such as uncertainty (Bang et al., 2021),
importance (Koh et al., 2022), and gradient (Tiwari et al., 2022). However, these advanced methods
often entail a high computational overhead, making them impractical for deployment in real-world
applications. RM (Bang et al., 2021) requires a significant amount of computational cost to calcu-
late the uncertainty for diversified sampling. Similarly, CLIB (Koh et al., 2022) involves additional
forward and backward passes to calculate the decrease in loss for each batch iteration.

In addition to the memory management schemes, researchers investigate the memory usage schemes,
i.e., sample retrieval strategies from the rehearsal buffers. In addition to random retrieval (Chaudhry
et al., 2019), the determination of retrieval based on the degree of interference (Aljundi et al., 2019a)
and the adversarial Shapley value (Shim et al., 2021) has been explored. However, such methods
require an inference of candidate samples, which leads to a nontrivial amount of computation in
computing the loss (Aljundi et al., 2019a) or the Shapely value (Shim et al., 2021).

2.2 LAYER FREEZING

Freezing layers have been investigated to reduce computational costs during training in joint train-
ing (i.e., ordinary training scenario other than CL) (Brock et al., 2017; Xiao et al., 2019; Goutam
et al., 2020). A common freezing approach (Wang et al., 2023; Li et al., 2022) includes determin-
ing whether to freeze a layer, based on the reference model and representation similarity, such as
CKA (Cortes et al., 2012) and SP loss (Tung & Mori, 2019). Additionally, EGERIA (Wang et al.,
2023) unfreezes layers based on changes in the learning rate.

However, in CL, both online and offline, it is challenging to determine when to freeze a layer because
metrics such as Euclidean distance and CKA cannot be used to compare the degree of convergence
compared to the reference model (Mirzadeh et al., 2020). Additionally, continual learning involves
a non-i.i.d. setup, where the data distribution continues to change (Criado et al., 2022). Therefore,
in addition to changes in learning rate, it is important to consider the current data distribution when
determining whether to freeze or unfreeze a layer in continual learning. (Hayes et al., 2020) have
explored freezing methods for continual learning. However, they use predefined freezing config-
urations such as the freezing backbone block 0 after task 1, while our freezing method adaptively
freezes the layers using information per batch.

3 APPROACH

For efficient learning in computation and storage budget, we consider two strategies; (1) reducing
the computational cost of each iteration and (2) reducing the number of iterations. To implement
both strategies, we propose a method employing two techniques; (1) adaptive layer-freezing and (2)
similarity-aware retrieval of samples from episodic memory.

Specifically, for every training batch, the adaptive layer freezing method adaptively freezes layers
so that the amount of information that can be gained from the mini-batch is maximized relative to
the required computation. The memory retrieval method retrieves training batches that the model
has not learned sufficiently using the number of times each sample has been used for training, i.e.,
use-frequency, and class-wise gradient similarity. This allows the model to learn the same amount of
knowledge as using random retrieval in fewer iterations, consequently reducing the overall number
of training iterations. We call our method adaptive Layer freezing and Similarity-Aware Re-
trieval (aL-SAR), illustrating the gradient update procedure of the proposed aL-SAR in Fig. 2 and
providing a pseudocode in Sec. A.3.
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Figure 2: Gradient update procedure of the proposed aL-SAR. The colors in the ‘Similarity-Aware Re-
trieval’ box denote different classes. (1) ‘Retrieval Probability’ is calculated using class similarity S and dis-
counted use frequency ci, where ci tracks the number of times the ith sample has been used for training. (2) A
batch is sampled from memory by the ‘Retrieval Probability’ and (3) ci is updated by retrieval results. After
the (4) forward pass of the model with the batch, (5) we compute the freezing criterion (BFC)n for each layer
n of the model, using Fisher Information (FI) and ∂ℓ

∂xL
(Sec. 3.1). (6) Layers 1 to nmax = argmaxn(BFC)n

(in this example, nmax = 2) are frozen in the (7) backward pass. (8) Sij and FI are updated using the gradient
∂ℓ
∂θ

obtained from the backward pass.

3.1 ADAPTIVE LAYER FREEZING FOR ONLINE CL

To reduce the computational cost of learning a neural network with minimal accuracy loss, there
have been several studies on the freezing of neural network layers in non-CL literature (Liu et al.,
2021; He et al., 2021; Wang et al., 2023). These methods often rely on the learning convergence
of each layer to determine which layers to freeze since converged layers no longer require further
training. However, in online CL, achieving convergence is often challenging due to the limited
training budget and the ever-evolving training data distribution. This requires a new approach to
determine when and which layers to freeze for the incoming data in the online CL scenarios.

Selectively Freezing Layers by Maximum Fisher Information (FI). For a computationally ef-
ficient freezing criterion in online CL, we propose to freeze layers that learn little information per
computational cost by measuring ‘information’ (I) gained by each layer during training. Here, we
define the information (I) using Fisher Information (FI), since it is a widely used metric to measure
the amount of information that each parameter in a neural network obtains from data (Durant et al.,
2021; Desjardins et al., 2015; Ollivier, 2015). So, we use FI to measure the layer-wise information
that each layer gains from the input data to determine which layers to freeze. Note that freezing
some layers facilitates training a model for more mini-batches within a fixed computational budget
as it reduces the computations per mini-batch.

However, as a trade-off, as the number of frozen layers increases, the number of updated parameters
decreases, reducing the amount of information obtained per mini-batch. To maximize the informa-
tion (I) in the model while minimizing the computational cost (C), we propose to maximize the
expected amount of information gained per computation (I/C).

Formally, we try to find nmax = argmaxn(I/C)n for n ∈ [1, L] where we define (I/C)n as the
amount of information gained per computational cost when updating the model with layers 1 to n
frozen. L refers to the total number of layers. To compute (I/C)n, we factorize it as:

(I/C)n = (I/mb)n · (mb/C)n, (1)

where ‘mb’ refers to the mini-batch. (I/mb)n and (mb/C)n represent the amount of information
gained per mini-batch and the number of mini-batch iterations per computation, respectively, when
layers 1 to n are frozen.

Amount of Information Gained per Mini-batch (I/mb)n. To compute (I/mb)n, we use F (θi),
Fisher Information Matrix F (θ) of layer i, where θ and θi denote the parameters of the model pθ(·)
and the parameters of the layer i of pθ(·), respectively. But computing all components of F (θi) is
costly as Hessian is required, which involves second-order derivatives and can be computationally
inefficient. To avoid the cost, we use first-order approximation of F (θi) by using the diagonal
components of the F (θi) following (Kirkpatrick et al., 2017; Soen & Sun, 2021), i.e., using the
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trace operator tr(·) as:

(I/mb)n =

L∑
i=n+1

tr(F (θi)), where F (θi) = Epθ(z), z∈D

[(
∂ℓ

∂θi

)
·
(

∂ℓ

∂θi

)⊺]
, (2)

where D is the data stream, z ∈ D is the training data batch in the data stream, and ℓ = log pθ(z)
is the loss function. Note that since layers 1 to n are frozen, the model gains information of layers
n+ 1 to L, the unfrozen layers only.

Number of Mini-batch per Computational Cost (mb/C)n. To compute (mb/C)n, we initially
determine its inverse, denoted (C/mb)n, which represents the computational cost per mini-batch
when layers 1 to n are frozen. We calculate (C/mb)n by splitting it into forward and backward
propagation as: (C/mb)n =

∑L
i=1 (FF)i +

∑L
i=n+1 (BF)i, where (FF)i and (BF)i refer to the

forward FLOPs and the backward FLOPs of layer i, respectively. By taking an inverse of it, we
obtain

(mb/C)n =
1∑L

i=1 (FF)i +
∑L

i=n+1 (BF)i
. (3)

Note that since layers 1 to n are frozen, no backward computation is performed for those layers.
When the number of frozen layers (i.e., n) increases, the number of layers performing backward
operations is reduced, i.e.,

∑L
i=n+1 (BF)i decreases, thus leading to an increase in the possible

number of mini-batch within the given computational budget C.

Combining Equation 2 and Equation 3, we can finally calculate (I/C)n, which represents the infor-
mation the model can gain within a given computational budget when layers 1 to n are frozen, by a
product of (I/mb)n and (mb/C)n:

(I/C)n = (I/mb)n · (mb/C)n =

∑L
i=n+1 tr(F (θi))∑L

i=1 (FF)i +
∑L

i=n+1 (BF)i
. (4)

By freezing layer 1 to layer nmax = argmaxn(I/C)n, we can maximize the expected amount of
information gained per computation during training.

Batch-wise Freezing for Online CL. (I/C)n is supposed to be calculated on the entire data
stream since F (θ) is defined as an expectation over the whole dataset in Equation 2. Thus, (I/C)n
does not account for the variable amount of information of each batch. In online CL where the
incoming batch distribution continuously shifts, the variation is not negligible. Specifically, for
batches containing sufficiently trained classes, it is advantageous to freeze more layers, while for
batches with insufficiently trained classes, it is beneficial to freeze fewer layers. To address this, we
propose the batch freezing criterion (BFC) which quantifies the net benefit in the information gained
by the model when we freeze layers given an input batch zt.

To define the BFC, we compare (1) the amount of information we would lose from the current batch
by freezing and (2) the expected amount of information we would gain in the future using the saved
computation from freezing. Then, we can estimate the net benefit from freezing in terms of the
information gained by the model by subtracting (1) from (2).

To estimate (1), we use the trace of layer-wise FI, i.e., tr(F (θi)), defined in Equation 2. Note
that F (θi) is the FI over the whole dataset; thus we convert it into batch-specific FI Fzt(θi) =

Epθ(z), z∈zt

[(
∂ℓ
∂θi

)
·
(

∂ℓ
∂θi

)⊺]
by multiplying the ratio of the FI of the batch relative to the FI of the

entire dataset. Using Fzt(θi), the amount of information we would lose from the current batch zt by
freezing layers 1 to n is obtained as

∑n
i=1 tr(Fzt(θi)). Please refer to Sec. A.1 for more details on

the estimation of Fzt(θi) from F (θi).

To estimate (2), we calculate the amount of computations saved by freezing layers 1 to n, and
the amount of information we can obtain from the saved computations. Here, the saved com-
putation refers to the sum of the backward FLOPs of the frozen layers, denoted as

∑n
i=1(BF)i.

Using (I/C)n defined in Equation 4, we estimate the expected information (I) obtainable from
the saved computations (C) by multiplying the saved computation and (I/C)n. With optimal
freezing that maximizes (I/C), the anticipated information obtained from the saved calculations
is maxm (I/C)m ·

∑n
i=1 (BF)i.
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Finally, by subtracting (1) from (2), we obtain BFC(zt)n as:

BFC(zt)n =max
m

(I/C)m ·
n∑

i=1

(BF)i −
n∑

i=1

tr (Fzt(θi)) . (5)

The positive BFC(zt)n implies that freezing layer 1 to n is beneficial in terms of information, and a
negative value indicates otherwise. By freezing layer 1 to nmax(zt) = argmaxn BFC(zt)n, we can
select the most beneficial freezing strategy for batch zt. We argue that it allows us to dynamically
select the freezing strategy by the learning capacity of the layers and the batch’s informativeness.
We empirically demonstrate the distribution of the BFC(zt)n in Sec. A.10.

3.2 SIMILARITY-AWARE RETRIEVAL BASED ON ‘USE-FREQUENCY’

In rehearsal-based CL methods, sample retrieval strategies such as MIR (Aljundi et al., 2019a)
and ASER (Shim et al., 2021) have a high computational cost, requiring multiple additional model
inferences. Thus, in the same computational budget, their performances are surprisingly inferior to
simple random retrieval (i.e., ER) as shown in Fig. 1. Here, we propose a computationally efficient
sample retrieval strategy that does not require additional model inference.

In online CL, new data continuously stream in, and old data remain in memory, causing an imbalance
in ‘the number of times each sample is used for training’, which we call ‘use-frequency.’ We argue
that samples with high use-frequency yield marginal knowledge gains in training, and samples with
low use-frequency are likely to contain knowledge that the model has not yet learned. So, we
propose to sample data with low use-frequency for training with high probability.

Discounted Use Frequency (ci). But using the use-frequency for sampling does not consider the
knowledge forgetting in the CL setup. If a sample was frequently used in the past but seldom used
in recent iterations, its knowledge may have been forgotten, despite its high use-frequency. Inspired
by the exponential decaying model of forgetting (Shin & Lee, 2020; Mahto et al., 2020; Chien
et al., 2021), we propose a decay factor (0 < r < 1) in the use frequency at each iteration, calling
’discounted-use-frequency’ for ith sample (ci). For example, if ith sample is used n times for training
at a specific time point, after t iterations, we define its discounted use frequency as ci = n · rt.
Effective Use Frequency (ĉi). However, the model can learn knowledge about a sample by train-
ing other similar samples (e.g., samples from the same classes). Thus, c of the other samples could
also affects ci of the sample. These similar samples effectively increase the use-frequency of the
particular sample. At the same time, the model may lose knowledge about the sample when training
on different samples (e.g., from other classes), effectively decreasing the use-frequency.

To account for this, we define ‘effective-use-frequency’ by adding the other samples’ use-frequency
multiplied by the similarity of samples to ci. For the sample similarity score, inspired by (Du et al.,
2018), which uses gradient similarity to assess the helpfulness or harmfulness of an auxiliary task to
the original task, we hypothesize that samples with similar gradients bear similar information. So,
for the proxy of sample similarity, we use cosine similarity between the gradients.

However, tracking the gradient similarities between all sample pairs requires excessive memory
(∼ 1012 pairs for ImageNet) and computation. Thus, we approximate it to class-wise similarities,
which is the expected gradient similarity between samples from two classes. Formally, we define
the class-wise similarity Sy1,y2 for classes y1 and y2 as:

Sy1,y2
= Ez1∈Dy1 ,z2∈Dy2

[cos(∇θl(z1),∇θl(z2))] , (6)

where Dyi is the training data for class yi and ∇θl(zi) is gradient of ith sample. Using the approxi-
mated class-wise similarities, we define the effective-use-frequency ĉi for the ith sample as:

ĉi = ci +
∑
y∈Y
Sy,yi

· Cy, (7)

where Y is the set of all seen classes, Sy,yi is a class similarity between class y and yi, and Cy =∑
yj=y cj is the sum of the discounted use-frequencies for all samples of class y.

Unfortunately, calculating the expected value in Syi,yj
(Equation 6) from scratch for each iteration

requires a gradient calculation for all samples in the classes yi and yj , which is computationally
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expensive. As a computationally efficient alternative, we further propose using the EMA to update
the previous estimate of Syi,yj

rather than calculating the expectation from scratch. Note that we
only utilize gradients from unfrozen layers, obtained during the training process, i.e., incurring no
additional cost. Please refer to Sec. A.18 for detailed information on the calculation of Syi,yj

.

Finally, we obtain the retrieval probabilities pi for ith sample with the effective-use-frequency as:

pi =
e−ĉi/T∑|M|
j=1 e

−ĉj/T
, (8)

where T is a temperature hyperparameter. Samples with low ĉi have high chances of being retrieved,
so insufficiently trained samples are preferred to sufficiently trained ones, thereby accelerating train-
ing. We present several toy experiments and an ablation study on the components of SAR to validate
the empirical benefit of our retrieval algorithm in Sec. A.26 and Sec. A.8, respectively.

4 EXPERIMENTS

4.1 SETUP

For empirical validation, we adopt the total budget for memory and computation. For the memory
budget, we use Bytes following (Zhou et al., 2023), which considers memory costs not only for
the samples in episodic memory but also for additional model parameters used in regularization or
distillation. For the computational budget, we use training FLOPs. For the dataset, we use CIFAR-
10/100, CLEAR-10/100, and ImageNet-1K. We evaluate the methods in a conventional disjoint task
setup and a newly proposed Gaussian task setup (Shanahan et al., 2021; Wang et al., 2022b; Koh
et al., 2023). For all experiments, we averaged 3 different random seeds, except ImageNet-1K due
to computational cost (Bang et al., 2021; Koh et al., 2023). We conducted a Welch’s t-test with a
significance level of 0.05. We highlighted the highest performance in bold. In cases where statistical
significance was not observed, we underlined all other results within the significance level.

Metrics. We report the last accuracy Alast and the area under the curve of accuracy AAUC (Koh
et al., 2022). The Alast measures the accuracy at the end of CL. The AAUC measures the accuracy
per time step using the accumulated test set of all previously seen tasks and then computes the area
under the accuracy curve. For each evaluation, we evaluate using the entire test set for the classes
seen so far. We argue that AAUC is a suitable metric to measure prompt learning of new knowledge.

Baselines. We compare aL-SAR to state-of-the-art online CL methods such as ER (Rolnick et al.,
2019), DER++ (Buzzega et al., 2020), MIR (Aljundi et al., 2019a), MEMO (Zhou et al., 2023), RE-
MIND (Hayes et al., 2020), EWC (Kirkpatrick et al., 2017), OCS (Yoon et al., 2022), LiDER (Bon-
icelli et al., 2022), X-DER (Boschini et al., 2023), CCL-DC (Wang et al., 2024), and CAMA (Kim
et al., 2024). We describe the implementation details and hyperparameters in Sec. A.4.

4.2 QUANTITATIVE ANALYSIS

We evaluated CL methods, including aL-SAR, with strictly restricted computation and memory
budgets as specified in Sec. 4.1. Note that while we set the training iterations of aL-SAR to be the
same as other baselines, aL-SAR adaptively freezes layers, resulting in fewer FLOPs consumed.
For experiments on various computational and memory budgets, we use the relatively small CIFAR
datasets to cover a wide range of given budgets. To validate our methods on large datasets and
datasets with temporal domain shift, we also show experiments on ImageNet and CLEAR datasets.
Note that these experiments are conducted on various CL setups, including Gaussian task setup,
Disjoint task setup, and domain-incremental setup. Furthermore, we applied our adaptive layer
freezing method to LLaVA-v1.5-7B, demonstrating a significant reduction in the computational cost
of training the multi-modal large language model while preserving performance.

Various Computational Budget under the Same Memory Budget. We compare CL methods
under fixed memory budgets and various computational budgets in Fig. 3. We observe that aL-SAR
significantly outperforms others in all datasets and both setups, especially under a low computational
budget. It shows that our similarity-aware retrieval effectively promotes rapid learning by retrieving
informative training batches even with a limited computational budget, while random retrieval and
MIR (Aljundi et al., 2019a) require high computation to achieve comparable performance.
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Figure 3: Accuracy on Gaussian and Disjoint CL setup in CIFAR-10 and CIFAR-100 for a wide range of
FLOPs per sample. aL-SAR outperforms all CL methods compared. We use a memory budget of 30.4MB.

Furthermore, we observe a notable increase in the FLOPs saved by aL-SAR through freezing, par-
ticularly pronounced at higher computational budgets. As the model undergoes more iterations,
the amount of information that the model gains from the training data decreases. Thus, our adap-
tive layer freezing adaptively adjusts the freezing criterion to freeze more layers, leading to lower
FLOPs, thus the line stops at the earlier GFLOPs value than the baselines. We provide comprehen-
sive analysis when varying computations under various memory constraints in Sec. A.5. Please refer
to Sec. A.21 for more details on the computational budget.
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Figure 4: Accuracy on Gaussian and Disjoint CL setup in CIFAR-10 and CIFAR-100 for various memory
budget. aL-SAR outperforms all CL methods compared. We use a computational budget of 171.94 TFLOPs.

Various Memory Budget under the Same Computational Budget. We now fix the computa-
tional budget and test various memory budgets for CL methods in Fig. 4. With its minimal additional
memory usage and effective utilization of episodic memory through similarity-aware retrieval, aL-
SAR again outperforms other methods by a significant margin in all datasets, indicating its suitability
for both large and small memory budgets.

Large Datasets and Temporal Domain Shifts. To investigate the scalability of CL methods on
large datasets and temporal domain shifts, we report the performances on ImageNet-1K Gaus-
sian setup and CLEAR-10/100 with a fixed computational and memory budget in Tab. 1. In the
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Methods
ImageNet-1K CLEAR-10 CLEAR-100

AAUC ↑ Alast ↑ AAUC ↑ Alast ↑ AAUC ↑ Alast ↑
EWC (Kirkpatrick et al., 2017) 20.05 32.55 62.40±0.17 71.25±1.29 29.62±0.44 40.36±1.34
ER (Rolnick et al., 2019) 20.01 32.60 64.00±0.06 72.28±1.15 31.56±0.42 44.90±0.74
ER-MIR (Aljundi et al., 2019a) 7.45 17.04 62.29±0.17 70.52±1.13 23.24±0.14 34.92±1.16
REMIND (Hayes et al., 2020) 15.58 22.42 62.64±0.04 70.68±0.90 26.76±0.30 30.99±0.55
DER++ (Buzzega et al., 2020) 23.51 29.82 61.30±0.77 71.52±1.02 25.83±0.43 39.89±0.89
OCS (Yoon et al., 2022) 6.90 19.57 58.69±0.25 68.69±1.21 15.24±1.27 22.52±2.02
LiDER (Bonicelli et al., 2022) 27.65 34.66 58.36±0.75 69.16±1.21 28.75±0.28 39.92±1.29
X-DER (Boschini et al., 2023) 27.46 34.47 58.19±0.23 69.70±0.97 23.01±0.15 33.70±0.70
MEMO (Zhou et al., 2023) 11.15 19.98 60.29±0.31 68.69±1.21 20.33±0.28 25.53±0.92
CAMA (Kim et al., 2024) 7.94 17.44 60.97±0.52 71.66±1.18 26.27±0.37 39.42±0.67
CCL-DC (Wang et al., 2024) 19.70 32.12 61.08±0.55 71.25±0.82 23.81±0.32 35.07±0.67

aL-SAR (Ours) 33.24 35.02 67.61±0.45 74.36±0.80 38.65±0.30 47.56±0.37

Table 1: Quantitative comparison between different CL methods on CIL setup. aL-SAR outperforms
baselines with a lower computational budget and the same storage budget. Specifically, while all other base-
lines consume 112,000, 716, and 5,250 TFLOPs, aL-SAR consumes 93,000, 598, and 4,059 TFLOPs in the
ImageNet-1K Gaussian setup, CLEAR-10, and CLEAR-100, respectively. The memory budget is fixed at
5,736MB, 564MB, and 1,148MB in ImageNet-1K, CLEAR-10, and CLEAR-100, respectively.

ImageNet-1K Gaussian setup, aL-SAR outperforms other methods with slightly fewer FLOPs. In
this setup, training distribution shifts continuously, so the model has to constantly adapt to the new
distribution, resulting in less freezing and more benefit from the fast adaptation enabled by the re-
trieval method.

We then investigate CL methods under temporal domain shift with fixed computational and memory
budget using the CLEAR-10/100 datasets. Unlike the class-incremental, where new classes are
added, this domain-incremental setup introduces new domains, while the classes remain the same.
As shown in the table, aL-SAR also outperforms the state-of-the-art in domain-incremental setups.
It is partly because our retrieval method balances the use-frequency of samples in different domains
so that the model learns more on relatively less-learned domains, allowing fast adaptation to new
domains. Note that aL-SAR also significantly saves FLOPs thanks to adaptive layer freezing. Please
refer to Sec. A.23 and Sec. A.21 for more details about the memory budget and the computational
budget, respectively. Moreover, we provide extensive experimental results in the memory infinite
setup and comparisons with efficient CL baselines in Sec.A.22 and Sec.A.12, respectively.

Comparison of aL with Layer Freezing Methods. We compare our proposed adaptive freezing
method (aL) with REMIND (Hayes et al., 2020) and PTLF (Yang et al., 2023), layer freezing meth-
ods for offline CL, as well as EGERIA (Wang et al., 2023), a layer freezing method for non-CL.
The results are summarized in Tab. 2. As we can see in the table, PTLF and EGERIA show negli-
gible differences in TFLOPs with No Freezing, indicating minimal layer freezing. While REMIND
significantly reduces training FLOPs, it leads to performance degradation. In contrast, our proposed
aL significantly reduces training FLOPs while maintaining performance. Notably, REMIND, PTLF,
and EGERIA require task identity information during training, while aL operates without it. This
further highlights the practicality and adaptability of aL in online CL setups. We provide a detailed
analysis of the results and further comparisons in the disjoint setup in Sec.A.15 for the sake of space.

Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
No freezing 64.60± 0.83 72.43± 0.38 171.94 42.49± 0.75 50.49± 0.29 515.82
REMIND 59.25± 0.37 65.01± 1.31 151.31 (-12.0%) 35.50± 0.56 40.00± 0.86 453.92(-12.0%)
PTLF 63.82± 0.24 71.30± 0.91 164.14 (-4.5%) 42.09± 0.58 49.92± 0.65 495.67 (-4.1%)
EGERIA 63.95± 0.72 71.72± 0.81 169.25 (-1.6%) 42.18± 0.63 50.05± 0.72 506.54 (-1.8%)
aL (Ours) 64.38± 0.32 72.57± 0.79 146.80 (-14.6%) 42.38± 0.76 50.62± 0.87 427.90 (-17.0%)

Table 2: Comparison between our proposed adaptive layer freezing and other freezing methods. We
compare them in the CIFAR-10 Gaussian setup and the CIFAR-100 Gaussian setup.

Comparison of SAR with Memory Retrieval Methods. We compare our proposed retrieval
method, i.e., SAR with ASER (Shim et al., 2021) and MIR (Aljundi et al., 2019a) in Sec. A.19.
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Application of aL in Training Multi-Modal Large Language Models (MLLMs) We demon-
strate the effectiveness of aL in training MLLMs by applying it to training of the LLaVA-1.5-7B
model (Liu et al., 2023). Following Ye et al. (2023), we update only the pretrained projection
MLP layers and LoRA adapters (Hu et al., 2021), keeping the LLM frozen for training efficiency.
We summarize the result in Tab. 3. We provide implementation details and datasets (i.e., Bongard-
HOI (Jiang et al., 2022) and Bongard-OpenWorld (Wu et al., 2024)) of MLLM training in Sec. A.13.
As shown in the table, aL saves approximately 12% in training FLOPs while maintaining perfor-
mance, by adaptively freezing LoRA layers during the training process. We believe that aL can be
effectively integrated in a plug-and-play manner with CL methods in large models, such as LLMs
and MLLMs, to reduce training costs while achieving strong performance.

Methods Bongard-HOI-P/N Bongard-OpenWorld-P/N

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
No freezing 68.01±0.47 65.39±0.69 1578.02 56.71±1.53 56.14±2.55 2959.61
aL (Ours) 68.62±1.77 64.59±0.77 1431.27 (-10.3%) 55.34±1.55 57.17±2.61 2722.23 (-8.0%)

Table 3: The effect of adaptive freezing on MLLM training. We use LLaVA-1.5-7B model with LoRA.

4.3 ABLATION STUDY

We ablate the model to investigate the benefit of each proposed component in CIFAR-10/100 and
summarize the results in Tab. 4. In Tab. 4, similarity-aware retrieval (SAR) increases the perfor-
mance while using the same number of iterations. This shows that SAR increases the amount of
knowledge learned per iteration, as we claim in Sec. 3. While computational cost also increases,
its increase is modest compared to other retrieval methods such as MIR (Aljundi et al., 2019a) or
ASER (Shim et al., 2021) that require 3 ∼ 4× more computations. Furthermore, we observe that
the aL significantly reduces FLOPs with negligible loss in accuracy. In summary, our method out-
performs the baseline while using fewer FLOPs than the baseline, each by a noticeable margin.
We provide further ablation studies of the proposed components in the Disjoint setup in Sec. A.7.
Furthermore, we present an ablation study of the proposed retrieval method, i.e., SAR, in Sec.A.8.

Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
Vanilla 60.76±0.11 70.08±0.97 163.74 31.97±0.89 37.80±1.30 245.91
+ aL 60.38±0.54 69.04±0.83 142.23 31.77±0.60 38.03±0.35 217.40
+ SAR 64.60±0.83 72.43±0.38 171.94 37.60±0.40 42.69±0.18 257.97
+ aL & SAR (Ours) 64.38±0.32 72.57±0.79 146.80 37.20±0.73 42.55±0.79 221.49

Table 4: Benefits of the proposed components of aL-SAR, adaptive layer freezing (aL) and similarity-aware
retrieval (SAR), in Gaussian task setup. ‘Vanilla’ is a simple replay-based method that trains on randomly
retrieved batches from a balanced reservoir memory. The memory budget is 7.6MB for CIFAR-10 and 13.44MB
for CIFAR-100. We train for 1 iter per sample for CIFAR-10 and 1.5 iter per sample for CIFAR-100.

Moreover, we provide detailed studies in the appendix for the space sake. Specifically, we investigate
the performance with different freezing strategies in Sec. A.6, the detailed effect of freezing on
accuracy and FLOPs in Sec. A.9, the effect of temperature T in Sec. A.20, and the application of our
freezing method on Vision Transformer (ViT) (Dosovitskiy et al., 2020)) is discussed in Sec. A.16.

5 CONCLUSION

We address the challenge of achieving high performance on both old and new data with minimal
computational cost and limited storage budget in online CL. While CL with fixed episodic memory
size has been extensively studied, we have investigated the total storage budget required for online
CL as well as the computational budget for developing practically useful online CL methods.

To this end, we proposed aL-SAR, a computationally efficient CL method comprising two com-
ponents: similarity-aware retrieval and adaptive layer freezing. Our empirical validations show that
several high-performing CL methods are not competitive under a fixed computational budget, falling
behind a simple baseline of training on randomly retrieved batches from memory.
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A APPENDIX

A.1 DETAILS ON THE ESTIMATION OF BATCH-WISE FISHER INFORMATION Fzt(θi)

To estimate the batch-wise FI Fzt(θi) from FI F (θi), we compute the FI ratio, i.e., the ratio of
the FI of the batch zt to the FI of the entire dataset, using the property that the FI is quadratically
proportional to the magnitude of the gradient (equation 2). To be specific, we compute the ratio
between |∇xℓ(zt)|2 of the current batch and the expectation of |∇xℓ(z)|2 on the whole dataset.

Note that, we only use the gradient of the last layer feature xL to estimate the magnitude of the
gradient following (Koh et al., 2023), since the gradients of the preceding layers are proportional to
the gradient of the final layer due to the chain rule. Using the estimate, we compute the batch-wise
FI Fzt(θi) from batch zt when freezing layers 1 to n as:

Fzt(θi) =
|∇xL

ℓ(zt)|2

Ez [|∇xL
ℓ(z)|2]

· F (θi), (9)

where Ez is the expectation over all input batches.

For the calculation of Fzt(θi), we have to compute the expected values in the average gradient
magnitude (Ez

[
|∇xL

ℓ(z)|2
]
) and FI (F (θi)’s) (equation 2). Since calculating the expected values

(using all samples in replay memory) in every learning iteration is computationally expensive, we
estimate them by the exponential moving average (EMA) of the estimated expectations computed
by the mini-batch of the past iterations. However, the EMA estimate of tr(F (θi)) requires a gradient
calculation for all layers, so it cannot be used with freezing, which stops the gradient computations.
Since the estimation of tr(F (θi)) and the freezing cannot be performed at the same time, at each m
iteration, we train (i.e., unfreeze) all layers to update the estimate of tr(F (θi)) for all i. For the other
m − 1 iterations, we do not update tr(F (θi)) and freeze the model based on the values of (BFC),
using the previously estimated value of tr(F (θi)).

A.2 DETAILS ABOUT ESTIMATION OF FISHER INFORMATION TRACE

To check how accurate our Fisher Information trace estimate is, we ran an experiment comparing
the Fisher Information trace estimated with i) a batch size of 16 once every four steps and ii) a batch
size of 64 for every step (i.e., 16 times larger sample size) on CIFAR-10 Gaussian task setup. We
use ResNet-32 as the backbone and show the trace of the Fisher Information of the last layers for
each block, i.e. layers 8, 16, 24, and 32. From the result in Fig. 5, we observe that the estimation
with i) a batch size of 16 once every four steps does not deviate much from the estimation with ii) a
batch size of 64 for every step, showing that our estimation is reasonably accurate.

A.3 DETAILED ALGORITHM OF AL-SAR

Algorithm 1 provides a comprehensive pseudocode for the aL-SAR method. aL-SAR has two com-
ponents: similarity-aware retrieval and adaptive layer freezing. In the algorithm box, lines 3, 6-13,
and 25-26 describe the similarity-aware retrieval method, and lines 15-24 describe the adaptive layer
freezing method.

A.4 IMPLEMENTATION DETAILS

We use ResNet-32 (He et al., 2016) for CIFAR-10, CIFAR-100, CLEAR-10 and CLEAR-100, and
use ResNet-18 as the network architecture for ImageNet-1K. We set the training hyperparameters
as follows (Prabhu et al., 2020; Bang et al., 2021; Koh et al., 2022). For CIFAR-10, CIFAR-100,
CLEAR-10, and ImageNet, we use batchsize of 16, 16, 16, and 256, respectively, and Adam op-
timizer with LR of 0.0003 for all datasets and setup. To calculate AAUC, we use an evaluation
period of 100 samples for CIFAR-10/100 and CLEAR-10/100, and 8000 samples for ImageNet-1K.
For memory constraints, we used memory size of 7.6MB, 13.44MB, 25.12MB for CIFAR-10 and
CIFAR-100, 617MB for CLEAR-10, 5.8GB for ImageNet.

For data augmentation, we apply RandAugment (Cubuk et al., 2020) to all CL methods. For hyper-
parameters, we set all the EMA ratios required for aL-SAR to 0.01 for all datasets. For the values of
k and T used in memory retrieval, we use k = 4 and T = 0.125 for all experiments.
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Figure 5: The estimated trace of Fisher Information for layers 8, 16, 24, and 32 of ResNet-32 on CIFAR-10
Gaussian Task setup, comparing the estimation used in aL-SAR and the estimation with a 16 times bigger
sample size.

We found the hyperparameters through a search on CIFAR-10 and applied them to other datasets
and setups without further tuning. This decision was made due to the lack of access to the dataset
before actual training in real-world continual learning applications, as data arrive as an online stream
Thus, we cannot perform a dataset-specific hyperparameter search. Similarly, we do not know the
distribution of the data in the future, so a setup-specific (e.g., Disjoint/Gaussian task) hyperparameter
search is also not possible. Therefore, a realistic scenario is performing a hyperparameter search
using a known dataset and setup in a test environment, and applying it to real-world with unknown
datasets and distributions. To validate our method’s ability to adapt to unknown data in this scenario,
we search for hyperparameters in CIFAR-10 Gaussian task setup and apply them to all other datasets
and setups.

For aL-SAR, we use memory-only training, where the training batch is retrieved from the episodic
memory at every iteration. And we use the Greedy Balanced Sampling strategy (Prabhu et al., 2020)
for memory sampling. We use m = 4 for all datasets and setups, where m refers to the batch cycles
where layer freezing is not applied.

For LiDER (Bonicelli et al., 2022), it follows a plug-in approach, integrated with existing methods.
Based on the experimental results in the paper, the combination with X-DER showed the most
promising performance. Consequently, the results obtained by combining X-DER were reported as
the results for LiDER.

A.5 EXPERIMENT RESULTS USING ADDITIONAL MEMORY CONSTRAINTS

The results obtained using 13.46MB memory budgets in CIFAR-10 and CIFAR-100 are shown in
Fig. 6. In addition to results in the 7.6MB memory budget in Fig. 3, our method outperforms other
methods in all tested memory budgets, further showing that our method is robust across various
memory constraints.

A.6 COMPARISON BETWEEN ADAPTIVE LAYER FREEZING AND NAIVE LAYER FREEZING

We compare the proposed adaptive layer freezing method with various naive freezing methods, in
both Gaussian and disjoint setup in CIFAR-10. The results are summarized in Tab.5. Each freezing
strategy chooses the number of frozen layers n ∈ [0, L] where L is the total number of layers, so that
when n ≥ 1, layer 1 to layer n are frozen. The compared freezing strategies are: random freezing (n
is randomly selected from [0, nmax] every iteration for a fixed nmax ∈ [0, L]), constant freezing (n
is fixed initially) and linear freezing (n increases linearly from 0 to nmax for a fixed nmax ∈ [0, L]).
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Algorithm 1 adaptive Layer freezing and Similarity-Aware Retrieval (aL-SAR)

1: Input model fθ, Layer parameters θl, Training data stream D, Batch size B, Learning rate µ,
EMA ratio α, Frequency scale k, Retrieval temperature T , Number of layers L, Total Forward
FLOPs (FF), Backward FLOPs per layer (BF)l

2: Initialize Episodic memory M ← {}, Sample frequency ci ← 0, Class frequency Cy ← 0,
Class Similarity Sy1y2 ← 0, Layer Fisher trace (trF )l ← 0, Expected gradient norm |ḡx′

L
| ← 0

3: θS = RandomSubset(θ, 0.0005)
▷ Random subset of θ containing 0.05% of the parameters, for updating class similarity S

4: for (xt, yt) ∈ D do ▷ samples from data stream
5: UpdateM← GreedyBalancingSampler (M∪ (xt, yt))

▷ Memory update with Greedy Balancing Sampler
6: ĉi = ci +

∑
y∈Y Syyi

Cy ∀ (xi, yi) ∈M
▷ Calculate effective-use-frequency by Eq. (7)

7: I = RandomChoice(|M|, B, softmax(e−ĉi/T )) ▷ Sample batch indices from memory
8: r = B

k|M| ▷ Calculate decay rate

9: Update ci ← (1− r)ci ∀ (xi, yi) ∈M ▷ Decay the sample frequencies
10: Update Cy ← (1− r)Cy ∀ y ∈ Y ▷ Decay the class frequencies
11: Update ci ← ci + 1 ∀ i ∈ I ▷ Increase sample frequency for selected samples
12: Update Cyi ← Cyi + 1 ∀ i ∈ I ▷ Increase class frequency for selected samples
13: zt = {(xi, yi) ∀ i ∈ I} ▷ Obtain training batch zt
14: L(zt) =

∑
(x,y)∈zt

CrossEntropy(fθ(x), y) ▷ Calculate loss
15: gx′

L
(zt) = ∇x′

L
L(zt) ▷ Obtain gradient for last feature x′

L

16: if t%4 = 0 then
17: Update (trF )l ← (1− α)(trF )l + α

∑
(∇θlL(zt))2 ∀ l ∈ 1, . . . L

▷ Update Fisher every 4 batches
18: n∗ = 0 ▷ No freezing When Fisher update
19: else
20: (I/C)n =

∑L
l=n+1(trF )l

(FF)+
∑L

l=n+1 (BF)l
∀n ∈ 1, . . . , L ▷ Compute (I/C) by Eq. (4)

21: BFC(zt)n =
∑n

l=1 (BF)l ·maxm (I/C)m −
|gx′

L
(zt)|2

|ḡx′
L
|2 ·

∑n
l=1(trF )l ∀n ∈ 1, . . . , L

▷ Compute (BFC) by Eq. (5)
22: n∗ = argmaxnBFC(zt)n ▷ Determine optimal freezing
23: end if
24: Update |ḡx′

L
| ← (1− α) · |ḡx′

L
|+ α · |gx′

L
(zt)|▷ Update expected gradient norm for last feature

25: θS,n∗ = θS ∩ θ(n∗+1,...,L) ▷ Use only unfrozen parameters for updating similarity

26: Update Syiyj ← (1− α)Syiyj + α · CosineSimilarity
(
∇(i)

θS,n∗L(zt),∇
(j)
θS,n∗L(zt)

)
∀(xi, yi), (xj , yj) ∈ zt, i ̸= j ▷ Update class similarity using sample-wise gradients

27: Update θ(n∗+1,...,L) ← θ(n∗+1,...,L) − µ · ∇θ(n∗+1,...,L)
L(zt)
▷ Update the model except frozen layers

28: end for
29: Output fθ

All layer freezing strategies contribute to reducing computational costs. However, adaptive layer
freezing has the least performance decrease. Note that the goal of layer freezing is not to freeze as
much as possible but rather to save computational costs while preserving performance.

A.7 ABLATION STUDY

In addition to the ablation study in the CIFAR-10/100 Gaussian task setup in Sec. 4.3, we ablate the
model to investigate the benefit of each of the proposed components in CIFAR-10/100 Disjoint task
setup and summarize the results in Tab. 6.

Summing up the effect of the two components, our method outperforms the baseline while using
fewer FLOPs than the baseline, each by a noticeable margin.
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(a) CIFAR-100 Gaussian task setup (b) CIFAR-100 Disjoint task setup

Figure 6: Accuracy on the Gaussian and the Disjoint CL setup in CIFAR-10 and CIFAR-100 for various FLOPs
per sample. aL-SAR outperforms all the compared CL methods. The memory budget is fixed to 7.6MB for
both CIFAR-10 and CIFAR-100.

Methods Gaussian Disjoint

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
No Freezing 64.60±0.83 72.43±0.38 171.94 79.10±0.44 71.77±0.57 171.94

Random Freezing (nmax = 16) 63.14±0.51 70.47±1.15 150.56 77.69±0.51 69.30±1.77 150.62
Random Freezing (nmax = 32) 61.79±0.54 69.84±0.54 122.99 77.31±0.17 68.89±0.64 120.92
Constant Freezing (n = 8) 60.91±0.80 67.70±0.83 147.12 74.99±0.24 65.89±0.50 147.12
Constant Freezing (n = 16) 53.59±0.60 57.31±0.90 109.48 67.64±0.61 55.59±0.29 109.48
Linear Freezing (nmax = 16) 63.11±0.90 70.00±1.04 150.64 77.53±0.47 68.30±1.52 150.64
Linear Freezing (nmax = 32) 62.06±0.90 66.95±2.31 120.83 75.69±0.77 64.49±1.22 120.83
Adaptive Freezing (Ours) 64.38±0.32 72.57±0.79 146.80 79.75±0.38 70.70±0.88 143.51

Table 5: Comparison between adaptive layer freezing and naive freezing in CIFAR-10. The memory budget is
7.6MB.

Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
Vanilla 77.10±0.58 70.26± 0.91 163.73 43.59±0.86 38.64±0.35 245.85
+ Freezing 76.98±0.15 70.58±0.63 141.50 43.20±0.95 38.44±0.27 225.92
+ SAR 79.10±0.44 71.77±0.57 171.94 45.61±1.06 39.68±0.66 257.91
+ SAR & Freezing (aL-SAR) 79.75±0.38 70.70±0.88 143.51 45.00±1.28 39.39±0.62 228.14

Table 6: Benefits of the proposed components of our method in CIFAR-10 and CIFAR-100 for disjoint task
setup. SAR refers to our proposed Similarity-Aware Retrieval method. The memory budget is 7.6MB for
CIFAR-10 and 13.44MB for CIFAR-100. CIFAR-10 We train for 1 iter per sample for CIFAR-10 and 1.5 iter
per sample for CIFAR-100.

A.8 ABLATION STUDY OF SIMILARITY-AWARE-RETRIEVAL (SAR)

We report the ablation results on the sub-components of Similarity-Aware Retrieval (SAR) in the
Tab. 7 and Tab. 8. Applying only the use-frequency leads to lower performance than random re-
trieval, since the samples from old tasks which accumulated high use frequencies in the past will be
rarely used, causing severe forgetting on past tasks. Applying discounted use-frequency performs
marginally better than random retrieval. Considering class similarity with effective use-frequnecy
(i.e., Similarity-Aware Retrieval) further improves performance and outperforms random retrieval.
For the ablation study, memory budget is set to 7.6MB for CIFAR-10 and 13.44MB for CIFAR-100.
CIFAR-10 We train for 1 iter per sample for CIFAR-10 and 1.5 iter per sample for CIFAR-100.
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Methods CIFAR-10 CIFAR-100
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Vanilla 60.76±0.11 70.08±0.97 31.97±0.89 37.80±1.30
(+) use-frequency 56.15±0.43 69.40±0.38 30.74±1.09 36.51±1.32
(+) discounted-use-frequency 62.72±0.18 71.10±0.53 33.76±0.67 39.29±0.98
(+) effective-use-frequency (SAR) 64.60±0.83 72.43±0.38 37.60±0.40 42.69±0.18

Table 7: Ablation study of Similarity-Aware Retrieval on Continuous setup. ‘Vanilla’ is a simple replay-
based method that trains on randomly retrieved batches from a balanced reservoir memory.

Methods CIFAR-10 CIFAR-100
AAUC ↑ Alast ↑ AAUC ↑ Alast ↑

Vanilla 77.10±0.58 70.29±0.91 43.59±0.86 38.64±0.35
(+) use-frequency 75.40±0.36 69.77±1.16 42.11±0.81 37.83±0.45
(+) discounted-use-frequency 77.59±0.50 71.31±1.44 44.45±0.85 39.38±0.72
(+) effective-use-frequency (SAR) 79.10±0.44 71.77±0.57 45.61±1.06 39.68±0.66

Table 8: Ablation study of Similarity-Aware Retrieval on Disjoint setup. ‘Vanilla’ is a simple replay-based
method that trains on randomly retrieved batches from a balanced reservoir memory.

A.9 EFFECT OF LAYER FREEZING IN AL-SAR

0 10000 20000 30000 40000 50000
# samples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

w/o freezing
w/ freezing

0 10000 20000 30000 40000 50000
# samples

0

5

10

15

20

C
um

ul
at

iv
e 

TF
LO

Ps

Figure 7: The effect of using the adaptive freezing in aL-SAR, when training 1 iteration per sample in CIFAR-
10 Gaussian task setup. The black dotted line is the linear trends from the first 10,000 samples

In Fig. 7, we present the amount of FLOPs adaptive freezing method saves, under the same number
of iterations. Our results demonstrate that adaptive freezing can save a substantial amount of training
FLOPs up to 22% while maintaining accuracy. Also, considering the FLOPs trends during the first
10,000 samples, represented as the black dotted line, we observe that the ratio of saved FLOPs
increases with training progress. This shows that our freezing scheme can capture the training
progress, enabling more layers to be frozen once sufficient information has been learned. These
observations align with the trends identified in Sec. 4.3 that the ratio of saved FLOPs increases as
the total computational budget increases.

A.10 DETAILED DISTRIBUTION OF BFC ACROSS LAYERS

We plot the BFC values for selected layers and how they evolve during training in Fig. 8. Note that
the figure is smoothed to show overall trends of BFC, and the actual values fluctuate depending on
the input batch. We observe that (1) BFC values tend to stay negative on average. It indicates that
freezing is not beneficial for most batches, because CL imposes a small number of training iterations
and continuous streaming of new samples. However, for input batches with little information, BFC
temporarily becomes positive to allow freezing. (2) At the task boundaries, we observe a sharp drop
of BFC values, which means that the layers are less likely to be frozen so that they can learn from
the new, previously unseen data. This shows that BFC correctly handles the shift in informational
contents, even though our method does not use any task boundary information. (3) BFC of earlier
layers increases as training progresses, and no longer shows significant drop of BFC values at the
task boundaries. We believe this is because the earlier layers learn low-level features that are shared
across different tasks.
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Figure 8: BFC of layer 10, 20, and 30 in ResNet-32 on CIFAR-10 disjoint setup. The red dotted lines indicate
the task boundaries.

A.11 EXPERIMENTAL RESULTS ON TASKS FROM VARIOUS DATASETS

We compare aL-SAR with baselines on 5-datasets (Wang et al., 2022b), which consist of five distinct
datasets, to demonstrate its generalizability to the task of continual learning. We report the results
in Fig. 9. In the figure, we can see that the x-coordinates of the aL-SAR points are shifted to the left
compared to the x-coordinates of the points from other baselines, indicating that less computation
was used due to freezing. Note that as the training is done with a higher computational budget,
the amount of information that can be learned from the training data relative to the computation
decreases. Therefore, the freezing rate increases. In the rightmost point, it uses approximately 20%
less computational cost while achieving better performance than other baselines.
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Figure 9: Comparison of baselines in 5-datasets.

A.12 COMPARISON WITH SOTA EFFICIENT CL METHODS

We compare aL-SAR with with existing SOTA efficient CL methods and summarize the results in
Fig. 10. TriRE incorporates distillation through an Exponential Moving Average (EMA) model,
necessitating extra forward computation and memory allocation for storage. Consequently, within a
total-constrained setup, TriRE retains fewer samples in episodic memory. As a result, TriRE exhibits
lower overall performance compared to aL-SAR and SparCL. Especially, TriRE has a significantly
lower AAUC than Alast. This is because AAUC not only includes inference performance at the end
of a task but also incorporates anytime inference performance. Specifically, in TriRE, the inference
performance at points where all three stages of TriRE, namely Retain, Revise, and Rewind, are not
completed tends to be low. Note that both TriRE and SparCL rely on task boundary information,
while aL-SAR does not depend on task boundary information, leading to practical utilization in
real-world scenarios.

A.13 DETAILS ON TRAINING MULTI-MODAL LARGE LANGUAGE MODELS

Datasets. Beyond the class-incremental learning (CIL) setup, we extend aL to the multi-modal
concept-incremental learning (MCIL) setup. Specifically, we evaluate the Bongard-HOI (Jiang et al.,
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(a) CIFAR-100 Gaussian task setup (b) CIFAR-100 Disjoint task setup

Figure 10: Comparison with efficient CL methods under both memory and computation constrained setup. In
SparCL, the underscore represents sparsity. SparCL exhibits its best performance when the sparsity is set to
0.75.

2022) and Bongard-OpenWorld (Wu et al., 2024) benchmarks, which feature multiple ’concepts’
(e.g., ride a bike, The top of a snow-covered mountain) in each benchmark. We split the concepts
into 5 disjoint tasks for the MCIL setup. These benchmarks leverage two key attributes of traditional
Bongard problems (Depeweg et al., 2018): (1) the capacity for few-shot concept learning and (2)
reasoning that is dependent on context. The former entails the ability to derive visual concepts from
a limited number of examples, while the latter suggests that the classification of a query image can
differ based on the context provided (i.e., the positive and negative support sets). In the Bongard
problem, with a positive support set and a negative support set, we tackle two specific tasks: (1)
Which concept is exlusively represented by the positive support set? and (2) For a given query
image, does it belong to the positive or negative support set? We denote these tasks as CA (Concept
Answering) and P/N, respectively.

Metrics. For the Positive/Negative (P/N) task, where answers are either Positive or Negative, we
use accuracy as the evaluation metric. Similarly, for the Bongard-HOI CA task, which has simple
text answers (e.g., kick a ball), we also use accuracy as the metric. In contrast, for the Bongard-
OpenWorld-CA task, where answers are full sentences, we compare the generated sentences from
the MLLM model with ground truth sentences. Specifically, following Liu et al. (2023); Yu et al.
(2024), we use GPT-3.5 to assess response quality, evaluating helpfulness, relevance, accuracy,
and detail. It provides an overall score from 1 to 10, with higher scores indicating better perfor-
mance. We provide details on the prompts used for GPT-4 evaluation in Sec. A.14. Similar to
class-incremental tasks, we also measure the area under the curve (AUC) performance and the final
performance within this multi-modal framework.

Implementation Details. For the MCIL setup, we assume infinite episodic memory size and use
the Adam optimizer with a learning rate of 5 × 10−5 and a Constant LR scheduler. The number of
images in the support set is set to 2 for each positive and negative support set in Bongard-HOI and
Bongard-OpenWorld. We use the LLaVA-1.5-7B model and train it on NVIDIA A100 80GB GPUs.

Methods Bongard-HOI-CA Bongard-OpenWorld-CA

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
No freezing 74.46±2.77 72.41±2.02 788.35 73.72±0.49 73.26±0.56 1478.78
aL (Ours) 75.27±2.15 72.31±3.26 715.43 (-9.25%) 73.06±1.15 73.92±2.51 1401.28 (-5.24%)

Table 9: The effect of adaptive freezing on MLLM training. We use LLaVA-1.5-7B model with LoRA.
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In Tab. 3 in Sec. 4.2, we empirically demonstrate the effectiveness of aL in the Bongard-HOI-P/N
and Bongard-OpenWorld-P/N tasks.

Effect of aL in CA tasks. In addition to the P/N tasks presented in Table 3, we also apply aL
to the CA tasks and summarize the results in Table 9. Similar to the P/N tasks, aL effectively
reduces training costs in CA tasks. However, compared to the relatively simple P/N tasks, which
involve binary classification, the CA tasks require generating text or sentence-level answers, making
them more complex. As a result, aL leads to a relatively smaller reduction in FLOPs in CA tasks,
compared to P/N tasks. It shows that aL adaptively freezes fewer layers for more complex tasks that
require more training.

Notably, our proposed adaptive layer freezing method operates independently of downstream tasks,
model architecture, and task identity information, thus we expect it to be applicable across a wide
range of tasks and model architectures.

A.14 DETAILS OF PROMPTS USED FOR GPT-3.5 EVALUATION

We use GPT-3.5 to assess the quality of predicted sentences against ground truth sentences using the
following prompts:

[Ground truth]: ‘Ground-Truth sentence’
[Prediction]: ‘Prediction sentence’
Compare the ground truth and prediction from AI models, to give a correctness score for the
prediction. The user asks the question about observing an image or multiple images. The images
replace <image> tokens in [Input]. Please rate the relevance and accuracy of [Assistant] compared
to [Ground-Truth]. The assistant receives an overall score on a scale of 1 (totally wrong) to 10
(totally right), where a higher score indicates better overall performance. Please first provide a
comprehensive explanation of your evaluation explanation. In the subsequent line, please provide
a single line containing the score for Assistant, in the format of Score: <an integer value on a
scale 1 to 10>

A.15 COMPARISON BETWEEN AL AND OTHER FREEZING METHODS

In addition to the quantitative comparison of aL with freezing methods in the continuous setup, we
also compare them in the disjoint setup. The results are summarized in Tab. 10. Similar to the
continuous setup, aL effectively reduces the training FLOPs in disjoint setup while maintaining per-
formance. In contrast, REMIND (Hayes et al., 2020), PTLF (Yang et al., 2023), and EGERIA (Wang
et al., 2023) result in negligible reductions in training costs, indicating less freezing. The reasons
are as follows: (1) EGERIA freezes layers where the difference between the outputs of the current
model and the reference model has been marginal over recent n iterations. The reference model is
periodically updated using the training model to evaluate layer plasticity. This approach can be ef-
fective in joint training scenarios, as the training loss typically converges to zero over time, causing
the layers to stabilize. However, in online CL, training a current model with new data can cause
the model to diverge from the reference model, resulting in less effective layer freezing. (2) PTLF
freezes layers with top-k task correlation ratio. However, since it freezes intermediate layers rather
than layers 1 to n, it cannot fully reduce the backward FLOPs of the frozen layers as the gradients
for layer input should still be calculated for backpropagation.

Methods CIFAR-10 CIFAR-100

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
No freezing 79.10± 0.44 71.77± 0.57 171.94 53.38± 1.13 49.43± 0.72 515.82
REMIND 73.20± 0.67 62.95± 0.87 151.31 (-12.0%) 48.14± 1.30 41.28± 0.14 453.92 (-12.0%)
PTLF 79.29± 0.36 70.50± 0.43 164.38 (-4.4%) 53.22± 1.07 49.25± 0.65 497.77 (-3.5%)
EGERIA 78.70± 0.54 70.72± 0.68 169.52 (-1.4%) 52.95± 0.77 48.88± 0.46 502.41 (-2.6%)
aL (Ours) 79.75± 0.38 70.70± 0.88 143.51 (-16.5%) 53.33± 1.21 48.91± 0.87 425.65 (-17.5%)

Table 10: Comparison between our proposed adaptive layer freezing and other freezing methods. We
compare them in both the CIFAR-10 disjoint setup and the CIFAR-100 disjoint setup. We train for 1 iter per
sample for CIFAR-10 and 3 iter per sample for CIFAR-100.
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A.16 APPLYING ADAPTIVE LAYER FREEZING TO ATTENTION-BASED MODEL

We investigate the effect of the proposed adaptive layer freezing not only in ResNet but also in
attention-based models such as the Vision Transformer(ViT) (Dosovitskiy et al., 2020).We com-
pare the freezing effects for both ViT-base and ViT-large models, considering those pretrained on
ImageNet-1K and those trained from scratch. The results are summarized in Tab.11 and Tab. 12,
respectively.

When using a pretrained model, the adaptive layer freezing reduces the computational cost by nearly
15% with minimal impact on AAUC and Alast, compared to the Vanilla training without freezing.
Since pretrained models have already been sufficiently trained on a large dataset, the amount of
information that the model will learn from the training data may be relatively small compared to
training from scratch. Thus, it leads to the freezing of many layers by adaptive layer freezing. This
not only reduces computational costs but also ensures high performance, since the model is updated
only in truly informative batches, thus preserving the advantages of pretrained initialization.

In the case of training from scratch, the decrease in TFLOPs is significantly small compared to using
a pretrained model, which implies that the layers did not freeze much. This is due to the large model
capacity of ViT and the small number of training iterations in online CL, which leads to a severe
underfitting of the model when training from scratch. Specifically, Tab. 11 shows that when training
from scratch, the accuracy only reaches around 30% even at the end of the training (Alast). Thus,
since the model is not sufficiently trained yet, the adaptive layer freezing scheme tends to freeze
fewer layers so that the model can learn more information. This shows that the proposed adaptive
freezing method can indeed provide a reasonable freezing strategy.

Methods
CIFAR10 CIFAR100

Pretrained From Scratch Pretrained From Scratch

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
Vanilla 57.85±1.16 61.43±0.68 4,044.25 33.13±3.15 28.58±4.64 4,044.25 40.43±0.31 45.03±0.06 6066.4 14.95±5.83 15.61±7.58 6066.4
+ Adaptive Freezing 58.70±1.58 60.73±1.52 3,466.42 33.34±3.44 30.44±6.22 3,926.65 41.25±2.95 46.58±1.71 5224.05 21.13±0.74 24.78±0.21 5828.75

Table 11: Effect of layer freezing in ViT-base. We used CIFAR-10 and CIFAR-100 as the dataset, Gaussian
Setup for setup. The memory budget is 334.76MB for both CIFAR-10 and CIFAR-100.

Methods
Disjoint Gaussian

Pretrained From Scratch Pretrained From Scratch

AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓
Vanilla 69.96±3.58 55.03±4.46 14,316.37 41.27±0.79 19.52±1.47 14,316.37 58.82±2.17 60.11±4.81 14,3163.73 28.05±1.74 24.17±2.69 14,316.37
+ Adaptive Freezing 70.78±4.70 58.34±4.06 11,002.60 41.63±1.09 21.19±1.90 13,802.64 64.15±2.70 73.12±0.18 11,306.60 28.93±2.08 24.34±1.72 14,017.93

Table 12: Effect of layer freezing in ViT-Large. We used CIFAR-10 and CIFAR-100 as the dataset, Gaussian
Setup for setup. The memory budget is 1.20GB for both CIFAR-10 and CIFAR-100.

A.17 APPLYING AL-SAR ACROSS DIVERSE NETWORK ARCHITECTURES

aL-SAR can be applied to any feedforward neural network, as long as layers can be defined, in-
cluding CNNs and Vision Transformers (Dosovitskiy et al., 2020), as shown in Sec. A.16. Note
that since our layer freezing methods require evaluating the information gained and FLOPs used by
individual layers, a network should be dissected into layers.

Model
CIFAR-10 CIFAR-100

Disjoint Gaussian Disjoint Gaussian
AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓

Baseline 78.11±0.18 73.44±0.91 506.54 58.95±0.11 74.59±0.27 506.54 45.37±1.14 35.68±0.35 759.81 32.91±0.64 34.86±0.68 759.81
aL-SAR (Ours) 81.25±0.23 75.28±0.29 418.19 66.44±0.18 77.08±1.09 437.34 50.15±0.92 38.57±0.55 647.77 41.88±0.58 41.65±1.02 668.11

Table 13: Comparison between Baseline and aL-SAR on Disjoint and Gaussian in CIFAR-10 and CIFAR-100
with naive 8-CNN layers. The baseline refers to removing the two components of aL-SAR: similarity-aware
retrieval and adaptive layer freezing.

To analyze the effect of the number of layers in aL-SAR, we first conduct experiments with ResNet-
20 and ResNet-56 on CIFAR-10 and CIFAR-100, in addition to ResNet-32 and ResNet-18 as used
in the main results. As shown in Fig. 11 and Fig. 12, aL-SAR consistently outperforms baseline,
which refers to removing two components of aL-SAR: adaptive layer freezing and similarity-aware
retrieval, irrespective of the number of layers. We also compare aL-SAR with other CL baselines
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Model
CIFAR-10 CIFAR-100

Disjoint Gaussian Disjoint Gaussian
AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓

Baseline 75.45±0.86 72.09±0.84 1236.51 54.59±0.62 71.43±0.46 1236.51 40.86±1.62 33.56±0.98 1854.78 28.49±0.38 32.01±0.16 1854.78
aL-SAR (Ours) 79.43±0.34 73.62±1.31 1025.14 62.71±0.73 74.62±2.06 1082.22 46.22±1.38 39.70±0.13 1631.72 38.36±1.04 41.35±1.51 1679.66

Table 14: Comparison between Baseline and aL-SAR on Disjoint and Gaussian in CIFAR-10 and CIFAR-100
with naive 16-CNN layers. The baseline refers to removing the two components of aL-SAR: similarity-aware
retrieval and adaptive layer freezing.

Model
CIFAR-10 CIFAR-100

Disjoint Gaussian Disjoint Gaussian
AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓ AAUC ↑ Alast ↑ TFLOPs ↓

Baseline 68.28±0.95 65.18±1.66 2096.46 46.00±1.55 60.30±2.39 2696.46 27.81±0.30 23.11±0.78 4044.71 17.69±1.16 21.69±1.43 4044.71
aL-SAR (Ours) 73.42±0.41 66.51±0.23 2304.73 53.21±3.01 66.97±3.87 2495.75 29.80±0.96 26.05±1.00 3910.97 24.68±2.10 29.69±2.65 3940.56

Table 15: Comparison between Baseline and aL-SAR on Disjoint and Gaussian in CIFAR-10 and CIFAR-100
with naive 32-CNN layers. The baseline refers to removing the two components of aL-SAR: similarity-aware
retrieval and adaptive layer freezing.

and summarize the results in Fig.13 and Fig. 14, respectively. aL-SAR consistently outperforms
other methods in both shallower and deeper networks, showing that aL-SAR is robust in various
model sizes.

Moreover, we perform additional experiments on the naive CNN without skip connection, i.e., con-
sisting only of convolution, batch normalization, activation, and fully connected layers. We report
the result in Tab. 13, Table Tab. 14, and Tab. 15 for 8-layer, 16-layer, and 32-layer CNNs, respec-
tively. In the table, aL-SAR improves performance and reduces computational cost compared to
baseline also when using a simple CNN, regardless of the number of layers. Note that a deeper
CNN shows lower performance due to the absence of skip connections, as reported in [1] (ResNet).

However, our proposed adaptive layer freezing cannot apply to recurrent neural networks (Sherstin-
sky, 2020) since the gradient of a layer affects not only the preceding layers but also the subsequent
layers (Rotman & Wolf, 2021), while in the feedforward network, the gradient of a layer influences
only the preceding layers.
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Figure 11: Comparison of the baseline and aL-SAR on Gaussian and Disjoint CL setup in CIFAR-10 and
CIFAR-100 with ResNet-20. The baseline refers to removing the two components of aL-SAR, i.e., adaptive
layer freezing and similarity-aware retrieval, from aL-SAR itself.
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Figure 12: Comparison of the baseline and aL-SAR Gaussian and Disjoint CL setup in CIFAR-10 and CIFAR-
100 with ResNet-56. The baseline refers to removing the two components of aL-SAR, i.e., adaptive layer
freezing and similarity-aware retrieval, from aL-SAR itself.
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Figure 13: Comparison of CL methods on Gaussian and Disjoint CL setup in CIFAR-10 and CIFAR-100 with
ResNet-20.

A.18 DETAILED INFORMATION ON THE CALCULATION OF Syi,yj

We calculate the cosine similarity of the gradients between all pairs of samples in the training batch
and update the EMA estimate of class-wise gradients, which are then used for calculating Syiyj .
To further reduce the computational cost of calculating similarity, we use only 0.05% of the model
parameters for the calculation of similarity, since the gradient distribution of the subset of randomly
selected weights is similar to the gradient of the entire weight set (Li et al., 2022).

Specifically, we randomly select 0.05% of the model parameters across all layers before training.
During training, we use the gradients of the pre-selected, which are unfrozen by adaptive layer
freezing, to update the class-wise gradients. Specifically, we employ an EMA estimation of the class-
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Figure 14: Comparison of CL methods on Gaussian and Disjoint CL setup in CIFAR-10 and CIFAR-100 with
ResNet-56.

wise gradients, updating them every batch iteration using the gradients of selected parameters in an
EMA manner. While not all EMA-estimated class-wise gradients are updated every iteration (since
gradients of frozen layers are not computed), all elements of the estimated class-wise gradients are
updated every m iterations, as we unfreeze all layers every m iterations, as mentioned in Sec. A.1.
To form the similarity matrix, we first compute the element-wise product of class-wise gradients and
then average them over all class-wise pairs.

A.19 COMPARISON WITH RETRIEVAL-BASED CL METHODS

To train models with informative training batches, recent studies propose retrieving batches from
episodic memory, such as MIR (Aljundi et al., 2019a) and ASER (Shim et al., 2021). However,
calculating the loss in MIR and the adversarial shapely value in ASER requires additional forward
and backward processes, leading to high computational requirements. In contrast, our proposed
similarity-aware retrieval methods only utilize the gradient vector, which can be obtained naturally
during the training process, incurring no additional cost. Therefore, as depicted in Fig. 15, aL-SAR
outperforms MIR and ASER under fixed computational budgets.

A.20 EFFECT OF TEMPERATURE T

Temperature is selected by a hyperparameter search on CIFAR-10. The lower the temperature, the
more the retrieval focuses on samples with low effective use-frequency, enabling a faster gain in
knowledge. However, since we need diverse samples to maintain an accurate estimate of similarity,
a too low temperature would also hinder the performance. Thus, we select an adequate temperature
via a hyperparameter search. We report the result of the hyperparameter search in Fig. 16. Note that
while a too high or low temperature results in a diminished performance, there is a wide range of
temperature values that show stable performances.

A.21 DETAILS ABOUT MEASURING FLOPS

With the exception of the simplest baseline, ER, the other baseline methods involve additional com-
putational costs. REMIND, MIR, OCS, X-DER, and MEMO require additional forward/backward
processes of the model, resulting in a notable increase in the relative FLOPs compared to ER. On
the contrary, for DER, EWC, and aL-SAR, additional computational cost is neglible as they do not
involve model forward and backward processes i.e., the relative FLOPs is approximately 1. We
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Figure 15: Comparison of various retrieval-based CL methods on Gaussian and Disjoint CL setup in CIFAR-10
and CIFAR-100.
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Figure 16: Experiment for the effect of temperature T in the CIFAR-10 Gaussian scheduled setup. We use
ResNet-32 as a backbone

compare the types of additional computational costs and relative flops compared to ER (Rolnick
et al., 2019) for each method in Tab. 16.

Although aL-SAR requires various types of computation, these amounts to significantly fewer oper-
ations compared to the costs incurred during model forward and backward passes. In addition, since
aL-SAR freezes layers depending on the input batch, we provided a range for backward FLOPs.
Note that Remind incurs additional costs during base initialization to convert all memory data into
features and perform product quantization. However, since this process occurs only once during the
model training process and not in every iteration, it is not included in the table.

A.22 EXPERIMENTAL RESULTS IN MEMORY INFINITE SETUP

aL-SAR demonstrates even stronger performance with an unlimited memory budget setup in various
benchmarks such as CIFAR-10, CIFAR-100, and ImageNet-1K, as shown in Fig. 17. We believe
it is because the effect of the retrieval strategy is more significant with unlimited memory than
with limited memory. Provided that the retrieval strategy successfully distinguishes useful samples,
retrieving from the full past data (unlimited memory) is likely to yield more useful samples than
retrieving only from a small portion of past data (limited memory). Thus, strong performance in the
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Methods Type of Computation FLOPs formulation FLOPs/sample (TFLOPs) Total FLOPs/sample (TFLOPs) Relative FLOPs to ER

ER
Forward FLOPs Measured by ptflops 0.57

1.71 1Backward FLOPs Measured by ptflops 1.14
Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

DER

Forward FLOPs Measured by ptflops 0.57

1.71 ≈ 1Backward FLOPs Measured by ptflops 1.14
Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Calculation of Distillation Loss 2 × (# classes) 1.0× 10−11

X-DER

Forward FLOPs Measured by ptflops 0.57

3.99 2.33
Backward FLOPs Measured by ptflops 1.14

Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Forwarding Inputs with Different
Augmentations for Contrastive Learning 4 × (Forward FLOPs) 2.28

OCS

Forward FLOPs Measured by ptflops 0.57

3.42 ≈ 2
Backward FLOPs Measured by ptflops 1.14

Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Coreset sampling (Forward FLOPs + Backward FLOPs) 1.71

ER-MIR

Forward FLOPs Measured by ptflops 0.57

7.05 4.12
Backward FLOPs Measured by ptflops 1.14

Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Forward FLOPs for Candidates (#candidates)
(batchsize) × 0.57 1.78

Backward FLOPs for Candidates (#candidates)
(batchsize) × 1.14 3.56

MEMO

Forward FLOPs Measured by ptflops 0.57

2.55 1.49
Backward FLOPs Measured by ptflops 1.14

Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Forward cost for Expanded Network (# of tasks) × 0.03 0.15
Backward cost for Expanded Network (# of tasks) × 0.07 0.35

LiDER

Forward FLOPs Measured by ptflops 0.57

3.99 2.33

Backward FLOPs Measured by ptflops 1.14
Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Forwarding Inputs with Different-
Augmentations for Contrastive Learning 4 × (Forward FLOPs) 2.28

Calculation of Lipschitz Constant (batchsize) × f.shape[0] * f.shape[0]
× (2 × f.shape[1] - 1) 4.19 ×10−6

CCL-DC

Forward FLOPs Measured by ptflops 0.57

7.98 4.66
Backward FLOPs Measured by ptflops 1.14

Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Forwarding Inputs with Different-
Augmentations for Collaborative Learning 9 × (Forward FLOPs) + (Backward FLOPs) 6.27

CAMA

Forward FLOPs Measured by ptflops 0.57

1.71 ≈ 1
Backward FLOPs Measured by ptflops 1.14

Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Calculation of Distillation Loss 2 × (# classes) 1.0× 10−11

Logit Updating 3 × (# classes) 1.5× 10−11

REMIND

Forward FLOPs (before base initialization) Measured by ptflops 0.57
1.71 1Backward FLOPs (before base initialization) Measured by ptflops 1.14

Model Updates (Adam - before base initialization) 12 × (# parameters) 5.52 ×10−6

Forward FLOPs (after base initialization) 0.78 × (Forward FLOPs for whole model) 0.44
1.32 0.7Backward FLOPs (after base initialization) 0.78 × (Backward FLOPs for whole model) 0.88

Model Updates (Adam - after base initialization) 0.78 × (Model updates for whole model) 5.52 ×10−6

aL-SAR

Forward FLOPs Measured by ptflops 0.57

0.57 ∼ 1.71 0.33 ∼ 1

Backward FLOPs Measured by ptflops (depends on freezing) 8.2× 10−8 ∼ 1.14
Model Updates (Adam) 12 × (# parameters) 5.52 ×10−6

Calculation of Class-wise similarity (5× (# parameters)× 0.0005 + 3)
×(batchsize 5.5× 10−8

Calculation of Fisher Information 2× (# parameters) + 3× (# layers) 9.2× 10−7

Calculation of BFC (# layers)× 3 + len(xL)× 2 1.1× 10−9

Calculation of Retrieval Probability 4× |M | + (# classes)2 + (# classes) 8.11 × 10−9

Frequency Update (batchsize)× 2 + (# classes) + |M | 2.0 ×10−9

Table 16: Details of the additional computational budget. To measure forward/backward FLOPs of the model,
we use ptflops1, which is a widely used Python library to calculate FLOPs. FLOPs from other operations were
manually calculated.

unlimited-memory setup indicates that our similarity-aware retrieval effectively distinguishes useful
samples.

Interestingly, aL-SAR freezes fewer layers in the unlimited memory setup than the limited memory
setup. In the unlimited memory setup, the model can learn more knowledge from the samples stored
in episodic memory than in the limited memory setup, so our adaptive freezing scheme chooses
to freeze fewer layers so that the model can acquire more knowledge. It shows that our adaptive
freezing method works also in the unlimited memory setup without the need to modify.

A.23 DETAILS ABOUT THE MEMORY BBUDGET IN TOTAL-CONSTRAINED CL

The memory budget is allocated to episodic memory, model parameters, and additional memory
costs specific to each CL algorithm, such as classwise similarities and logits. In this section, B
denotes the additional memory budget, S(|B|) denotes the size of the additional memory budget (in
MB), � denotes episodic memory, and |�| represents the number of stored instances in �.

In our total-constrained setup, the memory budget is restricted to the cost of storing 7.6MB,
13.44MB and 25.12 MB in CIFAR-10/100. Since storing the ResNet-32 model parameters requires
memory cost equivalent to saving 603 instances of CIFAR-100 images (463,504 floats × 4 bytes/float
÷ (3 × 32 × 32) bytes/image ≈ 603 instances), for methods that store the model for distillation or
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(a) CIFAR-10 Gaussian task setup (b) CIFAR-10 Disjoint task setup
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(a) CIFAR-100 Gaussian task setup (b) CIFAR-100 Disjoint task setup
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(a) ImageNet-1K Gaussian task setup (b) ImageNet-1K Disjoint task setup

Figure 17: Alast and AAUC on Gaussian and Disjoint CL setup in CIFAR-10 and CIFAR-100 for a wide range
of FLOPs per sample with infinite memory budget. We employ ResNet-32 for CIFAR-10/100 and ResNet-18
for ImageNet-1K as a backbone.

regularization, we subtract the memory cost of the model parameters from the episodic memory
size (Zhou et al., 2023). In ImageNet and CLEAR-10, we use the ResNet-18 model and apply
the same policy of subtracting model parameters and logits from the memory budget as mentioned
above.

ER does not require additional memory beyond episodic memory. Similarly, MIR (Aljundi et al.,
2019a) and ASER (Shim et al., 2021) do not require additional memory despite being computation-
ally heavy.

On the contrary, EWC (Kirkpatrick et al., 2017) requires storing the previous model parameters and
the parameter-wise Fisher Information(FI) for all parameters. Therefore, we subtract the memory
cost of storing two models from the episodic memory size. Similarly, BiC (Wu et al., 2019) also
stores the previous model for distillation, |�| was reduced as much as the size of the model. For
example, with a total memory budget of 7.6MB and a ResNet-32 model type in CIFAR-100, ER
can store up to 2000 instances in �, while EWC is limited to storing only 794 (= 2000 - 2×603)
instances. Similarly, BiC can store only 1397 (= 2000 - 603) instances in �.

Some methods incur additional memory costs other than episodic memory or model parameters.
We handle such costs in a similar way by reducing the episodic memory size by the number of
samples equivalent to the additional memory cost. For example, DER (Buzzega et al., 2020) uses
the previous logits of the samples for distillation, so we subtract the cost of storing the logits from
the episodic memory size. More specifically, DER needs additional storage which size is |�|×dl×
4 bytes/float, where dl denotes logit dimension, which is 100 in CIFAR-100 and 10 in CIFAR-10.

1https://github.com/sovrasov/flops-counter.pytorch
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aL-SAR stores similarities between classes, the training frequency of each sample, and the trace of
FIM for each layer. AR needs 400 bytes = 4 bytes/float ×102 for saving class-wise similarities, 4
bytes/int×|�| for saving frequency of each sample, and 4 bytes/float×nl for saving trace of FIM for
each layer, where nl is total number of layers. However, such additional memory cost is negligible
compared to episodic memory or model parameters (only 0.1% of memory budget). We summarize
implementation details of the total memory budget for each dataset in Tab.17, Tab.18, Tab.19,Tab.20,
and Tab.21.

Methods B Type S(|B|) |�| S(|�|) Model Type # Parameters Model Size

ER - - 2,000 5.85MB Resnet32 0.46M 1.76MB
REMIND Feature replay 5.85MB - - Resnet32 0.46M 1.76MB

DER Logits 0.08MB 1,974 5.77MB Resnet32 0.46M 1.76MB
ER-MIR - - 2,000 5.85MB Resnet32 0.46M 1.76MB

EWC FI & Previous Model 3.52MB 794 2.33MB Resnet32 0.46M 1.76MB
OCS - - 2,000 5.85MB Resnet32 0.46M 1.76MB

X-DER Logits 0.08MB 1,974 5.77MB Resnet32 0.46M 1.76MB
LiDER Logits 0.08MB 1,974 5.77MB Resnet32 0.46M 1.76MB
MEMO Expanded Network 3.52MB 794 2.33MB Resnet32 0.46M 1.76MB
CAMA Logits 0.08MB 1,974 5.77MB Resnet32 0.46M 1.76MB

CCL-DC Teacher model for
collaborative learning 1.76MB 1397 4.08MB Resnet32 0.46M 1.76MB

aL-SAR Class-wise similarity &
frequency of each sample 8.52KB 1,997 5.84MB Resnet32 0.46M 1.76MB

Table 17: Implementation details of total memory budget=7.6MB in CIFAR-10

Methods B Type S(|B|) |�| S(|�|) Model Type # Parameters Model Size

ER - - 2,000 5.85MB Resnet32 0.46M 1.76MB
REMIND Feature replay 5.85MB - - Resnet32 0.46M 1.76MB

DER Logits 0.71MB 1,770 5.14MB Resnet32 0.46M 1.76MB
ER-MIR - - 2,000 5.85MB Resnet32 0.46M 1.76MB

EWC FI & Previous Model 3.52MB 794 2.33MB Resnet32 0.46M 1.76MB
OCS - - 2,000 5.85MB Resnet32 0.46M 1.76MB

X-DER Logits 0.71MB 1,770 5.14MB Resnet32 0.46M 1.76MB
LiDER Logits 0.71MB 1,770 5.14MB Resnet32 0.46M 1.76MB
MEMO Expanded Network 1.33MB 1,542 4.51MB Resnet32 0.46M 1.76MB
CAMA Logits 0.71MB 1,770 5.14MB Resnet32 0.46M 1.76MB

CCL-DC Teacher model for
collaborative learning 1.76MB 1397 4.08MB Resnet32 0.46M 1.76MB

aL-SAR Class-wise similarity &
frequency of each sample 0.05MB 1,987 5.83MB Resnet32 0.46M 1.76MB

Table 18: Implementation details of total memory budget=7.6MB in CIFAR-100

Methods B Type S(|B|) |�| S(|�|) Model Type # Parameters Model Size

ER - - 4,000 574.0MB Resnet32 0.46M 1.76MB
REMIND Feature replay 574.0MB - - Resnet32 0.46M 1.76MB

DER Logits 0.1MB 3,999 573.9MB Resnet32 0.46M 1.76MB
ER-MIR - - 4,000 574.0MB Resnet32 0.46M 1.76MB

EWC FI & Previous Model 4.0MB 3,972 570.0MB Resnet32 0.46M 1.76MB
OCS - - 4,000 574.0MB Resnet32 0.46M 1.76MB

X-DER Logits 0.1MB 3,999 573.9MB Resnet32 0.46M 1.76MB
LiDER Logits 0.1MB 3,999 573.9MB Resnet32 0.46M 1.76MB
MEMO Expanded Network 1.4MB 3,990 572.6MB Resnet32 0.46M 1.76MB
CAMA Logits 0.1MB 3,999 573.9MB Resnet32 0.46M 1.76MB

CCL-DC Teacher model for
collaborative learning 1.76MB 3,987 572.2MB Resnet32 0.46M 1.76MB

aL-SAR Class-wise similarity &
frequency of each sample 0.1MB 3,999 573.9MB Resnet32 0.46M 1.76MB

Table 19: Implementation details of total memory budget=574.4MB in CLEAR-10
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Methods B Type S(|B|) |�| S(|�|) Model Type # Parameters Model Size

ER - - 8,000 1,148.0MB Resnet32 0.46M 1.76MB
REMIND Feature replay 1,148.0MB - - Resnet32 0.46M 1.76MB

DER Logits 3.2MB 7,978 1,144.8MB Resnet32 0.46M 1.76MB
ER-MIR - - 8,000 1,148.0MB Resnet32 0.46M 1.76MB

EWC FI & Previous Model 4.0MB 7,972 1,144.0MB Resnet32 0.46M 1.76MB
OCS - - 8,000 1,148.0MB Resnet32 0.46M 1.76MB

X-DER Logits 3.2MB 7,978 1,144.8MB Resnet32 0.46M 1.76MB
LiDER Logits 3.2MB 7,978 1,144.8MB Resnet32 0.46M 1.76MB
MEMO Expanded Network 1.4MB 7,990 1,146.6MB Resnet32 0.46M 1.76MB
CAMA Logits 3.2MB 7,978 1,144.8MB Resnet32 0.46M 1.76MB

CCL-DC Teacher model for
collaborative learning 1.76MB 7,987 1146.2MB Resnet32 0.46M 1.76MB

aL-SAR Class-wise similarity &
frequency of each sample 0.1MB 7,999 1,147.9MB Resnet32 0.46M 1.76MB

Table 20: Implementation details of total memory budget=1149.8MB in CLEAR-100

Methods B Type S(|B|) |�| S(|�|) Model Type # Parameters Model Size

ER - - 40,000 5,740.0MB Resnet18 11.17M 42.6MB
REMIND Feature replay 5,740.0MB - - Resnet18 11.17M 42.6MB

DER Logits 148.6MB 38,964 5,591.4MB Resnet18 11.17M 42.6MB
ER-MIR - - 40,000 5,740.0MB Resnet18 11.17M 42.6MB

EWC FI & Previous Model 85.2MB 39,406 5,654.8MB Resnet18 11.17M 42.6MB
OCS - - 40,000 5,740.0MB Resnet18 11.17M 42.6MB

X-DER Logits 148.6MB 38,964 5,591.4MB Resnet18 11.17M 42.6MB
LiDER Logits 148.6MB 38,964 5,591.4MB Resnet18 11.17M 42.6MB
MEMO Expanded Network 32.0MB 39,777 5,708.0MB Resnet18 11.17M 42.6MB

CCL-DC Teacher model for
collaborative learning 42.6MB 39,703 5,697.4MB Resnet18 11.17M 42.6MB

aL-SAR Class-wise similarity &
frequency of each sample 3.9MB 39,973 5,736.1MB Resnet18 11.17M 42.6MB

Table 21: Implementation details of total memory budget=5,782.6MB in ImageNet

A.24 DETAILS ABOUT AAUC

Recent studies (Pellegrini et al., 2020; Caccia et al., 2022; Banerjee et al., 2023; Ghunaim et al.,
2023) suggest that having good inference performance at any intermediate time points during train-
ing is important for CL. To evaluate intermediate performance during training, (Koh et al., 2022)
proposed AAUC, which measures the area under the curve of average accuracy. In contrast to Alast

or Aavg which measures performance only at the end of the task (i.e., after sufficient training), AAUC
consistently measures performance over the course of training. If two methods reach the same accu-
racy at the end of a task, but one method converges faster than the other, their Alast and Aavg would
be equal, but the faster model would show higher AAUC. Thus, how fast the model adapts to the new
task is reflected in AAUC.

A.25 COMPARISON OF FORGETTING

Methods KLR ↓ TFLOPs ↓
ER 61.58

114,014

ER-MIR 61.05
DER++ 60.21
LiDER 59.21
X-DER 59.72
MEMO 59.25
CAMA 60.02
CCL-DC 61.26

aL-SAR (Ours) 56.28 947,128

Table 22: Comparison of KLR and KGR on
ImageNet-1K Gaussian scheduled setup.

We compare the forgetting of aL-SAR with other
baselines on CIFAR-10, CIFAR-100, and ImageNet-
1K, and summarize the results in Fig.18, and Tab. 22,
respectively. Specifically, in disjoint setup, we re-
port Flast (Chaudhry et al., 2018), following Bang
et al. (2021); Koh et al. (2022). In the Gaussian
setup, however, the continuous shift in data distri-
bution lacks explicit task boundaries, making tradi-
tional metrics like Flast (Chaudhry et al., 2018) un-
suitable. Therefore, we report the Knowledge Loss
Ratio (KLR) (Koh et al., 2023), which do not require
task boundaries.

As shown in Fig.18, forgetting decreases as training
FLOPs increase. We believe this is because the in-
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creased computational budget allows the model to sufficiently train on previously encountered data
before being exposed to new data.
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(a) CIFAR-10 Gaussian task setup (b) CIFAR-10 Disjoint task setup
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(a) CIFAR-100 Gaussian task setup (b) CIFAR-100 Disjoint task setup

Figure 18: Comparison of forgetting on Gaussian and Disjoint CL setup in CIFAR-10 and CIFAR-100.

A.26 TOY EXPERIMENTS ON SIMILARITY-AWARE RETRIEVAL

We performe several toy experiments to validate the motivations for our proposed retrieval method.
To isolate the effect of each sample, we train ResNet-20 from scratch with batch size of 1 using a
subset of CIFAR-10. First, to validate our claim "extensively used samples provide little knowledge
to the model", we plot (use frequency) vs (training loss decrease caused by training with the sample)
in Fig. 19. We observe that training with a frequently used sample results in a small decrease in
training loss.

Next, we validate the exponential decaying model of forgetting. To measure this, we first train the
model with one sample and measure the use frequency along with the corresponding training loss.
Next, when training the model with different samples, we measure the loss of the previously trained
sample. At this point, due to the training of other samples, forgetting occurred for the sample we
used for initial training, causing the training loss to increase again. We then use the measured use-
frequency and corresponding training loss values, which are measured in the first stage, to reverse-
transform the training loss into an effective use-frequency. As shown in Fig. 20, as the number of
training iterations for other samples increases, we observe that the training loss for previously trained
samples increases, leading to a decrease in the effective use-frequency. Note that the y-axis is in log
scale and the plot shows a linear trend, showing that the loss increase from forgetting corresponds
to exponential decay of use frequency.

Finally, we validate that cosine similarity between gradients can be used to measure the effective
change in use frequency from using other samples. Using the same setup as the previous exper-
iment, in Fig. 21, we show a scatter plot between gradient similarity and the effective change in
use-frequency obtained by the relation between the sample’s loss and use frequency. When training
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with samples that have high gradient similarity with the reference samples, the effective use fre-
quency of the reference samples increases. On the contrary, when training with samples that have
low gradient similarity, the effective use frequency of reference samples decreases. We observe a
linear relationship between gradient similarity and the change in effective use-frequency. In other
words, the change in effective use frequency can be predicted using gradient similarity.
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Figure 19: Relation between a sample’s use frequency and training loss decrease from training with the sample,
measured in CIFAR-10 with ResNet-20. When a sample is used more frequently in training, it has less effect
on reducing training loss.
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Figure 20: Plot showing the number of iterations from the point where the sample has not been used for training,
and the decrease in effective use frequency corresponding to the increase in loss. It is measured in CIFAR-10
with ResNet-20.
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Figure 21: The scatter plot shows the cosine similarity between the gradient of a reference sample and the
gradients of other samples, along with the change in the effective use frequency of the reference sample when
training with other samples. It is performed in CIFAR-10 with ResNet-20.

A.27 LIMITATIONS AND FUTURE WORK

While our method only requires negligible additional memory other than episodic memory, it does
not actively optimize the memory efficiency of CL algorithms. It is interesting to explore a method
to use the limited storage budget more efficiently, e.g., storing quantized versions of models and
exemplars.

A.28 IMPACT STATEMENT

This work aims to update a model in a computationally efficient and online manner without access
to training samples used before. Thus, although there is no intent from the authors, this method may
exacerbate unsolved issues in deep learning such as model bias and less aligned to ethical standards.
We will take all available measures to prevent such outcomes, though that is not our intention at all.
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