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ABSTRACT

Implicit neural representations store videos as neural networks and have per-
formed well for various vision tasks such as video compression and denoising.
With frame index or positional index as input, implicit representations (NeRV,
E-NeRV, etc.) reconstruct video frames from fixed and content-agnostic embed-
dings. Such embedding largely limits the regression capacity and internal gen-
eralization for video interpolation. In this paper, we propose a Hybrid Neural
Representation for Videos (HNeRV), where learnabl and content-adaptive em-
beddings act as the decoder input. Besides the input embedding, we introduce
a HNeRV block to make model parameters evenly distributed across the entire
network, therefore higher layers (layers near the output) can have more capacity
to store high-resolution content and video details. With content-adaptive embed-
ding and re-designed architecture, HNeRV outperforms implicit methods (NeRV,
E-NeRV) in video regression task for both reconstruction quality and convergence
speed, and shows better internal generalization. As a simple and efficient video
representation, HNeRV also shows decoding advantages for speed, flexibility, and
deployment, compared to traditional codecs (H.264, H.265) and learning-based
compression methods. Finally, we explore the effectiveness of HNeRV on down-
stream tasks such as video compression and video inpainting.

1 INTRODUCTION

Given the massive amount of videos generated every day, representing them efficiently is a key task
in computer vision and video processing. Even for modern storage systems, the space requirements
of raw video data can be overwhelming. Despite storage becoming cheaper, network speeds and I/O
processing remain a bottleneck and make transferring and processing videos expensive.

Traditional video codecs, such as H.264 (Wiegand et al., 2003a) and HEVC (Sullivan et al., 2012),
manually design an encoder and decoder based on discrete cosine transform (Ahmed et al., 1974).
With the success of deep learning, many attempts (Lu et al., 2019; Rippel et al., 2021; Agustsson
et al., 2020; Djelouah et al., 2019; Habibian et al., 2019; Liu et al., 2019; 2021; Rippel et al., 2019;
Wu et al., 2018) have been made to replace certain components of existing compression pipelines
with neural networks. Although these learning-based compression methods show high potential in
terms of rate-distortion performance, they suffer from complex pipelines and expensive computa-
tion, not just to train, but also to encode and decode.

To address the complex pipelines and heavy computation, implicit neural representations (Rahaman
et al., 2019; Sitzmann et al., 2020; Schwarz et al., 2021; Chen & Zhang, 2019; Park et al., 2019)
have become popular due to their simplicity, compactness, and efficiency. These methods show great
potential for visual data compression, such as COIN (Dupont et al., 2021) for image compression,
NeRV (Chen et al., 2021) for video compression. By representing video as neural networks, video
compression problems can be converted to model compression problems, and greatly simplify the
encoding and decoding pipeline.

Given frame index t as input, as shown in Figure 1(a), NeRV (Chen et al., 2021) uses a fixed po-
sition encoding function and a learnable decoder to reconstruct video frames from content-agnostic
embedding. E-NeRV (Li et al., 2022) takes a temporal embedding and spatial embedding, both
content-agnostic, to reconstruct video frames. In this paper, we propose a hybrid neural represen-
tation for videos (HNeRV, Figure 1(b), which takes a learnable, content-adaptive frame embedding
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Figure 1: a) Implicit neural representation with fixed frame embedding. b) Hybrid neural repre-
sentation with learnable and content-adaptive embedding (ours). c) Video regression for hybrid and
implicit neural representations.

as input. HNeRV can be viewed as an auto-encoder with a tiny frame embedding. With a tiny em-
bedding and a powerful decoder, HNeRV can reconstruct the video with high fidelity and therefore
represent it well. Besides the fixed embedding, NeRV suffers from an imbalance in the distribution
of model parameters, where later layers (closer to the output image) have much fewer parameters
than earlier layers (closer to the embedding), meaning it cannot effectively reconstruct massive video
content at high resolutions. Therefore, we introduce an HNeRV block to make parameters evenly
distributed over the entire network, by increasing kernel sizes and channel widths at later stages.

Our proposed neural representation is a hybrid approach since it stores video in two parts: tiny frame
embeddings and a learned neural decoder. Together with the re-designed decoder blocks, HNeRV
improves the reconstruction quality for video regression and boosts the convergence speed up to 16×
compared to implicit methods, shown in Figure 1(c). With content-adaptive embeddings, HNeRV
also shows much better internal generalization (ability to encode and decode frames from the video
that were not seen during training), and we verify this by frame interpolation results.

As a simple representation, HNeRV shows great decoding advantages in terms of speed, flexibility,
and ease of deployment. Traditional codecs, like H.264, have most of the operations hand-crafted
and need a special design for their implementation and deployment. Therefore, although H.264
have good hardware and software support (e.g., FFMPEG), newer codecs like H.266 and AV1 still
suffer from deployment difficulty due to their complexity and increasing computation. In contrast,
learning-based compression methods use deep neural networks for most operations, which simpli-
fies deployment; however, large latency greatly limits their application inspite of their bits-distortion
improvements. HNeRV, as a simple and efficient neural representation, only needs a network for-
ward operation for video decoding, which enables both fast decoding speed and easy deployment.
Besides, most video compression methods are auto-regressive and there is a high dependency on
the sequential order of video frames. To decode one frame in a picture group, they need to decode
key frames and all previous frames first. In contrast, there is no dependency on the sequential order
of frames for HNeRV, which means it can randomly access frames efficiently to decode frames in
parallel. The decoding time decreases linearly when we reduce decoded frames, while other repre-
sentations still needs to decode most frames. Such simplicity and parallelism make HNeRV a good
codec for further speedups, like a special NPU chip, or parallel decoding with huge batches.

We also evaluate HNeRV on downstream tasks video compression and inpainting. By converting
video compression to model compression, HNeRV shows better bit-distortion performance over
implicit methods and achieves comparable performance with state-of-the-art methods. We posit that
neural representation can be robust to distortion in pixel space and therefore restore well for video
distortion, and verify this observation on the video inpainting task.

In summary, we propose a hybrid neural representation for videos. With content-adaptive embed-
ding and re-designed architecture, HNeRV shows much better video regression performance over
implicit methods, in reconstruction quality, convergence speed, and internal generalization. Besides
video regression, HNeRV has a simple, fast, and flexible advantage during video decoding, as well
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as easy deployment. Finally, HNeRV shows good performance over downstream tasks like video
compression and video inpainting.

2 RELATED WORK

Neural Representation. Implicit representations fit to each individual test signal (Mehta et al.,
2021) where the model is regressed to a given image, scene, or video. Most implicit neural rep-
resentations are coordinate-based. These coordinate-based implicit representations are used in im-
age reconstruction (Tancik et al., 2020; Sitzmann et al., 2020), shape regression (Chen & Zhang,
2019; Park et al., 2019), and 3D view synthesis (Mildenhall et al., 2020; Schwarz et al., 2021).
NeRV (Chen et al., 2021) instead proposes an image-wise implicit representation, which takes frame
indices as inputs and leverages neural representation for fast and accurate video compression. Re-
lying only on index, and not coordinates, speeds up the encoding and decoding process compared
to coordinate-based (pixel-wise) methods. Based on NeRV, E-NeRV (Li et al., 2022) further boosts
the video regression performance via decoupling frame index and spatial index. Traditional autoen-
coders would not be considered implicit representations since most information is stored in their
large image-specific embeddings. Nevertheless, they are a form of neural representation, and HN-
eRV borrows the general concept for its encoder from standard U -shaped autoencoders (Ahmed
et al., 1974; Vincent et al., 2008; Kingma & Welling, 2014; Pu et al., 2016). The major difference is
HNeRV keeps the embedding intentionally tiny and compact, so as to keep most of the representa-
tion implicit (stored in the decoder).

Video Compression. Traditional video compression methods such as MPEG (Le Gall, 1991),
H.264 (Wiegand et al., 2003b), and H.265 (Sullivan et al., 2012) achieve good reconstruction re-
sults with decent decompression speeds. Recently, deep learning techniques have been proposed for
video compression. While these approaches focus on replacing the entire compression pipeline, they
each borrow principles from the traditional handcrafted approaches. Some have framed the problem
primarily as image compression and interpolation (Wu et al., 2018; Djelouah et al., 2019), or attempt
to solve this task with image compression via autoencoders (Habibian et al., 2019), or focus purely
on interpolation for the sake of compression (Liu et al., 2020). Others essentially reformulate tradi-
tional video compression pipelines using deep learning tools (Rippel et al., 2019; Liu et al., 2019;
Agustsson et al., 2020), at varying levels of complexity. Recent approaches have focused on tackling
the computational inefficiencies of existing art, including by fine-tuning traditional codecs (Khani
et al., 2021), and by optimizing pieces of the compression pipeline (Rippel et al., 2021). The ap-
proach which inspired much of this work, NeRV, responds to these same inefficiencies by proposing
a specialized architecture for video memorization (Chen et al., 2021). Once video is represented as
a neural network, the video compression problem can be converted to a model compression problem
and achieve good bit-distortion performance. With learnable embeddings and re-designed decoder
blocks, HNeRV improves the video regression capacity and convergence speed, while video com-
pression is still viable by model compression.

Model Compression. NeRV formulated video compression as model compression (Chen et al.,
2021), which is a diverse area. In this paper we apply only a small subset of possible methods. We
use weight pruning (Han et al., 2015b) and weight quantization (Gupta et al., 2015; Jacob et al.,
2017; Krishnamoorthi, 2018). We also use entropy encoding for lossless compression after pruning
and quantization (Huffman, 1952; Han et al., 2015a). Note that many other model compression
methods can be leveraged to further reduce the size and video neural representation can always
benefit from developments in the model compression area.

Video Inpainting & Internal Learning. Video inpainting is typically framed as some combination
of object removal and attempting to recreate missing regions of images. Whereas some methods
rely on priors from training on large datasets (Wang et al., 2021), ours has more in common with
a recent zero-shot fully-internal approach (Ouyang et al., 2021). We define “Internal learning” in
terms of exploiting recurrence of information within a single domain, like within an image (Shocher
et al., 2018)) or within an video (Zhang et al., 2019). It can be thought of as a sort of DIP-for-video,
a line of work that was started for images with DIP (Ulyanov et al., 2018) and extended for video
by double-DIP (Gandelsman et al., 2019). Other methods have embraced this paradigm partially,
learning some priors from large external datasets, before learning video-specific priors via internal
learning (Wang et al., 2021).
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Figure 2: a): HNeRV uses ConvNeXt blocks to encode frames as tiny embeddings, which are
decoded by HNeRV blocks. b): HNeRV block of three layers, with input/output size illustrated. c):
Parameter number for an HNeRV block. d): Output size of each stage with strides 5,4,2,2.

3 METHOD

3.1 HNERV OVERVIEW

HNeRV can be viewed as an auto-encoder with tiny embeddings (Figure 2(a)). We choose Con-
vNeXt blocks (Liu et al., 2022) to build the encoder (1 block each stage), and propose novel HNeRV
blocks (Figure 2(b)) to build the decoder.

Hybrid Neural Representation. Compact video representations can be divided into two parts: ex-
plicit methods and implicit methods. Explicit methods use an auto-encoder to encode and decode all
videos, and store content explicitly as a latent embedding. Given a video-specific embedding as input,
the decoder can reconstruct the video. Implicit methods use only a learnable decoder to represent
the video. Given fixed frame index as input, the video-specific decoder can reconstruct the video.
With content-adaptive embedding as input, explicit representation shows better generalization and
compression performance, while implicit representations have a much simpler encoding/decoding
pipeline and a high potential for compression (benefits from model compression techniques) and
other downstream tasks (e.g., efficient video dataloader, video denoising, inpaining). In this paper,
we propose a hybrid neural representation to combine the advantages of both explicit and implicit
methods. Similar to implicit representation, we use a learnable decoder to model video separately
and store most content implicitly in the video-specific decoder. To achieve better reconstruction, we
use learnable embedding as input and store information explicitly in these frame-specific embed-
dings, which is similar to explicit methods. Therefore, we can use any powerful encoder to generate
tiny content-adaptive embedding to boost the performance of implicit representation. Since such
embedding is quite small (e.g., a 128-d vector for a 640× 1280 frame), our hybrid neural represen-
tation is as compact as implicit methods, but with better reconstruction capacity, convergence speed,
and internal generalization, and keeps the full potential for downstream tasks.

Model Architecture. Similar to a NeRV block, it consists of three layers: convolution layer, pix-
elshuffle layer, and activation layer. Within HNeRV block, only the convolution layer has learnable
parameters (Figure 2(b)). Illustrated in Table 1, a NeRV block use fix kernel sizes for all stages
K = 3, and reduces channel width by 2, Cout = Cin/2. Therefore, for blocks at later stages, the
parameters are quite few and may not be strong enough to store video content at high resolution. In
contrast, we increase the kernel size and channel width for later HNeRV blocks, where K increase
from 1 (stage 1), 3 (stage 2), to Kmax (5, etc. for later stages), and decrease channel width by a re-
duction factor r (1.2, etc.). With kernel size 1, the first block has much fewer parameters; with larger
kernel size and wider channels, HNeRV blocks at later stages are much stronger; and we therefore
get a more even distribution of model parameters across layers. We list output size of various stages
in Figure 2(d), with embedding dimension d, channel reduction r. Each stage has one block, and we
use a 1× 1 convolution layer to get low-dimension frame embeddings (channel width from c1 to d),
and a 3× 3 convolution layer for final image predictions (channel width from c2/r

4 to 3).
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Table 1: HNeRV block vs. NeRV block. K is kernel size for each stage, Cout and Cin are out-
put/input channel widths for each block. We decrease parameters via a small K = 1 for first block,
and increase parameters for later layers with a larger K and wider channels

NeRV blocks K = 3, Cout = Cin/2

HNeRV blocks K = 1, 3, ...,Kmax, Cout = Cin/r

Loss Functions. Since HNeRV attempts to reconstruct video with high fidelity, we use the loss
objective L = Loss(x, p), where x is the input frame, p is the HNeRV prediction, and Loss is any
reconstruction loss function like L2, L1, or SSIM loss.

Total size. As a hybrid neural representation, we include both frame embedding and decoder param-
eters to compute the total size of our video representation: TotalSize = EmbedSize + DecoderSize.

3.2 DOWNSTREAM TASKS

Video Compression. We leverage both model compression and embedding quantization for video
compression. Similar to NeRV, we apply global unstrutured pruning, model quantization, and weight
entropy encoding for model compression (details can be found in the appendix).

For quantization of an vector µ, we linearly map every element to the closest integer,

µi = Round
(
µi − µmin

scale

)
∗ scale + µmin, where scale =

µmax − µmin

2b − 1
(1)

µi is vector element, ‘Round’ is a function that rounds to the closest integer, b is the quantization bit
length, µmax and µmin are the max and min value of vector µ, and ‘scale’ is the scaling factor.

Video Inpainting. For partially distorted video, we only compute loss for non-masked pixels,
Linpainting = (1−M) ∗ Loss(x, p) (2)

where M is the mask matrix where distorted pixels are 1 and other are 0. For inpainting output,
following IIVI (Ouyang et al., 2021), we fill the masked region with HNeRV’s output.

4 EXPERIMENT

4.1 DATASET AND IMPLEMENTATION DETAILS

We use the Big Buck Bunny (Bunny) (big), UVG (Mercat et al., 2020) and DAVIS (Wang et al.,
2016) datasets. Bunny video has 132 frames with resolution 720× 1280, and we center-crop 640×
1280 to get tiny spatial size (e.g., 1 × 2) for embedding. UVG dataset has 7 videos1 with size
1080×1920 at FPS 120 of 5s or 2.5s, and we center-crop 960×1920. We also take 10 videos2 from
DAVIS validation (1080× 1920, 50-200 frames) and center crop the 960× 1920. Unless otherwise
specified, we use Adam optimizer, beta as (0.9, 0.999), weight decay as 0, learning rate at 0.001
with cosine learning rate decay, batch size as 2, L2 loss as reconstruction loss function. Kmax is set
as 5, reduction r is set as 1.2 in Table 1. We set stride list as (5,4,4,2,2), (5,4,3,2,2), and (5,4,4,3,2)
for video resolutions of 640× 1280, 480× 960, and 960× 1920 respectively.

For evaluation metrics, we use PSNR and MS-SSIM to evaluate reconstruction quality, bits per
pixel (bpp) for compression, and pixels per pixel (ppp) for model compactness. We conduct all
experiments in Pytorch with GPU RTX2080ti, where it takes around 8s each epoch to train a 130
frame video of 640× 1280. We choose HNeRV size to ensure the PSNR lies between 30-40 for fair
video reconstruction. We provide more experiment details such as architecture details, qualitative
results, quantitative results of some plots, and per-video compression results, in the appendix.

4.2 MAIN RESULTS

Video regression. We first compare HNeRV with implicit methods NeRV and E-NeRV on Bunny.
For fair comparison, we scale channel width to make total size comparable as the original paper did.

1Beauty, Bosphorus, HoneyBee, Jockey, ReadySetGo, ShakeNDry, YachtRide
2bike-packing, blackswan, bmx-trees, breakdance, camel, car-round, car-shadow, cows, dance-twirl, dog
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Table 2: Video regression with different sizes

Size 0.35M 0.75M 1.5M 3M avg.

NeRV 26.99 28.46 30.87 33.21 29.88
E-NeRV 27.84 30.95 32.09 36.72 31.90
HNeRV 30.15 32.81 35.19 37.43 33.90

Table 3: Video regression with different epochs

Epoch 300 600 1200 1800 2400 3600

NeRV 28.46 29.15 29.57 29.73 29.77 29.86
E-NeRV 30.95 32.07 32.79 33.1 33.36 33.67
HNeRV 32.81 33.89 34.51 34.73 34.88 35.03

Table 4: Video regression at resolution 960×1920, PSNR↑ reported

Video beauty swan bmx bosph dance camel bee jockey ready shake yach avg.

NeRV 33.25 28.48 27.86 33.22 26.45 24.81 37.26 31.74 24.84 33.08 28.30 29.94
E-NeRV 33.17 29.38 28.68 33.69 27.88 25.16 37.62 31.63 25.24 34.39 28.42 30.48
HNeRV 33.58 30.35 29.98 34.73 30.45 26.71 38.96 32.04 25.74 34.57 29.26 31.49

Table 5: Video regression at resolution 480×960, PSNR↑ reported

Video beauty swan bmx bosph dance camel bee jockey ready shake yach avg.

NeRV 36.27 29.75 28.81 35.07 29.47 26.75 40.76 32.58 25.81 35.33 30.11 31.88
E-NeRV 36.26 30.27 29.20 36.06 30.83 27.39 43.26 32.70 26.19 35.64 30.38 32.56
HNeRV 36.91 31.92 31.27 36.95 33.85 28.85 42.05 33.33 27.07 36.97 30.96 33.65

Figure 3: Visualization of video neural representations at 0.003 ppp, which means the total size
is only about 0.3% of the original video size. Red squares are added for the reader’s convenience to
emphasize areas of greatest discernible difference.

In Table 2, with the same size and 300 epochs, HNeRV outperforms both NeRV and E-NeRV. We
also show comparison of different training time in Table 3 with 0.75M size and in Figure 1(Right)
with 1.5M size, where HNeRV converges much faster compared to implicit methods. We show such
improvements qualitatively as well in Figure 3. As a compact representation, HNeRV reconstructs
the video well with only 0.35M parameters, at 0.003 ppp. We also evaluate it on 7 UVG videos and
4 DAVIS videos, where HNeRV shows large improvements at resolution 960× 1920 in Table 4, and
its resized 480× 960 version in Table 5, with size 3M and 300 epochs.

Video decoding. We evaluate video decoding on Bunny with channel reduction r as 1.5, where
H.264 and H.265 are tested with 4 CPUs3, while DCVC (Li et al., 2021) and HNeRV are tested

3Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
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other methods still need to decode most frames. Right: As neural representation, HNeRV performs
well for compactness (ppp), reconstruction quality (PSNR), and decoding speed (FPS).

Figure 5: Visualization of Embedding interpolation.

Table 6: Internal generalization results. NeRV, E-NeRV, and HNeRV use interpolated embedding
as input, HNeRV† uses held-out frames as input. With content-adaptive embedding as input, HNeRV
shows much better reconstruction on held-out frames

Method beauty swan bmx bosph dance camel bee jockey ready shake yach avg.

NeRV 28.05 17.94 15.55 30.04 16.99 14.83 36.99 20.00 17.02 29.15 24.50 22.82
E-NeRV 27.35 19.4 15.12 28.95 17.16 17.97 38.24 19.39 16.74 30.23 22.45 23.00
HNeRV 30.97 21.44 17.35 34.38 20.2 19.93 38.83 23.67 20.90 32.69 27.30 26.15
HNeRV† 31.10 21.97 18.29 34.38 20.29 20.64 38.83 23.82 20.99 32.61 27.24 26.38

with 1 GPU (RTX2080ti). We only measure the forward time for DCVC and HNeRV. We compare
video decoding at various reconstruction qualities (PSNR at 32, 35, and 37) in Figure 4(Left), where
HNeRV outperforms traditional codecs (H.264 and H.265) and learning-based DCVC. Note that
although many prior learning-based compression methods show bit-distortion improvements, their
decoding speeds lag far behind traditional codecs and neural representation. Besides, most com-
pression methods encode and decode frames in an auto-regressive way and can not access frames
randomly. Compared to these methods, the decoding of HNeRV is much simpler and can be de-
ployed to any platforms easily. We compare decoding time in Figure 4(Middle) (PSNR at 35) where
100%, 50%, and 25% frames (evenly sampled) are decoded. Since there is no dependency among
video frames, HNeRV can decode them in parallel and decoding time decrease linearly with frame
number. In contrast, H.264 and H.265 still need to decode most frames, even though only some of
them are needed. Finally, we compare with implicit methods in Figure 4(Right), where HNeRV is
slightly slower than NeRV since the computation of later layers is more expensive due to large K
and channel width. As a hybrid neural representation, HNeRV achieves much better trade-offs in
regards of compactness (ppp metric), reconstruction quality (PNSR), and decoding speed (FPS).

Internal generalization. Since HNeRV leverages content-adaptive embeddings, we also evaluate
it for the video interpolation task. Holding out every other frame as a test set, NeRV, E-NeRV, and

7



Under review as a conference paper at ICLR 2023

Table 7: Video inpainting results. With 5 fix box masks on input videos, we evaluate the output
with PSNR ↑. ‘Input’ is the baseline of mask video and ground truth

Video bike b-swan bmx b-dance camel c-round c-shadow cows dance-twirl dog avg.

Input 23.14 20.24 19.99 21.36 17.3 20.47 18.92 19.37 20.45 18.39 19.96
NeRV 30.94 33.43 32.07 27.82 31.99 29.09 31.63 30.08 30.45 33.85 31.14
IIVI 31.87 36.02 34.36 27.63 35.11 32.61 33.69 31.26 31.44 35.7 32.97
HNeRV 31.27 34.24 33.95 27.94 32.21 30.88 33.07 30.82 31.21 34.7 32.03
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Figure 7: Compression results of best/worst cases from UVG dataset. HNeRV achieves good
performance especially for videos caputured by still cameras, like ‘honeybee’ video.

HNeRV use interpolated embedding as input, while HNeRV† uses the test frame as input. With
learnable and content-adaptive embedding, our HNeRV shows much better generalization, quantita-
tively in Table 6. and qualitatively in Figure 5.

4.3 DOWNSTREAM TASKS

Video compression. With model pruning (10% pruned), embedding quantization (8 bits), model
quantization (8 bits), and model entropy encoding (8% saved), we show video compression results
on UVG in Figure 6. HNeRV outperforms the implicit method, NeRV, and traditional video codecs
H.264 and H.265. We also show the best and worst cases of compression for ‘honeybee’ and ‘readys-
teadygo’ videos respectively in Figure 7, where HNeRV achieves outstanding performance when the
camera is not moving, like the ‘honeybee’ video (10× smaller). Given the limited performance on
videos of highly dynamic scenes, we propose finding a good size and network architecture for such
videos as future work.

Video inpainting. We also explore video inpainting with fixed and object masks. For fixed masks,
we use 5 boxes of width 50 (Figure 8 top) and show quantitative results in Table 7 where HNeRV
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Figure 8: Inpainting results of fix masks and object masks.

improves inpainting performance over implicit methods NeRV. Although we do not have any spe-
cific design for inpainting task, HNeRV achieves comparable performance with an SOTA inpainting
method IIVI (Ouyang et al., 2021). We show qualitative results in Figure 8 and the appendix.

4.4 ABLATION STUDY

We show the effectiveness of even-distributed parameters in Table 8 and Table 9 by increasing
kernel size and channel width of later layers. For the NeRV block, it uses fixed K = 3, and channel
reduction factor r = 2. We also show an embeddings ablation study, for spatial size (h × w) in
Table 10 and embedding dimensions (d) in Table 11.

Table 8: Kernel size
(Kmin, Kmax) ablation
K PSNR MS-SSIM

1,3 35.02 0.9752
1,5 35.19 0.9773
1,7 35.07 0.9757
3,3 33.09 0.9587

Table 9: Channel
reduction r ablation
r PSNR MS-SSIM

1 34.96 0.9745
1.2 35.19 0.9773
1.5 34.98 0.9762
2 34.32 0.9715

Table 10: Embedding
spatial size ablation

h× w PSNR MS-SSIM

1× 2 34.79 0.9735
2× 4 35.19 0.9773
4× 8 35.12 0.9761

Table 11: Embedding
dimension ablation

d PSNR MS-SSIM

8 35.13 0.9770
16 35.19 0.9773
32 35.08 0.9758

5 CONCLUSION

In this paper, we propose a hybrid neural representation for videos (HNeRV). With content-adaptive
embedding and evenly-distributed parameters, HNeRV improves video regression performance
compared to implicit methods in reconstruction quality, convergence speed, and internal general-
ization. As a video representation, HNeRV is also simple, fast, and flexible for video decoding, and
shows good performance for video compression and inpainting.

There are many limitations of HNeRV as well. Firstly, as a neural representation, HNeRV stores
each video as a neural network. Given a new video, HNeRV still needs time to train to fit the video.
Secondly, although HNeRV can represent a video well, finding a best-fit embedding size, model
size, and network architecture (Kmax, r, etc.) remains an open problem. Finally, although increas-
ing kernel sizes and channel widths at later layers largely improves the regression performance, it
slightly slows down the network (Figure 4(Right) and Table 14).

Reproduction: we provide architecture details in the appendix for reproduction and will release code
upon acceptance.
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A APPENDIX

A.1 VIDEO DECODING

We firstly show command to evaluate decoding speed of H.264 and H.265:
ffmpeg -threads ThreadsNum -i Video -preset medium -f null -benchmark -

And we also show quantitative decoding results in Table 12, 13, and Table 14. In Table 14, we
can further increase video decoding speed with a smaller channel width (i.e., a big reduction factor
r = 2).

Table 12: Decoding FPS ↑

PSNR 32 35 37

H.264 279.7 240.9 192.7
H.265 211.9 163.2 132.5
DCVC 4.7 4.6 4.5
HNeRV 395.9 332.7 224.8

Table 13: Decoding time (s) ↓

# Frames 100% 50% 25%

H.264 0.548 0.480 0.343
H.265 0.809 0.708 0.506
DCVC 27.913 24.424 17.446
HNeRV 0.397 0.198 0.099

Table 14: HNeRV Decoding FPS

PSNR 32 35 37

r=1.5 395.9 332.7 224.8
r=1.75 397.4 373.8 320.7
r=2 405.5 383.3 350.5

A.2 VIDEO COMPRESSION

Then we show the details for downstream tasks of video compression, which can be divided into
three steps: global unstructure pruning, quantization, and entropy encoding.

1) Model Pruning. Given a pre-trained model, we use global unstructured pruning to reduce the
model size, where parameters below a threshold are pruned and set as zero. For a model parameter

θi, θi =
{
θi, if θi ≥ θq
0, otherwise,

where θq is the q percentile value for all model parameters θ. As a normal

practice, we fine-tune the model to regain the representation after pruning.

2) Model and embedding quantization. Model quantization and embedding quantization follow the
same scheme. Given an vector µ, we linearly map every element to the closest integer,

µi = Round
(
µi − µmin

scale

)
∗ scale + µmin, where scale =

µmax − µmin

2b − 1
(3)

µi is one vector element, ‘Round’ is a function that rounds to the closest integer, ‘b’ is the bit length
for quantization, µmax and µmin are the max and min value of vector µ, and ‘scale’ is the scaling
factor. For scaling factor and zero points at this step, we can also try other methods instead of
current min-max one, like choosing 2b evenly-distributed values to minimum the mean square error.

3) Entropy encoding. Finally, we use entropy encoding to further reduce the size. Specifically, we
leverage Huffman coding (Huffman, 1952) for quantized weights and get lossless compression.

A.3 MORE VISUALIZATIONS

We show more visualizations for video regression (Figure 9), video interpolation (Figure 10), and
video inpainting (Figure 11.

A.4 HNERV ARCHITECTURE DETAILS

We also provide architecture detials for HNeRV models in various tasks and datasets in Table 15,
with total size, strides list, encoder dimension c1, embedding dimension c2, channel width of de-
coder input c2, channel reduction r, lowest channel width Chmin, min and max kernel size Chmin,
Chmax

A.5 PER-VIDEO COMPRESSION RESULTS

We also show video compression results for each video in Figure 12.
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Figure 9: Video regression results. Left: ground truth. Middle: NeRV output. Right: HNeRV
output.

Figure 10: Interpolation results.

Table 15: HNeRV architecture details

Video resolution size strides c1 d c2 r Chmin Kmin, Kmax

640×1280 0.35 5,4,4,2,2 64 16 32 1.2 12 1,5
640×1280 0.75 5,4,4,2,2 64 16 48 1.2 12 1,5
640×1280 1.5 5,4,4,2,2 64 16 68 1.2 12 1,5
640×1280 3 5,4,4,2,2 64 16 97 1.2 12 1,5
480×960 3 5,4,3,2,2 64 16 110 1.2 12 1,5
960×1920 3 5,4,4,3,2 64 16 92 1.2 12 1,5
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Figure 11: Inpainting results.

A.6 VIDEO DATASET

We show video frames for ‘bunny’ and UVG dataset in Figure 13. Note that for video of huge
dynamics like Jockey and Setgo, HNeRV is a little struggle compared to other compression methods.
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Figure 12: Compression results for all videos
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Figure 13: Video frames of bunny and UVG dataset. We mask pepple faces to avoid legal and
copyright issues.

17


	Introduction
	Related Work
	Method
	HNeRV overview
	Downstream tasks

	Experiment
	Dataset and Implementation Details
	Main Results
	Downstream Tasks
	Ablation study

	Conclusion
	Appendix
	Video decoding
	Video compression
	More visualizations
	HNeRV architecture details
	Per-video compression results
	Video dataset


