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Abstract

Sensitive directions experiments attempt to understand the internal computation
of Language Models (LMs) by measuring how much the next token prediction
probabilities change by perturbing activations along specific directions. We extend
the sensitive directions work by introducing an improved baseline for perturbation
directions. We demonstrate that KL divergence for Sparse Autoencoder (SAE)
reconstruction errors are no longer pathologically high compared to the improved
baseline. We also show that feature directions uncovered by SAEs have varying
impacts on model outputs depending on the SAE’s sparsity, with lower L0 SAE
feature directions exerting a greater influence. Additionally, we find that end-to-end
SAEs do not exhibit stronger effects on model outputs compared to traditional
SAEs.

1 Introduction

One of the primary goals of mechanistic interpretability is to uncover the variables that neural
networks use in their computation. This task is complicated by polysemanticity, a phenomenon where
a single neuron activates in response to multiple seemingly unrelated features [1, 2]. Recent studies
[3, 4] have employed an unsupervised dictionary learning algorithm called Sparse Autoencoders
(SAEs) to disentangle LM activations into sparse, linear combinations of feature directions. While
SAEs show significant promise [5], there is limited dataset-independent evidence that the features
found by SAEs are indeed true abstractions used by the LMs.

Several works have sought to understand these abstractions by observing how much the next token
prediction probabilities change when activations are perturbed along certain directions, a technique
hereinafter referred to as sensitive direction analysis. Heimersheim, S et al. [6] demonstrated, for
example, that perturbing from one real activation towards another real activation changes the model
output earlier (shorter perturbation lengths) than perturbing into random directions. This finding
supports the hypothesis that perturbations along true feature directions have a greater impact on
model outputs compared to other directions, motivated by toy models of computation in superposition
[7].

Sensitive direction analyses have been also used to evaluate Sparse Autoencoders (SAEs). Pertur-
bations along the SAE feature directions appear to alter the model output more significantly than
random directions, suggesting that SAEs successfully uncover important “levers” used by the model
[8]. However, SAE-reconstructed activation vectors also alter the model output much more than
random perturbations of the same L2 distance from the base activation, an observation that puzzled
the interpretability community [9]. This phenomenon was characterized as a pathological behavior of
SAE reconstruction errors.
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Our Contribution In this paper, we expand on the sensitive directions work. We show that:

• Heimersheim, S et al. [6]’s sensitive direction baselines were flawed in that the perturbation
direction involved subtracting the original activation. We propose an improved baseline
direction (called cov-random mixture) which does not use the original activation.

• Gurnee [9]’s KL-divergence for SAE reconstruction errors no longer seems pathologically
high when we use this improved baseline.

• Perturbations into SAE feature directions reveal that (1) SAE directions have smaller or
greater impact on the model output than our baseline, depending on the SAE type and L0,
and (2) lower L0 SAE feature directions have a greater impact on the model output.

• Feature directions from end-to-end SAEs do not exhibit a greater influence on the model
output compared to those from traditional SAEs.

2 Experimental Methods

The experiments described in this report focus on perturbing an activation within the residual stream
of GPT2-small. Specifically, we perform perturbation as follows:

x← xbase + αd

where xbase represents the original activation, α is the perturbation length, and d is the unit direction
vector. To assess the impact on the model’s output, we use the KL divergence of the next token
prediction probabilities (more specifically, KL(original prediction | prediction with substitution)).
Unless if otherwise stated, the perturbations are applied in Layer 6 resid_pre. Layer 6 was chosen
because Braun et al. [10]’s main results focus on end-to-end SAEs on Layer 6 activations.

Data The experiments are performed on approximately 2 million tokens (16,000 sequences, each
with a length of 128) from Openwebtext. We perturb activations for all token positions.

Extrapolation When we extrapolate the perturbation vector, we extend the vector from length 0
to 101 (the mean L2 distance between two actual activations in Layer 6 resid_pre is 81.59). Our
results mainly focus on the resulting curves of KL vs perturbation length or L2 distance at Layer 11
vs perturbation length. We use the mean of KL or mean of L2 across the 2 million tokens as our main
measure. We use the mean under the assumption that directions with greater functional importance
will, on average, induce a more significant change in the model’s output.

3 Developing a Better Baseline

Lindsey [8] and Gurnee [9] use random isotropic perturbation as their baseline. Both papers point
out that this might be problematic because actual activations are not isotropic, and some sensitivity
differences may be explained by that effect. Previous work by Heimersheim, S et al. [6] attempts to
address this issue by adjusting the mean and covariance matrix of the randomly generated activations
to match real activations. However, the paper’s perturbation directions use the direction from the
original activation toward another random activation (xtarget − xbase), which includes the negative of
the original activation (−xbase) as a component. This makes it an unfair comparison to directions that
do not include the original activation (see Appendix B for further details). Therefore, we propose two
new baselines (cov-random mixture and real mixture) where the directions do not include the original
activation.

Following is the list of perturbation directions discussed in this section:

• Isotropic random: Perturb into a random direction (no subtraction)

• Cov-random mixture: Perturb along d = xcov-random
1 − xcov-random

2 , i.e. into the difference
of two randomly generated covariance matrix adjusted activations.

• Real mixture: Perturb along d = xreal
1 − xreal

2 , i.e. into the difference of two real activations
(not the original activation). The real activations are sampled from the activations from 2
million tokens.
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Figure 1: Comparison of the average KL divergence of four different substitution types. On the x-axis
we have different GPT2-small layers. SAE from Bloom [11] was used.

3.1 Revisiting Pathological Errors Under New Baselines

We reran the analysis from Gurnee [9], this time incorporating the two new baselines. We also
compared multiple SAEs with different L0 values. Our results confirmed the original finding
that substituting the base activation with the SAE reconstruction, SAE(x), changes the next token
prediction probabilities significantly more than substituting an isotropically random point at the same
distance ϵ (Figure 1). When perturbing along the cov-random mixture or real mixture directions,
the average KL divergence is generally closer to that of SAE(x). However, there is considerable
variability depending on the layer. For Layer 6, the SAE models across L0 generally seem to have
nearly the same KL as that of cov-random mixture (Figure 4). While this suggests that addressing
isotropy mitigates the previously observed pathologically high-KL behavior in SAE errors, questions
remain about the variability observed across different layers.

4 Comparative Analysis of SAEs

Recently, a new type of SAEs called end-to-end SAEs has been introduced [10]. End-to-end SAEs
aim to identify functionally important features by minimizing the KL divergence between the output
logits of the original activations and those of the SAE-reconstructed activations. There are two
variants of end-to-end SAEs: e2e SAE and e2e+ds SAE (where ds is short for downstream). Braun
et al. [10] proposed e2e+ds SAEs as a superior approach because it also minimizes reconstruction
errors in subsequent layers (whereas e2e SAEs might follow a different computational path through
the network). In this section, we will compare traditional SAEs (or local SAE), e2e SAE, and e2e+ds
SAE across various L0s.

Following is the perturbation directions discussed in this paper:

• SAE Feature Direction: Perturb along d = diSAE, i.e. along one of the vectors ifrom the
SAE dictionary. We choose SAE features that are alive, but not active in the given sequence.

• SAE Reconstruction Error Direction: Perturb along d = SAE(xbase)− xbase, i.e. from
base activation towards the reconstructed activation. See Appendix D for results about SAE
reconstruction errors.

4.1 SAE Feature Extrapolation

To explore the functional relevance of SAE features, we extrapolate the SAE feature directions across
various perturbation lengths. We select a random SAE feature that is alive, but not active in the given
context the token is located in.

All SAE features have a greater impact on the model output than isotropic random directions (Figure
2). When compared to cov-random mixture, the effect varies based on the type of SAE and its L0
value. For all three types of SAEs, lower L0 corresponds to greater change in model output (Figure
2).
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Figure 2: This plot varies the perturbation length for SAE feature directions in Layer 6 resid_pre. For
the three columns, we compare the three different SAE model types . We color the lines by different
L0 values of the SAEs.

Figure 3: Comparison of the change in model output for various perturbation lengths for different
SAE feature directions and baselines in Layer 6 resid_pre.

We select a specific L0 value to conduct a more detailed comparison of the SAE models (L0 = 30.9
for local SAE, L0 = 27.5 for e2e SAE, and L0 = 31.4 for ds+e2e SAE). Among these, e2e SAE
features have the least impact on the model output (Figure 3). At shorter perturbation lengths, local
SAE features influence the model more than e2e+ds SAE features, but this difference shrinks as the
perturbation lengths increase. We note that using the same L0 may not be a fair way to compare the
three SAE models. This is because end-to-end SAEs are known to explain more network performance
given the same L0 [10].

The result was initially surprising because we would have expected that end-to-end SAEs would more
directly capture the features most crucial for token predictions. Our hypothesis for the explanation for
this observation is that e2e SAE features perform worse because they are more isotropic (see Figure
3(a) from [10]). Connecting this with the observation that perturbing along less meaningful directions
leads to longer activation plateaus [6], it appears that e2e SAE minimizes the KL divergence between
the original and reconstructed activations by exploiting the space outside the typical activation space.
While e2e SAE might exhibit this behavior, it is unclear to what extent e2e+ds SAE also does this.

5 Conclusion

Summary In this work, we run sensitive direction experiments for various perturbations on GPT2-
small activations. We make several findings. First, SAE errors are no longer pathologically large
when compared to more realistic baselines. Second, GPT2-small is more sensitive to lower L0 SAE
features. Third, End-to-end SAE features do not exhibit stronger effect on the model output than
traditional SAE features.

Limitation In this post, we primarily use the mean (of KL) as our main measure. However, relying
solely on the mean as a summary statistic might oversimplify the complexity of sensitive directions.
For instance, the overall shape of the curve for each perturbation could be another important feature
that we may be overlooking. While we did examine some individual curves and observed that real
mixture and cov-random mixture generally exhibited greater model output change compared to
isotropic random, the pattern was not as clear-cut.
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A Additional Figures

Figure 4: This plot compares the average KL divergence of four different substitution types. On
the x-axis we have different SAE models. Joseph Bloom SAE was the SAE used in the original
Gurnee 2024 paper. The local SAE from Braun 2024 refers to traditional SAEs. The isotropic random
substitutions have a much smaller average KL divergence than other substitution types. Across
the various SAE models, the three other substitution types (SAE(x), cov-random mixture, and real
mixture) have generally similar average KL divergence.
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B Comparing Different Baselines

We compare to two additional baselines:

• Cov-random difference: Perturb along d = xcov-random − xbase, i.e. from base towards
a cov-random activation. This direction was used in Heimersheim, S et al. [6] ("random
direction").

• Real difference: Perturb along d = xreal − xbase, i.e. from base towards another real
activation. A real activation is sampled from the activations from 2 million tokens. This
direction was used in Heimersheim, S et al. [6] ("random other"). Like the "cov-random
difference", this direction contains the original activation.

Figure 5: This plot varies the perturbation length for perturbations in Layer 6 resid_pre. The x-axis is
the perturbation length and the y-axis is the mean KL of logits. (a) For the plot in the left column, we
compare “cov-random difference” and “cov-random mixture.” For the plot in the right column, we
compare “real difference” and “real mixture.” For both cases, the “difference” perturbations have a
greater change in model output than “mixture” perturbations. (b) On the right, we compare “isotropic
difference,” “cov-random difference,” and “real mixture.” On the left, we compare “isotropic random,”
“cov-random mixture,” and “real mixture.”

On average, perturbation directions that include the negative original activation (−xbase) cause a
greater change in the model output compared to those that do not include the original activation.
In Figure 5a, KL for "cov-random difference" is greater than KL for "cov-random mixture" and
the KL for "real difference" is greater than KL for "real mixture." This finding suggests that the
"difference" directions may primarily reflect the subtraction of the original activation, which seems
related to Lindsey 2024’s observation that “feature ablation” has a much greater effect than other
perturbations including “feature doubling.” The result supports the use of "mixture" baselines to
ensure a fair comparison with directions like SAE features or SAE errors, which do not necessarily
involve the original activation.

"Cov-random mixture" directions influence the model’s output more significantly than isotropic
random directions (right plot of Figure 5b). This supports the hypothesis that isotropy reduces
the impact of perturbations on the model’s logits. Since "cov-random" directions are derived from
a multimodal normal distribution, and real activations are likely more clustered than normally
distributed, we don’t expect "cov-random" directions to be the ideal baseline. Therefore, Heimersheim
2024’s finding that "real difference" directions altered the model’s output more dramatically than "cov-
random difference" directions (replicated in the left plot of Figure 5b) was unsurprising. However,
the differences between "real mixture" and "cov-random mixture" directions are minimal, indicating
that Heimersheim 2024’s result was influenced by the negative original activation component. A
potential reason for the small difference between "cov-random mixture" and "real mixture" is that the
former contains negative feature directions, which we don’t expect to be meaningful.

C Why the Difference Between Two Activations?

Under the Linear Representation Hypothesis (LRH), we can represent an activation x as

x ≈ b+
∑
i

fi(x)di,
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where fi(x) is the activation of (hypothetical) feature i, di is the unit “direction” vector of feature i,
and b is the bias.

If we take the difference between two activations x1 and x2, we get:

x1 − x2 ≈
∑
i

[fi(x1)− fi(x2)]di

Therefore, assuming LRH, subtracting any two real activations is a linear combination of (hypotheti-
cal) true features without the bias term. We note that this will also include “negative features,” which
is not expected to be as meaningful in the models.

D SAE Reconstruction Error Extrapolation

To gain insight into the model sensitivity to SAE reconstruction errors, we extrapolate the error
directions across various perturbation lengths.

Figure 6: This plot varies the perturbation length for SAE reconstruction error vector in Layer 6
resid_pre. The x-axis is the perturbation length and the y-axis is the mean KL of logits. For the three
columns, we compare the three different SAE model types. We compare the SAE reconstruction
error directions with cov-random mixture and isotropic random directions. We color the lines by
different L0 values of the SAEs.

Figure 7: This plot is the same as figure 5, but with a reduced x-axis limit. This plot varies the
perturbation length for SAE reconstruction error vector in Layer 6 resid_pre. The x-axis is the
perturbation length and the y-axis is the mean KL of logits. For the three columns, we compare the
three different SAE model types. We compare the SAE reconstruction error directions with isotropic
random directions. We color the lines by different L0 values of the SAEs. Note that the y-axis limit
is not the same for the three plots.

For local SAEs, the behavior is straightforward: lower L0 corresponds to a stronger perturbation
effect (left plot in Figure 6). For e2e (and e2e+ds) SAEs, the behavior is more complex: the effect of
L0 at small perturbation scales is the opposite of its effect at larger scales. For perturbation lengths
below 50, lower L0 results in greater KL divergence for e2e and e2e+ds SAEs, except for L0 =
21.0 or 27.5 e2e SAEs (middle and right plots in Figure 7). For perturbations above 70, lower L0
corresponds to a stronger perturbation effect (Figure 6).
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While the curves for the local SAEs are close to the curves for the cov-random baseline, the curves
deviate a lot for e2e and e2e+ds SAEs.Notably, the curves for e2e and e2e+ds SAEs remain low and
then spike up from perturbation length of around 50 (Figure 6). The former is expected as e2e SAEs
generally have a high L2 reconstruction error while having a low KL-divergence).
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