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ABSTRACT

Despite their ubiquity in language generation, it remains unknown why truncation
sampling heuristics like nucleus sampling are so effective. We provide a theoret-
ical explanation for the effectiveness of the truncation sampling by proving that
truncation methods that discard tokens below some probability threshold (the most
common type of truncation) can guarantee that all sampled tokens have nonzero
true probability. However, thresholds are a coarse heuristic, and necessarily discard
some tokens with nonzero true probability as well. In pursuit of a more precise
sampling strategy, we show that we can leverage a known source of model errors,
the softmax bottleneck, to prove that certain tokens have nonzero true probability,
without relying on a threshold. Based on our findings, we develop an experimental
truncation strategy and the present pilot studies demonstrating the promise of this
type of algorithm. Our evaluations show that our method outperforms its threshold-
based counterparts under automatic and human evaluation metrics for low-entropy
(i.e., close to greedy) open-ended text generation. Our theoretical findings and
pilot experiments provide both insight into why truncation sampling works, and
make progress toward more expressive sampling algorithms that better surface the
generative capabilities of large language models.

1 INTRODUCTION

Crucial to the remarkable generative capabilities of today’s large language models (LLMs) (OpenAI,
2023; Touvron et al., 2023; Chowdhery et al., 2022) are the sampling algorithms responsible for
selecting the next token at each timestep. The most common of these algorithms use a simple trunca-
tion strategy: sample only the tokens that have probability greater than some threshold (Holtzman
et al., 2020; Fan et al., 2018). In the quest for high-entropy generation wherein one wants to be able
to generate multiple good completions, it has been empirically established that the search for the
highest-likelihood strings through e.g., beam search or greedy decoding led to low-quality generations
(Hashimoto et al., 2019). Threshold-based truncation sampling presents a compelling alternative: by
avoiding the tokens at the tail end of the distribution which correspond to degenerate text it produces
significantly more coherent generations (Ippolito et al., 2019; Holtzman et al., 2020; DeLucia et al.,
2021). However, beyond the intuition that language models tend to assign too much probability to
tokens that should have 0 or near-0 probability (akin to smoothing (Hewitt et al., 2022)), prior work
has been limited in establishing why truncation sampling is so essential in autoregressive generation.

In this paper, we provide a precise mathematical explanation to elucidate the extraordinary success of
threshold-based truncation sampling (§3). First, we prove via an argument about log-probability errors
that threshold sampling is guaranteed to only sample tokens in the support of the true distribution, so
long as the chosen threshold is larger than some bound (Corollary 1). Next, we present a method to
more directly account for a likely source of tail errors: the softmax bottleneck (Yang et al., 2018),
which states that the low-rank softmax matrix used at the output layer of language models causes
probability errors in the model’s output distribution (§4). Specifically, we show how to leverage
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Figure 1: The next-token distribution from GPT-2 XL for the prefix “Taylor”, with the tokens
ordered by probability. Dashed vertical lines denote thresholds used to reject low-probability tokens,
under various truncation strategies. Our basis-aware-threshold (BAT) sampling accepts tokens shown
in blue and rejects those in orange. As evident, BAT rejects some implausible tokens assigned high
probability under the model while accepting many plausible yet low-probability tokens—this is not
possible under truncation sampling. BAT uses the softmax matrix to find tokens that might have
non-zero true probability, without relying on a threshold. See more examples in Fig. 4.

the restricted structure imposed by the softmax bottleneck to more precisely determine (relative to
threshold-based truncation) which tokens are in the support of the true distribution (Theorem 2). At a
high level, the idea is to declare a token to be in the support if its probability is nonzero not only in
the predicted distribution but also in all distributions that are “similar” to it (in a precise technical
sense) from the perspective of the softmax matrix. This presents a more nuanced strategy compared
to threshold-based truncation sampling: our algorithm does not rely on a threshold, thereby allowing
higher probability tokens to be discarded while keeping some lower-probability tokens.

We conduct a pilot investigation (§5) to empirically evaluate this basis-aware truncation sampling
approach. Our results shows improvements on an open-ended generation task via both automatic and
human evaluation metrics under low-entropy generation (i.e., close to greedy). Figure 1 illustrates our
algorithm’s more nuanced token selection strategy qualitatively (also see Figure 4). Unlike threshold-
based truncation methods (each shown with a dotted vertical line), our method can selectively discard
low-quality tokens while still keeping high-quality but lower-probability tokens. This is accomplished
by taking into account linear dependencies between token embeddings.1

Overall our work provides theoretical insights which motivate a practical method and show how
truncation sampling avoids errors in a language model by mitigating the softmax bottleneck.

2 BACKGROUND

Autoregressive language models Autoregressive language models are trained as next-word-
predictors: given a prefix, the model assigns a probability to each token in a vocabulary of size v as
a prediction of which token comes next. Given an input prefix, a model produces a vector h ∈ Rd,
which we refer to as the hidden state, and hyperparameter d as the hidden size. The model then uses
a linear map with matrix W ∈ Rv×d to obtain logits Wh ∈ Rv, to which it applies the softmax
function to obtain a probability distribution over tokens in the vocabulary:

p̂ = softmax(Wh) =
exp(Wh)∑v
i=1 exp(Wh)i

.

The matrix W is commonly referred to as the softmax matrix because it is applied directly before the
softmax, or the embedding matrix. Generally models are trained to output the p̂ that minimizes the
cross entropy with the conditional true distribution2 p∗: crossentropy(p∗, p̂) =

∑v
i=1 p

∗
i log p̂i.

Generation via truncation sampling Language models can autoregressively generate text by
sampling a token from p̂ at each time step. Unfortunately, sampling directly from p̂, i.e., ancestral
sampling, often leads to quality issues with unnatural, low-probability tokens. Truncation sampling
aims to solve this issue post-hoc by choosing a subset of the vocabulary to sample from, setting

1Code for experiments: https://github.com/mattf1n/basis-aware-threshold.
2In the case of natural language, it is not entirely clear what the “true” distribution p∗ means exactly.

Nonetheless we can use the distribution from which internet text is implicitly sampled as a useful surrogate.
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all other tokens to have zero probability. Meister et al. (2023a) frame this strategy as reprioritizing
precision over recall (i.e., removing some valid text from the distribution to avoid sampling unlikely
text.) We focus on a class of truncation methods that select tokens by choosing a threshold at each
timestep and truncating tokens with probability less than that threshold. This simple heuristic has
been found to be effective and forms the basis of popular methods like nucleus (top-p) (Holtzman
et al., 2020) and top-k (Fan et al., 2018) sampling.

Prior work has introduced several heuristics for choosing truncation thresholds. For instance, the
threshold can be fixed constant as in ϵ sampling, or chosen dynamically across different distributions,
as in η, nucleus, top-k, and Mirostat sampling (Basu et al., 2021).3 η sampling introduces the idea
that the threshold should depend on the entropy of the distribution H(p̂) and sets the threshold4 to
min(η,

√
ηH(p̂)). In the latter three, the threshold is chosen implicitly rather than explicitly, for

instance, in nucleus sampling with parameter π, the threshold is min
{
p̂i |

∑
p̂j≥p̂i

p̂j ≤ π
}

.

In the extreme case, truncating all but the most likely token results in greedy decoding. Though this
strategy makes it unlikely to sample a token outside the true support, it often results in degenerative
patterns like repetition (Holtzman et al., 2020). Furthermore, even for modern language models
that suffer less from greedy decoding traps, non-deterministic sample-based decoding is useful for
generating multiple completions and for more “creative” generations. Thus, the best choice of
threshold must strike a balance between diversity (i.e., including as many tokens as possible in the set
of candidates) and coherence (i.e., avoiding sampling tokens outside the true support).

The softmax bottleneck The sources of the probability overestimation errors are likely many,
but one source of error is particularly compelling and well defined mathematically: the softmax
bottleneck (Yang et al., 2018). The softmax bottleneck refers to the limited expressivity of models
with a small hidden size and large vocabulary. Recalling the notation from Yang et al. (2018), let
A ∈ Rv×n be the matrix where each entry Ai,j = log p∗(i | j) is the true log-probability of token i
given a prefix j from some set of n > v prefixes. Also, let W ∈ Rv×d be the softmax matrix for a
model, and H ∈ Rd×n be the matrix of model hidden states given each prefix. Finally, let J ∈ Rv×n

be the all-ones matrix. The rank of the model’s log-probability matrix

A′ = log softmax(WH) = WH − Jdiag(log

v∑
i=1

exp(WH)i) (1)

is at most d+1 because WH has inner dimension d and therefore rank at most d, and the subtrahend
has identical rows and therefore has rank at most 1. The rank of A is at most v. If the rank of A is much
larger than d, then A′ can be at best a low-rank approximation of A. From the Eckart–Young–Mirsk
(EYM) theorem for low-rank approximations,

min
A′:rank(A′)≤d+1

∥A−A′∥2F =

v∑
i=d+2

σ2
i (2)

where ∥·∥F denotes the Frobenius norm, and σ is the vector of singular values of A, ordered by
decreasing size. Thus, there will always be some error in the model’s log-probability estimations if
there are more than d+ 1 linearly independent columns in A. Yang et al. (2018) hypothesize that
this is indeed the case.

Despite these theoretical shortcomings, language models still seem to perform quite well. We
hypothesize that the reason for this is that default truncation sampling is sufficient to approximately
mitigate errors from the softmax bottleneck. For a deeper discussion, see Appendix A.

3 A THEORETICAL EXPLANATION OF TRUNCATION SAMPLING

Given some textual context as input, let p∗ denote the true next-token distribution of the language and
p̂ the model’s predicted next-token distribution. Intuitively, if the model’s probability overestimation

3Locally typical sampling (Meister et al., 2023b) truncates tokens whose log-probability diverges from the
LM’s conditional entropy. This may truncate top-probability tokens which likely have non-zero true probability.

4Hewitt et al. (2022) instead set η = min(ε,
√
εH(p̂)) for a parameter ε. We diverge for simplicity.
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could be additively upper bounded, i.e., if we could show that p̂i ≤ p∗i + τ for every token i, then
this would yield a natural way to avoid sampling tokens not in the support of p∗: only sample tokens
i with p̂i > τ (which, along with the bound, would imply p∗i > 0). This is exactly what truncation
sampling does. However, a difficulty in motivating truncation sampling via this argument is that it is
unclear how to derive such an additive upper bound on probability overestimation.

Our key observation is that A′ being a low-rank approximation of A can be used to conclude that the
model’s log-probability underestimation is non-zero but additively upper bounded. Indeed, assuming
A′ is a reasonably good low-rank approximation of A, Equation 1 implies such an upper bound in
the log-probability space, which yields a multiplicative upper bound in the probability space. We
then combine this underestimation upper bound with basic properties of a probability distribution in
order to derive the desired additive upper bound on the model’s probability overestimation. Lastly,
we show formally how this overestimation upper bound directly motivates truncation sampling.

3.1 BOUNDING LOG-PROBABILITY UNDERESTIMATION

We begin by proving bounds on models’ log-probability errors. Specifically, we find bounds on the
maximum log-probability underestimation error of the model, max(A−A′). We focus exclusively
on underestimation errors because log-probability overestimation errors cannot be bounded above.5

Maximum log-probability error upper bound We begin by upper-bounding all model’s log-
probability underestimations. In particular, the underestimation errors A−A′ are upper-bouded by
max(A−A′) ≤ maxA−minA′ ≤ −minA′, where the last inequality holds because maxA is a
log-probability and hence upper-bounded by 0. In other words, the negative minimum log-probability
prediction minA′ upper bounds all underestimation. As an example, a uniform predicted distribution
underestimates the log-probability of a token by at most − log(1/v).

Maximum log-probability error lower bound Next, we lower-bound maximum underestimation
errors by showing that they are strictly positive. We conjecture that this lower-bound on error is loose,
i.e., that the maximum error is bounded away from 0, depending on the singular values of A.

3.2 BOUNDING PROBABILITY OVERESTIMATION

Having established bounds on maximum log-probability underestimation, we now show that assuming
such an upper bound implies an additive upper bound on maximum probability overestimation. As
before, fix some input textual context and let p∗ and p̂ denote the true and model’s predicted
next-token distributions, respectively, for that context.

Theorem 1. If log p̂i underestimates log p∗i by at most δ for all tokens i, then p̂i overestimates p∗i by
at most 1− exp(−δ) for all tokens i.

See Appendix D for a proof. Note that the precondition log p∗i − log p̂i ≤ δ implies p̂i ≥ p∗i exp(−δ).
Intuitively, since p̂ is a valid probability distribution summing to 1, if it cannot underestimate token
probabilities beyond a factor of exp(−δ), then it also cannot overestimate other tokens’ probabilities
beyond a certain additive factor. We compute this additive factor and find it to be 1− exp(−δ).

3.3 EXPLAINING TRUNCATION SAMPLING

Recall that threshold-based truncation sampling works by only sampling tokens with probability
greater than some threshold τ . Sampling methods that choose a different τ at every time step can be
viewed as additional heuristics for guessing when model outputs will have smaller errors. Theorem 1
provides a direct explanation for why threshold-based truncation sampling might be successful:

Corollary 1 (Threshold-based truncation works). Suppose log p̂ underestimates log p∗ by at most δ.
Then, for any threshold τ ≥ 1− exp(−δ), threshold-based truncation sampling discards all tokens
that are not in the support of p∗.

5If the true distribution assigns zero probability to some tokens in some contexts (e.g., p∗(“ate” |
“I went to the”) = 0), then the corresponding log-probability is −∞. Hence any finite log-probability es-
timate will have infinite error.
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Furthermore, based on the above proof, we present an alternative formulation of truncation sampling.
Corollary 2 (Threshold sampling reformulation). For a model with maximum log-probability un-
derestimation error δ, if the model outputs p̂ and there is no distribution p with pi = 0 such that
pj ≤ p̂j exp(δ) for j ∈ {1, 2, . . . , v}, then p∗i > 0.

This follows directly from Equation (8) from the proof in the appendix, and is the contrapositive of
the more straightforward statement that if p∗i = 0 then there exists a distribution satisfying inequality
conditions in the corollary, namely p∗. One can check that only sampling tokens based on Corollary 2
yields the same candidate sets as threshold sampling with 1 − exp(−δ) as the parameter. This
alternative formulation will become useful later on when we combine methods for proving certain
tokens are in the support.

4 DIRECTLY ADDRESSING ERRORS FROM THE SOFTMAX BOTTLENECK

The previous section demonstrates that we can arrive at truncation sampling by making an assumption
about the log-probability errors, which allows us to prove that certain tokens have true probability
greater than zero. However, truncating via a threshold is an inherently limited approach: if a
model assigns more probability to a “bad” (zero true probability) token than a “good” (nonzero
true probability) token, then there is no threshold that discards the bad token without discarding the
good token. Naı̈vely, it would seem that this type of issue is unsolvable, however, it turns out that if
this error was is caused by the softmax bottleneck, we can actually recover the good token without
risking sampling the bad token. By exploiting W , the low-rank basis for the model’s outputs, and we
can deduce exactly which tokens may have errors due to the softmax bottleneck, regardless of their
relative probability. In this section we show mathematically how we can extend threshold sampling
to take full advantage of our knowledge of the softmax bottleneck.

4.1 BASIS-AWARE SAMPLING

At a high level, we will motivate this approach by showing that the function used to transform the
hidden state h to a probability distribution p̂ restricts model’s outputs to a subset of the possible
probability distributions. When the true distribution p∗ lies outside of this set, then we can expect
the model to output the p̂ within the set that minimizes the model’s training loss with respect to
p∗. We can exploit this property to identify the set of distributions wherein the true distribution lies,
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namely the set of distributions that p̂ minimizes loss with. If no distributions within this set assign
zero probability to a particular token, then that token must have nonzero probability.

To build intuition for how a model’s outputs are restricted, consider the toy model in Figure 2. We
generalize this toy model to a model with hidden size d and vocabulary size v. Observe that the
composed functions softmax ◦W define a linear map: first, the model’s softmax matrix W ∈ Rv×d

defines a linear map Rd → Rv. Next, it is a lesser-known fact that the softmax function is a
linear map from Rv → ∆v, where ∆v is the (v − 1)-dimensional vector space of valid probability
distributions over v variables (Aitchison, 1982) (see Appendix C for an explanation). Therefore,
softmax ◦ W : Rd → ∆v is a linear map from a d-dimensional space to a (v − 1)-dimensional
space, meaning the image of this function is an at-most d-dimensional subspace of ∆v. In other
words, the space of model outputs is restricted to a subset of all possible probability distributions
over the vocabulary.6

What distribution should a model output, given that the true distribution p∗ may not lie in the subspace
of possible outputs? Typically, language models are trained to minimize cross-entropy with the true
distribution. Therefore, a well-trained model can be expected to output the distribution p̂ within
the image of softmax ◦W that minimizes cross-entropy with p∗. In other words, we assume that
the model will produce the hidden state h such that crossentropy(softmax(Wh),p∗) is minimized.
The key insight of our method is that if h does not minimize cross entropy with any distribution p
such that pi = 0, then p∗i ̸= 0, i.e., token i is in the true support.
Theorem 2 (Basis-aware sampling). If p̂ is the predicted distribution from a cross-entropy-minimizing
model with embedding matrix W , and if there is no valid probability distribution p such that pi = 0
and W⊤p = W⊤p̂, then the token’s true probability p∗i is greater than 0.

See proof in Appendix D. This gives us a new way to prove that tokens are in the true support, similar
to Corollary 2, but in a way that directly compensates for errors due to the softmax bottleneck.

4.2 COMBINING SAMPLING METHODS

Theorem 2 and Corollary 2 equip us with methods for proving tokens are in the true support. By
combining the constraints specified from each method we can create a hybrid proof strategy to take
advantage of both methods’ insights. In particular, if there does not exist a distribution p with pi = 0
such that pj ≤ p̂j exp(δ) for all j (the truncation constraint) and W⊤p = W⊤p̂ (the basis-aware
constraint), then p∗i > 0.

This hybrid proof strategy naturally yields a sampling method: sample only tokens that we can prove
are in the support. We call this method basis-aware threshold (BAT) sampling. Fortunately, both
the threshold constraint and basis-aware (BA) constraints are linear, so we can use an off-the-shelf
linear programming optimizer to verify whether a token is in the support. Concretely, if the optimizer
determines that there does not exist a feasible solution p ∈ Rv such that:

pi = 0,

v∑
j=1

pj = 1, ∀j : 0 ≤ pj ≤ p̂j exp(δ), W⊤p = W⊤p̂, (3)

then p∗i > 0. Thus, our sampling strategy can be: sample a token i according to the model’s output
probabilities; if the optimizer finds a solution to (3), reject the token and re-sample; otherwise accept.
See Algorithm 1 in the Appendix.

We expose δ as a parameter to tune the restrictiveness of the sampling method. For large δ, BAT
becomes more like greedy sampling, and for small δ, more like ancestral sampling. The value of δ
can be chosen on a per-context basis using any threshold sampling heuristic, be it ϵ, η, or nucleus
sampling. Given a threshold τ from the heuristic, set exp δ = 1/(1− τ). We call these variants of
BAT sampling BA-ϵ, BA-η, an BA-nucleus sampling.

A toy example Suppose our model has hidden size 1, vocabulary size 3, and embedding ma-
trix W⊤ = [0.55 0.71 0.29]. We employ the truncation sampling assumption that our model’s
output distributions are somewhat close to the true distribution by saying p∗i ≤ p̂i exp δ and choosing

6may correctly observe that the “bottleneck” is a consequence of the linear map W , not the softmax function.
We keep our notation for the sake of consistency with Yang et al. (2018).
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δ = log 1.9 so that p∗i ≤ 1.9p̂i for all tokens i. Additionally, assume the model’s outputs minimize
cross-entropy with the true distribution, i.e., W⊤p∗ = W⊤p̂ for all p̂. Now suppose our model out-
puts h = [2.55]. The output distribution is therefore p̂ = softmax(Wh) = [0.33 0.50 0.17]

⊤.

Our strategy only samples tokens for which we can prove that the true probability is positive. Referring
to Figure 3, we see that there are no probability distributions p that satisfy our assumptions with
p2 = 0 or p3 = 0. However, p = [0 0.70 0.30] does satisfy our assumptions. Therefore, if we
sample token 1 we should reject it, as we only have evidence that p∗2 ̸= 0 and p∗3 ̸= 0. Notice that this
strategy is non-monotonic: p̂1 > p̂3, but we only reject token 1, not token 3.

Basis-aware threshold sampling in practice The proposed implementation of basis-aware sam-
pling requires solving rather large linear programs, which tends to be too computationally expensive
to be practical, even when using proprietary solvers. The long run times can mainly be attributed
to the size of W . To make BAT feasible in practice, we approximate the full solution by replacing
W with an much smaller matrix such that no additional tokens are accepted, and the set of rejected
tokens minimally increases. More details are deferred to Appendix E. This shortens the run time
from over a minute on a proprietary solver to about a second. We further reduce the generation run
time by observing that whenever a token has probability greater than 1 − exp(−δ) we can safely
accept it without running the program, since the program will be infeasible. Since high-probability
tokens are most likely to be sampled, the program only needs to run once every few samples. The
amortized cost of BAT sampling comes to only about 0.1 seconds per token as the program typically
runs every 10 samples.

5 PILOT EXPERIMENTS WITH BASIS-AWARE TRUNCATION

We conduct several evaluations with GPT-2 to pilot BAT sampling as a viable alternative to threshold
sampling. While more powerful language models exist, these models suffice since we are primarily
interested in testing the effect of the BAT sampling on performance under controlled settings.

As baseline methods for comparison, we select η, ϵ, and nucleus sampling (see §2). We also use η
and ϵ as methods for selecting the δ parameter at each time step for BAT sampling. In preliminary
experiments, we also tried BA-nucleus, but found it to be significantly worse. One possible intuition
for why is that the methods for choosing the threshold ϵ and η are similar to the formulation of
threshold sampling used to develop BAT. Nucleus sampling on the other hand determines the threshold
using a function that is somewhat inconsistent with our framework.

We evaluate models on open-ended generation using both human annotators and automatic metrics.
For each model and sampling setting, we generate completions for 5000 35-token prefixes taken from
the Open Web Text (OWT) (Gokaslan et al., 2019). We use OWT because it comes from a similar
distribution to GPT-2’s training data. We report MAUVE (Pillutla et al., 2021) similarity between
human text and generated text for parameter selection and automatic evaluation.

Parameter selection and evaluation We perform a parameter sweep for nucleus, η, and ϵ sampling
and select the parameter that gives the highest MAUVE score on the OWT validation set (see Table 3
in the appendix). We control for the parameter choice in comparisons between BAT methods and
their vanilla counterparts, by matching the parameters by selecting the BAT parameter that rejects
the same proportion of tokens from corpus of human text as the vanilla method; see Appendix F for
more details. Using these parameters, we generate completions on the OWT test set for automatic
evaluation with MAUVE and human evaluation.

5.1 QUALITATIVE, AUTOMATIC, AND HUMAN EVALUATION

Qualitative analysis Figure 4 shows the effects of truncation methods on the next-token distribu-
tions from 6 prefixes, drawn from Hewitt et al. (2022). Unlike threshold sampling methods, BAT can
reject low-quality high-probability tokens while accepting high-quality low-probability tokens.

BA-η outperforms all other methods for GPT-2-Large We compare the MAUVE scores on OWT
for each method and model size in Figure 5. The results show that no single method consistently
performs best, with BAT methods sometimes out-performing and sometimes under-performing their
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Figure 5: MAUVE scores for sampling methods on Open Web Text test set. No single sampling
method consistently outperforms across sizes. BA-η performs remarkably well for GPT-2-Large.

vanilla counterparts. We do, however, see that BA-η outperforms η sampling for the two larger model
sizes, and does particularly well against all methods for GPT-2-Large.

BA-η outperforms η sampling in low-entropy decoding across model sizes We compare BA-η
and η sampling across different η parameters, again matching our BA-η parameter to reject the same
proportion of human text as the η parameter. As shown in Figure 6, we find that for more restrictive
sampling (i.e., larger η, closer to greedy decoding), BA-η consistently outperforms η sampling. To
verify our results (since we know from Figure 5 that model size effects which method is best) we
show in Table 1 that this pattern holds across all model sizes.

More constraints improves BAT Since we reduce the number of constraints in the linear program
to make it run quickly, we can add constraints back into to program to verify that the basis-aware
constraints are the reason for the gains in BAT sampling. We again adjust the BAT parameter to match
the proportion of rejected human text to control for the additional tokens added to the support from
the new constraints. Figure 7 shows that adding more BA constraints indeed increases the MAUVE
score for our method. This is direct evidence that controlling for the softmax bottleneck helps reduce
errors in the model distribution.

Human annotators narrowly favor BA-η and prefer coherence to diversity To support our
automatic evaluations, we additionally use human annotators from Amazon Mechanical Turk to
compare both methods. Annotators are tasked with pairwise comparisons between generations from
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Figure 7: MAUVE scores for GPT-2-XL as the
number of BA constraints varies. BAT sampling
improves with more constraints.

Table 1: MAUVE scores for different GPT-2
model sizes on low-entropy generation. BA-η
sampling outperforms η in each case.

Size Small Medium Large XL
Method

η 85.01.4 90.40.1 86.00.5 87.11.2
BA-η 87.81.0 92.20.6 88.40.5 89.60.4

Table 2: Pairwise human evaluation results. BA-
η ≡ x indicates the BA-η parameter chosen to
match η = x.

Method 1 Method 2 1 wins 2 wins Tie

BA-η ≡ 0.002 η = 0.002 0.43 0.38 0.19
BA-η ≡ 0.024 η = 0.024 0.48 0.47 0.05
BA-η ≡ 0.024 BA-η ≡ 0.001 0.50 0.42 0.08

each method and generated from the same prefix. See Appendix F.1 for more details. Table 2
shows that, annotators narrowly prefer generations from BA-η sampling to those from η sampling.
Furthermore we see that human annotators prefer lower entropy generations. This is likely because
humans only see 1 generation per method, making it impossible to assess diversity in the generations.

5.2 DISCUSSION

Overall, our results provide empirical evidence that the softmax bottleneck is responsible for signifi-
cant errors in language model next-token distributions, and show that BAT sampling offers a viable
method for mitigating those errors. Under low-entropy generation, BAT offers clear advantages to
threshold sampling, where only a few tokens are permissible.

Although our pilot study shows promising results for BA-η sampling in low-entropy generation
settings, there remain a number of limitations. For instance, as mentioned in §5, BAT does not pair
well with nucleus sampling. Furthermore, we find that for certain prefixes and sufficiently low-entropy
sampling parameters, BA-ϵ accepts no tokens. This is a non-issue for threshold sampling which can
fall back to greedy sampling, but because BAT relies on rejection sampling, it is not known when to
revert to greedy. Though it is possible to implement a max-retries guard, this remains computationally
expensive and the generations themselves tend to degrade.

A broader issue that BAT must deal with is the expensive computation associated with running the
linear program. While this is generally not an issue for generation, certain tasks are infeasible, such
as finding the exact set of candidate tokens, which would require running the linear program on the
full vocabulary. We remain optimistic that further optimizations to the method can be made to allow
this in future work, as well as enable BAT sampling with higher constraint counts.

6 CONCLUSION

Our work fills a crucial gap in the theoretical understanding of truncation sampling methods and how
they account for language model errors. These theoretical findings translate into a more direct method
for mitigating errors due to the softmax bottleneck. As a result, our BAT sampling method can discard
higher-probability tokens while keeping higher-quality but lower-probability tokens. Lastly, our pilot
study with BAT sampling shows promising results in low-entropy generation.
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A FURTHER RELATED WORK

Generating from autoregressive language distributions. Generating strings from autoregressive,
optionally conditional, generative models of language has a long history in NLP; for decades,
algorithms were developed for approximating the maximum-likelihood string under the model
(Jelinek, 1990), e.g., beam search (Reddy, 1977), under the understanding that there is one best
output for, e.g., speech recognition. As Transformers became used for general-purpose, and often
high-entropy generation wherein one wants to be able to generate multiple good completions, it was
found that search for the highest-likelihood strings led to low-quality generations (Fan et al., 2018;
Holtzman et al., 2020; Hashimoto et al., 2019; Stahlberg & Byrne, 2019; Meister et al., 2020). In
developing algorithms for high-entropy generation, the afore-mentioned line of work attempts to
maintain the learned distribution as much as possible (Holtzman et al., 2020; Hewitt et al., 2022);
another significant design principle has related to the uniform information density principle that
humans are observed to obey, motivating Meister et al. (2023b). This algorithm intentionally deviates
from the overall distribution more, by sometimes truncating high-probability tokens in order to never
generate any tokens that are too high probability relative to the overall entropy. Krishna et al. (2022)
show that language models do not effectively make use of long-term context, finding that an explicitly
trained re-ranker can help. Li et al. (2023) hypothesizes that language model errors are distributed
similarly in small models as in large, showing that taking the difference of their logits can help
improve the large model’s generations. Some ideas from high-entropy generation, including this, and
the ϵ-sampling algorithm, have shown to be useful even in low-entropy generation where previously
algorithms like beam search have performed best (Freitag et al., 2023; Sennrich et al., 2023).

Did the softmax bottleneck turn out not to be a problem? After the demonstration of the softmax
bottleneck by Yang et al. (2018), various algorithms were proposed for efficiently learning a high-rank
language models (Yang et al., 2019; Ganea et al., 2019). Chang & McCallum (2022) showed that
the softmax bottleneck makes certain multi-mode distributions difficult to model, while Demeter
et al. (2020) demonstrated that the low-rank nature of language models means that it is possible for
certain word tokens to be unable to be the argmax, but Grivas et al. (2022) demonstrated that this is
rarely the case in practice. Overall, rank considerations have not been at the fore of language model
development, as language models have scaled, their hidden state sizes have scaled as well, but stayed
smaller than their vocabulary sizes (Scao et al., 2022; Biderman et al., 2023; Touvron et al., 2023).
Throughout this time, when one generates from language models, one almost always lowers entropy
and performs some kind of truncation sampling (or in the extreme, greedy decoding). Our results
suggest that training high-rank language models may appear unnecessary because default truncation
sampling mitigates errors stemming from the low-rank approximation.

B BAT SAMPLING ALGORITHM

Algorithm 1 gives the procedure for BAT sampling.
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Algorithm 1 BAT sampling

1: procedure BAT(Threshold τ , Next-token distribution p̂)
2: repeat
3: Sample i ∼ p̂
4: until ∄p such that pi = 0 ∧W⊤p = W⊤p̂ ∧ ∀j, pj ≤ p̂j/(1− τ) ▷ Use LP solver
5: return i
6: end procedure

C THE SOFTMAX FUNCTION IS LINEAR

It is an unintuitive fact that the softmax function is a linear map Rd → ∆d. The key here is that
addition and scalar multiplication are defined on ∆d in a non-standard way. The elements of ∆d

are tuples of length d whose entries sum to one. Vector addition ⊕ in ∆d is defined as elementwise
multiplication followed by normalization

p⊕ q =
p⊙ q∑d
i=1 piqi

, (4)

and multiplication ⊗ by a constant λ ∈ R is elementwise exponentiation followed by normalization

λ⊗ p =
pλ∑d
i=1 p

λ
i

. (5)

One can check that these operations satisfy the axioms of a vector space, and that the softmax function
satisfies additivity and homogeneity under these operations, i.e.,

softmax(u+ v) = softmax(u)⊕ softmax(v) (6)

and
softmax(λu) = λ⊗ softmax(u). (7)

D PROOFS

Proof of Theorem 1. By the precondition of the theorem, we have log p∗i − log p̂i ≤ δ for all i. It
follows that:

p̂i ≥ p∗i exp(−δ). (8)
Intuitively, since p̂ is a valid probability distribution summing to 1, if it cannot underestimate token
probabilities beyond a factor of exp(−δ), then it also cannot overestimate other tokens’ probabilities
beyond a certain factor; we will show that this factor is 1− exp(−δ).

To this end, we consider each token individually and calculate the maximum possible probability
overestimation based on the maximum probability underestimation of the other tokens. Keeping
in mind that any probability added to a token must be removed from other tokens to preserve a
valid probability distribution, the maximum probability added to a token is the sum of the maximum
probabilities subtracted from the other tokens. This gives us that for all i:

p̂i − p∗i =
∑
k ̸=i

p∗k −
∑
k ̸=i

p̂k (9)

≤
∑
k ̸=i

(
p∗k − p∗k exp(−δ)

)
From (8) (10)

= (1− exp(−δ))
∑
k ̸=i

p∗k Factor out p∗k (11)

= (1− exp(−δ))(1− p∗i ) Probabilities sum to 1 (12)
≤ 1− exp(−δ) 0 ≤ p∗i ≤ 1. (13)

We thus have our desired probability overestimation bound, starting with the assumption of a log-
probability underestimation bound.
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Proof of Theorem 2. We begin by assuming that our model has learned to minimize cross-entropy
with the true distribution, implying that

∂

∂h
crossentropy(softmax(Wh,p∗)) = 0. (14)

Expanding and simplifying this equation, we can obtain

∂

∂h

(
−
∑
i

p∗i log(softmax(Wh)i)

)
= 0 cross entropy defn. (15)

∂

∂h

−
∑
i

p∗iWhi − p∗i log
∑
j

exp(Wh)j

 = 0 Log of softmax (16)

∂

∂h

∑
i

p∗i log
∑
j

exp(Wh)j =
∂

∂h

∑
i

p∗i (Wh)i Distribute
∂

∂h
(17)

∂

∂h
log
∑
j

exp(Wh)j =
∂

∂h

∑
i

p∗i (Wh)i
∑
i

p∗i = 1 (18)

∑
j exp(Wh)j

∂
∂h (Wh)j∑

j exp(Wh)j
=

∂

∂h

∑
i

p∗i (Wh)i Derivative (19)

∂

∂h
(Wh)T

exp(Wh)∑
j exp(Wh)j

=
∂

∂h
(Wh)Tp∗ Factor (20)

∂

∂h
(Wh)T softmax(Wh) =

∂

∂h
(Wh)Tp∗ Softmax defn. (21)

W T p̂ = W Tp∗ Derivative (22)

where p̂ is the output distribution of the model. Thus, if there does not exist any valid probability
distribution p such that pi = 0 and W Tp = W T p̂, then p∗i ̸= 0.

E BASIS-AWARE THRESHOLD SAMPLING IN PRACTICE

Basis-aware sampling presents a number of practical challenges. Chief among them is the sheer size
of the linear programs to be solved. These programs have v variables and d+ 2v + 2 constraints. No
open-source solver we tried was able to solve a single problem in a reasonable amount of time, avoid
hitting a numerical errors, and solve within its default max-iteration limits. Proprietary solvers do
better in some cases, but only the MOSEK solver (ApS, 2023) was able to solve the full problem in
under 1 minute. Even this relatively faster solving rate makes text generation at scale impractical.

To address this, we reduce the size of the linear program dramatically by discarding many constraints.
While doing so, however, we also aim to maintain as much of the original solution space as possible,
so as to minimize the effect on the set of tokens discarded by basis-aware sampling.7

In order to reduce the number of constraints originating from the WTp = WT p̂ term from d to c, we
can simply discard any d−c columns of W to obtain W c. Clearly, if p satisfies WTp = WT p̂, it will
continue to also satisfy W cTp = W cT p̂. Thus, if a token was originally rejected by bottleneck-aware
sampling, it would still be rejected, i.e., using W c instead of W does not add new candidate tokens.
It may, however, remove some candidates, and we would like to minimize this effect.

Suppose W has rank b ≤ d. Then the set of probability distributions p satisfying WTp = WT p̂
forms a linear subspace S ⊆ Rv of dimension d − b. Further, W c has rank at most min{b, c},
implying the set of distributions p satisfying the relaxed condition W cTp = W cT p̂ forms a linear
superspace Sc of S of dimension at least d − min{b, c}. Recall that the larger Sc is, the more
candidate tokens will be removed by bottleneck sampling. Thus, to minimize candidate removal, we
seek an Sc that is of dimension exactly d−min{b, c}. This can be achieved easily by keeping in W c

any set of min{b, c} linearly independent columns of W . Note that if b ≤ c, the use of such a W c

7Without any constraints, basis-aware threshold sampling reduces to basic threshold sampling.
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will, in fact, not remove any candidate, as Sc will equal S. Otherwise Sc will be a d− c dimensional
superspace of S.

When b > c, however, this solution is still not optimal, as which linearly independent columns
of W we choose to keep in W c determines how “close” Sc will be to the original solution space
S. Intuitively, we would like to preserve S along dimensions that correspond to the c largest
eigenvalues of W . To accomplish this, we turn to singular value decomposition: find three matrices
U ∈ Rv×d, Σ ∈ Rd×d, and V ∈ Rd×d such that W = UΣV T , then replace W with U c ∈ Rv×c,
where U c represents the first c columns of U . Since U is simply a linear transformation of W , the
solutions (in terms of p) of UTp = UT p̂ are precisely the subspace S of dimension d− b as before.
Again, as before, replacing W with U c does not add new tokens to the set of candidates, and may
remove some candidates when b > c. Importantly, when b > c, U c will intuitively be the “closest”
possible approximation of W (capturing its c largest eigenvalues). Thus, Sc will form a desirable
approximation of S.

The above SVD based approximation is what we use in practice. This reduces the number of
constraints from d (≈ 700-1200 for our models) to c (typically 20), and shortens the run time from
over a minute on a proprietary solver to about a second.

F PARAMETER SELECTION

Table 3: Parameter sweeps and chosen parameters for each method and size

Method Sweep Small Medium Large XL

Nucleus {0.89, 0.9, 0.92, 0.95, 0.99} 0.92 0.89 0.92 0.95
ϵ {0.0003, 0.0006, 0.0009, 0.001, 0.002} 0.0009 0.0003 0.0009 0.0003
η {0.0003, 0.0006, 0.0009, 0.002, 0.004} 0.0009 0.002 0.0009 0.002

When comparing sampling methods, choice of parameters is very important, since each method has
its own diversity-coherence trade-off characteristics. Without proper controls, it is impossible to
tell whether the performance gap between two heuristics might be closed by simply adjusting the
parameter of the worse-performing method. To remedy this, we control for parameter choice by
matching parameters of compared methods based on how conservative they are with respect to human
text. In particular, for each vanilla threshold sampling method x, we choose the BA-x parameter that
rejects the same proportion of tokens from a human corpus. Table 4 illustrates how we measure this
human-text rejection rate (HRR). In our experiments, measure HRR by sampling 10,000 tokens with
their prefixes from Open Web Text and calculating the proportion of the tokens that are accepted by a
sampling method with a given parameter.

Table 4: With a hyperparameter of 0.002, ϵ-sampling would have a human-text rejection rate of 1/5
on this text.

Token I’m the problem, it’s me.
Probability 0.02 0.3 0.01 0.001 0.3

Figure 8 gives the sampling parameters as a function of HRR. As HRR approaches zero, parameters
become more permissive, i.e., nucleus approaches one, η and ϵ approach zero, in order to accept
more tokens. We observe that as HRR increases, BAT parameters are consistently more conservative
than their vanilla counterparts since BAT methods sample tokens beyond the threshold. In the case of
BA-p, the parameter maxes out around 28% HRR, meaning that it cannot reject more than 28% of
human tokens.

F.1 HUMAN EVALUATION

Annotators are paid $1 USD per annotation, and each annotation takes on average less than 2 minutes.
Figure 9 provides the exact instructions and layout given to the annotators.
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Figure 8: Truncation sampling parameters for various methods by HRR, the proportion of human-text
the sampling methods reject.

Figure 9: An example of the interface and instructions shown to human annotators.

G TRUNCATED LANGUAGE MODEL DISTRIBUTIONS ARE HIGH-RANK

We motivated truncation sampling as helping to correctly discard tokens that are not in the support
of the true distribution p∗ when those errors are due to the low-rank nature of language models’
distributions. In this additional experiment, we show that the post-truncation conditional distribution
matrix A is high-rank relative to the pre-truncation distribution.

We run the GPT2-XL model on samples of OpenWebText, concatenate the conditional log-
distributions log p̂ for each prefix, and compute the rank of the resulting matrix. This becomes
a rather large matrix, since each log p̂ is in R50257, so we are limited in the number of prefixes we
can consider. Since the number of prefixes upper-bounds the estimated rank, and we cannot run,
e.g., 50257 prefixes, we plot the rank for various numbers of prefixes. We find that the GPT2-xl
model, which has a hidden dimensionality of 1600, has rank that saturates at 1600, as expected. For
truncation sampling strategies nucleus, η-sampling, and ϵ-sampling, we find that the estimate of the
rank continues to grow with the number of prefixes, far past 1600. See Table 10.

H MORE UNIT TESTS

We give the unit tests used in Figures 1 and 4 in tabular form (Tables 5-11).
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Figure 10: The estimated rank of the log-probability distributions of a model with truncation grow far
past its hidden dimensionality; without truncation, the rank is constrained to the hidden dimensionality.

Table 5: A subset of the next-word distribution according to GPT2 for the context
“<|endoftext|>Taylor”. The last four columns denote whether each token is in the sup-
port of the titular strategies. Notice that BA-η is able to accept good continuations like ‘ will’
and ‘ Hanson’ while excluding questionable continuations like ‘ Sw’ which likely has higher
probability because of its embedding alignment with ‘ Swift’.

Rank Prob Token BA Eta Eta Epsilon Nucleus

0 4.3e-01 ‘ Swift’ True True True True
3 2.1e-02 ‘ is’ True True True True
4 1.9e-02 ‘ Hall’ True True False True

29 2.5e-03 ‘ Smith’ True True False True
30 2.2e-03 ‘ Sw’ False True False True
31 2.2e-03 ‘ K’ True True False True
35 2.0e-03 ‘ Miller’ True True False True
36 2.0e-03 ‘ Wilson’ True True False False
38 1.9e-03 ‘ will’ True True False False
39 1.9e-03 ‘ "’ False True False False
40 1.9e-03 ‘ says’ True True False False
41 1.7e-03 ‘ Hanson’ True False False False
42 1.7e-03 ‘ D’ False False False False
43 1.7e-03 ‘ Lew’ True False False False
44 1.7e-03 ‘ Hicks’ True False False False
45 1.6e-03 ‘ St’ False False False False
46 1.6e-03 ‘ C’ False False False False
47 1.6e-03 ‘ Wood’ True False False False
50 1.5e-03 ‘ Hein’ True False False False
51 1.5e-03 ‘ J’ False False False False
60 1.2e-03 ‘ Lee’ False False False False
61 1.1e-03 ‘ Kits’ True False False False
62 1.1e-03 ‘ Martin’ False False False False
81 8.4e-04 ‘ also’ False False False False

Table 6: ‘<|endoftext|>My name’

Rank Prob Token BA Eta Eta Epsilon Nucleus

0 9.6e-01 ‘ is’ True True True True
1 3.2e-02 ‘’s’ True True True False
2 1.2e-03 ‘ was’ True False False False
3 1.0e-03 ‘,’ False False False False
4 7.7e-04 ‘ isn’ True False False False
5 4.7e-04 ‘ Is’ True False False False
6 4.1e-04 ‘ and’ False False False False

22 5.1e-05 ‘ IS’ False False False False
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Table 7: ‘<|endoftext|>My name is’

Rank Prob Token BA Eta Eta Epsilon Nucleus

0 1.1e-02 ‘ David’ True True False True
20 5.0e-03 ‘ Adam’ True True False True

1156 1.3e-04 ‘ Ily’ True True False False
1167 1.3e-04 ‘ Curt’ True True False False
1168 1.3e-04 ‘ Sk’ False True False False
1169 1.3e-04 ‘ Stewart’ False True False False
1170 1.3e-04 ‘ Avery’ True True False False
1175 1.3e-04 ‘ Aud’ True True False False
1176 1.3e-04 ‘ Eb’ False True False False
1177 1.3e-04 ‘ Brock’ False True False False
1178 1.3e-04 ‘ Franc’ True True False False
1184 1.3e-04 ‘ Mercedes’ True True False False
1185 1.3e-04 ‘ JJ’ True False False False
1194 1.2e-04 ‘ Sebast’ True False False False
1195 1.2e-04 ‘ Di’ False False False False
1196 1.2e-04 ‘ Maxwell’ True False False False
1205 1.2e-04 ‘ Mand’ True False False False

Table 8: ‘<|endoftext|>The capital of of the USA is Washington D.C.
The capital of India is New Delhi. The capital of the UK is
London. The capital of Ghana is’

Rank Prob Token BA Eta Eta Epsilon Nucleus

0 9.9e-01 ‘ Acc’ True True True True
1 6.8e-03 ‘ Ab’ True False False False
2 6.7e-04 ‘ Kum’ True False False False
3 2.6e-04 ‘ Con’ False False False False
4 2.3e-04 ‘ Ghana’ True False False False
5 1.4e-04 ‘ Abu’ False False False False

22 1.2e-05 ‘ Tem’ False False False False

Table 9: ‘<|endoftext|>Donald’

Rank Prob Token BA Eta Eta Epsilon Nucleus

0 9.4e-01 ‘ Trump’ True True True True
1 1.4e-02 ‘ J’ True False False False
2 6.2e-03 ‘ Glover’ True False False False
3 1.9e-03 ‘ Sterling’ False False False False

22 3.1e-04 ‘ Donald’ False False False False

Table 10: ‘<|endoftext|>The’

Rank Prob Token BA Eta Eta Epsilon Nucleus

0 1.3e-02 ‘ first’ True True False True
20 2.9e-03 ‘ American’ True True False True

4338 3.5e-05 ‘ RNC’ True True False False
4340 3.5e-05 ‘ poet’ True True False False
4354 3.5e-05 ‘ BE’ True True False False
4357 3.5e-05 ‘ inevitable’ True True False False
4358 3.5e-05 ‘ hackers’ True False False False
4359 3.5e-05 ‘ Bright’ True False False False
5232 2.8e-05 ‘ PBS’ False False False False
5233 2.8e-05 ‘ Grammy’ False False False False
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Table 11: ‘<|endoftext|>The feeling! The feeling! The feeling! The
feeling! The feeling! The feeling! The feeling! The feeling!
The feeling! The feeling! The feeling!’

Rank Prob Token BA Eta Eta Epsilon Nucleus

0 9.5e-01 ‘ The’ True True True True
1 2.3e-02 ‘\n’ True False True False
2 2.6e-03 ‘ THE’ True False False False
3 2.2e-03 ‘\n\n’ False False False False
4 1.8e-03 ‘ I’ False False False False
5 9.9e-04 ‘The’ True False False False
6 6.3e-04 ‘ It’ False False False False

22 1.3e-04 ‘ My’ False False False False
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