
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEALING AND DEFENDING THE ENDS OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Soft prompt tuning has emerged as a powerful and automated approach for adapting
large language models (LLMs) to new tasks, eliminating the need for manual
prompt engineering. The practical relevance of soft prompts is underscored by
their support in major toolkits and APIs such as NVIDIA NeMo and IBM Watsonx
AI. However, as soft prompts encode valuable, task-specific information, they have
become attractive targets for adversarial extraction. In this work, we demonstrate
that attackers can extract functionally equivalent soft prompts from prompt-tuned
LLMs, effectively replicating their capabilities without access to the original
training data or resources. By training a dedicated inversion model, we show that
such extraction generalizes, enabling recovery of soft prompts for any downstream
task on the given model. To counter this threat, we introduce CAP (Coverage-
Aware Perturbation), an active defense that substantially impairs extraction while
maintaining task performance for legitimate use. Our framework highlights both
new risks and practical solutions, paving the way for more trustworthy deployment
of adapted LLMs.

1 INTRODUCTION

Large language models (LLMs) exhibit strong in-context learning capabilities (Brown et al., 2020;
Radford et al.), enabling them to perform a wide range of downstream tasks simply by prepending
an appropriate prompt to the input (Gao et al., 2021; Raffel et al., 2020; Shin et al., 2020), without
modifying the LLM parameters. Building on this idea, soft prompt tuning (Lester et al., 2021; Li &
Liang, 2021; Liu et al., 2022b) has emerged as a powerful adaptation technique. Rather than updating
the full model, it tunes a small set of additional learnable parameters added within the model’s input
embedding space. This approach is an instance of parameter-efficient fine-tuning (PEFT) (Lester
et al., 2021) methods, a set of LLM adaptation techniques that adapt a pre-trained LLM by updating a
small fraction of parameters. In the case of prompt tuning, PEFT is implemented by adding trainable
embeddings, which are optimized via backpropagation, while other weights in the LLM are frozen.
At inference time, these learned soft prompts are loaded and injected into the input embedding layer,
enabling the LLM to generate task-specific predictions.

Platforms like NVIDIA’s NeMo (Harper et al., 2024) and IBM Watsonx AI (IBM, 2025) enable
prompt tuning in practice. They help practitioners to optimize soft prompts to cater to downstream
tasks while also allowing deployment of these prompt-tuned models. Once deployed, these models
can be queried via hosted APIs that return model predictions. While these platforms facilitate a
black-box query setup, they raise multiple privacy risks regarding the adaptation data (Bailey et al.,
2023; Duan et al., 2023; Hanke et al., 2024; Lester et al., 2021) and undermine the intellectual
property of the party that trained the prompts (Maini et al., 2024; Freethink, 2025). Prior work
(Wang et al., 2025) has shown that prompt-tuned models are vulnerable to membership inference
attacks. Besides that, adversaries can leverage query-access to a prompt-tuned LLM to extract the
learned soft prompt to host their own copy of the prompt-tuned model, aiming to replicate the victim
model’s downstream performance. As real-world APIs, such as NVIDIA NeMo and IBM Watsonx
AI, offer the possibility of exposing prompt-tuned LLMs, this threat becomes real. Prior works
leverage the intuition that LLM outputs, such as next-token probability vectors, encode significant
residual information about the preceding input and thereby focus on inverting next-token probability
vectors to extract discrete textual prompts (Morris et al., 2024). However, inversion attacks, in the
context of soft prompts, remain unexplored.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We introduce a novel two-staged soft prompt extraction and inversion attack against prompt-tuned
LLMs. This attack includes two stages, distillation and inversion. Our attack first follows a distillation-
based approach to reconstruct a functionally equivalent version of the target LLM’s tuned prompt
and further aims to extract soft prompts across multiple downstream tasks by inverting next-token
probability vectors. In distillation, the first stage of the attack, we aim to reconstruct a behavioral
clone of the target LLM’s tuned soft prompt on a specific downstream task using black-box query-
access to the prompt-tuned LLM. The experimental results demonstrate how an adversary can
successfully reconstruct a target LLM’s tuned prompt by optimizing a randomly initialized prompt
embedding, such that it mirrors the target prompt-tuned model’s output probability distribution.
Notably, our attack is successful even when the adversary relies on out-of-distribution (OOD) queries,
underscoring the robustness of our attack. During inversion, the second stage, the attacker extends the
initial distillation approach by training a model that inverts a prompt-tuned LLM’s outputs into soft-
prompt embeddings. The resulting inversion model is optimized to generalize across tasks, enabling
the extraction of any soft prompt tuned for this model, even for previously unseen downstream tasks
without additional training.

Given the severity of the threat, we introduce an active defense, Coverage-Aware Perturbation (CAP),
against soft prompt extraction. Our defense leverages the insights that, to invert from probability
vectors to soft prompts with higher performance, an adversary needs to query the prompted models
with highly diverse queries. This stands in contrast to benign users who usually query for one or a few
concrete downstream tasks (Dubinski et al., 2023). We notice that with the increasing query diversity,
the query latent (embedding) space coverage increases too, enabling the detection of extraction
attempts by monitoring this coverage. After every user-query, CAP estimates the coverage and
penalizes adversaries based on the estimation. The adversaries are penalized by perturbing the tuned
soft prompt embeddings to thwart the soft prompt extraction attacks that target the input end of
the LLM and by perturbing the model responses to defend against the last-layer extraction attacks
that target the output end. CAP not only prevents soft prompt extraction attacks by adversaries but
also maintains performance for benign users. Thus, CAP effectively protects both ends of the LLM,
preventing extraction at the input (soft prompts) and output (last-layer weight matrix).

Our experimental evaluation across various natural language processing (NLP) tasks shows that the
soft prompts inverted from the probability vectors achieve downstream task performance comparable
to that of the target prompt-tuned model. Finally, our attack is significantly more efficient than tuning
a soft prompt from scratch. Although our soft prompt extraction attack is robust, our experimental
results show that CAP defense successfully prevents it. Beyond protecting against soft prompt
extraction, we also show that CAP is able to protect against state-of-the-art last-layer extraction
attacks (Carlini et al., 2024). To provide a concrete example, the root mean square error (RMSE)
between the original and the extracted weight matrix of the final layer in the T5-base model (Raffel
et al., 2020) increases from a negligible 1.96e-5 to a substantial 18.21 when our defense is applied.
Thus, CAP is able to protect prompt-tuned LLM APIs against the stealing of both their ends.

In summary, we make the following contributions:

• We propose a novel two-staged black box prompt extraction and inversion attack that enables
an adversary to invert prompt-tuned LLM outputs and extract functionally equivalent soft prompts
across multiple downstream tasks even with OOD queries.

• To mitigate this threat, we propose CAP, an active defense to prevent the extraction of both
the ends of LLM APIs by monitoring the adversaries’ query diversity and accordingly penalizing
them by perturbing the fixed query-invariant soft prompt to defend against inversion attacks on
the input end of the LLM and perturbing model outputs to defend against the last-layer extraction
attacks on the output end of the LLM.

• Through our thorough experimental evaluation, we demonstrate that soft prompts inverted from
probability vectors provide downstream performance comparable to their original counterparts
on text classification and natural language inference tasks. CAP maintains high performance for
benign users while successfully protecting against inversion and last-layer extraction attacks on
prompt-tuned LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND AND RELATED WORK

We provide an overview of adaptation techniques for LLMs with a focus on soft prompts, followed by
an analysis of model inversion and extraction attacks, along with the corresponding state-of-the-art
defense mechanisms. Additional background can be found in Appx. A.

LLM Adaptations with Soft Prompts. LLMs can be adapted to downstream tasks by (1) adapting
their inputs using discrete textual prompts (Brown et al., 2020; Gao et al., 2021) and continuous
parameters with either soft prompts (Lester et al., 2021; Liu et al., 2022b) or prefix tuning (Li &
Liang, 2021); (2) adapting the internal layers with methods like low-rank adaptations (e.g., LoRA
(Hu et al.) or AdaLoRA (Zhang et al., 2023), and most of other PEFT (Parameter Efficient Fine
Tuning) methods (Han et al., 2024; Liu et al., 2022a), which add additional parameters (usually a
small number) within the model, and (3) full or last layer fine-tuning (Gao et al., 2021; Raffel et al.,
2020). The input-based adaptations based on prompting gained substantial popularity since they
achieve high performance and do not require keeping separate model parameters per downstream
task for inference (Lester et al., 2021; Li & Liang, 2021), in contrast to the full fine-tuning or other
PEFT methods. Thus, we turn our attention to prompts. Discrete prompts require prepending the
input queries with textual instructions and demonstrations (also referred to as shots) to solve a given
downstream task (Gao et al., 2021). The main drawback is the requirement to find such prompts in
the discrete space (Shin et al., 2020). To eliminate the obstacle, soft prompts add additional trainable
parameters in the input embedding layers of LLMs (Lester et al., 2021; Liu et al., 2022b; 2024)
—enabling standard backpropagation to the soft prompt parameters using (usually private) data for
downstream tasks (Duan et al., 2023; Hanke et al., 2024). Prefix tuning is a very similar approach to
soft prompts, but apart from the input embeddings, it also adds additional parameters as inputs to
each (attention) layer of an LLM (Li & Liang, 2021). We focus on soft prompts, which have not
been explored yet for model inversion attacks.

Inversion Attacks in Vision and Language Models. Several successful inversion attacks in image
and natural language processing domains demonstrated that approximate reconstruction of inputs
can be achieved, given logits or probability outputs. (Fredrikson et al., 2015) were the first to show
that machine learning models can leak identifiable and sensitive information about their training
data, such as users’ faces or genotypes (Fredrikson et al., 2014), even when accessed as black boxes
since the model outputs (especially softmax outputs) can be exploited for reconstruction attacks.
(Teterwak et al., 2021) also demonstrated that a surprisingly high amount of information about input
images can be approximately reconstructed from the logits of a discriminatively trained classifier.
In the language domain, successful recovery of the input text sequence was achieved from text
embeddings by conditioning the encoder from an encoder-decoder transformer model as a part of the
inversion process (Li et al., 2023; Morris et al., 2023). Additionally, (Morris et al., 2024) succeeds
in performing inversion from probability distribution to discrete (textual) prompts by recovering text
input from probability outputs of language models.

Model Extraction Attacks. Black-box access to the model enables not only the reconstruction of
its training inputs but also the recovery of the model itself (Dziedzic et al., 2022a; Jagielski et al.,
2020; Tramèr et al., 2016). Language model extraction has become challenging due to the secrecy of
details regarding the model size, architecture, datasets, and training process (Achiam et al., 2023).
However, there are still many attempts to extract isolated components of language models, namely
decoding algorithm (Naseh et al., 2023), the model’s embedding size (Carlini et al., 2024; Finlayson
et al.), sentence encoders (Dziedzic et al., a), functionality of the last fine-tuning layer (Krishna
et al.), and, the most prominent, the weight matrix of the last layer (Carlini et al., 2024). This
latest attack leverages the observation that the final layer of many LLMs behind APIs performs a
projection from the hidden representation to a higher-dimensional logit vector. Thus, the final layer is
low-rank, and sending random queries and observing when they become linearly dependent indicates
the dimension of the hidden representations. The attack can be further extended to recover the final
output projection matrix that maps from the final hidden layer to the output logits.

Defenses against Model Extraction. Defenses against model extraction can be primarily catego-
rized into three types, following (Dziedzic et al., b), namely active defenses that act while extraction
is happening and, e.g., perturb the responses to poison the training objective of an attacker (Dubinski

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

et al., 2023; Mazeika et al., 2022; Orekondy et al., 2020; Wu et al., 2024), passive defenses analyze the
distribution of incoming queries and stop answering if they detect an outlier set of queries (Kesarwani
et al., 2018; Juuti et al., 2019; Chen et al., 2020), and reactive defenses, also known as post-hoc
verifications, which try to prove a model theft rather than preventing the attack from happening
(Adi et al., 2018; Dziedzic et al., 2022b; Jia et al., 2021). The LLM APIs are designed to be highly
responsive and the interruption of service is not acceptable, thus eliminating the passive defenses. The
ends of LLM APIs, such as soft prompts or the last layer, are composed of a relatively small number
of parameters, thus lowering the effectiveness of watermarking-based reactive defenses. Active
defenses are highly desired in the LLM API setting to defend against extraction as it is happening.
Therefore, in this work, we build on the latest type of active defenses (Dubinski et al., 2023; Dziedzic
et al., b) to estimate the information leakage incurred by the queries to the LLM API and then perturb
the high-dimensional outputs according to this estimated leakage (Dubinski et al., 2023).

3 TWO-STAGED BLACK-BOX SOFT PROMPT EXTRACTION AND INVERSION
ATTACK

Setup and Threat Model. We consider an LLM provider who deploys a prompt-tuned LLM, and a
user. We adopt the scenario, well-suited to real-world deployment settings where a user has black-box
API query access to the prompt-tuned LLM and obtains a next-token probability distribution across
the vocabulary. Our experimental evaluation is based on varying levels of probability access, as many
API services expose only top-k probabilities in practical scenarios (Achiam et al., 2023; Cohere,
2025; Anil et al., 2023). Our two-staged attack does not assume access to the underlying model
architecture or training data from the prompt-tuned LLM.

Problem. We consider the problem of inverting the next-token probability vectors (prompt-tuned
model’s outputs) to extract functionally equivalent soft prompts that replicate a downstream per-
formance on the attacker’s model that employs the extracted prompt, comparable to the target
prompt-tuned model across multiple downstream tasks. To achieve this, we present a detailed
overview of both the stages of our attack, as illustrated in Figure 1.

Figure 1: Attack Stage 1: Functional prompt extraction attack using distillation approach. The
adversary, with black-box access to the prompt-tuned model, (1a) queries it with text inputs and
collects output distributions. (1b) A randomly initialized soft prompt is then optimized to minimize
the KL divergence between the surrogate model’s predictions and the victim’s outputs, yielding a
functionally equivalent prompt. This approach replicates the victim’s behavior on a given task without
recovering the exact tuned soft prompt. The downstream performance of the target prompt-tuned
model is compared to that of the attacker’s model to evaluate the success of this extraction attack.
Attack Stage 2: Inversion across multiple downstream tasks. Leveraging access to the functionally
equivalent soft prompt from stage 1, (2a) the adversary trains an inversion model on LLM outputs
and corresponding extracted soft prompt (task D1), such that (2b) the inversion model generalizes on
unseen tasks, and produces tuned soft prompts for D2 and D3. The downstream performances on the
attacker’s prompt-tuned models are further compared to the models tuned on tasks D2 and D3, to
evaluate the success of the inversion attack.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1 STAGE 1: DISTILLATION

This stage aims to reconstruct a functionally effective soft prompt just from black-box query access to
the prompt-tuned LLM, which uses prompt s ∈ RT×d, where d is the model’s embedding dimension.
T is the number of virtual tokens/soft prompt length. As illustrated in Figure 1, the adversary queries
the prompt-tuned LLM via API with N text inputs {xi}Ni=1, either in-distribution (ID) or out-of-
distribution (OOD). To extract functionally equivalent soft prompts that will help yield performance
that matches the prompt-tuned LLM, the adversary queries diverse N text inputs, following the
intuition in (Zhao et al., 2025) and obtains the probability distribution {pi}Ni=1 over the entire
vocabulary, where each pi ∈ R|V| is a probability vector over the vocabulary V . The probability
vectors are then mapped to the corresponding text inputs to form (xi, pi) pairs. The adversary further
considers a pre-trained LLM of preferably the same architecture as the target prompt-tuned model.
The text inputs {xi}Ni=1 are queried to an LLM that initially employs a randomly initialized soft
prompt s′ ∈ RT×d. Thus, the adversary prepends embeddings of s′ to the text input embeddings of
xi, and further optimizes only s′, such that the attacker model’s outputs {p̂i}Ni=1 using the optimized
soft prompt mirror the outputs of the prompt-tuned LLM, {pi}Ni=1. The randomly initialized soft
prompt is optimized by minimizing the Kullback–Leibler (KL) divergence (Kullback & Leibler,
1951) between the attacker model and the target prompt-tuned model’s probability distributions.
Formally, the optimization problem is:

s′ = argmin
s

1

N

N∑
i=1

KL
(
pi ∥ p̂i

)
, (1)

where pi is the probability distribution of the target prompt-tuned LLM for input xi and tuned prompt
s, and p̂i is the probability distribution of the attacker model with learnable randomly initialized soft
prompt s′ for the same input xi. The downstream performance is computed for both the prompt-tuned
model (that uses s) and the attacker model (that uses s′). If the performances are comparable, the
attack is said to be successful based on the key insight that soft prompts that share similar functional
capabilities steer the LLM to produce comparable downstream performances on a specific downstream
task.

3.2 STAGE 2: INVERSION

While stage 1 reconstructs functionally equivalent task-specific prompts, extending it to multiple
downstream tasks is computationally expensive and undermines the very purpose of stealing func-
tionally effective soft prompts. Thus, in this stage, an adversary utilizes {pi}Ni=1 obtained in stage 1
and maps them to the linear transformations of the s′, a reconstructed version of the target LLM’s
task-specific soft prompt obtained in stage 1. We use this dataset to train an inversion model. The
next token probability vectors are projected into a dimension suitable for a transformer to process.
These projected probability vectors are encoded by passing them through a stack of transformer
layers and decoded into a sequence of prompt embeddings. Given another prompt-tuned model’s
(unseen downstream task) next-token probability distribution as an input, the inversion model out-
puts functionally similar soft prompts across multiple downstream tasks, thereby demonstrating the
inversion model’s generalization ability.

4 EMPIRICAL EVALUATION

Downstream Tasks. To evaluate the effectiveness of our reconstructed soft prompts, we use
standard NLP datasets, namely SST2, MNLI, and YELP from the GLUE benchmark (Wang et al.),
rotten-tomatoes movie review (denoted as MOVREV), Amazon Polarity (denoted as AMAZON)
datasets from the Hugging Face datasets library (Lhoest et al., 2021), and IMDB (Maas et al., 2011).
These datasets correspond to classification tasks such as sentiment analysis (SST-2, IMDB, YELP,
MOVREV , AMAZON) and natural language inference (MNLI). The data from these downstream
datasets is used to tune the soft prompts simulating the task of model owners, thereby resulting in
distinct prompt-tuned LLMs for evaluation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Extraction of functionally equivalent soft prompts with ID and OOD queries in
distillation attack stage. We report downstream accuracy (%) for the target prompt-tuned LLM, the
adversary’s prompt-tuned LLM, the target model with randomly initialized prompts and target model
without soft prompt across different tasks. Both the target and adversary’s LLM use T5-base as the
backbone architecture.

Task Query Type Target (%) Adversary (%) Random (%) Zero-shot (%)

AMAZON ID 90.89 91.08 49.80 49.80
MNLI ID 77.51 75.77 50.77 50.54
YELP ID 93.69 93.57 46.70 51.90
MOVREV ID 82.27 81.61 51.80 46.60
SST-2 ID 93.90 92.32 50.60 49.08

YELP OOD 93.69 90.60 51.80 51.90
AMAZON OOD 90.89 90.69 49.80 49.80
MOVREV OOD 89.20 86.00 46.70 50.09

Table 2: Extraction of functionally equivalent soft prompts on unseen downstream tasks in the
inversion attack stage. We report downstream accuracy (%) of the target prompt-tuned LLM (clean),
the adversary’s LLM using a reconstructed soft prompt (without CAP), the same adversary model
when CAP is enabled, the target model with randomly initialized embeddings, and the zero-shot
accuracy of the base model.

Training Task Evaluation Task Target (%) Adversary
(CAP Off) (%)

Adversary
(CAP On) (%) Random (%) Zero-shot (%)

YELP AMAZON 90.20 88.20 49.90 49.80 49.80
MOVREV 82.10 81.81 46.70 46.70 46.60

AMAZON YELP 88.80 87.20 51.80 51.80 51.90
MOVREV 82.10 80.70 46.70 46.70 46.60

Models. While different downstream tasks yield different prompt-tuned LLMs, the model architec-
ture they share is the same. We primarily consider T5-base backbone (Raffel et al., 2020), consisting
of 222M parameters, as the underlying model for our two-staged attack. Additionally, we also
evaluate our attack on varying model architectures T5-small, T5-large (Raffel et al., 2020) and
roberta-base (Liu et al., 2019). We set the prompt length to 20 (virtual tokens for encoder and
decoder) for all experiments on T5 model variants, while for roberta-base, we set it to 30. In the
inversion stage of our attack, we train the inversion model using the Adam optimizer with a learning
rate of 1× 10−4 for 8 epochs. In Appx. E, we present details about hyperparameters.

Metrics. To assess the success of the attack, we report the downstream performance on the prompt
inverted from next-token probability vectors and compare it to that of the target prompt-tuned model.
Based on the findings that multiple near-optimal soft prompts exist for a task that lie in the same
low-dimensional subspace of the embedding space and that they achieve comparable performance
on a downstream task (Zheng et al., 2024b), these metrics are an indicator of the reconstructed soft
prompt’s functional similarity to the original one.

4.1 RESULTS

Our experimental results are demonstrated in Table 1 and Table 2 for distillation and inversion stages
of our two-staged attack on prompt-tuned LLMs.

Distillation stage. We evaluate the effectiveness of the distillation stage across multiple downstream
tasks. Table 1 provides a comparison between the downstream performances for target prompt-tuned
LLM, attacker’s prompt-tuned LLM, and LLM that employs a randomly initialized soft prompt, for
baseline comparison. The results indicate that by issuing in-distribution queries to the prompt-tuned

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

LLM, the adversary’s tuned LLM achieves performance closer to that of the target LLM, across
downstream tasks. For example, on SST-2 and YELP, the attacker’s prompt-tuned model achieves
92.32% and 93.57% accuracy, respectively, compared to the target model’s 93.90% and 93.69%.
Furthermore, using diverse queries allows adversaries to capture the full functional behavior of the
soft prompts even when they lack knowledge of ID queries. Therefore, results in Table 1 show that
issuing OOD queries to the prompt-tuned LLM allows an adversary to yield downstream performance
comparable to that of the target tuned LLM. We provide additional details about the OOD queries
used in the experiments in Appx. E. Besides, with a partial (top-5 probabilities) distributional access,
this attack can successfully recover the soft prompt’s functionality, yielding comparable downstream
performance and minimal performance degradation compared to full distributional access (see
Table 9). This demonstrates that by merely by a query-access to a black-box prompt-tuned LLM
for a specific downstream task, it is possible to steal the model’s functionality to yield a comparable
downstream performance. Even when the adversary’s underlying model architecture is different from
the target prompt-tuned LLM, this attack functions well (see Table 7). Additionally, our experiments
on roberta-base in Table 8 indicate the success of our attack on encoder-only architectures that output
a probability distribution over the classes the LLM was trained on.

Inversion stage. In the inversion stage, we conduct a cross-dataset evaluation. Our trained inversion
model is evaluated on multiple downstream datasets, the same datasets that were used to prompt-
tune a pre-trained LLM, but the inversion model has not seen the probability vectors generated
by the model tuned on these tasks during training. From an adversary’s standpoint, an inversion
model that generalizes to unseen tasks and outputs functionally equivalent soft prompts helps yield
comparable downstream performance, saving a significant amount of computational expense. We
consider multiple combinations for training and evaluation datasets. Notably, the attacker’s model,
which leverages the reconstructed and functionally equivalent soft prompt, achieves performance
comparable to that of the target prompt-tuned LLMs, thereby maintaining strong reconstruction
results across unseen evaluation tasks. For instance, in Table 2, when the inversion model is trained
on Amazon Polarity and generates task-specific soft prompts for YELP and MovRev, the attacker’s
model using these reconstructed task-specific prompts achieves a downstream accuracy of 87.20%
and 80.70%, respectively, which closely matches 88.80% and 82.10%, the target prompt-tuned LLM’s
downstream performances for the respective tasks. Randomly initialized prompts, as expected, yield
accuracy close to 50% for every task, highlighting that the attacker model’s reconstructed prompts
significantly surpass the performance with randomly initialized soft prompts. Overall, these results
signify that our inversion method not only reconstructs high-utility functionally effective task-specific
prompts but also generalizes across multiple downstream tasks.

5 ACTIVELY DEFENDING AGAINST INVERSION ATTACKS

Given the high vulnerability of prompt-tuned LLMs to our two-staged attack, we now turn to defenses.
We introduce an active defense Coverage-Aware Perturbation (CAP). Our defense strategy is
coverage-aware, recognizing that our attack is successful due to the wide diversity of queries to
the prompt-tuned LLM. CAP leverages the fact that adversaries assume a deployed model uses a
fixed stealing target (tuned soft prompt) during inference. Thus, every time the adversary queries
the deployed prompt-tuned LLM, the underlying soft prompt remains the same, making the LLM’s
behavior query-invariant. This allows our attack to recover a functionally equivalent soft prompt.
Therefore, CAP continually drifts the target soft prompt (ground-truth) during inference, breaking the
query-invariance and making the attack substantially hard for the adversary. We first explain how our
CAP defense detects adversarial behavior and distinguishes it from a legitimate user’s behavior and
further describe the components of our CAP defense.

5.1 CAP DISTINGUISHES BETWEEN ADVERSARIAL AND LEGITIMATE QUERIES

Our setup and threat model expose a prompt-tuned LLM, which can be queried by adversarial and
legitimate users alike. (Dubinski et al., 2023) show in their defense against stealing image encoders
that it is possible to distinguish between adversarial and legitimate users based on the fraction of
embedding space they occupy. Following the same intuition for prompt-tuned LLMs, we observe that
legitimate users typically query a prompt-tuned LLM to solve a specific downstream task. However,
an adversary, intending to steal the functionality of the soft prompt, queries the prompt-tuned LLM

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

with diverse and random inputs to capture the complete functional behavior of the soft prompt.
Based on this intuition, we design our CAP defense. CAP notes that legitimate users remain task-
focused when querying and gradually explore the prompt-tuned LLM’s embedding space. However,
adversarial users probe the LLM aggressively with highly diverse and spread-out queries that cover a
major part of the embedding space. By tracking these differences in embedding space exploration,
CAP successfully distinguishes between legitimate and adversarial users.

5.2 COMPONENTS OF CAP

Track Embedding Space Coverage. To effectively monitor the prompt-tuned LLM’s embedding
space, CAP partitions the embedding space into discrete buckets using Local Sensitive Hashing
(LSH) (Indyk & Motwani, 1998). LSH enables approximate nearest neighbor (ANN) search in
high-dimensional spaces by hashing similar objects in the same hash bucket based on a similarity
metric. Considering the high-dimensional nature of input embeddings, CAP adapts LSH to input
embeddings to measure the diversity of user queries. The overall coverage of the embedding space
is computed using three metrics, Bucket Coverage (C), which quantifies the fraction of buckets
occupied by the previous query embeddings, New Bucket Rate (N), which monitors the rate of
newly filled buckets with increasing number of queries and Spread (S) that captures how far the
embeddings are from each other. Collectively, these metrics provide a clear intuition on how much of
the prompt-tuned LLM’s embedding space is explored and how varied the input queries are. Further,
a cost function is calibrated based on this coverage.

Map Coverage to Perturbations. The total cost is composed of four terms (see Equation (2)). The
first term, λ, represents a minimal baseline perturbation, the second term is the coverage penalty,
where C represents the bucket coverage of incoming queries, α is a global scaling factor, β represents
the sensitivity of the coverage penalty to the bucket coverage, and wc determines the contribution of
coverage penalty in the total cost. This exponential function ensures that the utility of the benign users
is preserved while heavily penalizing the adversaries. The third term is the new bucket rate penalty,
αwn N , where N represents the change in the coverage. In other words, it measures how many new
buckets were activated/filled with every incoming query as compared to previous queries, and wn is
its weight. This term penalizes the adversaries who probe the prompt-tuned LLMs with queries that
expand the overall coverage. The fourth term is the spread penalty, αws min(S/Smax, 1), where S
is the average distance of the embeddings from their mean and Smax caps the penalty. The LLM
provider can configure these values to control the degree of penalization.

TotalCost = λ︸︷︷︸
baseline

+ wc

((α
λ

)C/β

− 1

)
︸ ︷︷ ︸
Bucket coverage penalty

+ αwn N︸ ︷︷ ︸
New bucket rate penalty

+ αws min

(
S

Smax
, 1

)
︸ ︷︷ ︸

Spread penalty

(2)

Penalize adversaries. We significantly degrade the utility on downstream tasks for an attacker
extracting soft prompts using API query access by adding Gaussian noise either to the target prompt-
tuned LLMs’ prompt embeddings (input end of LLM) or outputs (output end of LLM) to defend
against inversion and last-layer extraction attacks, respectively. The noise added is with a standard
deviation σ computed using Equation (2). We observe in Figure 4 that downstream performance
decreases sharply with increasing Gaussian noise scale. This shows that the returned model outputs
are less useful and become inconsistent for further training or processing, thereby successfully
mitigating the extraction attacks (see Table 3 and Table 2).

6 EMPIRICAL EVALUATION OF OUR CAP DEFENSE

We perform experiments on a wide range of prompt-tuned LLMs with the following pre-trained
models: Pythia (Biderman et al., 2023) 1.4B and 6.9B, GPT-2 (Radford et al.) Small, T5-base, and
T5-small (Raffel et al., 2020) to prove the effectiveness of our defense. Similar to (Carlini et al.,
2024), we use the root mean square error (RMSE) between the actual and recovered final layer weight
matrix as a metric to measure the success of the extraction attack.

Our CAP defense method successfully prevents the inversion from probability vectors to soft prompts.
Concretely, the accuracy of the reconstructed soft prompts inverted from the probability vectors when
CAP is enabled is on par with the random performance. CAP is also effective beyond classification
tasks, such as summarization (see Table 11). Furthermore, based on the experimental results in Table 4,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: CAP defense against extraction of functionally equivalent soft prompts in the distillation
stage. CAP significantly penalizes the adversaries while maintaining high downstream performance
for legitimate users. (legitimate users denoted by LEGIT, adversaries denoted by ATTACK). Both
models use T5-base as the backbone.

Task Type of Query #Queries CAP Mode Accuracy Random Zero-shot (%)

AMAZON
ATTACK 1000 OFF 91.08

49.80 49.80LEGIT 1000 ON 86.70
ATTACK 1000 ON 52.90

YELP
ATTACK 1000 OFF 93.60

51.80 51.90LEGIT 1000 ON 88.20
ATTACK 1000 ON 51.40

MOVREV
ATTACK 1000 OFF 86.00

46.70 46.60LEGIT 1000 ON 78.54
ATTACK 1000 ON 50.86

we find that CAP also effectively protects against last-layer extraction (see Appx. D to find details on
the attack). The results show that when CAP is enabled, there is a significantly higher RMSE between
the original and extracted layer, compared to when CAP is disabled—highlighting its protectiveness.
The perturbation added to the logits also causes a substantial discrepancy in the extracted hidden
dimensionality of the model, thereby preventing accurate dimension recovery. Based on the results
in Table 3, we also show that applying CAP does not affect the model performance of legitimate
users much, while degrading the performance significantly for attackers.

Table 4: CAP against the last-layer extraction. We report the metrics of the extraction attack and
our CAP defense. We issue a different number of discrete prompt queries, measure the coverage of
the occupied latent space (%) by the queries’ embeddings, report the Noise Level, the size of the
Hidden Dimension, and the size of the Stolen Dimension with and without our defense, similarly for
RMSE between the original and extracted parameters. Our defense effectively prevents the stealing
of the hidden dimension size and the final-layer parameters.

Model Queries Coverage (%) Noise Level Hidden Dim Stolen Dim (CAP disabled) Stolen Dim (CAP enabled) RMSE (CAP disabled) RMSE (CAP enabled)

Pythia 1.4B 5000 98.97 9.75 2048 2048 4996 2.29× 10−7 2.07× 10−2

10000 99.76 9.99 2048 2048 9995 1.73× 10−8 2.07× 10−2

T5-small 5000 62.50 3.02 512 512 1 6.894× 10−4 2.250× 101

10000 63.28 3.10 512 512 1 4.480093× 10−4 2.250× 101

T5-base 5000 51.56 2.046 768 768 1 5.02164× 10−5 1.8211× 101

10000 53.12 2.168 768 768 1 3.06884× 10−5 1.8211× 101

Pythia-6.9B 5000 90.6 7.539 4096 4096 4996 1.01× 10−6 1.82× 10−2

10000 97.85 9.424 4096 4096 9995 3.298× 10−7 1.82× 10−2

GPT-2 Small
1000 63.60 7.07 768 762 448 7.41× 10−2 1.43× 10−1

2500 91.70 19.99 768 769 448 2.2× 10−3 1.43× 10−1

10000 100 26.87 768 769 448 1.3× 10−3 1.429× 10−1

7 CAP DEFENSE AGAINST ADAPTIVE SYBIL ADVERSARIES

We consider an adversary who queries the API from n accounts. For every account, the model outputs
(probabilities), which are released to the adversary. The adversary collects these model outputs to
train the inversion model. Sybil adversaries try to circumvent our defense by carefully partitioning
their diverse queries across multiple accounts and mixing them with less diverse queries. They do
this to ensure that our coverage-aware defense does not flag the user as malicious due to the low
embedding coverage. Further, the sybil adversary can gather these outputs from different accounts,
effectively achieving a high embedding coverage, while still obtaining minimally perturbed outputs
and evading detection. To mitigate the risk of sybil-based attacks, we introduce a defense that perturbs
model outputs using a random affine transformation. While the random affine transformation remains
consistent for a given legitimate user who queries the API from a single account, sybils obtain model
outputs tampered by random affine transformations for every account they query the API with. In
other words, we apply different affine transformations per account. To evaluate the effectiveness of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

this defense, we simulate a downstream classification task by using the obtained model outputs. With
the training of the classifier on consistently transformed model outputs, we observe that high utility is
preserved for legitimate users, with minimal degradation. On the other hand, Sybil adversaries, who
receive inconsistent model outputs transformed by random affine transformations from every account,
observe a significant degradation in the utility, due to ineffective learning. Thus, we show that our
defense also prevents sybil attacks by preserving the consistency of model outputs for legitimate
users, while disrupting it for sybil adversaries. The results in the table below show the effectiveness
of our defense against Sybil adversaries.

Table 5: Downstream classification accuracy (%) for legitimate and sybil users under our
affine transformation defense. Legitimate users, with a single account, receive model outputs
with a shared affine transformation across queries, preserving downstream utility. In contrast, sybil
adversaries receive inconsistently transformed outputs across 4 accounts, severely degrading their
model’s performance. Results are shown for SST2, MovRev, and IMDB datasets.

User Type #Queries Downstream Task Downstream Accuracy
LEGIT 2000 SST2 95.00
SYBIL 500 x 4 SST2 50.60

LEGIT 2000 MovRev 88.80
SYBIL 500 x 4 MovRev 11.00

LEGIT 2000 IMDB 95.20
SYBIL 500 x 4 IMDB 4.80

8 CONCLUSIONS

We formalize the inversion from next-token probability vectors of prompt-tuned LLMs to soft prompts.
We show that it is possible to recover functionally equivalent soft prompts using query-access to
prompt-tuned LLMs, which achieve comparable model performance on different downstream tasks.
Given the practical risks posed by this attack, we introduce Coverage Aware Perturbation (CAP),
an active defense that tracks the embedding coverage of a potential attacker’s diverse queries and
penalizes too diverse queries while maintaining performance for benign users. Furthermore, we
show that CAP is also successful in defending against recent last-layer extraction attacks in language
models. Thereby, our defense successfully protects both ends of LLM APIs and contributes to their
safe deployment.

Reproducibility Statement. We use all publicly available standard datasets and model architectures
for experimental evaluation for our attack and CAP defense. Details regarding the same can be found
in Section 4. We also provide details regarding hyperparameters in Appx. E. We also provide the
code as a form of supplementary material during the submission.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX
security symposium (USENIX Security 18), pp. 1615–1631, 2018.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Luke Bailey, Gustaf Ahdritz, Anat Kleiman, Siddharth Swaroop, Finale Doshi-Velez, and Weiwei
Pan. Soft prompting might be a bug, not a feature. International Conference on Machine Learning,
2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: a
suite for analyzing large language models across training and scaling. In Proceedings of the 40th
International Conference on Machine Learning, pp. 2397–2430, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dvijotham, Thomas Steinke, Jonathan Hayase,
A Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al. Stealing part
of a production language model. In Proceedings of the 41st International Conference on Machine
Learning, pp. 5680–5705, 2024.

Steven Chen, Nicholas Carlini, and David Wagner. Stateful detection of black-box adversarial attacks.
In Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence, pp.
30–39, 2020.

Cohere. Cohere documentation, 2025. URL https://docs.cohere.com/. Accessed: 2025-
09-16.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochastic
parrots: Differentially private prompt learning for large language models. Advances in Neural
Information Processing Systems, 36:76852–76871, 2023.

Jan Dubinski, Stanislaw Pawlak, Franziska Boenisch, Tomasz Trzcinski, and Adam Dziedzic. Bucks
for buckets (b4b): Active defenses against stealing encoders. In NeurIPS, 2023.

Adam Dziedzic, Franziska Boenisch, Mingjian Jiang, Haonan Duan, and Nicolas Papernot. Sentence
embedding encoders are easy to steal but hard to defend. In ICLR 2023 Workshop on Pitfalls of
limited data and computation for Trustworthy ML, a.

Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, and Nicolas Papernot. Increasing the
cost of model extraction with calibrated proof of work. In International Conference on Learning
Representations, b.

Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, and Nicolas Papernot.
On the difficulty of defending self-supervised learning against model extraction. In International
Conference on Machine Learning, pp. 5757–5776. PMLR, 2022a.

Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis
Cattan, Franziska Boenisch, and Nicolas Papernot. Dataset inference for self-supervised models.
Advances in Neural Information Processing Systems, 35:12058–12070, 2022b.

Matthew Finlayson, Xiang Ren, and Swabha Swayamdipta. Logits of api-protected llms leak
proprietary information. In First Conference on Language Modeling.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, pp. 1322–1333, 2015.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas Ristenpart.
Privacy in pharmacogenetics: An {End-to-End} case study of personalized warfarin dosing. In
23rd USENIX security symposium (USENIX Security 14), pp. 17–32, 2014.

Freethink. Ai copyright violations: What happens when ai replicates protected work, 2025. URL
https://www.freethink.com/robots-ai/ai-copyright-violations. Ac-
cessed: 2025-09-15.

11

https://docs.cohere.com/
https://www.freethink.com/robots-ai/ai-copyright-violations

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 3816–3830, 2021.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. Transactions on Machine Learning Research, 2024,
2024.

Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola Olatunji, Michael Backes, and Adam
Dziedzic. Open llms are necessary for current private adaptations and outperform their closed
alternatives. Advances in Neural Information Processing Systems, 37:1220–1250, 2024.

Eric Harper, Somshubra Majumdar, Oleksii Kuchaiev, Li Jason, Yang Zhang, Evelina Bakhturina,
Vahid Noroozi, Sandeep Subramanian, Koluguri Nithin, Huang Jocelyn, et al. Nemo: a toolkit for
conversational ai and large language models. URL https://github. com/NVIDIA/NeMo, 2024.

Markus Hiller, Krista A Ehinger, and Tom Drummond. Perceiving longer sequences with bi-
directional cross-attention transformers. Advances in Neural Information Processing Systems, 37:
94097–94129, 2024.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10951–10960, 2020.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations.

IBM. Prompt tuning, 2025. URL https://dataplatform.cloud.ibm.com/docs/
content/wsj/analyze-data/fm-tuning-methods-prompt.html?context=
wx. Accessed: 2025-09-15.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High
accuracy and high fidelity extraction of neural networks. In 29th USENIX security symposium
(USENIX Security 20), pp. 1345–1362, 2020.

Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. Entangled
watermarks as a defense against model extraction. In 30th USENIX security symposium (USENIX
Security 21), pp. 1937–1954, 2021.

Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against dnn model
stealing attacks. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
512–527. IEEE, 2019.

Sanjay Kariyappa and Moinuddin K Qureshi. Defending against model stealing attacks with adaptive
misinformation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 770–778, 2020.

Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Protecting dnns from theft using an
ensemble of diverse models. In International Conference on Learning Representations, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. Model extraction warning in
mlaas paradigm. In Proceedings of the 34th annual computer security applications conference, pp.
371–380, 2018.

12

https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-tuning-methods-prompt.html?context=wx
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-tuning-methods-prompt.html?context=wx
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-tuning-methods-prompt.html?context=wx

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves
on sesame street! model extraction of bert-based apis. In International Conference on Learning
Representations.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79–86, 1951.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2021.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A
community library for natural language processing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 175–184, 2021.

Haoran Li, Mingshi Xu, and Yangqiu Song. Sentence embedding leaks more information than you
expect: Generative embedding inversion attack to recover the whole sentence. In Findings of the
Association for Computational Linguistics: ACL 2023, pp. 14022–14040, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, 2021.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022a.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
61–68, 2022b.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 5:208–215, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the
association for computational linguistics: Human language technologies, pp. 142–150, 2011.

Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. Llm dataset inference: Did you
train on my dataset? Advances in Neural Information Processing Systems, 37:124069–124092,
2024.

Mantas Mazeika, Bo Li, and David Forsyth. How to steer your adversary: Targeted and efficient
model stealing defenses with gradient redirection. In International conference on machine learning,
pp. 15241–15254. PMLR, 2022.

John Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M Rush. Text embeddings
reveal (almost) as much as text. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 12448–12460, 2023.

John X Morris, Wenting Zhao, Justin T Chiu, Vitaly Shmatikov, and Alexander M Rush. Language
model inversion. In ICLR, 2024.

Ali Naseh, Kalpesh Krishna, Mohit Iyyer, and Amir Houmansadr. Stealing the decoding algorithms
of language models. In CCS, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses
against dnn model stealing attacks. In 8th International Conference on Learning Representations,
2020.

D. Paleka. prompts 10000.csv. https://github.com/
dpaleka/stealing-part-lm-supplementary/blob/
6fa1d1a87b06e00228330711eb661cee58b4740d/query_logprobs_
emulator/prompts_10000.csv#L4, 2025.

Ashwinee Panda, Christopher A Choquette-Choo, Zhengming Zhang, Yaoqing Yang, and Prateek
Mittal. Teach llms to phish: Stealing private information from language models. In The Twelfth
International Conference on Learning Representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Google Research. Prompt tuning: Pretrained prompts for t5.1.1-lm100k-base, 2021. URL
https://github.com/google-research/prompt-tuning/tree/main/
prompt_tuning/pretrained_prompts/t5_1_1_lm100k_base. Accessed: 2025-
09-16.

Zeyang Sha and Yang Zhang. Prompt stealing attacks against large language models. CoRR, 2024.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
4222–4235, 2020.

Piotr Teterwak, Chiyuan Zhang, Dilip Krishnan, and Michael C Mozer. Understanding invariance
via feedforward inversion of discriminatively trained classifiers. In International Conference on
Machine Learning, pp. 10225–10235. PMLR, 2021.

Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine
learning models via prediction {APIs}. In 25th USENIX security symposium (USENIX Security
16), pp. 601–618, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations.

Xun Wang, Jing Xu, Franziska Boenisch, Michael Backes, Christopher A Choquette-Choo, and
Adam Dziedzic. Efficient and privacy-preserving soft prompt transfer for llms. arXiv preprint
arXiv:2506.16196, 2025.

Dong-Dong Wu, Chilin Fu, Weichang Wu, Wenwen Xia, Xiaolu Zhang, Jun Zhou, and Min-Ling
Zhang. Efficient model stealing defense with noise transition matrix. In CVPR, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In 11th International
Conference on Learning Representations, ICLR 2023, 2023.

Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, and Yushun Dong. A
survey on model extraction attacks and defenses for large language models. In Proceedings of the
31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2, pp. 6227–6236,
2025.

14

https://github.com/dpaleka/stealing-part-lm-supplementary/blob/6fa1d1a87b06e00228330711eb661cee58b4740d/query_logprobs_emulator/prompts_10000.csv#L4
https://github.com/dpaleka/stealing-part-lm-supplementary/blob/6fa1d1a87b06e00228330711eb661cee58b4740d/query_logprobs_emulator/prompts_10000.csv#L4
https://github.com/dpaleka/stealing-part-lm-supplementary/blob/6fa1d1a87b06e00228330711eb661cee58b4740d/query_logprobs_emulator/prompts_10000.csv#L4
https://github.com/dpaleka/stealing-part-lm-supplementary/blob/6fa1d1a87b06e00228330711eb661cee58b4740d/query_logprobs_emulator/prompts_10000.csv#L4
https://github.com/google-research/prompt-tuning/tree/main/prompt_tuning/pretrained_prompts/t5_1_1_lm100k_base
https://github.com/google-research/prompt-tuning/tree/main/prompt_tuning/pretrained_prompts/t5_1_1_lm100k_base

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Xinyao Zheng, Husheng Han, Shangyi Shi, Qiyan Fang, Zidong Du, Xing Hu, and Qi Guo.
Inputsnatch: Stealing input in llm services via timing side-channel attacks. arXiv preprint
arXiv:2411.18191, 2024a.

Yuanhang Zheng, Zhixing Tan, Peng Li, and Yang Liu. Black-box prompt tuning with subspace
learning. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 32:3002–3013,
2024b.

A ADDITIONAL RELATED WORK

Discrete Prompt Stealing. (Sha & Zhang, 2024) showed how to steal the text-based prompts.
They motivate this attempt by arguing that organizations increasingly rely on carefully engineered
prompts to elicit high-quality outputs from large language models (LLMs). This attack also aims to
recover such proprietary discrete prompts using only the model’s generated outputs. The proposed
method comprises two key components: (1) inferring structural properties of the original prompt (e.g.,
whether it is direct, role-based, or in-context), and (2) regenerating a prompt that closely resembles
the original. Their results demonstrate that even subtle properties, such as the number of examples or
specific instructions, can be reliably inferred and reconstructed. This work highlights a critical and
emerging threat to the intellectual property and security of prompt engineering practices.

LLM Data Extraction. A recent line of work introduces a practical data extraction attack termed
neural phishing (Panda et al.). This attack enables adversaries to extract sensitive or personally
identifiable information (PII), such as credit card numbers, from models trained on user data, achiev-
ing notably high success rates in some cases. Crucially, neural phishing operates under minimal
assumptions: the attacker is only required to inject a small number of benign-looking sentences into
the training corpus, guided merely by vague priors about the structure of the underlying user data.
This highlights the risks posed even by subtle and plausibly deniable data poisoning strategies.

Stateful Active Defenses against Model Stealing. We also further elaborate on other type of active
defenses that explicitly maintain a state of the users’ queries, similarly as the passive defenses,
but instead of stopping the service, they lower the quality of outputs. For example, the adaptive
misinformation defense proposed by (Kariyappa & Qureshi, 2020) aims to degrade model stealing
attempts by identifying whether a query is ID or OOD. For OOD queries, the defense deliberately
returns incorrect predictions. While effective in reducing the accuracy of an attacker’s stolen
model, particularly when the attacker lacks access to ID samples, this approach also risks degrading
performance for benign users. The defense relies on an OOD detector trained with both ID and OOD
data. In a follow-up work, (Kariyappa et al., 2021) propose an alternative defense that trains an
ensemble of diverse models. This ensemble is designed to yield accurate predictions on ID queries
while producing inconsistent or dissimilar outputs for OOD queries. A hash function, assumed to
be secret, is used to select the appropriate model in the ensemble for each query. Both approaches,
however, rely on prior knowledge of the attacker’s OOD data, which is typically difficult to define in
advance. As Hsu et al. (2020) note, the process of selecting representative OOD data can introduce
significant bias, thereby limiting the robustness and generalizability of such defenses.

Local Sensitive Hashing (LSH). LSH is a probabilistic technique, introduced in (Indyk & Motwani,
1998) and expanded in (Datar et al., 2004), and hashes similar objects in similar hash buckets. In our
work, we use random projection for cosine similarity. Each hash function hr is defined as:

hr(x) = sign(r⊤x),

This hash function maps the input vector x ∈ Rd to one binary value depending on the sign of its
projection along a randomly chosen direction r ∈ Rd. Using multiple random vectors, a hash code
can be defined to place x in a specific bucket.

Parameter-Efficient Fine-Tuning (PEFT). PEFT methods are techniques that adapt large pre-trained
language models (PLMs) to downstream tasks by fine-tuning only a small subset of parameters,
thereby reducing computational cost, memory usage, and storage requirements while achieving
superior performance. Soft prompt tuning is a widely used PEFT method in which a small number of
trainable virtual tokens are prepended/added to the input sequence. These tokens encode task-specific
information. The virtual token embeddings are optimized during soft prompt tuning. The Hugging

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Face PEFT library provides a framework for incorporating PEFT techniques within the Transformers
ecosystem.

B ADDITIONAL EXPERIMENTS

Table 6: Breakdown of Runtime (in seconds) of our Attack Pipeline using the Amazon task, with
evaluation on YELP task. The total attack cost includes (A) Distillation stage, with the following
sub-steps: 1) Querying and obtaining responses from prompt-tuned LLM, with T5-base as the
backbone architecture 2) Optimizing the randomly initialized soft prompt to mimic the prompt-tuned
LLM’s outputs, (B) Inversion stage, with the following substeps: 1) Training an inversion model on
the model responses and extracted soft prompt embedding of AMAZON task 2) Using the trained
inversion model to extract soft prompt for YELP task. The inversion stage includes reshaping the
high-dimensional probability vector and further training it. We show that our inversion process offers
an efficient alternative to tuning prompts from scratch, as the inversion cost is even lower than the
cost to tune a prompt from scratch and further amortized when several soft prompts are inverted
instead of fine-tuned.

Attack Stage (AMAZON) Runtime (seconds)
A. Distillation

(1) Obtain softmax outputs for 1K text queries 127.81
(2) Optimization / extraction 339.80

Total Distillation Runtime 467.61

B. Inversion
(1) Inversion model training 20.60
(2) Inversion 0.0222

Total Inversion Runtime 20.6222

Complete Attack Runtime 488.2322

C. Prompt Tuning from Scratch
YELP 11,021

Table 7: Comparison of target and adversary LLMs’ downstream performance when both
of their underlying model architectures are different. We report the downstream performance
for the target prompt-tuned LLM and the adversary’s prompt-tuned LLM, considering that both
the tuned LLMs do not share the same underlying model architecture. It is observed that the
downstream performance with adversary’s tuned LLM is not only substantially higher than with
randomly initialized prompt embedding, but is also closely matching the target prompt-tuned LLM.

Task Target LLM Adversary LLM Target (%) Adversary(%) Random (%)
AMAZON T5-base T5-small 90.89 86.46 49.80
YELP T5-base T5-small 93.90 89.14 51.80
SST-2 T5-base T5-small 93.69 89.33 50.60
MOVREV T5-base T5-small 82.27 80.58 50.00
AMAZON T5-base T5-large 90.89 90.21 49.80

C TIMING-BASED SOFT PROMPT LENGTH EXTRACTION ATTACK

We conduct the first timing side-channel-based soft prompt length extraction attack, which precisely
estimates the number of virtual tokens used by the prompt-tuned LLM in a black-box setup. We show
that the seemingly unimportant metadata about the prompt-tuned model, like the soft prompt’s length,
can be leveraged to further expedite our extraction and inversion attacks against prompt-tuned LLMs.

Determining the exact length of the soft prompt employed by a prompt-tuned LLM is particularly
challenging. On querying the API that hosts the prompt-tuned LLM in a black-box setup, users
do not have access to the soft prompt embedding and length. Users can only access the model’s

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 8: Extraction of functionally equivalent soft prompts with encoder-only model architecture.
We report the downstream performance for the target and adversary’s prompt-tuned LLM, and target
LLM with a randomly initialized soft prompt embedding. It is observed that for encoder-only
architectures like roberta-base, the downstream performance with the extracted prompt is comparable
to that with the target prompt.

Dataset Target Model Target(%) Adversary(%) Random(%)
SST-2 roberta-base 92.32 90.48 49.08
IMDB roberta-base 91.07 90.12 49.88
MOVREV roberta-base 85.37 81.24 50.00

Table 9: Extraction of functionally equivalent soft prompts with partial probability access. We
report downstream accuracy (%) for the target prompt-tuned LLM, the adversary’s prompt-tuned
LLM, the target model with randomly initialized prompts, and the target model without soft prompts
(zero-shot), assuming access to the top-k probabilities. Both target and adversary models use T5-base
as the backbone.

Task k Target (%) Adversary (%) Random (%) Zero-shot (%)

Top-5 Probabilities

YELP 5 93.60 92.20 51.80 51.90
AMAZON 5 90.40 89.80 49.80 49.80
MOVREV 5 83.02 83.48 46.70 50.09

Top-1 (Argmax Only)

YELP 1 93.60 51.50 51.80 51.90
AMAZON 1 90.40 49.70 49.80 49.80
MOVREV 1 83.02 46.80 46.70 50.09

outputs. However, even the most descriptive LLM output, like probability distribution over the
vocabulary, does not inform the adversary about the precise length of the hidden soft prompt. This
is because soft prompts are continuous embeddings that are prepended to the actual input text
embeddings to form a concatenated input representation, which is collectively processed by the
model’s attention mechanism. This embedding sequence lacks an explicit demarcation between the
soft prompt embeddings and input text embeddings, making it infeasible for an adversary who can
solely observe outputs to estimate the length of the soft prompt. Moreover, (Lester et al., 2021)
shows that the correlation between prompt length and performance is not linear beyond a certain
length threshold, with performance gains plateauing after 20 virtual tokens. This makes the prompt
length estimation more intractable, as similar downstream performances could result from vastly
different prompt lengths. We circumvent these limitations by proposing the first timing-based side
channel attack to determine the length of the soft prompt. The key insight behind this side-channel
attack is that longer sequences require more time for the model to process, as also demonstrated
in (Vaswani et al., 2017; Katharopoulos et al., 2020; Hiller et al., 2024; Zhang et al., 2023). By
carefully analyzing how varying the length of the prompt influences the model’s response latency,
SPLIT effectively determines the length of the soft prompt in a black-box access setup.

Problem. We consider the problem of precisely extracting the length T of the soft prompt employed
by the prompt-tuned LLM. Concretely, given a black-box query access to a prompt-tuned LLM whose
underlying model architecture is known to an adversary, we aim to determine if an adversary can
infer the length T of the prompt used by the LLM.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Prompt tuned
model for

SST-2

T

T = 1

T = 2

T = 3

Hey there!
T = 100

Hey there!

Model
Output

T = 1 to
100

time
time = t

t1 ms

t2 ms

t3 ms

t100 ms

T

Base Model

Generate (ti, T) dataset Obtain t for hidden prompt
length T

T Fit a linear regression model

Figure 2: Prompt length estimation for a prompt-tuned model in three stages - i) Query a base
model with random text prefixes by prepending soft prompt lengths ranging from 1 to 100 and build a
dataset of response times ii) Query the prompt-tuned model with the same prefix and obtain response
time iii) Fit a linear regression model on the data from step 1 to estimate the length of the prompt
effectively.

C.1 PROPOSED METHOD

As shown in Figure 2, our timing-based side channel attack works in three stages as detailed below:

Generate a (response latency, prompt length) dataset. First, using the knowledge of the underly-
ing architecture of the pre-trained LLM, an adversary intends to obtain the API response time when
prompt embeddings with varying lengths are prepended to the constant arbitrary text prompt embed-
dings. As API response time is independent of whether or not the soft prompt is randomly initialized
or tuned on a specific downstream task, only randomly initialized embeddings are utilized for this
attack. Although the response time primarily comprises the time to process the input embeddings
(soft prompt and text), environmental factors such as memory scheduling and network transmission
delays influence the response time. These external factors also introduce noise that distorts the actual
response time (Zheng et al., 2024a). To overcome this limitation, the same arbitrary text prefix is
queried to the model n times for each prompt length, and the response times are aggregated to nullify
the effect of these environmental factors. Importantly, we do not query the prompt-tuned LLM that
we have black box access to. Instead, we access a local copy of the pre-trained LLM and prepend
soft prompt embeddings of varying lengths to the input text embeddings to compute response time
per prompt length. This allows us to obtain response latency as a function of the soft prompt length.
Although there is no restriction on the maximum prompt length to be prepended to generate a dataset,
we constrain it to 100 tokens, particularly because it has been shown in (Lester et al., 2021) that
beyond 100 tokens, the downstream performance degrades for large models, which limits the use of
> 100 virtual tokens in realistic scenarios. Besides that, soft prompts released publicly (Research,
2021) also do not exceed 100 virtual tokens, further strengthening our assumption.

Obtain response latency for hidden prompt. Assuming a black-box query access to the prompt-
tuned LLM wherein the soft prompt embedding and its length is hidden to the adversary, we query
the same arbitrary text prefix n times, similar to stage 1, to the prompt-tuned LLM and note the API
response time.

Fit a linear regression model to extract T. We fit a simple linear regression model, based on the
monotonic relationship between prompt length and API response latency obtained in stage 1, and
predict the length of soft prompt T.

Using these three stages, this attack effectively determines the length of the soft prompt as shown in
Figure 3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Soft Prompt Length

25

50

75

100

125

150

175

200

AP
I R

es
po

ns
e

Ti
m

e
(m

s)

Tuned prompt mean 52.46 ms
Tuned prompt ± std
True length: 20
Regression estimate: 20.0
Random prompt ± std

Figure 3: Estimating the length of the soft prompt via timing-based side channel attack. We
present API response latency as a function of the number of virtual tokens/soft prompt length used.
We observe that there is a monotonic relationship between the soft prompt length and API response
time, and that it is possible to determine the exact length of the soft prompt, hidden from an adversary.

D STATE-OF-THE-ART PRODUCTION LANGUAGE MODEL EXTRACTION
ATTACKS

Our proposed defense CAP defends against the state-of-the-art extraction attack by (Carlini et al.,
2024). In this section, we discuss more about this extraction attack. This work by (Carlini et al.,
2024) highlights the security risk of such an attack on production language models like OpenAI’s
GPT, Google’s PaLM, etc. The attack primarily focuses on extracting information such as dimen-
sionality and final layer weight matrix from production language models. The work emphasizes that
despite these models being accessible to users through black-box APIs, significant information about
LLMs—like hidden dimensionality and the last-layer weight matrix—can be successfully extracted.
Their attack mainly exploits the API features that reveal the output logits of the model, thereby
recovering critical information about the model architecture.

Attack Intuition and Methodology. We first discuss the attacker’s threat model. The attacker has
black box access to a production language model, meaning the attacker can query the LLM via the
API but does not have access to information about the model architecture, including weights, training
data, etc. The attacker sends a large number of queries to the LLM and analyzes the obtained model
outputs, in the form of logits. The key insight about the attack is that the last layer of the transformer
model, which maps the hidden states to logits, is a linear transformation that typically has a low
rank. This final layer can be approximated using the output logits collected by the attacker. Due to
the low-rank structure of the final layer, diverse or linearly independent queries sent by the attacker
explore new directions in the embedding space. With enough linearly independent or diverse queries,
the attacker can recover the dimensionality of several production language models and further extract
the final-layer weight matrix of the transformer model. While the work explores different levels of
API access, including full logits and top-k logits, we primarily focus on the scenario where the API
exposes full logits.

Empirical evidence demonstrates that this attack approach is quite effective and results in very low
reconstruction error between the original and recovered last layer weight matrix. Additionally, this
approach reveals an almost accurate dimensionality of several production language models.

E DETAILS ON HYPERPARAMETERS

We present the details on hyperparameters for our attack and CAP defense in this section. We perform
our experiments with Python 3.13, Pytorch, and use a server with 4X NVIDIA A100 GPUs.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Breakdown of Runtime (in seconds) of our defense pipeline using the AMAZON
task. We quantify the computational overhead for each of the components of the CAP defense
pipeline to assess the efficiency and scalability of our defense. As a prompt-tuned LLM provider, this
computational expense is significantly less than tuning a prompt from scratch in the bigger workflow.

Defense Stage Runtime (seconds)
(1) Coverage computation 171.47
(2) Spread computation 0.87
(3) Noise perturbation 0.66

Total Defense Runtime 378.03

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Gaussian Noise Scale

50

60

70

80

90

Do
wn

st
re

am
 P

er
fo

rm
an

ce
 (%

)

Accuracy

Figure 4: Downstream performance decreases as the soft prompt is perturbed more.

In our experiments on in-distribution queries, the adversary assumes to have knowledge of the
distribution from which the prompt tuning data comes. Thus, if we consider a downstream task,
Amazon Polarity, the adversary only queries the prompt-tuned LLM with this dataset. However, in
our experiments on OOD queries, the adversary’s prompt-tuned LLM is distilled from the teacher
using text queries sampled from different downstream datasets (Amazon Polarity, YELP, IMDB, AG
News, Rotten Tomatoes movie reviews, SST-2, DBpedia, SNLI, MNLI, TweetEval, and synthetic text
queries). We use a batch size of 32 and a learning rate of 5× 10−3 and 30 epochs. The maximum
sequence length is set to 128 tokens. During inversion, we apply a linear transformation function
to the prompt extracted from the distillation stage, as shown in Figure 1. This is to ensure that the
model does not overfit to the extracted prompt embedding. The Gaussian noise added has a noise
scale of 0.1, ensuring that the downstream performance remains unaffected. This observation also
comes from Figure 4. For our CAP defense against soft prompt extraction attacks, we set the number
of buckets to 211, which equals 2048 buckets. The baseline noise λ is set to 0.0005. The scaling
factor α is chosen as 8.0, while the parameter β is set to 0.19. The batch size for computing coverage
and spread is 100. Additionally, the weights for the different components of the defense are specified
as follows: the coverage weight is 0.05, the novelty weight is 0.35, and the spread weight is 0.45.
The LLM provider sets these values as per the desired degree of penalization.

Choice of T5 Backbone. Our entire pipeline is based on the T5 architecture. T5 uses a pure
text-to-text framework: every task—classification, sentiment analysis, NLI passes through the same
decoder interface, thereby providing the next-token probability distribution. This uniformity allows
us to design a single inversion model that could used across multiple tasks. Choosing T5 therefore
provides architectural simplicity consistent with widely deployed prompt-tuned systems.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Summarization results on CNN and ArXiv. We report ROUGE-1/2/L scores of the target
prompt-tuned LLM (teacher) and evaluate reconstructed and random prompts on the same datasets.

Task Target LLM (Teacher) Reconstructed Prompt Random Prompt
ROUGE-1 / ROUGE-2 / ROUGE-L

CNN 0.2621 / 0.1035 / 0.1928 0.1191 / 0.0460 / 0.0874 0.1530 / 0.0591 / 0.1142
ArXiv 0.1726 / 0.0461 / 0.1156 0.0212 / 0.0061 / 0.0148 0.1713 / 0.0449 / 0.1150

Hyperparameters for CAP defense against last-layer extraction attack. To query the prompt-
tuned LLM, we use a set of prompts curated in Paleka (2025). Additionally, we use a gap threshold
of 5.0 and a minimum singular value of 1e-6.

F RUNTIME FOR OUR INVERSION ATTACK AND CAP DEFENSE

We present insights into the overhead that the attack and the CAP defense may introduce in Table 6
and Table 10, respectively. First, we compute the prompt tuning time with T5-base based on a
representative task, YELP, and find that it takes approximately 11,021 seconds in total. However,
our attack pipeline, based on AMAZON, takes significantly less time (488.23 seconds) than tuning
a prompt from scratch to extract a functionally equivalent soft prompt of unseen downstream task
YELP.

The Use of Large Language Models. In this work, we acknowledge that Large Language Models
(LLMs) were used for exploring research literature related to the topic of the paper and to polish
the writing. Additionally, we utilized LLMs as one of the sources for verifying and debugging our
experimental implementation.

21

	Introduction
	Background and Related Work
	Two-Staged Black-Box Soft Prompt Extraction and Inversion Attack
	Stage 1: Distillation
	Stage 2: Inversion

	Empirical Evaluation
	Results

	Actively Defending Against Inversion Attacks
	CAP distinguishes between adversarial and legitimate queries
	Components of CAP

	Empirical Evaluation of our CAP Defense
	CAP Defense against Adaptive Sybil Adversaries
	Conclusions
	Additional Related Work
	Additional Experiments
	Timing-Based Soft Prompt Length Extraction Attack
	Proposed Method

	State-of-the-art Production Language Model Extraction Attacks
	Details on Hyperparameters
	Runtime for our inversion attack and CAP defense

