
Evolutionary Preference-Based
Reinforcement Learning

for Partially Observable Environments

Lukas Fülle∗
Ulm University

Institute of Artificial Intelligence
Ulm, Germany

lukas.fuelle@uni-ulm.de

Jakob Karalus
Ulm University

Institute of Artificial Intelligence
Ulm, Germany

jakob.karalus@uni-ulm.de

Friedhelm Schwenker
Ulm University

Institute of Neural Information Processing
Ulm, Germany

friedhelm.schwenker@uni-ulm.de

Abstract

A significant challenge in reinforcement learning is how to accurately convey our
desires to the artificial agent. Preference-based reinforcement learning uses human
preferences between concrete examples of the agent’s behavior to model the reward
or the return function the human intends. However, the existing models discard
much information and can therefore be less accurate than possible, especially if the
environment is only partially observable.
To overcome this limitation, the model presented in this work combines all avail-
able information (all observations made during one episode) through a temporal
convolutional net to model the return function, instead of the reward function, from
preferences. The reinforcement learning – implemented with a genetic algorithm –
is then guided by this model.
We show that our method is a viable way to apply preference-based reinforcement
learning in partially observable environments.

1 Introduction

To make an artificial intelligent agent learn desired behavior, one simple but powerful paradigm is
reinforcement learning (RL), which uses as the only guidance a function (called reward function) that
quantifies the desirability of every possible behavior. But when specifying a reward function, taking
every possible behavior into consideration might be very difficult. In such cases, when applied to
behavior we did not foresee, the reward function is prone to misrepresenting our desires, which can
cause the agent to learn undesired – even harmful – behavior.

Human-in-the-loop reinforcement learning tries to solve this alignment problem of the reward
specification by removing the reward function and instead try to learn from a human directly. This
can be done through various mechanisms like evaluative feedback, advice, demonstration, correction,
or preferences.

∗Primary Author

16th European Workshop on Reinforcement Learning (EWRL 2023).

Prefence-based reinforcement learning (PBRL), a human-in-the-loop reinforcement learning variant,
modifies the concept to use not on an abstract reward function, but only preferences between concrete
examples of the agent’s current behavior, from which a model of the reward function we intend
is deduced. This model is continuously updated with new preferences so that errors it has can be
corrected.

While PBRL has shown application in a lot of different domains, the field recently received increased
attention from the research community through its application in the field of natural language
processing (NLP). Most prominent here is the usage in ChatGPT (Ouyang et al. 2022) where a
method similar to (Christiano et al. 2017) has been used to fine-tune a large language model. While
our improvements focus on more traditional RL problem formulations (instead of NLP), we believe
our methods could also show potential there.

Previously existing PBRL methods have the weakness of being infeasible to be applied in partially
observable Markov decision processes (POMDPs), because the model of the reward function they
train discards much useful information from the agent’s observations: They model each reward as
depending only on a compressed aggregation of many observations (Akrour et al. 2012) or on a single
observation the agent has made of the state (Christiano et al. 2017). The latter is sufficient if each
observation contains complete information about the state – but in general, the environment might
only be partially observable; then, modelling the reward as a function of single observations will be
inaccurate. Practically every realistic environment is partially observable, so this is a great restriction.

The variant of preference-based reinforcement learning introduced in this work features a model that
is general enough to represent our reward function as accurately as possible even if the environment
is only partially observable. The solution it uses is to remember and combine multiple observations:
Instead of modelling each reward as depending on a single observation, the model combines (via a
temporal convolutional net (Bai et al. 2018)) all observations the agent has made of the environment
during one episode of interacting with it to model the sum of rewards over the episode (that is, the
return). It does this by requiring only preferences between the agent’s behavior during different
episodes.

The fact that the model provides not reward values directly but only return values shrinks the set of
reinforcement learning algorithms that can use it as guidance. One suitable class of them are genetic
algorithms.

We evaluate our method on two different partially observable environments, showing that it is able
to solve these kinds of tasks. Additionally, it is compared to (among other things) an ablation
made to resemble some previous PBRL methods, in which its return model is replaced by a reward
model. Our source code and data are available online at https://codeberg.org/fulllness/
pbrl-for-pomdps.

2 Background

2.1 Reinforcement learning

The following formalization2 of reinforcement learning is known as a partially observable Markov
decision process (POMDP). It is characterized by the functions p and ω (described below) and the
four sets:

• S: the states the environment in which the agent acts can take on;

• O: the possible observations the agent can make of the environment;

• A: the actions the agent can take; and

• R ⊂ R: the reward values the agent can receive.

The interaction between the agent and the environment can be described as a series of actual
states S ∈ S, observations O ∈ O, actions A ∈ A and rewards R ∈ R – one for each time step:3

S0, O0, A0, R1, S1, O1, A1, R2, S2, O2, A2, R3, . . . (1)

2The notation is adapted from (Sutton and Barto 2018) and extended.
3Except that (following (Sutton and Barto 2018)) there is no reward at the first step.

2

https://codeberg.org/fulllness/pbrl-for-pomdps
https://codeberg.org/fulllness/pbrl-for-pomdps

This is called a trajectory. It is determined iteratively, with the following happening at each time
step t:

1. The agent receives some information about the environment’s current state St. However, we
do not assume that the agent learns everything about St; instead, it receives an observationOt
that depends on St, but might not uniquely identify it (hence the name partially observable).
Precisely, Ot is drawn from the probability distribution ω conditioned on St, i. e. : Ot ∼
ω(St).

2. Then, the agent chooses an action At by drawing it from a probability distribution condi-
tioned on all previous observations4: At ∼ π(Ot, Ot−1, . . . , O0). π is called the agent’s
policy function.

3. Finally, the environment takes on a new state St+1, and the agent receives a reward Rt+1.
Both depend only on the environment’s current state St and the agent’s action At, similar
to how a Markov chain evolves: (St+1, Rt+1) ∼ p(St, At). p is called the environment’s
transition (or dynamics) function.

Without loss of generality, we can assume that there is a single starting state S0 and a terminating
state ST . The interaction begins with the environment being in the state S0, and it ends when it reaches
ST , after which the state is reset to S0 and the interaction begins anew. Each round of interaction is
called an episode, and the cumulative reward of an episode is called return G = R1 +R2 + · · ·+RT .

Now we can state the goal of the reinforcement learning agent: It should find a policy function π
that maximizes the return the agent gains per episode, with its only guidance being the observations
and rewards it receives. In particular, the agent is not provided a model of the environment. In other
words, Ot, Rt, and of course At and A are known to the agent, while everything else (S, O,R, St,
p, and ω) is unknown. One, though by far not the only method to use for reinforcement learning is
described in the next section.

2.2 Genetic algorithm

Genetic algorithms (a subclass of evolutionary algorithms) are general methods to optimize black-box
functions – in particular, functions whose gradient is unknown. The task of reinforcement learning
can be5 reduced to the problem of optimizing a black-box function: We parameterize the policy
function π and take the parameters as the input to the black-box function. The output, then, is the
return which the policy with the given parameters brings the agent. So the policies that optimize this
function are the ones that gain the highest return.

The genetic algorithm by Such et al. (2018) finds good policies by iteratively improving a set of
policies called population, with each step consisting of:

1. Reproduction A random sample of policies from the population is copied.
2. Mutation The copies (also called children) are perturbed with Gaußian noise.
3. Selection Each child policy is tried out for one episode, and the best performing ones are selected

as the next population.6

The reason why this simple algorithm works is that the black-box function which maps policies to
returns is more or less continuous, so if the mutation noise is small enough, the population is updated
in a fashion similar to stochastic gradient ascent.

2.3 Preference-based reinforcement learning

Reinforcement learning can be a powerful method to make an artificial intelligent agent learn to
pursue a desired goal: Instead of specifying the behavior necessary to achieve the goal, we can just
specify a reward function (i. e. the component of the environment’s transition function p determining

4It could also be conditioned on the previous rewards and actions, but in this work, only observations are
used.

5but need not be, since this reduction discards much information, such as connections between observations
and rewards within single episodes

6Here, the original algorithm and our implementation differ slightly, as explained in Appendix A.1.

3

rewards) that rewards the agent for achieving the goal and let the agent itself figure out the necessary
behavior.

While this abstract expression of our desires is convenient, it also bears a great danger: We can easily
forget crucial details when specifying a reward function, which then does not represent our desires
exactly, but is misaligned with them. This, in turn, can cause the agent to take us too literally and
fulfill our stated goal in unintended ways, as in the following illustrative example:

If we want a robot to make us food, we might specify the obvious reward function that gives rewards
exactly in those states where we have something to eat. This might lead the robot to “cook[] the cat
for dinner, not realizing that its sentimental value outweighs its nutritional value” (Russell 2021). It
did what we specified – but we failed to specify what we wanted.

This is known as the alignment problem of reward functions, and of AI agents in general. One attempt
at a solution to this problem is reward learning (Leike et al. 2018), where we give the agent – instead
of a reward function – information about the desirability of behavior that is easier to give correctly,
from which the agent then infers a reward function and uses it.

Christiano et al. (2017) follow an example of this approach called preference-based reinforcement
learning: They query the human overseers for binary preferences between segments of the trajec-
tories (restricted to containing only observations and actions) from the agent’s interaction with the
environment. A neural net is trained with these preferences and used by the agent as its reward
function.

To model reward values given only preferences, the model’s predicted reward values are interpreted
according to the Bradley-Terry model (Bradley and Terry 1952)7 to derive predicted preferences from
them. Namely, we define the probability which the reward model assigns to a trajectory segment σ1
being preferred over a segment σ2 to be (adapted from Christiano et al. 2017):

P̂(σ1 � σ2) =
1

1 + exp
[∑

(O,A)∈σ2
r̂(O,A)−

∑
(O,A)∈σ1

r̂(O,A)
] . (2)

(r̂ denotes the predicted rewards based on the observations O and actions A of all time steps in the
segments.) That is, the difference between the return predictions is equated with the logit of the
preference prediction.

The reward model is trained with gradient descent to minimize the cross-entropy loss between the
predicted and the actual preferences.

2.4 Temporal convolutional nets

Besides the reinforcement learning methods covered in the previous sections, temporal convolutional
nets (Bai et al. 2018) are another tool used in this work. They are neural nets used for sequence-
to-sequence processing: The input sequence is transformed into the output sequence by repeatedly
applying discrete convolutions with increasingly spread kernels and interleaving a nonlinear activation
function. So effectively, each value in the output is computed by applying a regular neural net (that is
using parameter sharing) to a large section (called receptive field) of the input, meaning that temporal
convolutional nets are capable of tasks where large contexts have to be considered.

3 Method

This section lays out a method of preference-based reinforcement learning that, unlike previously
existing ones, is suited for application in partially observable MDPs. Its structure – shown in Figure 1 –
is copied from the method in (Christiano et al. 2017), but the individual parts are exchanged.

7which is also used in the Elo scoring system

4

Agent

PolicyReturn model Genetic
algorithm

Collection
of preferences
between pairs
of trajectories

Environment

Human

acts in
supplies

trajectories

supplies preferences

learns with trainsuses

Figure 1: The examined method’s components.

3.1 Description

To successfully interact with an environment that is partially observable, the agent needs a policy
function that can memorize. This is implemented8 as a neural net (with ReLUs as activation functions)
whose input layer is the concatenation of the most recent observations9, the number of which is a
hyperparameter. The linear output layer directly represents the action to take.10

The policy is optimized by the genetic algorithm11 from Subsection 2.2 with respect to return values
provided not by the environment, but estimated by a model.

This return model is the temporal convolutional net from (Bai et al. 2018)12 (see Subection 2.4).
The trajectory (containing observations and actions) of one episode is the net’s input, and its output
sequence is summed and used as the return value by the genetic algorithm.

To train the return model, the human is queried for binary preferences between pairs of whole
trajectories sampled uniformly at random from the same distribution as the ones generated in the
most recent iteration of the genetic algorithm. The preferences (including the trajectory pairs they
were given for) are stored in a buffer, and the return model is trained with random minibatches from
this buffer to minimize the cross-entropy loss under the Bradley-Terry model, like in the method of
Christiano et al. (2017) (see Subsection 2.3).

The three processes of querying preferences from humans, training the return model and optimizing
the policy with the genetic algorithm are interleaved by an early-stopping schedule that tries to query
just the amount of preferences the return model needs to achieve its maximal accuracy. This schedule,
however, leaves room for improvement, since it produced nearly constant rates of one preference per
13–15 episodes in our experiments, which we hypothesize is more than necessary.

3.2 Related work

There are other preference-based reinforcement learning methods similar to ours. Their main
differences are highlighted here.

The preference-based reinforcement learning method in (Christiano et al. 2017) queries preferences
not between whole, but short segments of trajectories. Those have the benefit of taking less time to
evaluate for humans, but also the drawback of providing less context, which can make it impossible
in POMDPs to infer enough information about the environment’s hidden state to accurately estimate

8Another memory architecture tried was a recurrent net, made of gated recurrent units intertwined with
feed-forward layers (similar to skip connections). In preliminary experiments, this was equal in performance,
but more demanding on computing power.

9with zero-padding at the beginning of episodes
10Thus, the policy is deterministic, even though the formalism in Subsection 2.1 allowed for indeterminism.
11Instead of the genetic algorithm, one could use any reinforcement learning algorithm that can work with

return (not reward) values on an arbitrary and possibly changing scale. We chose the genetic algorithm for its
simplicity.

12source code available at https://github.com/locuslab/TCN

5

https://github.com/locuslab/TCN

reward values. Also, instead of a model of the returns depending on whole trajectories, a model of
the reward values depending on single observations is used, which then faces the same problem as
the human preference givers.

Modelling the return has been done by Akrour et al. (2012), but depending on a compressed representa-
tion of trajectories. Kupcsik et al. (2018) also model the return, but as a function of policy parameters
directly. This abolishes the need to interact with the environment during policy optimization, but
might be difficult if the relationship between policy parameters and behavior is complex.

An evolutionary algorithm was already used by Busa-Fekete et al. (2014). However, they don’t use
the preferences to train any model – but rather to directly select the best mutants in each generation
with high certainty, via a racing algorithm. This requires very many preferences per generation:
between 2000 and 3000 to select the best 5 out of 10 with 95 % certainty.

4 Experiments

4.1 Setup

As a first validation of the method outlined in the last section, it is tested in two simple environments.

Copy Memory, inspired by the task of the same name in (Bai et al. 2018), is intended as a simple
test of the agent’s memory. Its observations and actions are one-dimensional numbers. The
observations are uniformly random between 0 and 1 at the beginning, and afterwards 0:

Ot

{
∼ U(0, 1) for t = 0, . . . , 3

= 0 for t = 4, . . . , 7
(3)

The agent has to remain silent first and then re-enter the previous observations:

Rt =

{
−|At−1| for t = 1, . . . , 3

−|At−1 −Ot−4| for t = 4, . . . , 7
(4)

After step number 7, the episode finishes.
Pendulum-xy is an adapted version of the task Pendulum-v1 from the OpenAI Gym (Brockman

et al. 2016). The original makes observable the pendulum’s x and y positions as well as its
angular velocity, which together is all of the state. Here, the velocity is censored to make
the environment partially observable.

To save cumbersome labor and also to have a more objective evaluation, the preferences are not
queried from humans, as they would be in a real application, but automatically generated to reflect
the true return from the environment.

Hyperparameters are tabulated in Appendix A.2.

4.2 Ablation studies

In addition to the method as described in Section 3, three variations of it are tested to examine its
individual aspects.

Reward model Subsection 3.2 stated that modelling reward values depending only on single obser-
vations is insufficient in POMDPs. This claim is assessed by using such a reward model
instead of the return model.
A reward model can be implemented as a special case of the return model: by setting the
kernel size of the temporal convolutional net to 1. To compensate for the loss of parameters
this entails, it is given more neurons per layer.

True return To be able to separately judge the performances of the genetic algorithm optimizing
the policy function and of the return model modelling the return, the latter is left out and the
genetic algorithm uses the true return values.

Policy without memory To prove that the tasks are indeed partially observable and need memory to
be solved, they are tried with policies that merely have access to the very last observation,
that is, a history of length 1. They are only tested in combination with using the true return
values, as it is expected that their performance is very low, even under otherwise good
conditions.

6

4.3 Metrics

After each step of the genetic algorithm, the 8 policies that achieved the highest return are reevalu-
ated.13 Their mean return serves as the main indicator of the whole method’s performance.

The following metrics about the return (or reward) modelling are reported:

• The training loss (a cross-entropy-loss).

• The model’s accuracy in predicting preferences.

• The probability the model assigned to the actually preferred trajectory to be preferred,
showing not only the accuracy, but also the confidence of its predictions.

4.4 Results

The mean-of-best-8 return metric over the course of training is shown in Figure 2. The other metrics
were almost constant while training, so they are shown aggregated in Figures 3 and 4. Every value
reported is the mean of 8 runs.

5 Discussion

5.1 Usefulness of memory

The purpose of this work is to test the new preference-based reinforcement learning method in
partially observable MDPs; in other words: in environments where an agent needs to combine
multiple observations to choose good actions. Therefore, it should be verified that the environments
tested fit that description.

This was successfully done by the ablation of the policy’s memory, which drastically decreased the
agent’s performance. Even more, the memory enabled performances close to optimal14, which shows
that its architecture and sizes are sufficient for the tried tasks.

5.2 Success of return learning

The goal of the new preference-based reinforcement learning method is to be applicable in POMDPs.
Judging by the two tasks tried, it largely reached this goal: Compared to reinforcement learning
guided by the true returns, it is almost equally good in the Pendulum-xy task, and in the Copy Memory
task, while noticeably worse, manages to close the gap after some time.

5.3 Failure of reward learning

Subsection 3.2 argued that previously existing preference-based reinforcement learning methods are
not suited to POMDPs. To exemplify this, the return model was replaced with a reward model in one
experimental condition, mimicking the method in (Christiano et al. 2017).

This ablation considerably worsened the results. The policy optimization seemed to get stuck in local
optima.15

But still, training a memorizing policy with a reward model was better than training a memoriless
policy with the true returns, which suggests that a memory is more important for producing good
actions than for recognizing them.

13Also logged was the metric of reevaluating 8 random policies, which was somewhat lower, but highly
correlated.

14In the Copy Memory task, the optimal reward is always zero, while the agent achieved an average reward
of ca. –0.03 – equal to the magnitude of the noise to which the policy is subjected by the genetic algorithm.
The performance at the Pendulum-xy task is equal to the one achieved at the completely observable original in
preliminary experiments, which is –400 (standard deviation 200).

15In the Pendulum-xy task, the agent tended to swing the pendulum around (while the task is to balance it
upright). The return of –1 in the Copy Memory task can be achieved by always choosing the action ½ in the
second halves of episodes.

7

0 10000 20000 30000
episodes

3

2

1

0

re
tu

rn

task = CopyMem

0 5000 10000 15000 20000
episodes

1200

1000

800

600

400

task = Pendulum_xy

kernel_size
7
1
N/A

policy
memory
amnesia

Figure 2: Return the agent is gaining after interacting with the environment for increasing numbers of
episodes in the Copy Mem(ory) and the Pendulum-xy tasks. Kernel size 7 denotes using the regular
return model; 1, using the reward model in the ablation study (see Subsection 4.2); and N/A, using
neither but the true return instead. The agent uses a policy with (solid lines) or without (dashed lines)
memory. The lines are means of the 8 runs, shaded regions are interquartile ranges.

0.5 0.6 0.7 0.8 0.9 1.0
Mean predicted probability

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 p

os
iti

ve
s

task = CopyMem

0.5 0.6 0.7 0.8 0.9 1.0
Mean predicted probability

task = Pendulum_xy

Figure 3: Calibration
curves of the return model
(orange) and the reward
model (blue). The x-axis
shows the confidence of
the models’ predictions,
the y-axis the fraction of
correct predictions. Each
curve has 20 points, each of
which aggregates the same
number of predictions.
The shown curves are
accumulated across all
episodes of the 8 runs.

0.00

0.05

0.10

0.15

0.20

0.25

va
lu

e

metric = error_rate | task = CopyMem metric = error_rate | task = Pendulum_xy

7 1
kernel_size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

va
lu

e

metric = loss | task = CopyMem

7 1
kernel_size

metric = loss | task = Pendulum_xy

Figure 4: Metrics for the re-
turn/reward models (kernel sizes 7/1,
respectively). The error rate (equal
to one minus the accuracy) and the
training loss are shown. Big bars
denote means across all episodes of
the 8 runs, small bars interquartile
ranges between the runs.

8

There were two outliers in the Pendulum-xy task which seemingly converged to the same performance
as when using the return model. It can only be speculated how this happened. On the one hand,
policies of different qualities produce different trajectories that can possibly be distinguished even by
a memoriless reward model. On the other hand, policies might cheat the reward model by producing
poor trajectories that – to it – look indistinguishable to good ones, thus negating the evolutionary
pressure towards good policies. The outliers show that truly good policies can nevertheless sometimes
be favored over cheating ones.

5.4 Return/reward learning metrics

Having a metric of the return model’s performance – of how well it conveys the preference giver’s
goals to the genetic algorithm – is important for at least two reasons:

• The schedule for adapting the rate of preference queries depends on such a metric.

• If the whole system’s performance is bad, the metric gives a hint whether the bottleneck is
the return model or the genetic algorithm.

In the experiments, three such metrics were investigated:

1. The performance the agent gains by ablating return learning, which is inversely related to
the return model’s performance.

2. The return model’s accuracy in predicting preferences.

3. The training loss of the model.

Since predicting preferences is only a means to attain desired behavior, the first metric is what we are
ultimately interested in. It, however, cannot be calculated in those tasks for which preference-based
reinforcement learning is intended: when there is no return function available. So, the question is
whether the second and the third metric are a good proxy for the first.

This is affirmed by the experiments’ results: The return model’s accuracy was higher and its loss
was lower in the Pendulum-xy task – and it was in this task where the advantage of ablating return
learning (the first metric) was smaller. Also, ablating the return model’s memory (turning it into a
reward model) caused all three metrics to change in the same, expected ways.

But one could imagine other cases where the three metrics would not coincide: Even if the return
model made few errors overall, it could still systematically underestimate and therefore not reinforce
certain behavior that is highly desired but currently rarely shown. Conversely, the return model might
mispredict many preferences, but if those are only weak preferences between behaviors of almost
equal desirability, it might not impact the agent’s performance much.

The problem in both these hypothetical cases is that the accuracy metric treats all preferences as
equally important, even though they are not; so a solution might be to query not only preferences, but
also how strong they are, and take this into account (for example by weighting the preferences by
their strength in the calculation of the return model’s accuracy).

In addition, the plots of the return and reward model’s confidence distributions in Figure 3 show that
those predictions given with higher confidence are indeed more likely to be correct. This information
could potentially be used to query preferences not between random trajectory pairs, but ones where
the model’s uncertainty is high, following the idea in (Christiano et al. 2017). However, the models
are far from calibrated, which could indicate that the Bradley-Terry model underlying them is not a
good fit for this application.

5.5 Limitations of this work

Episodic tasks Like many reinforcement learning methods, the present one can only be applied in
tasks that are episodic (and therefore not always realistic), since both the preferences and the return
modelling use episodes as units.

9

Moreover, the longer the episodes are, the slower humans can give feedback about them. In this case,
it could be more efficient to collect more information than just binary preferences.16

Accurate preferences The method was tested only with perfectly accurate synthetic preferences,
but realistically, it would need to function with less than perfect input – nothing else can be expected
from humans. Related experiments (Fülle 2022), where a previous version of the method coped well
with a rate of 25 % inaccurate preferences, suggest that this is not an insurmountable problem.

6 Conclusion

The new method of preference-based reinforcement learning based on a return function learned from
preferences proved capable of performing well in POMDPs: Its performance in the experiments was
comparable to reinforcement learning based on the true return function directly.

A representative of previous methods – akin to the one in (Christiano et al. 2017) – which models
individual rewards instead of returns was shown to perform considerably worse.

The method as presented here is meant as a first proof of concept, favoring simplicity over sophistica-
tion. It has many possibilities of improvement, which might be especially worthy when scaling up
the method to harder tasks, as the genetic algorithm and the temporal convolutional net individually
already have been.

For example, the method should query preferences more economically by selecting the trajectories to
be compared by the human not randomly, but to maximize the amount of information the return model
will gain from a preference between them. In (Christiano et al. 2017), this is attempted by selecting
trajectories for which the model’s prediction is especially uncertain (measured by the variance in an
ensemble of models), with mixed results.

Also, the used variants of the temporal convolutional net and the genetic algorithm are themselves
rather simple and do not use many known improvements. Some of those are listed in the original
papers (TCN: Bai et al. 2018; genetic algorithm: Such et al. 2018).

More generally, while preference-based reinforcement learning is enhanced by the option of applying
it in partially observable environments, its promise of artificial intelligence that is aligned with human
values is still blocked by many barriers: the problem of safe exploration, the risk that the agent might
tamper with the process of preference giving, or the fact that even alignment of the return function
does not guarantee alignment of the policy (Hubinger et al. 2019).

References
Bradley, Ralph Allan and Milton E. Terry (1952). “Rank Analysis of Incomplete Block Designs: I.

The Method of Paired Comparisons”. In: Biometrika 39.3/4, pp. 324–345. ISSN: 00063444. URL:
http://www.jstor.org/stable/2334029 (cit. on p. 4).

Akrour, Riad, Marc Schoenauer, and Michèle Sebag (2012). “APRIL: Active Preference Learning-
Based Reinforcement Learning”. In: Machine Learning and Knowledge Discovery in Databases.
Ed. by Peter A. Flach, Tijl De Bie, and Nello Cristianini. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 116–131. ISBN: 978-3-642-33486-3 (cit. on pp. 2, 6).

Busa-Fekete, Róbert, Balázs Szörényi, Paul Weng, Weiwei Cheng, and Eyke Hüllermeier (Dec. 2014).
“Preference-based reinforcement learning: evolutionary direct policy search using a preference-
based racing algorithm”. In: Machine Learning 97.3, pp. 327–351. DOI: 10.1007/s10994-014-
5458-8. URL: https://hal.inria.fr/hal-01079370 (cit. on p. 6).

Brockman, Greg, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba (2016). OpenAI Gym. eprint: arXiv:1606.01540 (cit. on p. 6).

Christiano, Paul F., Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei
(2017). “Deep Reinforcement Learning from Human Preferences”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. NIPS ’17. Long Beach,
California, USA: Curran Associates Inc., pp. 4302–4310. ISBN: 9781510860964 (cit. on pp. 2,
4–5, 7, 9–10).
16Two possibilities how to do so might be rankings between many trajectories or sketches of the reward

function over the course of episodes.

10

http://www.jstor.org/stable/2334029
https://doi.org/10.1007/s10994-014-5458-8
https://doi.org/10.1007/s10994-014-5458-8
https://hal.inria.fr/hal-01079370
arXiv:1606.01540

Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun (Apr. 2018). An Empirical Evaluation of Generic
Convolutional and Recurrent Networks for Sequence Modeling. arXiv: 1803.01271v2 [cs.LG].
URL: http://arxiv.org/abs/1803.01271v2 (cit. on pp. 2, 4–6, 10).

Kupcsik, Andras, David Hsu, and Wee Sun Lee (2018). “Learning Dynamic Robot-to-Human Object
Handover from Human Feedback”. In: Robotics Research: Volume 1. Ed. by Antonio Bicchi
and Wolfram Burgard. Cham: Springer International Publishing, pp. 161–176. ISBN: 978-3-319-
51532-8. DOI: 10.1007/978-3-319-51532-8_10. URL: https://doi.org/10.1007/978-
3-319-51532-8_10 (cit. on p. 6).

Leike, Jan, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg (2018).
Scalable agent alignment via reward modeling: a research direction. DOI: 10.48550/ARXIV.
1811.07871. URL: https://arxiv.org/abs/1811.07871 (cit. on p. 4).

Such, Felipe Petroski, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune (Apr. 2018). Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
for Training Deep Neural Networks for Reinforcement Learning. arXiv: 1712.06567v3 [cs.NE].
URL: http://arxiv.org/abs/1712.06567v3 (cit. on pp. 3, 10–11).

Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning. An Introduction. Second
edition. Cambridge, Massachusetts: The MIT Press (cit. on p. 2).

Hubinger, Evan, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant (2019).
Risks from Learned Optimization in Advanced Machine Learning Systems. DOI: 10.48550/
ARXIV.1906.01820. URL: https://arxiv.org/abs/1906.01820 (cit. on p. 10).

Russell, Stewart (2021). “Human-Compatible Artificial Intelligence”. In: Human-Like Machine
Intelligence. Ed. by Stephen Muggleton and Nick Chater. Oxford University Press. URL:
https://people.eecs.berkeley.edu/~russell/papers/mi19book-hcai.pdf (cit. on
p. 4).

Fülle, Lukas (Aug. 14, 2022). “Evolutionary Preference-Based Reinforcement Learning via Return
Learning”. Bachelor’s thesis. Germany: Ulm University. URL: https://codeberg.org/
fulllness/pbrl-for-pomdps (cit. on p. 10).

Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, et al. (2022).
“Training language models to follow instructions with human feedback”. In: ArXiv abs/2203.02155
(cit. on p. 2).

A Appendix

A.1 Adaptation of genetic algorithm

The genetic algorithm in (Such et al. 2018) attempts to find the elite (the best policy) of each
generation by taking the mean of 30 reevaluations of each of the 10 currently best policies. This elite
is then retained in the population for the next generation. However, with the small population size
(16 + 16) in our experiments, this would inflate the number of evaluations per generation,17 so we do
not use this approach. To nonetheless feature elitism, in each generation, we evaluate not only the
children, but also reevaluate all parents (each individual only once),18 and select the best of all of
them as the next generation.

A.2 Hyperparameters

The most important hyperparameters are listed in Table 1. Some of them were chosen at will and
deemed to work satisfactorily, others (like the genetic algorithm’s mutation strength) needed brief
tuning.

17from 16 to 316
18which makes 32 evaluations

11

https://arxiv.org/abs/1803.01271v2
http://arxiv.org/abs/1803.01271v2
https://doi.org/10.1007/978-3-319-51532-8_10
https://doi.org/10.1007/978-3-319-51532-8_10
https://doi.org/10.1007/978-3-319-51532-8_10
https://doi.org/10.48550/ARXIV.1811.07871
https://doi.org/10.48550/ARXIV.1811.07871
https://arxiv.org/abs/1811.07871
https://arxiv.org/abs/1712.06567v3
http://arxiv.org/abs/1712.06567v3
https://doi.org/10.48550/ARXIV.1906.01820
https://doi.org/10.48550/ARXIV.1906.01820
https://arxiv.org/abs/1906.01820
https://people.eecs.berkeley.edu/~russell/papers/mi19book-hcai.pdf
https://codeberg.org/fulllness/pbrl-for-pomdps
https://codeberg.org/fulllness/pbrl-for-pomdps

Table 1: Hyperparameters.
Task

Copy Memory Pendulum-xy

Policy
History length 4 8
Neurons in 1st layer 16 32
Neurons in 2nd layer 16 64

Genetic algorithm
Mutation standard deviation 0.03 0.1
Population size 16 16
Number of children 16 16

Return (reward) model
Neurons per layer 4 (10) 12 (32)
Number of layers L 2 (2) 3 (3)
Kernel size K 7 (1) 7 (1)
Receptive field (K − 1)(2L − 1) + 1 19 (1) 43 (1)
Parameters 441 (441) 5497 (5761)

12

	Introduction
	Background
	Reinforcement learning
	Genetic algorithm
	Preference-based reinforcement learning
	Temporal convolutional nets

	Method
	Description
	Related work

	Experiments
	Setup
	Ablation studies
	Metrics
	Results

	Discussion
	Usefulness of memory
	Success of return learning
	Failure of reward learning
	Return/reward learning metrics
	Limitations of this work

	Conclusion
	Appendix
	Adaptation of genetic algorithm
	Hyperparameters

