

# STEALING AND DEFENDING THE ENDS OF LLMs

## Anonymous authors

Paper under double-blind review

## ABSTRACT

Soft prompt tuning has emerged as a powerful and automated approach for adapting large language models (LLMs) to new tasks, eliminating the need for manual prompt engineering. The practical relevance of soft prompts is underscored by their support in major toolkits and APIs such as NVIDIA NeMo and IBM Watsonx AI. However, as soft prompts encode valuable, task-specific information, they have become attractive targets for adversarial extraction. In this work, we demonstrate that attackers can extract functionally equivalent soft prompts from prompt-tuned LLMs, effectively replicating their capabilities without access to the original training data or resources. By training a dedicated inversion model, we show that such extraction generalizes, enabling recovery of soft prompts for any downstream task on the given model. To counter this threat, we introduce CAP (Coverage-Aware Perturbation), an active defense that substantially impairs extraction while maintaining task performance for legitimate use. Our framework highlights both new risks and practical solutions, paving the way for more trustworthy deployment of adapted LLMs.

## 1 INTRODUCTION

Large language models (LLMs) exhibit strong in-context learning capabilities (Brown et al., 2020; Radford et al.), enabling them to perform a wide range of downstream tasks simply by prepending an appropriate prompt to the input (Gao et al., 2021; Raffel et al., 2020; Shin et al., 2020), without modifying the LLM parameters. Building on this idea, soft prompt tuning (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2022b) has emerged as a powerful adaptation technique. Rather than updating the full model, it tunes a small set of additional learnable parameters added within the model’s input embedding space. This approach is an instance of parameter-efficient fine-tuning (PEFT) (Lester et al., 2021) methods, a set of LLM adaptation techniques that adapt a pre-trained LLM by updating a small fraction of parameters. In the case of prompt tuning, PEFT is implemented by adding trainable embeddings, which are optimized via backpropagation, while other weights in the LLM are frozen. At inference time, these learned soft prompts are loaded and injected into the input embedding layer, enabling the LLM to generate task-specific predictions.

Platforms like NVIDIA’s NeMo (Harper et al., 2024) and IBM Watsonx AI (IBM, 2025) enable prompt tuning in practice. They help practitioners to optimize soft prompts to cater to downstream tasks while also allowing deployment of these prompt-tuned models. Once deployed, these models can be queried via hosted APIs that return model predictions. While these platforms facilitate a black-box query setup, they raise multiple privacy risks regarding the adaptation data (Bailey et al., 2023; Duan et al., 2023; Hanke et al., 2024; Lester et al., 2021) and undermine the intellectual property of the party that trained the prompts (Maini et al., 2024; Freethink, 2025). Prior work (Wang et al., 2025) has shown that prompt-tuned models are vulnerable to membership inference attacks. Besides that, adversaries can leverage query-access to a prompt-tuned LLM to extract the learned soft prompt to host their own copy of the prompt-tuned model, aiming to replicate the victim model’s downstream performance. As real-world APIs, such as NVIDIA NeMo and IBM Watsonx AI, offer the possibility of exposing prompt-tuned LLMs, this threat becomes real. Prior works leverage the intuition that LLM outputs, such as next-token probability vectors, encode significant residual information about the preceding input and thereby focus on inverting next-token probability vectors to extract discrete textual prompts (Morris et al., 2024). However, inversion attacks, in the context of soft prompts, remain unexplored.

We introduce a novel two-staged soft prompt extraction and inversion attack against prompt-tuned LLMs. This attack includes two stages, distillation and inversion. Our attack first follows a distillation-based approach to reconstruct a functionally equivalent version of the target LLM’s tuned prompt and further aims to extract soft prompts across multiple downstream tasks by inverting next-token probability vectors. In distillation, the first stage of the attack, we aim to reconstruct a *behavioral clone* of the target LLM’s tuned soft prompt on a specific downstream task using black-box query-access to the prompt-tuned LLM. The experimental results demonstrate how an adversary can successfully reconstruct a target LLM’s tuned prompt by optimizing a randomly initialized prompt embedding, such that it mirrors the target prompt-tuned model’s output probability distribution. Notably, our attack is successful even when the adversary relies on out-of-distribution (OOD) queries, underscoring the robustness of our attack. During inversion, the second stage, the attacker extends the initial distillation approach by training a model that inverts a prompt-tuned LLM’s outputs into soft-prompt embeddings. The resulting inversion model is optimized to generalize across tasks, enabling the extraction of *any* soft prompt tuned for this model, even for previously unseen downstream tasks without additional training.

Given the severity of the threat, we introduce an active defense, *Coverage-Aware Perturbation (CAP)*, against soft prompt extraction. Our defense leverages the insights that, to invert from probability vectors to soft prompts with higher performance, an adversary needs to query the prompted models with highly diverse queries. This stands in contrast to benign users who usually query for one or a few concrete downstream tasks (Dubinski et al., 2023). We notice that with the increasing query diversity, the query latent (embedding) space coverage increases too, enabling the detection of extraction attempts by monitoring this coverage. After every user-query, CAP estimates the coverage and penalizes adversaries based on the estimation. The adversaries are penalized by perturbing the tuned soft prompt embeddings to thwart the soft prompt extraction attacks that target the input end of the LLM and by perturbing the model responses to defend against the last-layer extraction attacks that target the output end. CAP not only prevents soft prompt extraction attacks by adversaries but also maintains performance for benign users. Thus, CAP effectively protects both ends of the LLM, preventing extraction at the input (soft prompts) and output (last-layer weight matrix).

Our experimental evaluation across various natural language processing (NLP) tasks shows that the soft prompts inverted from the probability vectors achieve downstream task performance comparable to that of the target prompt-tuned model. Finally, our attack is significantly more efficient than tuning a soft prompt from scratch. Although our soft prompt extraction attack is robust, our experimental results show that CAP defense successfully prevents it. Beyond protecting against soft prompt extraction, we also show that CAP is able to protect against state-of-the-art last-layer extraction attacks (Carlini et al., 2024). To provide a concrete example, the root mean square error (RMSE) between the original and the extracted weight matrix of the final layer in the T5-base model (Raffel et al., 2020) increases from a negligible 1.96e-5 to a substantial 18.21 when our defense is applied. Thus, CAP is able to protect prompt-tuned LLM APIs against the stealing of both their ends.

In summary, we make the following contributions:

- We propose a **novel two-staged black box prompt extraction and inversion attack** that enables an adversary to invert prompt-tuned LLM outputs and extract functionally equivalent soft prompts across multiple downstream tasks even with OOD queries.
- To mitigate this threat, we propose **CAP, an active defense to prevent the extraction of both the ends of LLM APIs** by monitoring the adversaries’ query diversity and accordingly penalizing them by perturbing the fixed query-invariant soft prompt to defend against inversion attacks on the input end of the LLM and perturbing model outputs to defend against the last-layer extraction attacks on the output end of the LLM.
- Through our **thorough experimental evaluation**, we demonstrate that soft prompts inverted from probability vectors provide downstream performance comparable to their original counterparts on text classification and natural language inference tasks. CAP maintains high performance for benign users while successfully protecting against inversion and last-layer extraction attacks on prompt-tuned LLMs.

108 

## 2 BACKGROUND AND RELATED WORK

109  
110 We provide an overview of adaptation techniques for LLMs with a focus on soft prompts, followed by  
111 an analysis of model inversion and extraction attacks, along with the corresponding state-of-the-art  
112 defense mechanisms. Additional background can be found in Appx. A.  
113114 **LLM Adaptations with Soft Prompts.** LLMs can be adapted to downstream tasks by (1) *adapting*  
115 *their inputs* using discrete textual prompts (Brown et al., 2020; Gao et al., 2021) and continuous  
116 parameters with either soft prompts (Lester et al., 2021; Liu et al., 2022b) or prefix tuning (Li &  
117 Liang, 2021); (2) *adapting the internal layers* with methods like low-rank adaptations (e.g., LoRA  
118 (Hu et al.) or AdaLoRA (Zhang et al., 2023), and most of other PEFT (Parameter Efficient Fine  
119 Tuning) methods (Han et al., 2024; Liu et al., 2022a), which add additional parameters (usually a  
120 small number) within the model, and (3) *full or last layer fine-tuning* (Gao et al., 2021; Raffel et al.,  
121 2020). The input-based adaptations based on prompting gained substantial popularity since they  
122 achieve high performance and do not require keeping separate model parameters per downstream  
123 task for inference (Lester et al., 2021; Li & Liang, 2021), in contrast to the full fine-tuning or other  
124 PEFT methods. Thus, we turn our attention to prompts. Discrete prompts require prepending the  
125 input queries with textual instructions and demonstrations (also referred to as shots) to solve a given  
126 downstream task (Gao et al., 2021). The main drawback is the requirement to find such prompts in  
127 the discrete space (Shin et al., 2020). To eliminate the obstacle, soft prompts add additional trainable  
128 parameters in the input embedding layers of LLMs (Lester et al., 2021; Liu et al., 2022b; 2024)  
129 —enabling standard backpropagation to the soft prompt parameters using (usually private) data for  
130 downstream tasks (Duan et al., 2023; Hanke et al., 2024). Prefix tuning is a very similar approach to  
131 soft prompts, but apart from the input embeddings, it also adds additional parameters as inputs to  
132 each (attention) layer of an LLM (Li & Liang, 2021). We focus on soft prompts, which have not  
133 been explored yet for model inversion attacks.  
134135 **Inversion Attacks in Vision and Language Models.** Several successful inversion attacks in image  
136 and natural language processing domains demonstrated that approximate reconstruction of inputs  
137 can be achieved, given logits or probability outputs. (Fredrikson et al., 2015) were the first to show  
138 that machine learning models can leak identifiable and sensitive information about their training  
139 data, such as *users' faces* or *genotypes* (Fredrikson et al., 2014), even when accessed as black boxes.  
140 (Teterwak et al., 2021) also demonstrated that a surprisingly high amount of information about input  
141 images can be approximately reconstructed from the logits of a discriminatively trained classifier.  
142 In the language domain, successful recovery of the input text sequence was achieved from text  
143 embeddings by conditioning the encoder from an encoder-decoder transformer model as a part of the  
144 inversion process (Li et al., 2023; Morris et al., 2023). Additionally, (Morris et al., 2024) succeeds  
145 in performing inversion from probability distribution to discrete (textual) prompts by recovering text  
146 input from probability outputs of language models.  
147148 **Model Extraction Attacks.** Black-box access to the model enables not only the reconstruction of  
149 its training inputs but also the recovery of the model itself (Dziedzic et al., 2022a; Jagielski et al.,  
150 2020; Tramèr et al., 2016). Language model extraction has become challenging due to the secrecy of  
151 details regarding the model size, architecture, datasets, and training process (Achiam et al., 2023).  
152 However, there are still many attempts to extract isolated components of language models, namely  
153 decoding algorithm (Naseh et al., 2023), the model's embedding size (Carlini et al., 2024; Finlayson  
154 et al.), sentence encoders (Dziedzic et al., a), functionality of the last fine-tuning layer (Krishna  
155 et al.), and, the most prominent, the weight matrix of the last layer (Carlini et al., 2024). This  
156 latest attack leverages the observation that the final layer of many LLMs behind APIs performs a  
157 projection from the hidden representation to a higher-dimensional logit vector. Thus, the final layer is  
158 low-rank, and sending random queries and observing when they become linearly dependent indicates  
159 the dimension of the hidden representations. The attack can be further extended to recover the final  
160 output projection matrix that maps from the final hidden layer to the output logits.  
161162 **Defenses against Model Extraction.** Defenses against model extraction can be primarily categorized  
163 into three types, following (Dziedzic et al., b), namely active defenses that act while extraction  
164 is happening and, e.g., perturb the responses to poison the training objective of an attacker (Dubinski  
165

et al., 2023; Mazeika et al., 2022; Orekondy et al., 2020; Wu et al., 2024), passive defenses analyze the distribution of incoming queries and stop answering if they detect an outlier set of queries (Kesarwani et al., 2018; Juuti et al., 2019; Chen et al., 2020), and reactive defenses, also known as post-hoc verifications, which try to prove a model theft rather than preventing the attack from happening (Adi et al., 2018; Dziedzic et al., 2022b; Jia et al., 2021). The LLM APIs are designed to be highly responsive and the interruption of service is not acceptable, thus eliminating the passive defenses. The ends of LLM APIs, such as soft prompts or the last layer, are composed of a relatively small number of parameters, thus lowering the effectiveness of watermarking-based reactive defenses. Active defenses are highly desired in the LLM API setting to defend against extraction as it is happening. Therefore, in this work, we build on the latest type of active defenses (Dubinski et al., 2023; Dziedzic et al., b) to estimate the information leakage incurred by the queries to the LLM API and then perturb the high-dimensional outputs according to this estimated leakage (Dubinski et al., 2023).

### 3 TWO-STAGED BLACK-BOX SOFT PROMPT EXTRACTION AND INVERSION ATTACK

**Setup and Threat Model.** We consider an LLM provider who deploys a prompt-tuned LLM, and a user. We adopt the scenario, well-suited to real-world deployment settings where a user has black-box API query access to the prompt-tuned LLM and obtains a next-token probability distribution across the vocabulary. Our experimental evaluation is based on varying levels of probability access, as many API services expose only top-k probabilities in practical scenarios (Achiam et al., 2023; Cohere, 2025; Anil et al., 2023). Our two-staged attack does not assume access to the underlying model architecture or training data from the prompt-tuned LLM.

**Problem.** We consider the problem of inverting the next-token probability vectors (prompt-tuned model’s outputs) to extract functionally equivalent soft prompts that replicate a downstream performance on the attacker’s model that employs the extracted prompt, comparable to the target prompt-tuned model across multiple downstream tasks. To achieve this, we present a detailed overview of both the stages of our attack, as illustrated in Figure 1.

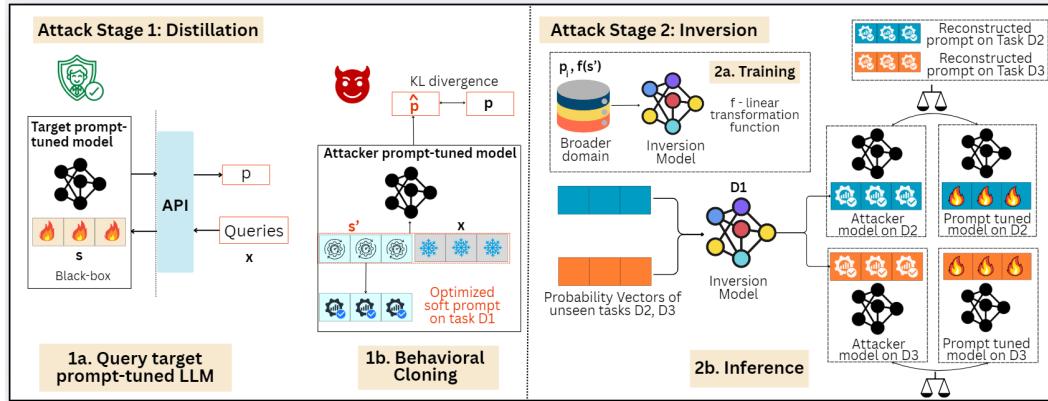


Figure 1: **Attack Stage 1: Functional prompt extraction attack using distillation approach.** The adversary, with black-box access to the prompt-tuned model, (1a) queries it with text inputs and collects output distributions. (1b) A randomly initialized soft prompt is then optimized to minimize the KL divergence between the surrogate model’s predictions and the victim’s outputs, yielding a functionally equivalent prompt. This approach replicates the victim’s behavior on a given task without recovering the exact tuned soft prompt. The downstream performance of the target prompt-tuned model is compared to that of the attacker’s model to evaluate the success of this extraction attack. **Attack Stage 2: Inversion across multiple downstream tasks.** Leveraging access to the functionally equivalent soft prompt from stage 1, (2a) the adversary trains an inversion model on LLM outputs and corresponding extracted soft prompt (task D1), such that (2b) the inversion model generalizes on unseen tasks, and produces tuned soft prompts for D2 and D3. The downstream performances on the attacker’s prompt-tuned models are further compared to the models tuned on tasks D2 and D3, to evaluate the success of the inversion attack.

216 3.1 STAGE 1: DISTILLATION  
217

218 This stage aims to reconstruct a functionally effective soft prompt just from black-box query access to  
219 the prompt-tuned LLM, which uses prompt  $\mathbf{s} \in \mathbb{R}^{T \times d}$ , where  $d$  is the model’s embedding dimension.  
220  $T$  is the number of virtual tokens/soft prompt length. As illustrated in Figure 1, the adversary queries  
221 the prompt-tuned LLM via API with  $N$  text inputs  $\{x_i\}_{i=1}^N$ , either in-distribution (ID) or out-of-  
222 distribution (OOD). To extract functionally equivalent soft prompts that will help yield performance  
223 that matches the prompt-tuned LLM, the adversary queries *diverse*  $N$  text inputs, following the  
224 intuition in (Zhao et al., 2025) and obtains the probability distribution  $\{p_i\}_{i=1}^N$  over the entire  
225 vocabulary, where each  $p_i \in \mathbb{R}^{|\mathcal{V}|}$  is a probability vector over the vocabulary  $\mathcal{V}$ . The probability  
226 vectors are then mapped to the corresponding text inputs to form  $(x_i, p_i)$  pairs. The adversary further  
227 considers a pre-trained LLM of preferably the same architecture as the target prompt-tuned model.  
228 The text inputs  $\{x_i\}_{i=1}^N$  are queried to an LLM that initially employs a randomly initialized soft  
229 prompt  $\mathbf{s}' \in \mathbb{R}^{T \times d}$ . Thus, the adversary prepends embeddings of  $\mathbf{s}'$  to the text input embeddings of  
230  $x_i$ , and further optimizes only  $\mathbf{s}'$ , such that the attacker model’s outputs  $\{\hat{\mathbf{p}}_i\}_{i=1}^N$  using the optimized  
231 soft prompt mirror the outputs of the prompt-tuned LLM,  $\{\mathbf{p}_i\}_{i=1}^N$ . The randomly initialized soft  
232 prompt is optimized by minimizing the Kullback–Leibler (KL) divergence (Kullback & Leibler,  
233 1951) between the attacker model and the target prompt-tuned model’s probability distributions.  
234 Formally, the optimization problem is:

$$236 \quad \mathbf{s}' = \arg \min_{\mathbf{s}} \frac{1}{N} \sum_{i=1}^N \text{KL}(\mathbf{p}_i \parallel \hat{\mathbf{p}}_i), \quad (1)$$

239 where  $\mathbf{p}_i$  is the probability distribution of the target prompt-tuned LLM for input  $x_i$  and tuned prompt  
240  $\mathbf{s}$ , and  $\hat{\mathbf{p}}_i$  is the probability distribution of the attacker model with learnable randomly initialized soft  
241 prompt  $\mathbf{s}'$  for the same input  $x_i$ . The downstream performance is computed for both the prompt-tuned  
242 model (that uses  $\mathbf{s}$ ) and the attacker model (that uses  $\mathbf{s}'$ ). If the performances are comparable, the  
243 attack is said to be successful based on the key insight that soft prompts that share similar functional  
244 capabilities steer the LLM to produce comparable downstream performances on a specific downstream  
245 task.

246 3.2 STAGE 2: INVERSION  
247

249 While stage 1 reconstructs functionally equivalent task-specific prompts, extending it to multiple  
250 downstream tasks is computationally expensive and undermines the very purpose of stealing func-  
251 tionally effective soft prompts. Thus, in this stage, an adversary utilizes  $\{p_i\}_{i=1}^N$  obtained in stage 1  
252 and maps them to the linear transformations of the  $\mathbf{s}'$ , a reconstructed version of the target LLM’s  
253 task-specific soft prompt obtained in stage 1. We use this dataset to train an inversion model. The  
254 next token probability vectors are projected into a dimension suitable for a transformer to process.  
255 These projected probability vectors are encoded by passing them through a stack of transformer  
256 layers and decoded into a sequence of prompt embeddings. Given another prompt-tuned model’s  
257 (unseen downstream task) next-token probability distribution as an input, the inversion model out-  
258 puts functionally similar soft prompts across multiple downstream tasks, thereby demonstrating the  
259 inversion model’s generalization ability.

260 4 EMPIRICAL EVALUATION  
261

263 **Downstream Tasks.** To evaluate the effectiveness of our reconstructed soft prompts, we use  
264 standard NLP datasets, namely SST2, MNLI, and YELP from the GLUE benchmark (Wang et al.),  
265 rotten-tomatoes movie review (denoted as MOVREV), Amazon Polarity (denoted as AMAZON)  
266 datasets from the Hugging Face datasets library (Lhoest et al., 2021), and IMDB (Maas et al., 2011).  
267 These datasets correspond to classification tasks such as sentiment analysis (SST-2, IMDB, YELP,  
268 MOVREV, AMAZON) and natural language inference (MNLI). The data from these downstream  
269 datasets is used to tune the soft prompts simulating the task of model owners, thereby resulting in  
distinct prompt-tuned LLMs for evaluation.

270 Table 1: **Extraction of functionally equivalent soft prompts with ID and OOD queries in**  
 271 **distillation attack stage.** We report downstream accuracy (%) for the target prompt-tuned LLM, the  
 272 adversary’s prompt-tuned LLM, the target model with randomly initialized prompts and target model  
 273 without soft prompt across different tasks. Both the target and adversary’s LLM use T5-base as the  
 274 backbone architecture.

| 276 <b>Task</b> | 277 <b>Query Type</b> | 278 <b>Target (%)</b> | 279 <b>Adversary (%)</b> | 280 <b>Random (%)</b> | 281 <b>Zero-shot (%)</b> |
|-----------------|-----------------------|-----------------------|--------------------------|-----------------------|--------------------------|
| 282 AMAZON      | 283 ID                | 284 90.89             | 285 91.08                | 286 49.80             | 287 <b>49.80</b>         |
| 288 MNLI        | 289 ID                | 290 77.51             | 291 75.77                | 292 50.77             | 293 <b>50.54</b>         |
| 294 YELP        | 295 ID                | 296 93.69             | 297 93.57                | 298 46.70             | 299 <b>51.90</b>         |
| 299 MOVREV      | 300 ID                | 301 82.27             | 302 81.61                | 303 51.80             | 304 <b>46.60</b>         |
| 304 SST-2       | 305 ID                | 306 93.90             | 307 92.32                | 308 50.60             | 309 <b>49.08</b>         |
| 310 YELP        | 311 OOD               | 312 93.69             | 313 90.60                | 314 51.80             | 315 <b>51.90</b>         |
| 316 AMAZON      | 317 OOD               | 318 90.89             | 319 90.69                | 320 49.80             | 321 <b>49.80</b>         |
| 322 MOVREV      | 323 OOD               | 324 89.20             | 325 86.00                | 326 46.70             | 327 <b>50.09</b>         |

286 Table 2: **Extraction of functionally equivalent soft prompts on unseen downstream tasks in the**  
 287 **inversion attack stage.** We report downstream accuracy (%) of the target prompt-tuned LLM (clean),  
 288 the adversary’s LLM using a reconstructed soft prompt (without CAP), the same adversary model  
 289 when CAP is enabled, the target model with randomly initialized embeddings, and the zero-shot  
 290 accuracy of the base model.

| 293 <b>Training Task</b> | 294 <b>Evaluation Task</b> | 295 <b>Target (%)</b> | 296 <b>Adversary (CAP Off) (%)</b> | 297 <b>Adversary (CAP On) (%)</b> | 298 <b>Random (%)</b> | 299 <b>Zero-shot (%)</b> |
|--------------------------|----------------------------|-----------------------|------------------------------------|-----------------------------------|-----------------------|--------------------------|
| 295 YELP                 | 296 AMAZON                 | 297 90.20             | 298 88.20                          | 299 49.90                         | 300 49.80             | 301 <b>49.80</b>         |
|                          | 302 MOVREV                 | 303 82.10             | 304 <b>81.81</b>                   | 305 46.70                         | 306 46.70             | 307 <b>46.60</b>         |
| 307 AMAZON               | 308 YELP                   | 309 88.80             | 310 87.20                          | 311 51.80                         | 312 51.80             | 313 <b>51.90</b>         |
|                          | 314 MOVREV                 | 315 82.10             | 316 80.70                          | 317 46.70                         | 318 46.70             | 319 <b>46.60</b>         |

300 **Models.** While different downstream tasks yield different prompt-tuned LLMs, the model architecture  
 301 they share is the same. We primarily consider T5-base backbone (Raffel et al., 2020), consisting  
 302 of 222M parameters, as the underlying model for our two-staged attack. Additionally, we also  
 303 evaluate our attack on varying model architectures T5-small, T5-large (Raffel et al., 2020) and  
 304 roberta-base (Liu et al., 2019). We set the prompt length to 20 (virtual tokens for encoder and  
 305 decoder) for all experiments on T5 model variants, while for roberta-base, we set it to 30. In the  
 306 inversion stage of our attack, we train the inversion model using the Adam optimizer with a learning  
 307 rate of  $1 \times 10^{-4}$  for 8 epochs. In Appx. E, we present details about hyperparameters.

308 **Metrics.** To assess the success of the attack, we report the downstream performance on the prompt  
 309 inverted from next-token probability vectors and compare it to that of the target prompt-tuned model.  
 310 Based on the findings that multiple near-optimal soft prompts exist for a task that lie in the same  
 311 low-dimensional subspace of the embedding space and that they achieve comparable performance  
 312 on a downstream task (Zheng et al., 2024b), these metrics are an indicator of the reconstructed soft  
 313 prompt’s functional similarity to the original one.

## 316 4.1 RESULTS

317 Our experimental results are demonstrated in Table 1 and Table 2 for distillation and inversion stages  
 318 of our two-staged attack on prompt-tuned LLMs.

319 **Distillation stage.** We evaluate the effectiveness of the distillation stage across multiple downstream  
 320 tasks. Table 1 provides a comparison between the downstream performances for target prompt-tuned  
 321 LLM, attacker’s prompt-tuned LLM, and LLM that employs a randomly initialized soft prompt, for  
 322 baseline comparison. The results indicate that by issuing in-distribution queries to the prompt-tuned

324 LLM, the adversary’s tuned LLM achieves performance closer to that of the target LLM, across  
 325 downstream tasks. For example, on SST-2 and YELP, the attacker’s prompt-tuned model achieves  
 326 92.32% and 93.57% accuracy, respectively, compared to the target model’s 93.90% and 93.69%.  
 327 Furthermore, using diverse queries allows adversaries to capture the full functional behavior of the  
 328 soft prompts even when they lack knowledge of ID queries. Therefore, results in Table 1 show that  
 329 issuing OOD queries to the prompt-tuned LLM allows an adversary to yield downstream performance  
 330 comparable to that of the target tuned LLM. We provide additional details about the OOD queries  
 331 used in the experiments in Appx. E. Besides, with a partial (top-5 probabilities) distributional access,  
 332 this attack can successfully recover the soft prompt’s functionality, yielding comparable downstream  
 333 performance and minimal performance degradation compared to full distributional access (see  
 334 Table 9). This demonstrates that by merely by a query-access to a black-box prompt-tuned LLM  
 335 for a specific downstream task, it is possible to steal the model’s functionality to yield a comparable  
 336 downstream performance. Even when the adversary’s underlying model architecture is different from  
 337 the target prompt-tuned LLM, this attack functions well (see Table 7). Additionally, our experiments  
 338 on roberta-base in Table 8 indicate the success of our attack on encoder-only architectures that output  
 339 a probability distribution over the classes the LLM was trained on.

340 **Inversion stage.** In the inversion stage, we conduct a cross-dataset evaluation. Our trained inversion  
 341 model is evaluated on multiple downstream datasets, the same datasets that were used to prompt-  
 342 tune a pre-trained LLM, but the inversion model has not seen the probability vectors generated  
 343 by the model tuned on these tasks during training. From an adversary’s standpoint, an inversion  
 344 model that generalizes to unseen tasks and outputs functionally equivalent soft prompts helps yield  
 345 comparable downstream performance, saving a significant amount of computational expense. We  
 346 consider multiple combinations for training and evaluation datasets. Notably, the attacker’s model,  
 347 which leverages the reconstructed and functionally equivalent soft prompt, achieves performance  
 348 comparable to that of the target prompt-tuned LLMs, thereby maintaining strong reconstruction  
 349 results across unseen evaluation tasks. For instance, in Table 2, when the inversion model is trained  
 350 on Amazon Polarity and generates task-specific soft prompts for YELP and MovRev, the attacker’s  
 351 model using these reconstructed task-specific prompts achieves a downstream accuracy of 87.20%  
 352 and 80.70%, respectively, which closely matches 88.80% and 82.10%, the target prompt-tuned LLM’s  
 353 downstream performances for the respective tasks. Randomly initialized prompts, as expected, yield  
 354 accuracy close to 50% for every task, highlighting that the attacker model’s reconstructed prompts  
 355 significantly surpass the performance with randomly initialized soft prompts. Overall, these results  
 356 signify that our inversion method not only reconstructs high-utility functionally effective task-specific  
 357 prompts but also generalizes across multiple downstream tasks.

## 358 5 ACTIVELY DEFENDING AGAINST INVERSION ATTACKS

360 Given the high vulnerability of prompt-tuned LLMs to our two-staged attack, we now turn to defenses.  
 361 We introduce an active defense **Coverage-Aware Perturbation (CAP)**. Our defense strategy is  
 362 coverage-aware, recognizing that our attack is successful due to the wide diversity of queries to  
 363 the prompt-tuned LLM. CAP leverages the fact that adversaries assume a deployed model uses a  
 364 *fixed* stealing target (tuned soft prompt) during inference. Thus, every time the adversary queries  
 365 the deployed prompt-tuned LLM, the underlying soft prompt remains the same, making the LLM’s  
 366 behavior query-invariant. This allows our attack to recover a functionally equivalent soft prompt.  
 367 Therefore, CAP continually drifts the target soft prompt (ground-truth) during inference, breaking the  
 368 query-invariance and making the attack substantially hard for the adversary. We first explain how our  
 369 CAP defense detects adversarial behavior and distinguishes it from a legitimate user’s behavior and  
 370 further describe the components of our CAP defense.

### 371 5.1 CAP DISTINGUISHES BETWEEN ADVERSARIAL AND LEGITIMATE QUERIES

373 Our setup and threat model expose a prompt-tuned LLM, which can be queried by adversarial and  
 374 legitimate users alike. (Dubinski et al., 2023) show in their defense against stealing image encoders  
 375 that it is possible to distinguish between adversarial and legitimate users based on the fraction of  
 376 embedding space they occupy. Following the same intuition for prompt-tuned LLMs, we observe that  
 377 legitimate users typically query a prompt-tuned LLM to solve a specific downstream task. However,  
 378 an adversary, intending to steal the functionality of the soft prompt, queries the prompt-tuned LLM

378 with diverse and random inputs to capture the complete functional behavior of the soft prompt.  
 379 Based on this intuition, we design our CAP defense. CAP notes that legitimate users remain task-  
 380 focused when querying and gradually explore the prompt-tuned LLM’s embedding space. However,  
 381 adversarial users probe the LLM aggressively with highly diverse and spread-out queries that cover a  
 382 major part of the embedding space. By tracking these differences in embedding space exploration,  
 383 CAP successfully distinguishes between legitimate and adversarial users.

## 384 385 5.2 COMPONENTS OF CAP

386 **387 Track Embedding Space Coverage.** To effectively monitor the prompt-tuned LLM’s embedding  
 388 space, CAP partitions the embedding space into discrete buckets using Local Sensitive Hashing  
 389 (LSH) (Indyk & Motwani, 1998). LSH enables approximate nearest neighbor (ANN) search in  
 390 high-dimensional spaces by hashing similar objects in the same hash bucket based on a similarity  
 391 metric. Considering the high-dimensional nature of input embeddings, CAP adapts LSH to input  
 392 embeddings to measure the diversity of user queries. The overall coverage of the embedding space  
 393 is computed using three metrics, *Bucket Coverage* ( $C$ ), which quantifies the fraction of buckets  
 394 occupied by the previous query embeddings, *New Bucket Rate* ( $N$ ), which monitors the rate of  
 395 newly filled buckets with increasing number of queries and *Spread* ( $S$ ) that captures how far the  
 396 embeddings are from each other. Collectively, these metrics provide a clear intuition on how much of  
 397 the prompt-tuned LLM’s embedding space is explored and how varied the input queries are. Further,  
 398 a cost function is calibrated based on this coverage.

399 **400 Map Coverage to Perturbations.** The total cost is composed of four terms (see Equation (2)). The  
 401 first term,  $\lambda$ , represents a minimal baseline perturbation, the second term is the coverage penalty,  
 402 where  $C$  represents the bucket coverage of incoming queries,  $\alpha$  is a global scaling factor,  $\beta$  represents  
 403 the sensitivity of the coverage penalty to the bucket coverage, and  $w_c$  determines the contribution of  
 404 coverage penalty in the total cost. This exponential function ensures that the utility of the benign users  
 405 is preserved while heavily penalizing the adversaries. The third term is the new bucket rate penalty,  
 406  $\alpha w_n N$ , where  $N$  represents the change in the coverage. In other words, it measures how many new  
 407 buckets were activated/filled with every incoming query as compared to previous queries, and  $w_n$  is  
 408 its weight. This term penalizes the adversaries who probe the prompt-tuned LLMs with queries that  
 409 expand the overall coverage. The fourth term is the spread penalty,  $\alpha w_s \min(S/S_{\max}, 1)$ , where  $S$   
 410 is the average distance of the embeddings from their mean and  $S_{\max}$  caps the penalty. The LLM  
 411 provider can configure these values to control the degree of penalization.

$$410 \text{TotalCost} = \underbrace{\lambda}_{\text{baseline}} + \underbrace{w_c \left( \left( \frac{\alpha}{\lambda} \right)^{C/\beta} - 1 \right)}_{\text{Bucket coverage penalty}} + \underbrace{\alpha w_n N}_{\text{New bucket rate penalty}} + \underbrace{\alpha w_s \min\left(\frac{S}{S_{\max}}, 1\right)}_{\text{Spread penalty}} \quad (2)$$

412 **413 Penalize adversaries.** We significantly degrade the utility on downstream tasks for an attacker  
 414 extracting soft prompts using API query access by adding Gaussian noise either to the target prompt-  
 415 tuned LLMs’ prompt embeddings (input end of LLM) or outputs (output end of LLM) to defend  
 416 against inversion and last-layer extraction attacks, respectively. The noise added is with a standard  
 417 deviation  $\sigma$  computed using Equation (2). We observe in Figure 4 that downstream performance  
 418 decreases sharply with increasing Gaussian noise scale. This shows that the returned model outputs  
 419 are less useful and become inconsistent for further training or processing, thereby successfully  
 420 mitigating the extraction attacks (see Table 3 and Table 2).

## 421 422 6 EMPIRICAL EVALUATION OF OUR CAP DEFENSE

423 We perform experiments on a wide range of prompt-tuned LLMs with the following pre-trained  
 424 models: Pythia (Biderman et al., 2023) 1.4B and 6.9B, GPT-2 (Radford et al.) Small, T5-base, and  
 425 T5-small (Raffel et al., 2020) to prove the effectiveness of our defense. Similar to (Carlini et al.,  
 426 2024), we use the root mean square error (RMSE) between the actual and recovered final layer weight  
 427 matrix as a metric to measure the success of the extraction attack.

428 Our CAP defense method successfully prevents the inversion from probability vectors to soft prompts.  
 429 Concretely, the accuracy of the reconstructed soft prompts inverted from the probability vectors when  
 430 CAP is enabled is on par with the random performance. CAP is also effective beyond classification  
 431 tasks, such as summarization (see Table 11). Furthermore, based on the experimental results in Table 4,

Table 3: **CAP defense against extraction of functionally equivalent soft prompts in the distillation stage.** CAP significantly penalizes the adversaries while maintaining high downstream performance for legitimate users. (legitimate users denoted by LEGIT, adversaries denoted by ATTACK). Both models use T5-base as the backbone.

| Task   | Type of Query | #Queries | CAP Mode | Accuracy | Random | Zero-shot (%) |
|--------|---------------|----------|----------|----------|--------|---------------|
| AMAZON | ATTACK        | 1000     | OFF      | 91.08    |        |               |
|        | LEGIT         | 1000     | ON       | 86.70    | 49.80  | 49.80         |
|        | ATTACK        | 1000     | ON       | 52.90    |        |               |
| YELP   | ATTACK        | 1000     | OFF      | 93.60    |        |               |
|        | LEGIT         | 1000     | ON       | 88.20    | 51.80  | 51.90         |
|        | ATTACK        | 1000     | ON       | 51.40    |        |               |
| MOVREV | ATTACK        | 1000     | OFF      | 86.00    |        |               |
|        | LEGIT         | 1000     | ON       | 78.54    | 46.70  | 46.60         |
|        | ATTACK        | 1000     | ON       | 50.86    |        |               |

we find that CAP also effectively protects against last-layer extraction (see Appx. D to find details on the attack). The results show that when CAP is enabled, there is a significantly higher RMSE between the original and extracted layer, compared to when CAP is disabled—highlighting its protectiveness. The perturbation added to the logits also causes a substantial discrepancy in the extracted hidden dimensionality of the model, thereby preventing accurate dimension recovery. Based on the results in Table 3, we also show that applying CAP does not affect the model performance of legitimate users much, while degrading the performance significantly for attackers.

Table 4: **CAP against the last-layer extraction.** We report the metrics of the extraction attack and our CAP defense. We issue a different number of discrete prompt queries, measure the coverage of the occupied latent space (%) by the queries' embeddings, report the Noise Level, the size of the Hidden Dimension, and the size of the Stolen Dimension with and without our defense, similarly for RMSE between the original and extracted parameters. *Our defense effectively prevents the stealing of the hidden dimension size and the final-layer parameters.*

| Model       | Queries | Coverage (%) | Noise Level | Hidden Dim | Stolen Dim (CAP disabled) | Stolen Dim (CAP enabled) | RMSE (CAP disabled)       | RMSE (CAP enabled)     |
|-------------|---------|--------------|-------------|------------|---------------------------|--------------------------|---------------------------|------------------------|
| Pythia 1.4B | 5000    | 98.97        | 9.75        | 2048       | 2048                      | 4996                     | $2.29 \times 10^{-7}$     | $2.07 \times 10^{-2}$  |
|             | 10000   | 99.76        | 9.99        | 2048       | 2048                      | 9995                     | $1.73 \times 10^{-8}$     | $2.07 \times 10^{-2}$  |
| T5-small    | 5000    | 62.50        | 3.02        | 512        | 512                       | 1                        | $6.894 \times 10^{-4}$    | $2.250 \times 10^1$    |
|             | 10000   | 63.28        | 3.10        | 512        | 512                       | 1                        | $4.480093 \times 10^{-4}$ | $2.250 \times 10^1$    |
| T5-base     | 5000    | 51.56        | 2.046       | 768        | 768                       | 1                        | $5.02164 \times 10^{-5}$  | $1.8211 \times 10^1$   |
|             | 10000   | 53.12        | 2.168       | 768        | 768                       | 1                        | $3.06884 \times 10^{-5}$  | $1.8211 \times 10^1$   |
| Pythia-6.9B | 5000    | 90.6         | 7.539       | 4096       | 4096                      | 4996                     | $1.01 \times 10^{-6}$     | $1.82 \times 10^{-2}$  |
|             | 10000   | 97.85        | 9.424       | 4096       | 4096                      | 9995                     | $3.298 \times 10^{-7}$    | $1.82 \times 10^{-2}$  |
| GPT-2 Small | 1000    | 63.60        | 7.07        | 768        | 762                       | 448                      | $7.41 \times 10^{-2}$     | $1.43 \times 10^{-1}$  |
|             | 2500    | 91.70        | 19.99       | 768        | 769                       | 448                      | $2.2 \times 10^{-3}$      | $1.43 \times 10^{-1}$  |
|             | 10000   | 100          | 26.87       | 768        | 769                       | 448                      | $1.3 \times 10^{-3}$      | $1.429 \times 10^{-1}$ |

## 7 CAP DEFENSE AGAINST ADAPTIVE SYBIL ADVERSARIES

We consider an adversary who queries the API from  $n$  accounts. For every account, the model outputs (probabilities), which are released to the adversary. The adversary collects these model outputs to train the inversion model. Sybil adversaries try to circumvent our defense by carefully partitioning their diverse queries across multiple accounts and mixing them with less diverse queries. They do this to ensure that our coverage-aware defense does not flag the user as malicious due to the low embedding coverage. Further, the sybil adversary can gather these outputs from different accounts, effectively achieving a high embedding coverage, while still obtaining minimally perturbed outputs and evading detection. To mitigate the risk of sybil-based attacks, we introduce a defense that perturbs model outputs using a random affine transformation. While the random affine transformation remains consistent for a given legitimate user who queries the API from a single account, sybils obtain model outputs tampered by random affine transformations for every account they query the API with. In other words, we apply different affine transformations per account. To evaluate the effectiveness of

486 this defense, we simulate a downstream classification task by using the obtained model outputs. With  
 487 the training of the classifier on consistently transformed model outputs, we observe that high utility is  
 488 preserved for legitimate users, with minimal degradation. On the other hand, Sybil adversaries, who  
 489 receive inconsistent model outputs transformed by random affine transformations from every account,  
 490 observe a significant degradation in the utility, due to ineffective learning. Thus, we show that our  
 491 defense also prevents sybil attacks by preserving the consistency of model outputs for legitimate  
 492 users, while disrupting it for sybil adversaries. The results in the table below show the effectiveness  
 493 of our defense against Sybil adversaries.

494  
 495 **Table 5: Downstream classification accuracy (%) for legitimate and sybil users under our**  
 496 **affine transformation defense.** Legitimate users, with a single account, receive model outputs  
 497 with a *shared* affine transformation across queries, preserving downstream utility. In contrast, sybil  
 498 adversaries receive inconsistently transformed outputs across 4 accounts, severely degrading their  
 499 model’s performance. Results are shown for SST2, MovRev, and IMDB datasets.

| User Type | #Queries | Downstream Task | Downstream Accuracy |
|-----------|----------|-----------------|---------------------|
| LEGIT     | 2000     | SST2            | 95.00               |
| SYBIL     | 500 x 4  | SST2            | 50.60               |
| LEGIT     | 2000     | MovRev          | 88.80               |
| SYBIL     | 500 x 4  | MovRev          | 11.00               |
| LEGIT     | 2000     | IMDB            | 95.20               |
| SYBIL     | 500 x 4  | IMDB            | 4.80                |

## 510 8 CONCLUSIONS

511  
 512 We formalize the inversion from next-token probability vectors of prompt-tuned LLMs to soft prompts.  
 513 We show that it is possible to recover functionally equivalent soft prompts using query-access to  
 514 prompt-tuned LLMs, which achieve comparable model performance on different downstream tasks.  
 515 Given the practical risks posed by this attack, we introduce Coverage Aware Perturbation (CAP),  
 516 an active defense that tracks the embedding coverage of a potential attacker’s diverse queries and  
 517 penalizes too diverse queries while maintaining performance for benign users. Furthermore, we  
 518 show that CAP is also successful in defending against recent last-layer extraction attacks in language  
 519 models. Thereby, our defense successfully protects both ends of LLM APIs and contributes to their  
 520 safe deployment.

521 **Reproducibility Statement.** We use all publicly available standard datasets and model architectures  
 522 for experimental evaluation for our attack and CAP defense. Details regarding the same can be found  
 523 in Section 4. We also provide details regarding hyperparameters in Appx. E. We also provide the  
 524 code as a form of supplementary material during the submission.

## 526 REFERENCES

528 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,  
 529 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.  
 530 *arXiv preprint arXiv:2303.08774*, 2023.

531 Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your  
 532 weakness into a strength: Watermarking deep neural networks by backdooring. In *27th USENIX*  
 533 *security symposium (USENIX Security 18)*, pp. 1615–1631, 2018.

534 Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,  
 535 Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. *arXiv*  
 536 *preprint arXiv:2305.10403*, 2023.

538 Luke Bailey, Gustaf Ahdritz, Anat Kleiman, Siddharth Swaroop, Finale Doshi-Velez, and Weiwei  
 539 Pan. Soft prompting might be a bug, not a feature. *International Conference on Machine Learning*,  
 2023.

540 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan,  
 541 Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: a  
 542 suite for analyzing large language models across training and scaling. In *Proceedings of the 40th*  
 543 *International Conference on Machine Learning*, pp. 2397–2430, 2023.

544 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,  
 545 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are  
 546 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

547 Nicholas Carlini, Daniel Paleka, Krishnamurthy Dvijotham, Thomas Steinke, Jonathan Hayase,  
 548 A Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy, et al. Stealing part  
 549 of a production language model. In *Proceedings of the 41st International Conference on Machine*  
 550 *Learning*, pp. 5680–5705, 2024.

551 Steven Chen, Nicholas Carlini, and David Wagner. Stateful detection of black-box adversarial attacks.  
 552 In *Proceedings of the 1st ACM Workshop on Security and Privacy on Artificial Intelligence*, pp.  
 553 30–39, 2020.

554 Cohere. Cohere documentation, 2025. URL <https://docs.cohere.com/>. Accessed: 2025-  
 555 09-16.

556 Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing  
 557 scheme based on p-stable distributions. In *Proceedings of the twentieth annual symposium on*  
 558 *Computational geometry*, pp. 253–262, 2004.

559 Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochastic  
 560 parrots: Differentially private prompt learning for large language models. *Advances in Neural*  
 561 *Information Processing Systems*, 36:76852–76871, 2023.

562 Jan Dubinski, Stanislaw Pawlak, Franziska Boenisch, Tomasz Trzcinski, and Adam Dziedzic. Bucks  
 563 for buckets (b4b): Active defenses against stealing encoders. In *NeurIPS*, 2023.

564 Adam Dziedzic, Franziska Boenisch, Mingjian Jiang, Haonan Duan, and Nicolas Papernot. Sentence  
 565 embedding encoders are easy to steal but hard to defend. In *ICLR 2023 Workshop on Pitfalls of*  
 566 *limited data and computation for Trustworthy ML*, a.

567 Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, and Nicolas Papernot. Increasing the  
 568 cost of model extraction with calibrated proof of work. In *International Conference on Learning*  
 569 *Representations*, b.

570 Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, and Nicolas Papernot.  
 571 On the difficulty of defending self-supervised learning against model extraction. In *International*  
 572 *Conference on Machine Learning*, pp. 5757–5776. PMLR, 2022a.

573 Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis  
 574 Cattan, Franziska Boenisch, and Nicolas Papernot. Dataset inference for self-supervised models.  
 575 *Advances in Neural Information Processing Systems*, 35:12058–12070, 2022b.

576 Matthew Finlayson, Xiang Ren, and Swabha Swayamdipta. Logits of api-protected llms leak  
 577 proprietary information. In *First Conference on Language Modeling*.

578 Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence  
 579 information and basic countermeasures. In *Proceedings of the 22nd ACM SIGSAC conference on*  
 580 *computer and communications security*, pp. 1322–1333, 2015.

581 Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas Ristenpart.  
 582 Privacy in pharmacogenetics: An {End-to-End} case study of personalized warfarin dosing. In  
 583 *23rd USENIX security symposium (USENIX Security 14)*, pp. 17–32, 2014.

584 Freethink. Ai copyright violations: What happens when ai replicates protected work, 2025. URL  
 585 <https://www.freethink.com/robots-ai/ai-copyright-violations>. Accessed: 2025-09-15.

594 Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot  
 595 learners. In *Proceedings of the 59th Annual Meeting of the Association for Computational*  
 596 *Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume*  
 597 *1: Long Papers)*, pp. 3816–3830, 2021.

598 Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning  
 599 for large models: A comprehensive survey. *Transactions on Machine Learning Research*, 2024,  
 600 2024.

601 Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola Olatunji, Michael Backes, and Adam  
 602 Dziedzic. Open llms are necessary for current private adaptations and outperform their closed  
 603 alternatives. *Advances in Neural Information Processing Systems*, 37:1220–1250, 2024.

604 Eric Harper, Somshubra Majumdar, Oleksii Kuchaiev, Li Jason, Yang Zhang, Evelina Bakhturina,  
 605 Vahid Noroozi, Sandeep Subramanian, Koluguri Nithin, Huang Jocelyn, et al. Nemo: a toolkit for  
 606 conversational ai and large language models. *URL <https://github.com/NVIDIA/NeMo>*, 2024.

607 Markus Hiller, Krista A Ehinger, and Tom Drummond. Perceiving longer sequences with bi-  
 608 directional cross-attention transformers. *Advances in Neural Information Processing Systems*, 37:  
 609 94097–94129, 2024.

610 Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-  
 611 distribution image without learning from out-of-distribution data. In *Proceedings of the IEEE/CVF*  
 612 *conference on computer vision and pattern recognition*, pp. 10951–10960, 2020.

613 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,  
 614 et al. Lora: Low-rank adaptation of large language models. In *International Conference on*  
 615 *Learning Representations*.

616 IBM. Prompt tuning, 2025. *URL [https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-tuning-methods-prompt.html?context=](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-tuning-methods-prompt.html?context=wx)*  
 617 *wx*. Accessed: 2025-09-15.

618 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of  
 619 dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*,  
 620 pp. 604–613, 1998.

621 Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, and Nicolas Papernot. High  
 622 accuracy and high fidelity extraction of neural networks. In *29th USENIX security symposium* (USENIX  
 623 Security 20), pp. 1345–1362, 2020.

624 Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. Entangled  
 625 watermarks as a defense against model extraction. In *30th USENIX security symposium* (USENIX  
 626 Security 21), pp. 1937–1954, 2021.

627 Mika Juuti, Sebastian Szyller, Samuel Marchal, and N Asokan. Prada: protecting against dnn model  
 628 stealing attacks. In *2019 IEEE European Symposium on Security and Privacy (EuroS&P)*, pp.  
 629 512–527. IEEE, 2019.

630 Sanjay Kariyappa and Moinuddin K Qureshi. Defending against model stealing attacks with adaptive  
 631 misinformation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
 632 *recognition*, pp. 770–778, 2020.

633 Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi. Protecting dnns from theft using an  
 634 ensemble of diverse models. In *International Conference on Learning Representations*, 2021.

635 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:  
 636 Fast autoregressive transformers with linear attention. In *International conference on machine*  
 637 *learning*, pp. 5156–5165. PMLR, 2020.

638 Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. Model extraction warning in  
 639 mlaas paradigm. In *Proceedings of the 34th annual computer security applications conference*, pp.  
 640 371–380, 2018.

648 Kalpesh Krishna, Gaurav Singh Tomar, Ankur P Parikh, Nicolas Papernot, and Mohit Iyyer. Thieves  
 649 on sesame street! model extraction of bert-based apis. In *International Conference on Learning*  
 650 *Representations*.

651 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathematical*  
 652 *statistics*, 22(1):79–86, 1951.

653 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt  
 654 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language*  
 655 *Processing*. Association for Computational Linguistics, 2021.

656 Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,  
 657 Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, et al. Datasets: A  
 658 community library for natural language processing. In *Proceedings of the 2021 Conference on*  
 659 *Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 175–184, 2021.

660 Haoran Li, Mingshi Xu, and Yangqiu Song. Sentence embedding leaks more information than you  
 661 expect: Generative embedding inversion attack to recover the whole sentence. In *Findings of the*  
 662 *Association for Computational Linguistics: ACL 2023*, pp. 14022–14040, 2023.

663 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In  
 664 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*  
 665 *11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*.  
 666 Association for Computational Linguistics, 2021.

667 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and  
 668 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context  
 669 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022a.

670 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:  
 671 Prompt tuning can be comparable to fine-tuning across scales and tasks. In *Proceedings of the 60th*  
 672 *Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.  
 673 61–68, 2022b.

674 Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt  
 675 understands, too. *AI Open*, 5:208–215, 2024.

676 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike  
 677 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining  
 678 approach. *arXiv preprint arXiv:1907.11692*, 2019.

679 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.  
 680 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the*  
 681 *association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

682 Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. Llm dataset inference: Did you  
 683 train on my dataset? *Advances in Neural Information Processing Systems*, 37:124069–124092,  
 2024.

684 Mantas Mazeika, Bo Li, and David Forsyth. How to steer your adversary: Targeted and efficient  
 685 model stealing defenses with gradient redirection. In *International conference on machine learning*,  
 686 pp. 15241–15254. PMLR, 2022.

687 John Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M Rush. Text embeddings  
 688 reveal (almost) as much as text. In *Proceedings of the 2023 Conference on Empirical Methods in*  
 689 *Natural Language Processing*, pp. 12448–12460, 2023.

690 John X Morris, Wenting Zhao, Justin T Chiu, Vitaly Shmatikov, and Alexander M Rush. Language  
 691 model inversion. In *ICLR*, 2024.

692 Ali Naseh, Kalpesh Krishna, Mohit Iyyer, and Amir Houmansadr. Stealing the decoding algorithms  
 693 of language models. In *CCS*, 2023.

702 Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Prediction poisoning: Towards defenses  
 703 against dnn model stealing attacks. In *8th International Conference on Learning Representations*,  
 704 2020.

705 D. Paleka. prompts\_10000.csv. [https://github.com/dpaleka/stealing-part-1m-supplementary/blob/6fa1d1a87b06e00228330711eb661cee58b4740d/query\\_logprobs\\_emulator/prompts\\_10000.csv](https://github.com/dpaleka/stealing-part-1m-supplementary/blob/6fa1d1a87b06e00228330711eb661cee58b4740d/query_logprobs_emulator/prompts_10000.csv)#L4, 2025.

710 Ashwinee Panda, Christopher A Choquette-Choo, Zhengming Zhang, Yaoqing Yang, and Prateek  
 711 Mittal. Teach llms to phish: Stealing private information from language models. In *The Twelfth  
 712 International Conference on Learning Representations*.

713 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language  
 714 models are unsupervised multitask learners.

715 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi  
 716 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text  
 717 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

718 Google Research. Prompt tuning: Pretrained prompts for t5.1.1-lm100k-base, 2021. URL  
 719 [https://github.com/google-research/prompt-tuning/tree/main/prompt\\_tuning/pretrained\\_prompts/t5\\_1\\_1\\_lm100k\\_base](https://github.com/google-research/prompt-tuning/tree/main/prompt_tuning/pretrained_prompts/t5_1_1_lm100k_base). Accessed: 2025-09-16.

720 Zeyang Sha and Yang Zhang. Prompt stealing attacks against large language models. *CoRR*, 2024.

721 Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:  
 722 Eliciting knowledge from language models with automatically generated prompts. In *Proceedings  
 723 of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pp.  
 724 4222–4235, 2020.

725 Piotr Teterwak, Chiyuan Zhang, Dilip Krishnan, and Michael C Mozer. Understanding invariance  
 726 via feedforward inversion of discriminatively trained classifiers. In *International Conference on  
 727 Machine Learning*, pp. 10225–10235. PMLR, 2021.

728 Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing machine  
 729 learning models via prediction {APIs}. In *25th USENIX security symposium (USENIX Security  
 730 16)*, pp. 601–618, 2016.

731 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
 732 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing  
 733 systems*, 30, 2017.

734 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:  
 735 A multi-task benchmark and analysis platform for natural language understanding. In *International  
 736 Conference on Learning Representations*.

737 Xun Wang, Jing Xu, Franziska Boenisch, Michael Backes, Christopher A Choquette-Choo, and  
 738 Adam Dziedzic. Efficient and privacy-preserving soft prompt transfer for llms. *arXiv preprint  
 739 arXiv:2506.16196*, 2025.

740 Dong-Dong Wu, Chilin Fu, Weichang Wu, Wenwen Xia, Xiaolu Zhang, Jun Zhou, and Min-Ling  
 741 Zhang. Efficient model stealing defense with noise transition matrix. In *CVPR*, 2024.

742 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and  
 743 Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *11th International  
 744 Conference on Learning Representations, ICLR 2023*, 2023.

745 Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, and Yushun Dong. A  
 746 survey on model extraction attacks and defenses for large language models. In *Proceedings of the  
 747 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2*, pp. 6227–6236,  
 748 2025.

756 Xinyao Zheng, Husheng Han, Shangyi Shi, Qiyan Fang, Zidong Du, Xing Hu, and Qi Guo.  
 757 Inputsnatch: Stealing input in llm services via timing side-channel attacks. *arXiv preprint*  
 758 *arXiv:2411.18191*, 2024a.

760 Yuanhang Zheng, Zhixing Tan, Peng Li, and Yang Liu. Black-box prompt tuning with subspace  
 761 learning. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:3002–3013,  
 762 2024b.

763

## 764 A ADDITIONAL RELATED WORK

765

766 **Discrete Prompt Stealing.** (Sha & Zhang, 2024) showed how to steal the text-based prompts.  
 767 They motivate this attempt by arguing that organizations increasingly rely on carefully engineered  
 768 prompts to elicit high-quality outputs from large language models (LLMs). This attack also aims to  
 769 recover such proprietary discrete prompts using only the model’s generated outputs. The proposed  
 770 method comprises two key components: (1) inferring structural properties of the original prompt (*e.g.*,  
 771 whether it is direct, role-based, or in-context), and (2) regenerating a prompt that closely resembles  
 772 the original. Their results demonstrate that even subtle properties, such as the number of examples or  
 773 specific instructions, can be reliably inferred and reconstructed. This work highlights a critical and  
 774 emerging threat to the intellectual property and security of prompt engineering practices.

775 **LLM Data Extraction.** A recent line of work introduces a practical data extraction attack termed  
 776 neural phishing (Panda et al.). This attack enables adversaries to extract sensitive or personally  
 777 identifiable information (PII), such as credit card numbers, from models trained on user data, achiev-  
 778 ing notably high success rates in some cases. Crucially, neural phishing operates under minimal  
 779 assumptions: the attacker is only required to inject a small number of benign-looking sentences into  
 780 the training corpus, guided merely by vague priors about the structure of the underlying user data.  
 781 This highlights the risks posed even by subtle and plausibly deniable data poisoning strategies.

782 **Stateful Active Defenses against Model Stealing.** We also further elaborate on other type of active  
 783 defenses that explicitly maintain a state of the users’ queries, similarly as the passive defenses,  
 784 but instead of stopping the service, they lower the quality of outputs. For example, the adaptive  
 785 misinformation defense proposed by (Kariyappa & Qureshi, 2020) aims to degrade model stealing  
 786 attempts by identifying whether a query is ID or OOD. For OOD queries, the defense deliberately  
 787 returns incorrect predictions. While effective in reducing the accuracy of an attacker’s stolen  
 788 model, particularly when the attacker lacks access to ID samples, this approach also risks degrading  
 789 performance for benign users. The defense relies on an OOD detector trained with both ID and OOD  
 790 data. In a follow-up work, (Kariyappa et al., 2021) propose an alternative defense that trains an  
 791 ensemble of diverse models. This ensemble is designed to yield accurate predictions on ID queries  
 792 while producing inconsistent or dissimilar outputs for OOD queries. A hash function, assumed to  
 793 be secret, is used to select the appropriate model in the ensemble for each query. Both approaches,  
 794 however, rely on prior knowledge of the attacker’s OOD data, which is typically difficult to define in  
 795 advance. As Hsu et al. (2020) note, the process of selecting representative OOD data can introduce  
 796 significant bias, thereby limiting the robustness and generalizability of such defenses.

797 **Local Sensitive Hashing (LSH).** LSH is a probabilistic technique, introduced in (Indyk & Motwani,  
 798 1998) and expanded in (Datar et al., 2004), and hashes similar objects in similar hash buckets. In our  
 799 work, we use random projection for cosine similarity. Each hash function  $h_r$  is defined as:

$$h_r(\mathbf{x}) = \text{sign}(\mathbf{r}^\top \mathbf{x}),$$

800 This hash function maps the input vector  $\mathbf{x} \in \mathbb{R}^d$  to one binary value depending on the sign of its  
 801 projection along a randomly chosen direction  $\mathbf{r} \in \mathbb{R}^d$ . Using multiple random vectors, a hash code  
 802 can be defined to place  $\mathbf{x}$  in a specific bucket.

803 **Parameter-Efficient Fine-Tuning (PEFT).** PEFT methods are techniques that adapt large pre-trained  
 804 language models (PLMs) to downstream tasks by fine-tuning only a small subset of parameters,  
 805 thereby reducing computational cost, memory usage, and storage requirements while achieving  
 806 superior performance. *Soft prompt tuning* is a widely used PEFT method in which a small number of  
 807 trainable virtual tokens are prepended/added to the input sequence. These tokens encode task-specific  
 808 information. The virtual token embeddings are optimized during soft prompt tuning. The Hugging  
 809

810 Face PEFT library provides a framework for incorporating PEFT techniques within the Transformers  
 811 ecosystem.  
 812

813 **B ADDITIONAL EXPERIMENTS**  
 814

815  
 816 **Table 6: Breakdown of Runtime (in seconds) of our Attack Pipeline using the Amazon task, with**  
 817 **evaluation on YELP task.** The total attack cost includes (A) Distillation stage, with the following  
 818 sub-steps: 1) Querying and obtaining responses from prompt-tuned LLM, with T5-base as the  
 819 backbone architecture 2) Optimizing the randomly initialized soft prompt to mimic the prompt-tuned  
 820 LLM’s outputs, (B) Inversion stage, with the following substeps: 1) Training an inversion model on  
 821 the model responses and extracted soft prompt embedding of AMAZON task 2) Using the trained  
 822 inversion model to extract soft prompt for YELP task. The inversion stage includes reshaping the  
 823 high-dimensional probability vector and further training it. We show that our inversion process offers  
 824 an efficient alternative to tuning prompts from scratch, as the inversion cost is even lower than the  
 825 cost to tune a prompt from scratch and further amortized when several soft prompts are inverted  
 826 instead of fine-tuned.  
 827

| Attack Stage (AMAZON)                          | Runtime (seconds) |
|------------------------------------------------|-------------------|
| <b>A. Distillation</b>                         |                   |
| (1) Obtain softmax outputs for 1K text queries | 127.81            |
| (2) Optimization / extraction                  | 339.80            |
| <b>Total Distillation Runtime</b>              | 467.61            |
| <b>B. Inversion</b>                            |                   |
| (1) Inversion model training                   | 20.60             |
| (2) Inversion                                  | 0.0222            |
| <b>Total Inversion Runtime</b>                 | 20.6222           |
| <b>Complete Attack Runtime</b>                 | 488.2322          |
| <b>C. Prompt Tuning from Scratch</b>           |                   |
| YELP                                           | 11,021            |

841  
 842 **Table 7: Comparison of target and adversary LLMs’ downstream performance when both**  
 843 **of their underlying model architectures are different.** We report the downstream performance  
 844 for the target prompt-tuned LLM and the adversary’s prompt-tuned LLM, considering that both  
 845 the tuned LLMs do not share the same underlying model architecture. It is observed that the  
 846 downstream performance with adversary’s tuned LLM is not only substantially higher than with  
 847 randomly initialized prompt embedding, but is also closely matching the target prompt-tuned LLM.  
 848

| Task   | Target LLM | Adversary LLM | Target (%) | Adversary(%) | Random (%) |
|--------|------------|---------------|------------|--------------|------------|
| AMAZON | T5-base    | T5-small      | 90.89      | 86.46        | 49.80      |
| YELP   | T5-base    | T5-small      | 93.90      | 89.14        | 51.80      |
| SST-2  | T5-base    | T5-small      | 93.69      | 89.33        | 50.60      |
| MOVREV | T5-base    | T5-small      | 82.27      | 80.58        | 50.00      |
| AMAZON | T5-base    | T5-large      | 90.89      | 90.21        | 49.80      |

854  
 855 **C TIMING-BASED SOFT PROMPT LENGTH EXTRACTION ATTACK**  
 856

857 We conduct the first timing side-channel-based soft prompt length extraction attack, which precisely  
 858 estimates the number of virtual tokens used by the prompt-tuned LLM in a black-box setup. We show  
 859 that the seemingly unimportant metadata about the prompt-tuned model, like the soft prompt’s length,  
 860 can be leveraged to further expedite our extraction and inversion attacks against prompt-tuned LLMs.  
 861

862 Determining the exact length of the soft prompt employed by a prompt-tuned LLM is particularly  
 863 challenging. On querying the API that hosts the prompt-tuned LLM in a black-box setup, users  
 864 do not have access to the soft prompt embedding and length. Users can only access the model’s

864 **Table 8: Extraction of functionally equivalent soft prompts with encoder-only model architecture.**  
 865 We report the downstream performance for the target and adversary’s prompt-tuned LLM, and target  
 866 LLM with a randomly initialized soft prompt embedding. It is observed that for encoder-only  
 867 architectures like roberta-base, the downstream performance with the extracted prompt is comparable  
 868 to that with the target prompt.

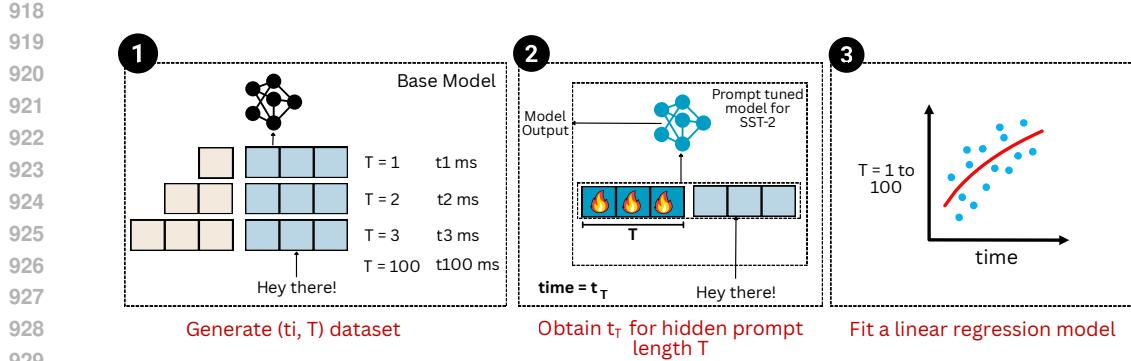
| 870 <b>Dataset</b> | 871 <b>Target Model</b> | 872 <b>Target(%)</b> | 873 <b>Adversary(%)</b> | 874 <b>Random(%)</b> |
|--------------------|-------------------------|----------------------|-------------------------|----------------------|
| SST-2              | roberta-base            | 92.32                | 90.48                   | 49.08                |
| IMDB               | roberta-base            | 91.07                | 90.12                   | 49.88                |
| MOVREV             | roberta-base            | 85.37                | 81.24                   | 50.00                |

876 **Table 9: Extraction of functionally equivalent soft prompts with partial probability access.** We  
 877 report downstream accuracy (%) for the target prompt-tuned LLM, the adversary’s prompt-tuned  
 878 LLM, the target model with randomly initialized prompts, and the target model without soft prompts  
 879 (zero-shot), assuming access to the top- $k$  probabilities. Both target and adversary models use T5-base  
 880 as the backbone.

| 882 <b>Task</b>            | 883 <b><math>k</math></b> | 884 <b>Target (%)</b> | 885 <b>Adversary (%)</b> | 886 <b>Random (%)</b> | 887 <b>Zero-shot (%)</b> |
|----------------------------|---------------------------|-----------------------|--------------------------|-----------------------|--------------------------|
| <b>Top-5 Probabilities</b> |                           |                       |                          |                       |                          |
| YELP                       | 5                         | 93.60                 | 92.20                    | 51.80                 | <b>51.90</b>             |
| AMAZON                     | 5                         | 90.40                 | 89.80                    | 49.80                 | <b>49.80</b>             |
| MOVREV                     | 5                         | 83.02                 | 83.48                    | 46.70                 | <b>50.09</b>             |
| <b>Top-1 (Argmax Only)</b> |                           |                       |                          |                       |                          |
| YELP                       | 1                         | 93.60                 | 51.50                    | 51.80                 | <b>51.90</b>             |
| AMAZON                     | 1                         | 90.40                 | 49.70                    | 49.80                 | <b>49.80</b>             |
| MOVREV                     | 1                         | 83.02                 | 46.80                    | 46.70                 | <b>50.09</b>             |

898 outputs. However, even the most descriptive LLM output, like probability distribution over the  
 899 vocabulary, does not inform the adversary about the precise length of the hidden soft prompt. This  
 900 is because soft prompts are continuous embeddings that are prepended to the actual input text  
 901 embeddings to form a concatenated input representation, which is collectively processed by the  
 902 model’s attention mechanism. This embedding sequence lacks an explicit demarcation between the  
 903 soft prompt embeddings and input text embeddings, making it infeasible for an adversary who can  
 904 solely observe outputs to estimate the length of the soft prompt. Moreover, (Lester et al., 2021)  
 905 shows that the correlation between prompt length and performance is not linear beyond a certain  
 906 length threshold, with performance gains plateauing after 20 virtual tokens. This makes the prompt  
 907 length estimation more intractable, as similar downstream performances could result from vastly  
 908 different prompt lengths. We circumvent these limitations by proposing the first timing-based side  
 909 channel attack to determine the length of the soft prompt. The key insight behind this side-channel  
 910 attack is that longer sequences require more time for the model to process, as also demonstrated  
 911 in (Vaswani et al., 2017; Katharopoulos et al., 2020; Hiller et al., 2024; Zhang et al., 2023). By  
 912 carefully analyzing how varying the length of the prompt influences the model’s response latency,  
 913 SPLIT effectively determines the length of the soft prompt in a black-box access setup.

914  
 915 **Problem.** We consider the problem of precisely extracting the length  $T$  of the soft prompt employed  
 916 by the prompt-tuned LLM. Concretely, given a black-box query access to a prompt-tuned LLM whose  
 917 underlying model architecture is known to an adversary, we aim to determine if an adversary can  
 infer the length  $T$  of the prompt used by the LLM.



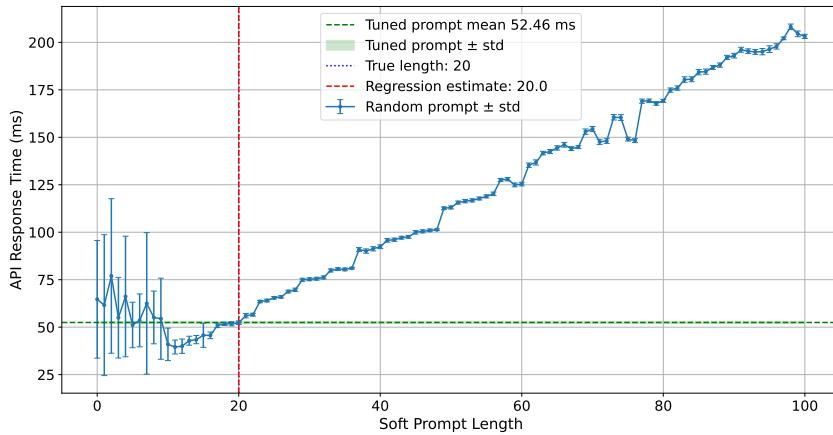


Figure 3: **Estimating the length of the soft prompt via timing-based side channel attack.** We present API response latency as a function of the number of virtual tokens/soft prompt length used. We observe that there is a monotonic relationship between the soft prompt length and API response time, and that it is possible to determine the exact length of the soft prompt, hidden from an adversary.

## D STATE-OF-THE-ART PRODUCTION LANGUAGE MODEL EXTRACTION ATTACKS

Our proposed defense CAP defends against the state-of-the-art extraction attack by (Carlini et al., 2024). In this section, we discuss more about this extraction attack. This work by (Carlini et al., 2024) highlights the security risk of such an attack on production language models like OpenAI’s GPT, Google’s PaLM, etc. The attack primarily focuses on extracting information such as dimensionality and final layer weight matrix from production language models. The work emphasizes that despite these models being accessible to users through black-box APIs, significant information about LLMs—like hidden dimensionality and the last-layer weight matrix—can be successfully extracted. Their attack mainly exploits the API features that reveal the output logits of the model, thereby recovering critical information about the model architecture.

**Attack Intuition and Methodology.** We first discuss the attacker’s threat model. The attacker has black box access to a production language model, meaning the attacker can query the LLM via the API but does not have access to information about the model architecture, including weights, training data, etc. The attacker sends a large number of queries to the LLM and analyzes the obtained model outputs, in the form of logits. The key insight about the attack is that the last layer of the transformer model, which maps the hidden states to logits, is a linear transformation that typically has a low rank. This final layer can be approximated using the output logits collected by the attacker. Due to the low-rank structure of the final layer, diverse or linearly independent queries sent by the attacker explore new directions in the embedding space. With enough linearly independent or diverse queries, the attacker can recover the dimensionality of several production language models and further extract the final-layer weight matrix of the transformer model. While the work explores different levels of API access, including full logits and top-k logits, we primarily focus on the scenario where the API exposes full logits.

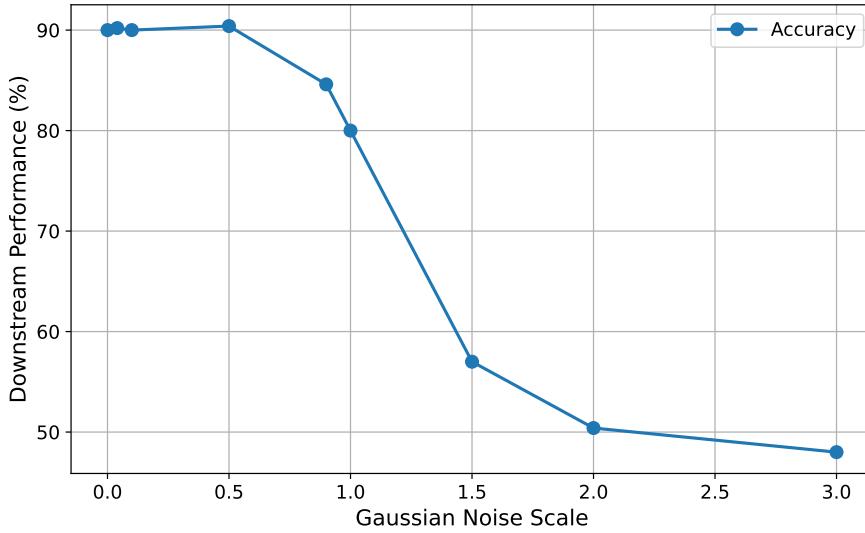
Empirical evidence demonstrates that this attack approach is quite effective and results in very low reconstruction error between the original and recovered last layer weight matrix. Additionally, this approach reveals an almost accurate dimensionality of several production language models.

## E DETAILS ON HYPERPARAMETERS

We present the details on hyperparameters for our attack and CAP defense in this section. We perform our experiments with Python 3.13, Pytorch, and use a server with 4X NVIDIA A100 GPUs.

1026 Table 10: **Breakdown of Runtime (in seconds) of our defense pipeline using the AMAZON**  
 1027 **task.** We quantify the computational overhead for each of the components of the CAP defense  
 1028 pipeline to assess the efficiency and scalability of our defense. As a prompt-tuned LLM provider, this  
 1029 computational expense is significantly less than tuning a prompt from scratch in the bigger workflow.

| Defense Stage                | Runtime (seconds) |
|------------------------------|-------------------|
| (1) Coverage computation     | 171.47            |
| (2) Spread computation       | 0.87              |
| (3) Noise perturbation       | 0.66              |
| <b>Total Defense Runtime</b> | <b>378.03</b>     |



1056 Figure 4: **Downstream performance decreases as the soft prompt is perturbed more.**

1059 In our experiments on in-distribution queries, the adversary assumes to have knowledge of the  
 1060 distribution from which the prompt tuning data comes. Thus, if we consider a downstream task,  
 1061 Amazon Polarity, the adversary only queries the prompt-tuned LLM with this dataset. However, in  
 1062 our experiments on OOD queries, the adversary’s prompt-tuned LLM is distilled from the teacher  
 1063 using text queries sampled from different downstream datasets (Amazon Polarity, YELP, IMDB, AG  
 1064 News, Rotten Tomatoes movie reviews, SST-2, DBpedia, SNLI, MNLI, TweetEval, and synthetic text  
 1065 queries). We use a batch size of 32 and a learning rate of  $5 \times 10^{-3}$  and 30 epochs. The maximum  
 1066 sequence length is set to 128 tokens. During inversion, we apply a linear transformation function  
 1067 to the prompt extracted from the distillation stage, as shown in Figure 1. This is to ensure that the  
 1068 model does not overfit to the extracted prompt embedding. The Gaussian noise added has a noise  
 1069 scale of 0.1, ensuring that the downstream performance remains unaffected. This observation also  
 1070 comes from Figure 4. For our CAP defense against soft prompt extraction attacks, we set the number  
 1071 of buckets to  $2^{11}$ , which equals 2048 buckets. The baseline noise  $\lambda$  is set to 0.0005. The scaling  
 1072 factor  $\alpha$  is chosen as 8.0, while the parameter  $\beta$  is set to 0.19. The batch size for computing coverage  
 1073 and spread is 100. Additionally, the weights for the different components of the defense are specified  
 1074 as follows: the coverage weight is 0.05, the novelty weight is 0.35, and the spread weight is 0.45.  
 1075 The LLM provider sets these values as per the desired degree of penalization.

1076 **Choice of T5 Backbone.** Our entire pipeline is based on the T5 architecture. T5 uses a pure  
 1077 text-to-text framework: every task—classification, sentiment analysis, NLI passes through the same  
 1078 decoder interface, thereby providing the next-token probability distribution. This uniformity allows  
 1079 us to design a single inversion model that could be used across multiple tasks. Choosing T5 therefore  
 provides architectural simplicity consistent with widely deployed prompt-tuned systems.

1080  
1081 Table 11: **Summarization results on CNN and ArXiv.** We report ROUGE-1/2/L scores of the target  
1082 prompt-tuned LLM (teacher) and evaluate reconstructed and random prompts on the same datasets.  
1083

| 1083 <b>Task</b>                   | 1084 <b>Target LLM (Teacher)</b> | 1085 <b>Reconstructed Prompt</b> | 1086 <b>Random Prompt</b> |
|------------------------------------|----------------------------------|----------------------------------|---------------------------|
| <i>ROUGE-1 / ROUGE-2 / ROUGE-L</i> |                                  |                                  |                           |
| 1086 CNN                           | 0.2621 / 0.1035 / 0.1928         | 0.1191 / 0.0460 / 0.0874         | 0.1530 / 0.0591 / 0.1142  |
| 1087 ArXiv                         | 0.1726 / 0.0461 / 0.1156         | 0.0212 / 0.0061 / 0.0148         | 0.1713 / 0.0449 / 0.1150  |

1088  
1089  
1090 **Hyperparameters for CAP defense against last-layer extraction attack.** To query the prompt-  
1091 tuned LLM, we use a set of prompts curated in Paleka (2025). Additionally, we use a gap threshold  
1092 of 5.0 and a minimum singular value of 1e-6.  
1093

## 1094 F RUNTIME FOR OUR INVERSION ATTACK AND CAP DEFENSE

1095  
1096 We present insights into the overhead that the attack and the CAP defense may introduce in Table 6  
1097 and Table 10, respectively. First, we compute the prompt tuning time with T5-base based on a  
1098 representative task, YELP, and find that it takes approximately 11,021 seconds in total. However,  
1099 our attack pipeline, based on AMAZON, takes significantly less time (488.23 seconds) than tuning  
1100 a prompt from scratch to extract a functionally equivalent soft prompt of unseen downstream task  
1101 YELP.  
1102

1103 **The Use of Large Language Models.** In this work, we acknowledge that Large Language Models  
1104 (LLMs) were used for exploring research literature related to the topic of the paper and to polish  
1105 the writing. Additionally, we utilized LLMs as one of the sources for verifying and debugging our  
1106 experimental implementation.  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133