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ABSTRACT

Pre-training on large-scale video data has become a common recipe for learn-
ing transferable spatiotemporal representations in recent years. Despite some
progress, existing methods are mostly limited to highly curated datasets (e.g.,
K400) and exhibit unsatisfactory out-of-the-box representations. We argue that
it is due to the fact that they only capture pixel-level knowledge rather than spa-
tiotemporal commonsense, which is far away from cognition-level video under-
standing. Inspired by the great success of image-text pre-training (e.g., CLIP), we
take the first step to exploit language semantics to boost transferable spatiotem-
poral representation learning. We introduce a new pretext task, Turning to Video
for Transcript Sorting (TVTS), which sorts shuffled ASR scripts by attending to
learned video representations. We do not rely on descriptive captions and learn
purely from video, i.e., leveraging the natural transcribed speech knowledge to
provide noisy but useful semantics over time. Furthermore, rather than the simple
concept learning in vision-caption contrast, we encourage cognition-level tempo-
ral commonsense reasoning via narrative reorganization. The advantages enable
our model to contextualize what is happening like human beings and seamlessly
apply to large-scale uncurated video data in the real world. Note that our method
differs from ones designed for video-text alignment (e.g., Frozen) and multimodal
representation learning (e.g., Merlot). Our method demonstrates strong out-of-the-
box spatiotemporal representations on diverse video benchmarks, e.g., +13.6%
gains over VideoMAE on SSV2 via linear probing.

1 INTRODUCTION

The aspiration of representation learning is to encode general-purpose representations that transfer
well to diverse downstream tasks, where self-supervised methodologies (He et al., 2020; Chen et al.,
2020) dominate due to their advantage in exploiting large-scale unlabeled data. Despite significant
progress in learning representations of still images (He et al., 2022b; Radford et al., 2021), the
real world is dynamic and requires reasoning over time. In this paper, we focus on out-of-the-box
spatiotemporal representation learning, a more challenging but practical task towards generic video
understanding with cognitive capabilities.

There have been various attempts at self-supervised pre-training on video data from discriminative
learning objectives (Chen et al., 2021a; Huang et al., 2021a; Behrmann et al., 2021) to generative
ones (Tong et al., 2022; Feichtenhofer et al., 2022), where the core is context capturing in spatial
and temporal dimensions. Though promising results are achieved when transferring the pre-trained
models to downstream video recognition (Goyal et al., 2017; Soomro et al., 2012; Kuehne et al.,
2011) via fine-tuning, the learned representations are still far away from out-of-the-box due to the
unsatisfactory linearly probing results (see Figure 1(a)). Moreover, existing works mostly develop
video models on the highly curated dataset with particular biases, i.e., K400 (Kay et al., 2017). Their
applicability in the real world is questioned given the observed performance drops when training on
a larger but uncurated dataset, YT180M (Zellers et al., 2021). We argue that all you need to address
the above issues is cognition-level spatiotemporal understanding like human beings. But current
video models generally exploit visual-only perception (e.g., pixels) without explicit semantics.

Recently, the success of CLIP (Radford et al., 2021) has inspired the community to learn seman-
tically aware image representations that are better transferable to downstream tasks and scalable
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Figure 1: (a) We evaluate the transferability of spatiotemporal representations via linear probing on
four video recognition datasets (Goyal et al., 2017; Kay et al., 2017; Soomro et al., 2012; Kuehne
et al., 2011), where the state-of-the-art method (Tong et al., 2022) underperforms. It performs even
worse when pre-training with a large-scale uncurated dataset, YT-Temporal (Zellers et al., 2021). (b)
We encourage complex temporal understanding and advanced spatiotemporal representation learn-
ing with a new pretext task of sorting transcripts via temporal commonsense reasoning.

to larger uncurated datasets. It provides a feasible solution for improving spatiotemporal repre-
sentation learning but remains two key problems. (1) The vision-language contrastive constraints
in CLIP mainly encourage the understanding of static objects (noun contrast) and simple motions
(verb contrast), while how to enable long-range temporal understanding and temporal commonsense
reasoning with language supervision needs to be studied. (2) The quality of language supervision
(Santurkar et al., 2022) is critical to the final performance of CLIP, however, it is hard to collect large-
scale video data with literal captions that carefully describe the dynamic content over time. The ideal
way for self-supervised learning is to learn useful knowledge purely from data itself, which is also
the philosophy followed by previous video pre-training methods (Tong et al., 2022; Feichtenhofer
et al., 2022). Fortunately, video data is naturally multi-modality with transcribed speech knowledge
in the form of text (ASR), providing time-dependent semantics despite some noise.

To enable cognition-level spatiotemporal understanding in large-scale uncurated data under the su-
pervision of inherent script knowledge, we introduce a new pretext task for video pre-training,
namely, Turning to Video for Transcript Sorting (TVTS). Intuitively, people sort out the order of
events by temporal commonsense inference. As illustrated in Figure 1(b), given several unordered
transcripts, it is difficult to reorganize the narrative by merely understanding the literal semantics.
When the corresponding video is provided, it will be much easier to sort the transcripts by con-
textualizing what is happening over time. Whereas in neural networks, temporal commonsense is
embedded in spatiotemporal representations. Thus we believe that if the chronological order of tran-
scripts can be correctly figured out via resorting to the correlated video representations, the video
has been well understood.

Specifically, besides the video encoder, we employ a text encoder to embed script representations
from ASR transcripts, together with a parametric module SortFormer to realize the pretext task of
TVTS. Given an input video and its successive transcripts, we randomly shuffle the order of the sen-
tences. The encoded script representations are then fed into SortFormer to predict their actual orders
by attending to the video representations via cross-attention layers. The order prediction is cast as a
K-way classification task, where K is the number of transcripts. The pretext task indirectly regular-
izes the video encoder to properly capture contextualized spatiotemporal representations to provide
enough knowledge for transcript ordering. Besides TVTS, a global video-transcript contrastive loss
is preserved to ease the reordering task via learning semantically meaningful video representations.
Only the video encoder is utilized for downstream video recognition tasks for fair comparisons.

The usage of language supervision is related to video-text alignment (Bain et al., 2021; Ge et al.,
2022a) and multimodal representation learning (Zellers et al., 2021; Fu et al., 2021) methods, how-
ever, we are completely different. (1) Video-text alignment methods focus on retrieval tasks and
are devoted to associating the vision patterns with language concepts. They are generally single-
frame biased (Lei et al., 2022) and fail to encode strong out-of-the-box temporal representations.
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(2) Multimodal representation learning methods aim to match different modalities in the temporal
dimension for mutual complementation and fusion. Though (Zellers et al., 2021) also reorders ASR
scripts, it is tailored for learning joint representations across modalities rather than spatiotemporal
representations in our work. It does not work when used directly for our task, discussed in Sec. 3.4.

To summarize, our contributions are three-fold. (1) We are the first to study cognition-level spa-
tiotemporal representation learning. We exploit the rich semantics from script knowledge which
is naturally along with the video, rendering a flexible pre-training method that can easily apply to
uncurated video data in the real world. (2) We introduce a novel pretext task for video pre-training,
namely, Turning to Video for Transcript Sorting (TVTS). It promotes the capability of the video en-
coder in learning transferable video representations to perform temporal commonsense reasoning.
(3) We conduct comprehensive comparisons with advanced methods. Our pre-trained model ex-
hibits strong out-of-the-box spatiotemporal representations on downstream action recognition tasks,
especially the relatively large-scale and the most challenging SSV2 (Goyal et al., 2017). We also
achieve state-of-the-art performances on eight common video datasets in terms of fine-tuning.

2 RELATED WORK

Spatiotemporal representation learning. Dominant video representation learning works have two
categories, i.e., discriminative- and generative-based methods. (i) The discriminative-based meth-
ods aim at mining unique representations within videos. For example, SVT (Ranasinghe et al.,
2022) aligns several views from the same video with different spatial and temporal resolution for
video-invariant representations. RSPNet (Chen et al., 2021a), ASCNet (Huang et al., 2021a), and
LongShortView (Behrmann et al., 2021) utilize the appearance and temporal consistency of videos
as the supervision. They use different augmentations of videos to construct positive and negative
pairs to learn correspondences along the spatial and temporal dimensions. (ii) The generative-based
methods try to reconstruct visual information from corrupted inputs. For example, MAE-based (He
et al., 2022a) methods (Tong et al., 2022; Feichtenhofer et al., 2022) use pixel values of video frames
as supervision by masking raw videos with an extremely high ratio and reconstructing them.

Previous works are mainly trained on highly curated datasets, e.g., Kinetics-400, HMDB51, and
UCF101, where the temporal motions are not significant (Lei et al., 2022). This leads to a “spatial
bias”, thus weakening the transferability to real-world uncurated datasets due to the lack of long-term
temporal reasoning. Besides, existing works merely use visual supervision without explicit semantic
information, leading to weak cognitive capabilities. Compared to them, our work leverages natural
language derived from the video itself, i.e., the ASR transcripts, as the supervision. Benefiting from
the rich spatiotemporal information, our learned video representations have stronger transferability.

Video-text pre-training. Existing video-text pre-training work can be divided into two categories.
The first category aims to learn video-text alignment for retrieval. For example, Frozen (Bain et al.,
2021), MCQ (Ge et al., 2022a), and MILES (Ge et al., 2022b) generally adopt two separate encoders
to extract video and text representations, then align them with contrastive loss. However, they only
align videos with a global video caption, thus neglecting the fine-grained temporal information.
Furthermore, they rely on clean captions, which are difficult to scale up, and it is actually hard
to collect large-scale video data with captions carefully describing the dynamic content over time.
The second category works on joint representation learning across modalities mainly for VQA.
For example, Merlot (Zellers et al., 2021) adopts a joint encoder to match the captions with the
corresponding video frames and put scrambled video frames into the correct order. It aims to match
different modalities in the temporal dimension to achieve mutual complementation and fusion in a
joint encoder, rather than learn better spatiotemporal representations with cognitive capabilities.

Image representation learning by language supervision. Recently, there have been a bunch of
successful tries in utilizing language supervision to enhance image representation learning. For ex-
ample, CLIP (Radford et al., 2021) utilized 400M image-text pairs collected from the Internet and
adopt the contrastive loss to align the image and its corresponding text. The superior performance
on downstream image classification tasks revealed that learning directly from the raw text about
images is a promising alternative that leverages a much broader source of supervision. ALIGN (Jia
et al., 2021), uses a larger but noisier uncurated dataset and shows similar results to CLIP. Neverthe-
less, these methods only utilize language supervision to improve spatial learning, without exploring
temporal learning, which hinders them from properly learning out-of-the-box video representations.
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Figure 2: Our pre-training pipeline. We first sample K consecutive ASR transcripts, and a video clip
consisting of M frames within the span of the transcripts. Then we shuffle the transcripts and encode
their representations through a text encoder. Next, we feed the clip with the correct frame order into
the video encoder for the video representations. Finally, the text and video representations are
concatenated and fed into SortFormer to predict the order of each transcript. We adopt a contrastive
objective Lalign to align the semantics between vision and text, and a cross-entropy objective Lsort
to train SortFormer to correctly sort the shuffled transcripts. Only the video encoder is adopted for
embedding spatiotemporal representations in downstream tasks.

3 METHOD

We introduce a novel pretext task, Turning to Video for Transcript Sorting (TVTS), with a para-
metric module SortFormer, to learn the transferable spatiotemporal video representation. In this
section, we first introduce the pretext TVTS in Sec. 3.1 and our pre-training objectives in Sec. 3.2.
We then describe the architecture of three components in Sec. 3.3. At last, we clarify the differences
between our method and other work that use ordering for representation learning in Sec. 3.4.

3.1 TURNING TO VIDEO FOR TRANSCRIPT SORTING

As shown in Fig. 2, TVTS is performed using a parametric module SortFormer to learn transferable
spatiotemporal representations of videos. Given the observation that it will be much easier to sort
the ASR transcripts by contextualizing what is happening over time in the video, we first randomly
shuffle several consecutive ASR transcripts. SortFormer is then trained to sort the transcripts in the
correct order via resorting to the video representations from the video encoder.

Sample and Shuffle. Given a video V and its corresponding ASR transcripts with word-level
timestamps {(wi, si)}Nasr

i=1, where Nasr denotes the word number, wi and si denote the i-th word
and its timestamp respectively, we randomly choose a starting time sbegin and sample K consecutive
transcripts, each with a duration of l (in seconds), and an interval of 1s between adjacent transcripts,

Sk = sbegin +

k−1∑
j=1

(l + 1), Ek = Sk + l

Tk = {wi|Sk ≤ si ≤ Ek}, k ∈ {1, · · · ,K}

(1)

where Sk and Ek denote the beginning and ending time of the k-th transcript. We consecutively
sample K transcripts with an interval of 1s and collect all words within [Sk, Ek] for the k-th tran-
script. Finally, we randomly shuffle the transcripts as {Toi}Ki=1, which means that the i-th transcript
in this shuffled sequence is actually the oi-th transcript in the original ordered sequence.

As for the video, we sample a clip between the beginning and ending time of all K transcripts, i.e.,
[S1, EK ], which contains M frames as {Fi}Mi=1. Specifically, we follow TSN (Wang et al., 2016)
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to divide [S1, EK ] into M segments with equal length and randomly sample 1 frame from each
segment. After the above operations, we get a video clip with M frames and K shuffled transcripts
along the span of the video clip.

Sorting Transcripts. Given the shuffled transcripts {Toi}Ki=1 and the corresponding video clip
{Fi}Mi=1, we first feed the transcripts in parallel to encode unordered text representations {toi}Ki=1.
We then mask a large proportion of the video clip among the spatial and temporal dimension as the
input of the video encoder to encode video representations {vj}Nj=0, where N denotes the number
of the unmasked video patches, and v0 is the representation of the [CLS] token. It is worth noting
that we do not add the extra [MASK] token, and we have no explicit reconstruction target, which is
different from previous works (Tong et al., 2022; Feichtenhofer et al., 2022). We mask the video clip
as a means of data augmentation since it provides corrupted knowledge for SortFormer to realize the
pretext task of TVTS. Such a strategy also reduces the computational cost during pre-training as the
attention is calculated on fewer patches.

We then concatenate the text representations of the shuffled transcripts {toi}Ki=1 and the video repre-
sentations of the sampled video clip {vj}Nj=0, and feed them into SortFormer to perform multi-head
self-attention. SortFormer attempts to sort the order of the transcripts by attending to the text features
of all transcripts and the visual features of the unmasked video clip. We model the prediction of the
transcript orders as a K-way classification task. The first K output representations of SortFormer
{zoi}Ki=1 are further fed into a linear classifier to predict the order pi ∈ RK , where pi denotes the
probability that the transcript is the i-th transcript in the original ordered sequence. For the transcript
Toi , the groundtruth classification label should be oi.

The pretext task of TVTS regularizes the video encoder to contextualize what is happening over
time, so that it can provide enough knowledge for SortFormer to figure out the chronological order
of the shuffled transcripts. It improves the capability of the video encoder to learn spatiotemporal
representations that enable temporal commonsense reasoning.

3.2 PRE-TRAINING OBJECTIVES

Besides the pretext task of TVTS, we use a global video-transcript contrastive objective, which
aligns the features of the video clip and the averaged features of K transcripts. It aims to ease
the pretext task of TVTS through learning semantic-aware video representations. We combine two
objectives to optimize the entire model in an end-to-end manner. The first one is the global video-
transcript contrastive objective Lalign, formulated as a bidirectional InfoNCE (Oord et al., 2018),

Lalign = NCE(t̂, v̂) + NCE(v̂, t̂) s.t. NCE(q, k) = − log
exp(q⊤k+/τ)∑B
i=1 exp(q

⊤ki/τ)
, (2)

where t̂ and v̂ denote the global text and video representation. We average the [CLS] token repre-
sentation of all K transcripts as t̂, i.e., t̂ ← 1

K

∑K
i=1 ti, and use the [CLS] token representation of

the video clip as v̂, i.e., v̂ ← v0.

The second one is a cross-entropy objective Lsort, which supervises SortFormer to predict the correct
order of the transcripts, and is formulated as below,

Lsort = − 1

K

K∑
i=1

softmax(p̂i) s.t. softmax(p̂i) =
exp(pioi)∑K
j=1 exp(p

i
j)
, (3)

where pij denotes the probability that the i-th transcript in the shuffled sequence is the j-th transcript
in the original ordered sequence and oi is the groundtruth order in the original ordered sequence.

Our overall pre-training objective combines the two objectives, i.e., L = Lalign + λLsort, where λ is
a hyper-parameter to balance the two losses. In our implementation, we set λ = 2 to roughly scale
the gradient magnitudes of Lalign and Lsort to be the same for efficient training.

3.3 MODEL ARCHITECTURE

Video Encoder. The video encoder takes a video clip as input, which consists of M frames of
resolution H ×W , and outputs video representations. We follow (Tong et al., 2022) to adopt cube
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embeddings, where each token corresponds to a cube of size 2× 16× 16. This yields M
2 ×

H
16 ×

W
16

3D tokens. Then we add divided space-time embedding to the token sequence, where tokens within
the same frame obtain the same temporal embedding, and tokens within the same spatial location
of different frames obtain the same spatial embedding. In this way, the VideoFormer learns the
positional information of the cubes. Next, we follow BERT (Devlin et al., 2018) to add a learnable
[CLS] token at the beginning of the token sequence for global video representations. Then we mask
a portion of video tokens without [MASK] token replacement, as stated in Sec. 3.1. We adopt a
standard ViT (Dosovitskiy et al., 2020) architecture as the video encoder. The unmasked N video
tokens as well as the [CLS] token are fed into the video encoder, and perform joint space-time
attention (Arnab et al., 2021) among the whole unmasked token sequence.

Text Encoder. The text encoder takes the ASR transcripts as inputs and outputs text representations.
We adopt DistilBERT (Sanh et al., 2019) as the text encoder. The final transcript representations are
taken from the [CLS] token, which is concatenated at the beginning of the input text.

SortFormer. SortFormer takes the concatenated transcript-video representations as inputs and out-
puts the order for each transcript. It consists of two stacked bidirectional transformer blocks. Within
each block, multi-head self-attention is performed among all the video and text tokens, i.e., all
transcript-video tokens interact with each other. The output transcript representations are further fed
into a linear classifier to perform K-way classification, which produces the order prediction.

3.4 THE PRETEXT TASK OF ORDERING IN REPRESENTATION LEARNING

Merlot (Zellers et al., 2021) also adopts an ordering-based pretext task, but has a totally different
approach and purpose. Specifically, Merlot reorders scrambled video frames given the ordered ASR
transcripts with a joint encoder, and reserves the joint encoder for downstream multimodal tasks such
as VQA. Merlot aims to promote the joint encoder in learning joint representations across modalities
rather than spatiotemporal representations. By contrast, TVTS sorts shuffled ASR transcripts via
resorting to the ordered video clip using a proxy SortFormer. It aims to improve the capability of
the video encoder in learning transferable spatiotemporal video representations by forcing the video
encoder to provide enough knowledge for transcript ordering. When the ordering task in Merlot is
directly applied to our method, it achieves poor performance as shown in Sec. 4.5.

4 EXPERIMENTS

4.1 PRE-TRAINING DATASETS

We pre-train our model on the large-scale YT-Temporal dataset (Zellers et al., 2021), which contains
6M YouTube videos with ASR transcripts and word-level timestamps. We downloaded 5M videos
for pre-training and abandon the rest. We also follow recent works (Ge et al., 2022a;b) to jointly post-
pretrain our model on Google Conceptual Captions (CC3M) and WebVid-2M. Both of their texts
are harvested from the web in the form of a single caption. Since there is no timestamp-annotated
text on CC3M and WebVid-2M, we only adopt the contrastive object Lalign.

4.2 DOWNSTREAM TASKS

Action Recognition. We evaluate our pre-trained model on four common video datasets: (a)
Something-Something V2 (SSV2) (Goyal et al., 2017), (b) Kinetics-400 (Kay et al., 2017), (c)
UCF-101 (Soomro et al., 2012), (d) HMDB-51 (Kuehne et al., 2011). Our evaluation is two-fold:
(i) We conduct zero-shot video retrieval and linear action recognition on the SSV2 dataset to evalu-
ate the transferability of the learned video representation, where the former aims to retrieve videos
of the same category as a query video, and the latter freezes the video encoder and only optimizes a
linear classifier. (ii) We fully fine-tune our pre-trained model with label supervision on the training
set of the four datasets to evaluate the recognition capability. See Appendix A.1.1 for details.

Text-to-Video Retrieval. Beyond action recognition, we further evaluate retrieval performance on
four benchmarks to see if the improved semantic-aware video representation can benefit retrieval
tasks: (a) MSR-VTT (Xu et al., 2016) (b) DiDeMo (Anne Hendricks et al., 2017) (c) MSVD Chen
& Dolan (2011) (d) LSMDC (Rohrbach et al., 2015). We adopt Recall@K (R@K) and Median
Rank (MedR) as the evaluation metric. See Appendix A.1.2 for details.
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Method Venus Pre-train Dataset Zero-shot Video Retrieval Linear Probe
R@1 R@5 R@10

Spatiotemporal representation learning method(s)
CVRL CVPR’21 Kinetics-400 - - - 11.4 (↓20.1)
MViT ICCV’21 Kinetics-400 - - - 19.4 (↓12.1)

SCVRL CVPR’22 Kinetics-400 - - - 19.4 (↓12.1)
SVT CVPR’22 Kinetics-400 - - - 18.3 (↓13.2)

VideoMAE NeurIPS’22 Kinetics-400 7.9 (↓6.8) 18.6 (↓19.8) 26.5 (↓24.0) 17.9 (↓13.6)
VideoMAE NeurIPS’22 YT-Temporal 7.2 (↓7.5) 17.6 (↓20.8) 25.6 (↓24.9) 15.9 (↓15.6)

Video-text alignment method(s)
Frozen ICCV’21 CC3M, WebVid-2M 10.4 (↓4.3) 28.5 (↓9.9) 38.7 (↓11.8) 17.5 (↓14.0)
MCQ CVPR’22 CC3M, WebVid-2M 10.4 (↓4.3) 28.6 (↓9.8) 38.5 (↓12.0) 18.0 (↓13.5)

MILES ECCV’22 CC3M, WebVid-2M 10.3 (↓4.4) 28.4 (↓10.0) 38.4 (↓12.1) 18.6 (↓12.9)

Image representation learning method(s)
CLIP Arxiv’21 400M Web Data 10.5 (↓4.2) 28.8 (↓9.6) 38.8 (↓11.7) 16.4 (↓15.1)

Ours - YT-Temporal 14.7 38.4 50.5 31.5

Table 1: Transferability evaluation on the SSV2 dataset. We report Recall@K for zero-shot video
retrieval and top-1 accuracy for linear probe classification, where video retrieval aims to retrieve
videos of the same category as a query video.

Dataset #Frames CLIP Frozen VideoMAE SOTA Ours

SSV2

16

36.3 55.1 68.2 68.2 (Tong et al., 2022) 68.9
K400 75.2 76.9 79.4 79.7 (Patrick et al., 2021) 79.8
UCF-101 90.3 88.7 94.2 94.2 (Tong et al., 2022) 95.1
HMDB-51 67.4 67.7 70.2 70.2 (Tong et al., 2022) 70.5

Table 2: Top-1 accuracy on action recognition benchmarks under the fine-tuning protocol.

4.3 IMPLEMENTATION DETAILS

We follow recent works (Bain et al., 2021; Ge et al., 2022a) to adopt the pre-trained Distil-
BERT (Sanh et al., 2019) as the text encoder. The video encoder is a vanilla ViT-Base (Dosovitskiy
et al., 2020) initialized with ImageMAE-Base He et al. (2022b). We first pre-train our model on the
YT-Temporal dataset sampling 16 frames for 20 epochs. Then we jointly post-pretrain our model on
the CC3M sampling 1 frame and the WebVid-2M sampling 4 frames for 12 epochs. We randomly
mask 75% tokens within each frame for the YT-Temporal pre-training. For downstream tasks, we
sample 16 frames for action recognition following (Tong et al., 2022) and 4 frames for text-to-video
retrieval following (Bain et al., 2021). The detailed hyper-parameters are listed in Appendix A.2.

4.4 MAIN RESULTS

4.4.1 ACTION RECOGNITION

Out-of-the-box representations. To explore the transferability of the learned video representation,
we evaluate zero-shot video retrieval and linear probe classification. We compare our proposed
method with seven state-of-the-art methods, including: (a) Five video representation learning meth-
ods, i.e., CVRL (Qian et al., 2021), MViT (Fan et al., 2021), SCVRL (Dorkenwald et al., 2022),
SVT (Ranasinghe et al., 2022), and VideoMAE (Tong et al., 2022). (b) Three video-text alignment
methods, i.e., Frozen (Bain et al., 2021), MCQ (Ge et al., 2022a), and MILES (Ge et al., 2022b). (c)
One image representation learning method with natural language supervision, i.e., CLIP (Radford
et al., 2021). Specially, we average frame features as the CLIP video representation.

The results are listed in Table 1 and we have the following observations: (i) Our method surpasses
all baselines by a large margin under all evaluation metrics, which indicates that our learned video
representation has stronger transferability that can be used for out-of-domain video recognition. (ii)
Previous video representation learning works yield weak transferability with only visual supervi-
sion. It implies that merely exploiting visual-only perception without explicit semantics can not
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Method Backbone Pre-train Dataset Params GFLOPs SSV2 K400

TSM (Lin et al., 2019) R50 × 2 ImageNet-1K 49M 130 × 2 × 3 66.0 -
Vi2CLR (Diba et al., 2021) S3D Kinetics-400 - - - 71.2

CORP (Hu et al., 2021) R3D-50 Kinetics-400 32M - 48.8 -
MoCo v3 (Chen et al., 2021b) ViT-B Kinetics-400 87M - 62.4 -

TANet (Liu et al., 2021) R50 × 2 ImageNet-1K 51M 99 × 2 × 3 66.0 -
MViT (Fan et al., 2021) ViT-B Kinetcis-400 37M 455 × 1 × 3 64.7 78.4

TimeSformer (Bertasius et al., 2021) ViT-B ImageNet-21K 121M 196 × 1 × 3 59.5 78.3
Motionformer (Patrick et al., 2021) ViT-B ImageNet-21K, K400 109M 370 × 1 × 3 66.5 79.7

RSANet (Kim et al., 2021) R50 ImageNet-1K 24M 72 × 1 × 1 66.0 -
SVT (Ranasinghe et al., 2022) ViT-B Kinetics-400 87M - 59.2 78.1
VideoMAE (Tong et al., 2022) ViT-B Kinetcis-400 87M 180 × 2 × 3 68.2 79.4
VideoMAE (Tong et al., 2022) ViT-B YT-Temporal 87M 180 × 2 × 3 67.9 78.2

Frozen (Bain et al., 2021) ViT-B CC3M, WebVid2M 114M 370 × 2 × 3 55.1 76.9
MCQ (Ge et al., 2022a) ViT-B CC3M, WebVid2M 87M 280 × 2 × 3 51.5 77.8

MILES (Ge et al., 2022b) ViT-B CC3M, WebVid2M 114M 370 × 2 × 3 54.1 77.4
OmniVL (Wang et al., 2022) ViT-B *Enormous Datasets 87M - 61.6 79.1

CLIP (Radford et al., 2021) ViT-B 400M Web Data 87M 281 × 2 × 3 36.3 75.2

Ours ViT-B YT-Temporal 87M 180 × 2 × 3 68.2 78.8

Ours ViT-B YT-Temporal
CC3M, WebVid2M 87M 180 × 2 × 3 68.9 79.8

Table 3: Top-1 accuracy under the fine-tuning protocol on SSV2 and Kinetics-400 (K400). OmniVL
adopts a mixture of eight datasets. We report GFLOPs on SSV2 evaluation with 2 clips × 3 crops.

Method UCF-101 HMDB-51 Method UCF-101 HMDB-51

BE (Wang et al., 2021) 87.1 56.2 CMD (Huang et al., 2021b) 85.7 54.0
Vi2CLR (Diba et al., 2021) 89.1 55.7 ASCNet (Huang et al., 2021a) 90.8 60.5
TEC (Jenni & Jin, 2021) 88.2 63.5 LSFD (Behrmann et al., 2021) 79.8 52.1
MCN (Lin et al., 2021) 89.7 59.3 TCLR (Dave et al., 2022) 84.3 54.2
SVT (Ranasinghe et al., 2022) 93.7 67.2 Frozen (Bain et al., 2021) 88.7 65.6
MCQ (Ge et al., 2022a) 92.9 65.1 MILES (Ge et al., 2022b) 92.1 66.8
VideoMAE (Tong et al., 2022) 94.2 70.2 Ours 95.1 70.5

Table 4: Top-1 accuracy under the fine-tuning protocol on UCF-101 and HMDB-51.

realize cognition-level spatiotemporal understanding. Furthermore, we observe a significant perfor-
mance drop on VideoMAE when it pre-trains the model on the large-scale uncurated dataset, i.e.,
YT-Temporal. By contrast, our pre-trained model achieves promising results, which indicates that
TVTS can successfully apply to real-world uncurated video data by exploiting rich semantics from
script knowledge. (iii) Our method also outperforms video-text alignment works by a large margin.
We infer that these works only focus on alignment between global video and caption representation
without exploring fine-grained temporal information. On the contrary, our proposed TVTS regu-
larizes the video encoder to learn transferable spatiotemporal video representations. (iv) Benefiting
from large-scale language supervision, image-based CLIP achieves a comparable performance com-
pared to video-based methods. But it is still worse than our model because our work fully exploits
the rich semantics from script knowledge, which is naturally along with videos.

Fine-tuning transferability. We evaluate our model under the fine-tuning protocol. Table 2 gives
the overall results, and the detailed comparisons are reported in Tables 3 and 4. The recognition
capability of our model is comparable to previous works as we achieve state-of-the-art or compet-
itive accuracy, while retaining strong transferability. Additionally, the video-text alignment meth-
ods show inferior performance on SSV2 since they are devoted to associating the vision patterns
with language concepts, without fully exploiting the temporal information. By contrast, our TVTS
achieves satisfactory performance via strengthening the learning of spatiotemporal representations.

4.4.2 TEXT-TO-VIDEO RETRIEVAL

As we preserve a global video-transcript contrastive loss to ease the ordering task via learning se-
mantically meaningful video representations, it is natural to ask if the semantic-aware video repre-
sentations can also benefit retrieval. Hence we conduct text-to-video retrieval under the fine-tuning
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MSR-VTT DiDeMo MSVD LSMDC

Method R@1 MedR Method R@1 MedR Method R@1 MedR Method R@1 MedR

MMT 26.6 4.0 CE 16.1 8.3 NoiseEst 20.3 6.0 NoiseEst 6.4 39.0
SupportSet 30.1 3.0 ClipBert 20.4 6.0 SupportSet 28.4 4.0 MMT 12.9 19.3

Frozen 31.0 3.0 Frozen 31.0 3.0 Frozen 45.6 2.0 Frozen 15.0 20.0
Ours 34.6 3.0 Ours 32.4 3.0 Ours 45.9 2.0 Ours 17.2 17.0

Table 5: The R@1 and MedR w.r.t. MSR-VTT, DiDeMo, MSVD, and LSMDC from left to right.

Dataset scratch w/o sort pair sort K! sort video sort ours

SSV2 64.5 67.0 67.4 67.2 64.8 68.2
K400 75.4 77.8 78.1 78.0 75.6 78.8

Table 6: The top-1 accuracy of different pre-training objectives and sort proxies under fine-tuning.
The “pair sort” and “K! sort” are alternatives for transcript sorting. The “video sort” indicates
reorganizing shuffled video clips according to transcript knowledge, which is introduced in Merlot
(Zellers et al., 2021). It aims to align video clips and the corresponding transcripts in the temporal
dimension while failing to impose long-term temporal regularizations on the video encoder.

protocol. As reported in Table 5, our model achieves SOTA performance. The promising results
show that our TVTS can also learn the association between video patterns and language semantics.

4.5 ABLATION STUDY

Pre-training Objectives. In Table 6, we compare our proposed method with two variants on SSV2
and K400: (a) scratch that is initialized from ImageMAE and directly evaluated without pre-training.
(b) w/o sort that is pre-trained by the contrastive objective only without TVTS. w/o sort outperforms
scratch, which indicates that the natural language can be a promising supervision for video repre-
sentation learning. Our method further improves the performance than w/o sort, which indicates the
effectiveness of TVTS in learning spatiotemporal video representations.

Sort Proxy. Besides our method that casts the order prediction as a K-way classification task, we
also tried three other strategies in modeling the ordering of the transcripts: (a) pair sort sorts the
transcripts pairwisely by predicting the relative orders of the K(K − 1)/2 transcript pairs. (b) K!
sort predicts an overall ordering distribution by performing a K!-way classification (K! possible
orders given K transcripts), which adds an ordering token as the input of SortFormer. (c) video
sort is similar to Merlot, which sorts the frames with ordered transcripts. The results are shown in
Table 6. Both pair sort and K! sort drop performance, because the former ignores the overall rela-
tionship among the transcripts while the latter imposes the same penalty on the results with different
number of transcripts that sorts incorrectly. But they still outperform w/o sort, indicating that sort-
ing transcripts does help spatiotemporal representation learning. Our separate K-way classification
modeling achieves the best performance. Furthermore, video sort lags far behind our method, since
sorting video frames reduces the model’s capability for long-term temporal reasoning.

Parameter Sensitivity. We further investigate the sensitivity of the masking ratio for TVTS and the
temperature parameter τ in Lalign. The results are reported in Appendix A.1.

5 CONCLUSION AND DISCUSSION

In this work, we for the first time leverage script knowledge that is naturally tied with the video
to benefit cognition-level spatiotemporal representation learning. We introduce a novel pretext task
named Turning to Video for Transcript Sorting (TVTS), which regularizes the video encoder to learn
transferable video representations for temporal commonsense reasoning. Extensive evaluations on
downstream video tasks show the great superiority of our method.

Though helpful for long-term temporal understanding, we empirically observe the detriment of noisy
ASR scripts to text encoder training as well as text-video alignment. Further studies are called
for alleviating the noisy transcript problem. In future works, we would also like to evaluate the
effectiveness of our method on other backbone architectures and scale-up datasets, and demonstrate
the cognitive capabilities of our model in more applications.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

A.1.1 DOWNSTREAM ACTION RECOGNITION DATASETS

The statistics of our downstream action recognition datasets are listed as follows: (a) Something-
Something V2 (SSV2) (Goyal et al., 2017) consists of 169K training videos and 20K validation
videos belonging to 174 fine-grained action classes. (b) Kinetics-400 (Kay et al., 2017) contains
240K training videos and 20K validations videos belonging to 400 classes. (c) UCF-101 (Soomro
et al., 2012) contains 9.5K/3.5K training and validation videos with 101 action classes. (d) HMDB-
51 (Kuehne et al., 2011) contains 3.5K/1.5K training and evaluation videos within 51 action classes.

A.1.2 DOWNSTREAM TEXT-TO-VIDEO RETRIEVAL DATASETS

The statistics of our downstream text-to-video retrieval datasets are listed as follows: (a) MSR-
VTT (Xu et al., 2016) contains 10K YouTube videos with 200K descriptions. 9K videos are used
for training and the rest 1k videos are used for evaluation. (b) DiDeMo (Anne Hendricks et al.,
2017) contains 10K Flickr videos with 40K descriptions. The training set has 9K videos, and the
rest 1K videos are used for testing. (c) MSVD (Chen & Dolan, 2011) contains 1,970 YouTube
videos with 80K descriptions. 1,200, 100, and 670 videos are used for training, validation, and
testing respectively. (d) LSMDC (Rohrbach et al., 2015) consists of 118,081 video clips, in which
7,408 videos form the validation set and 1,000 videos form the test set.

A.1.3 FULL RESULTS FOR TEXT-TO-VIDEO RETRIEVAL

Method R@1 R@5 R@10 MedR

NoiseEst 17.4 41.6 53.6 8.0
MMT 26.6 57.1 69.6 4.0

SupportSet 30.1 58.5 69.3 3.0
Frozen 31.0 59.5 70.5 3.0
Ours 34.6 61.5 72.2 3.0

Table 7: MSR-VTT retrieval results.

Method R@1 R@5 R@10 MedR

HERO 2.1 - 11.4 -
CE 16.1 41.1 82.7 8.3

ClipBert 20.4 48.0 60.8 6.0
Frozen 31.0 59.8 72.4 3.0
Ours 32.4 59.8 71.7 3.0

Table 8: DiDeMo retrieval results.

Method R@1 R@5 R@10 MedR

NoiseEst 20.3 49.0 63.3 6.0
SupportSet 28.4 60.0 72.9 4.0

Frozen 45.6 79.8 88.2 2.0
Ours 45.9 76.7 85.4 2.0

Table 9: MSVD retrieval results.

Method R@1 R@5 R@10 MedR

NoiseEst 6.4 19.8 28.4 39.0
MMT 12.9 29.9 40.1 19.3
Frozen 15.0 30.8 39.8 20.0
Ours 17.2 32.8 41.7 17.0

Table 10: LSMDC retrieval results.

We compare our method with seven state-of-the-art methods (Amrani et al., 2021; Gabeur et al.,
2020; Patrick et al., 2020; Bain et al., 2021; Li et al., 2020; Liu et al., 2019; Lei et al., 2021). The
full Recall@K and MedR results are reported in Table 7, 8, 9, and 10. Our model achieves state-of-
the-art or competitive performance on all datasets. It shows that our TVTS is capable of learning the
association between video patterns and language semantics.

A.1.4 SVO-PROBES TEST

Our model can also be well transferred to understand static images and reason about the dynamic
context behind them. To evaluate such an ability, we conduct experiments on the recently proposed
SVO Probes (Hendricks & Nematzadeh, 2021), a zero-shot test benchmark for subject, verb, and
object understanding in image. In SVO Probes, each sentence is tied with a positive and a negative
image, in which the positive image has consistent semantics, i.e., subject, verb, and object, with the
sentence, while the negative image substitutes one of the three concepts but keeps the remaining
two unchanged. The objective is to test whether a model can correctly identify the positive image
given a query sentence. We treat it as a text-image retrieval task, i.e., given the text and image
embedding, if their cosine similarity surpasses a certain threshold ρ, we consider the image positive.
We report the precision results in terms of different values of ρ, shown in Table 11. Our model
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ρ 0.2 0.25 0.3

Method subj obj verb subj obj verb subj obj verb

Frozen 0.56 0.61 0.54 0.58 0.66 0.56 0.62 0.72 0.58
Ours 0.59 0.65 0.59 0.64 0.70 0.62 0.68 0.76 0.63

Table 11: Experiments on SVO Probes, a recently proposed benchmark for the subject, verb, and
object understanding in static images. Our pre-trained model can better reason about the dynamic
context behind the given images. We do not compare with SOTA spatiotemporal representation
learning methods, e.g., VideoMAE, since they cannot perform text-video retrieval.

reaches higher precision on all concepts, which implies our learned spatiotemporal representations
have strong out-of-the-box capabilities.

A.1.5 ABLATION STUDY (CONT.)
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Figure 3: The visualization of top-5 prediction scores on SSV2, we normalize the scores to make
their summation 100%. The blue and orange rows denote the scores of the right and wrong classes,
respectively.

Visualization. To demonstrate the superiority of our learned spatiotemporal representation intu-
itively, we randomly pick two videos in SSV2 and illustrate the top-5 prediction scores w.r.t. our
method, VideoMAE and Frozen in Figure 3. Our method predicts the highest score for the right
class. In the first column, we need to distinguish the action “picking” from other similar actions
such as “moving”, which requires fine-grained temporal reasoning ability. In the second column,
the model must extract both the spatial and temporal information to classify the video as the cate-
gory containing “into” and “until it overflows”. Only our method classifies the video correctly, while
VideoMAE and Frozen make mistakes due to a lack of spatiotemporal modeling ability.

Masking Ratio. We compare different masking ratios for TVTS in Figure 4(a). Both lower (60%)
and higher (90%) masking ratio drop performance than our method with 75% ratio. A lower masking
ratio brings in temporal redundancy, while a higher ratio leads to the extremely limited knowledge
for SortFormer to perform TVTS.
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Figure 4: (a) The top-1 accuracy w.r.t. different masking ratio. (b) The top-1 accuracy w.r.t. different
temperature parameter τ .

Temperature Parameter. We also investigate the influence of the temperature parameter τ in Lalign
in Figure 4(b). Smaller τ makes the model focus more on the hard negative samples, but it also
increases the difficulty of convergence. We set τ = 0.05 for its best performance.

A.2 HYPER-PARAMETERS

config pre-train post-pretrain

optimizer AdamW
learning rate 1× 10−4

batch size 1024 800
training epochs 20 12
training frames 16 1 + 4
masking ratio 75% 0
input size 224 × 224
patch size, P 16
data augmentation RandomCrop
hidden state dimension, Dh 768
common space dimension, D 256
temperature parameter, τ 0.05

Table 12: The pre-train and post-pretrain setup.

config linear probe fine-tuning

optimizer SGD AdamW
learning rate 0.1 0.001
batch size 384 384
training epochs 100 50 (SSV2), 100 (Others)
training frames 16
clips × crops 5 × 3 (K400), 2 × 3 (Others)
data augmentation CenterCrop

Table 13: The linear probe and fine-tuning setup.

Our training hyper-parameters are listed in Tables 12 and 13. We mostly follow the setting of (Tong
et al., 2022) for convenience. Carefully tuning these parameters may yield better performance.
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