
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

From Promises to Practice: Evaluating the Private Browsing
Modes of Android Browser Apps

Anonymous Author(s)
ABSTRACT
Private browsing is a common feature of web browsers on desktop
platforms. This feature protects the privacy of users browsing the
Internet and, therefore, is widely welcomed by users. In recent years,
with the popularity of smartphones, the private browsing mode has
been introduced into mobile browsers. However, its deployment on
mobile platforms has not been well evaluated. To bridge the gap, in
this work, we systemically studied the private browsing modes of
Android browser apps. Specifically, we proposed six private rules
for mobile browsers to follow by combining the mobile browsing
features with the previous research on private browsing. Further-
more, we designed an automated analysis framework, BroDroid,
to detect whether mobile browsers violate these rules. Also, with
BroDroid, we evaluated 49 popular browser apps crawled from
Google Play. Finally, BroDroid successfully identified 58 violations,
some of which come from the promised capabilities of the browser.
We reported our discovered issues to the corresponding developers,
and four of them (Yandex Browser, Mint Browser, Web Explorer,
and Net Fast Web Browser) have acknowledged our findings. Our
observation may be the tip of the iceberg, and more efforts should
be put into improving the privacy protections of mobile browsers.

CCS CONCEPTS
• Security and privacy→ Software and application security.

1 INTRODUCTION
Private browsing is a common and popular feature of desktop
browsers. This feature is designed to prevent any information re-
lated to browsing from being stored on the device being used [18]. A
user study shows that 77% of non-technical participants use private
browsing mode to protect their digital traces [26].

In recent years, with the popularity of smartphones, the private
browsing mode has been introduced in mobile browsers, as shown
in Figure 1. For example, the private mode of Chrome1 is called
the "Incognito Tab" and Edge calls it "InPrivate". In general, when
switching to private mode, users are informed of prompting infor-
mation, or the browser is switched to a dark background, indicating
that browsing behaviors are being protected. Considering that the
mobile phone plays an irreplaceable role in modern life, mobile
browsers may have more opportunities to access user private data
1In this paper, except as otherwise noted, the mentioned browser is the mobile version.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW 2024, May 13-17,2024, Singapore
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

(a) Chrome (c) Opera(b) Firefox

Figure 1: Private browsing modes of browser apps.

than PC browsers, such as passwords, visited websites, and search
history. In addition, users are usually requested to provide their
data when using a service on the Web, making it more possible for
mobile phones to access user data. In 2016, the European Parliament
introduced the General Data Protection Regulation (GDPR), which
requires companies to protect user data with appropriate security
measures [18]. Thus, mobile private browsing should provide a
reliable service without leaving any trace of browsing activities.

The proper deployment of the private browsing mode on the PC
platform has been widely discussed [11, 14, 18, 25, 30]. However,
due to the enormous differences between PC and mobile platforms,
PC browsers andmobile browsers face different kinds of adversaries,
and the security mechanisms of PC private browsing can not be
applied to mobile platforms directly. For example, the programs
on the PC platform can view the files held by other programs
without restriction. Instead, apps cannot view each other’s files on
Android by default due to the app isolation design. Therefore, even
though both PC private browsing and mobile private browsing both
aim to clear browsing information, they should consider different
technical details. On the other hand, most previous studies are
manual analyses rather than automatic work and only investigated
a minority of specific PC browsers. As a result, the status of private
browsing deployment in mobile browsers is not well understood.
Our work. In this study, we conducted a systematic analysis of
mobile private browsing and focused on the Android platform due
to its high market occupancy on mobile platforms. Specifically,
we proposed six private browsing rules for mobile browsers to
follow by collecting the private browsing features claimed by the
browsers themselves (in the Appendix) and referring to previous
related works about PC browsers. Additionally, after solving a
series of technical challenges (such as UI positioning), we designed

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW 2024, May 13-17,2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

an automated analysis framework, BroDroid, to detect whether
mobile browsers violate these rules.

To give a complete view of private browsing deployments on
mobile platforms in the wild, we conducted a real-world evaluation
on 49 popular Android browsers with over 5M+ installations. In
total, we identified 58 violations, meaning that every browser vio-
lated one rule on average, even though some of them claimed that
their private browsing guaranteed the corresponding capabilities
(3/49, 6.1%). That is, the deployment of private browsing in mobile
browsers still needs to be improved.

Our work not only reflects the general state of mobile private
browsing implementation but also indicates that the awareness of
mobile private browsing needs to be improved. In this case, our
work can benefit developers and communities as it systematically
evaluates mobile private browsing.
Responsible disclosure. We reported our discovered issues to
the corresponding developers, and four of them (Yandex Browser,
Mint Browser, Web Explorer2, and Net Fast Web Browser) have
acknowledged our findings.
Contributions. Here, we list the main contributions of this paper.
• Systematic study.We systematically studied the implementations

of private browsing on the Android platform. Also, we proposed
six rules for mobile browsers to follow.

• Analysis tool. We designed an automated analysis framework
– BroDroid, which can evaluate the performance of private
browsing in Android browsers based on our predefined rules.

• Real-world measurement. With BroDroid, we evaluated 49 pop-
ular browser apps and identified 58 violations. Our study shows
that private browsing of mobile apps is not well implemented,
even with some of the promised features.

2 BACKGROUND AND MOTIVATION
This section covers the Android security mechanisms and private
browsing background. In addition, we also give a real-world exam-
ple of the wrong implementation of private browsing.

2.1 Android Security Mechanisms
Android operating system is a multi-user Linux system where each
app is a different user. It implements the principle of least privi-
lege [20]. That is, an app should never be assigned more privileges
than it needs. Its core security mechanisms are listed below.
App sandbox. Sandbox is an isolated mechanism that promises
an app can not affect other apps outside its boundaries [15]. As the
Android platform employs Linux user-based protection, it uses the
user ID to set up a kernel-level sandbox to isolate apps from each
other [5]. Also, the sandbox guarantees that the app running in it
will not impact resources outside, like the file system and network.
It effectively prohibits apps from breaking the resource another app
uses or causing a data leak.
Permission. User private data and sensitive system resources are
protected by the permission mechanism. By default, each app runs
in a process with a low-privilege user ID, and apps can access only
their own files [17]. If apps want to access system resources, they
must apply for corresponding permissions. For example, system
2Package name is com.explore.web.browser.

state and user contact information are restricted for app access due
to the permission mechanism [7].
Private data storage. According to the Android developer doc-
umentation [21], it is recommended that all private user data be
stored in internal storage. An app can access its internal files by
default, and others cannot access them (differently from PC plat-
forms) [22]. When an app is uninstalled, the OS will delete its
corresponding files saved within internal storage.

2.2 Private Browsing
Private browsing is a feature that makes the browser not save
browsing history, cookies, and other user data when a user browses
the websites, regardless of the network protocol (e.g., HTTP and
HTTPS). In addition, others who can access that device cannot see
its user’s activities while activating the private browsing mode.
As the Android has its own web architecture and security mecha-
nisms (e,g., data storage difference), the private browsing techniques
implemented on PC platforms cannot be migrated to mobile plat-
forms directly. Besides, these security mechanisms can protect only
against app-level adversaries, such as malicious apps. Based on
previous studies [11, 36], we propose a new model that considers
attacks not from the perspective of the app, but from the web and
local adversaries.
Threat model. A private browser should not leave any trace of
users’ browsing activities. Although browser apps are protected
by Android security mechanisms, powerful non-app adversaries
can still obtain users’ private browsing activities. Here, we consider
two kinds of adversaries:
• Local adversary: A local adversary can physically access a user’s

mobile phone. From the perspective of digital forensics, these
adversaries can be so powerful that they can get the root privilege
through popular tools such as Magisk [33], KingRoot [27], and
Xposed [32]. Then, the data generated by all apps can be viewed
by them. The local adversary aims to uncover the user’s activities
during private browsing.

• Web adversary: AWeb adversary can control websites that the
user visits [11]. The adversary can view all the content of the
network traffic between the user and the website. The target of
the Web adversary is to link a user in private mode to the same
user in normal mode.

2.3 Motivation
The primary requirement of private browsing on any device is
not to save browsing history (website addresses). However, for the
mobile platform (we mainly discussed the Android platform due to
its high occupancy in the mobile market), related files generated
by Web browsing are mainly stored in the browser app’s internal
storage after a user ends his private browsing activities, which
is protected by its security mechanisms. Thus, to roundly figure
out whether a browser app saves private browsing history, it is
necessary to examine its internal storage content.

We tested several popular web browsers with private browsing
mode and discovered that some did not live up to their promise of
providing complete privacy. For example, Yandex Browser, which
has 100M+ downloads on Google Play, claimed, "Your history,
searches, and passwords will not be saved" on its private tab page

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW 2024, May 13-17,2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) Incognito (c) Browsing history(b) Private browsing

The URL of the visited site.

Figure 2: Private browsing of Yandex Browser.

(viewed as Figure 2 (a)). To verify its claims, we first opened a new
private tab, and in this tab, we visited a website that the browser had
never visited before, and its address is "https://pintofscience.co.uk/"
as Figure 2 (b) shows (as previous work on PC browsers [23]
did), then we stayed at this webpage for a while (around five
seconds). After that, we closed this private tab and continuously
tapped the "back" button of the phone to exit the browser. Af-
ter 30 seconds, we inspected the internal storage of the app and
found that the website we visited was stored in the database file
"com.yandex.browser/databases/dashboard_service", and the
concrete table name is "hosts_data" (viewed as Figure 2 (c)).

It is important to ensure that mobile browsers can achieve their
private browsing goals, as mobile browsing is more likely to access
users’ private data. Therefore, it is crucial to examine the implemen-
tation of mobile private browsing and evaluate its effectiveness.

3 PRIVATE RULES FOR MOBILE BROWSERS
Weproposed six rules to systematically evaluatewhether the browser
effectively implements private browsing against the two adversaries
listed above. In particular, we proposed these rules based on two
considerations: (1) the private browsing features of PC browsers
discussed in previous works; (2) the private browsing capabilities
promised by the app developers (as shown in Figure 1).

Generally, after a user finishesWeb browsing (closes private tabs,
private mode, and the browser app), browsers should satisfy the
following rules to prevent threats from a local adversary:
• Rule 1: Do not save browsing history. Browsing history leaks the

addresses of websites users visited, and it can directly reveal the
user’s browsing activity [10, 11, 25, 26, 30, 36, 37].

• Rule 2: Do not save cookies. The purpose of cookies is to add a
state to the HTTP protocol so that the server can retrieve the
previous user. It can not be saved after private browsing to avoid
leakage of user network trace [10, 11, 25, 30, 36, 36, 37].

• Rule 3: Do not save the Web cache. Web cache can reduce the
overall network delay by storing files or data on the client side.
For example, the Web cache file may change size after a user
browses a picture online. Furthermore, the modified part stores

the data of that picture (maybe not the complete picture). Since
Web cache can be sensitive to uncovering a user’s browsing
activity, it should not be saved [10, 11, 25, 26, 30, 36, 37].

• Rule 4: Do not save forms. Forms are a common tool for sub-
mitting user data, such as user names and passwords. As form
data submitted in private browsing should not be exposed to the
adversary, browsers should not save it [11, 36, 37].
Besides, when a user visits websites, to resist the threat from a

Web adversary, private browsing should follow the rules below:
• Rule 5: Block third-party cookies. A third-party cookie is a cookie

set by a website other than the one a user is currently on. It can
help third parties create a user profile by collecting a staggering
number of private data, such as the user’s IP address and other
device details. Therefore, a third-party cookie should be blocked
to prevent leakage of user identification information [25].

• Rule 6: Do not share cookies in different modes. This rule prevents
a website from correlating a user in a normal session to the same
user in a private session. For example, browsers should promise
that after a user logins to a website using the username and
password in normal mode, the user should enter this username
and password again to login to the same website in private mode
later instead of directly getting to the web page in login state [25].
Notably, these rules have been widely discussed and accepted [10,

11, 25, 26, 30, 36, 37] and all browsers should follow them.

4 DESIGN OF BRODROID
To detect whether browser apps follow these rules, we designed an
automated analysis tool – BroDroid. Here, we describe its detailed
design.

At a high level, BroDroid treats the private browsing imple-
mentations of the browser apps as black boxes. It checks whether
browsers achieve their private browsing goals. Specifically, Bro-
Droid takes browser apps as input and outputs a report of the
detection results corresponding to the pre-defined rules. Figure 3
illustrates the overview workflow of BroDroid, which consists of
four modules, including environment preparation, browsing au-
tomation, network traffic analysis, and local storage analysis.
(1) Environment Preparation (§4.1). First, browsers should be in-

stalled on a test device that already got the root permission.
BroDroid extract their metadata for further use. Additionally,
two test sites should be configured correctly to provide a test
environment for the proposed rules.

(2) Browsing Automation (§4.2). Then, the tested browser is au-
tomatically launched and visits our self-built test websites
in normal and private modes driven by BroDroid based on
Appium [2].

(3) Network Traffic Analysis (§4.3). Next, BroDroid catches net-
work traffic throughout the normal browsing and private
browsing process using tcpdump [8]. Traffic packets whose
source IP and destination IP are related to our test website
are focused and analyzed (for Rule 2 and 5-6).

(4) Local Storage Analysis (§4.4). BroDroid analyzes the stored
files related to the browser after completing normal and pri-
vate browsing, respectively, to confirm the private data storage
status (for Rule 1-5).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW 2024, May 13-17,2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

 Environment

 Preparation

 Local Storage

 Analysis

 Network Traffic

 Analysis

 Browsing

 Automation

Figure 3: Overview of BroDroid.

4.1 Environment Preparation
We crawl popular browser apps for BroDroid as input. BroDroid
extracts basic information from AndroidManifest.xml files of apps
using the Androguard [1], including launcher activity, package
name, and version number. Then, in the following steps, BroDroid
uses this information to launch browsers.
Test websites. To validate the rules, we set up two websites in the
LAN for browsers visiting. As shown in Figure 4, the test website
(10.102.32.216) provides a login page where users can input their
username and password in the input boxes. The form data will
be posted to the test website once clicking the "submit" button.
Furthermore, we set two pairs of username and password for the
test website to distinguish whether a browser is in normal mode or
private mode: "try" for normal mode and "uvw" for private mode.
The username and password are the same. Additionally, to eliminate
the interference of normal browsing andmake our test environment
closer to the user’s browsing behavior, we introduce a newwebpage
from a general external website for private browsing.

In normal mode, the test website returns an HTML file only con-
taining a "success" text to the browser after logging in. At the same
time, the test website sets the cookie "Flag=1" for this session and
returns it to the browser. In private mode, the test website returns
an HTML file containing an "img" tag except for the "success" text.
Similarly, the test website sets the cookie "FlagPrivate=2". In ad-
dition, this "img" tag has an attribution "src" of which value is the
resource path of another test website (10.102.32.217). It makes
the browser request an image file from this third-party website.
When receiving the request, it sends the image back to the browser
and sets a third-party cookie "FlagThirdParty=3" along with it.

4.2 Browsing Automation
To meet the needs of large-scale analysis for each browser to verify
whether it complies with the above rules, we designed an automated
browsing process, as shown in Figure 4. It simulates the user’s
everyday browsing operations and covers all our proposed rules.
Mainly, it can be divided into the following four operations:
• Ops 1: In normal mode, BroDroid taps the search bar and enters

the test website address to access it. And then, it enters a user-
name and password on the login page and clicks the "submit"
button to post these data. Then, BroDroid drives the browser to
exit itself by continuously sending the "back" command to get
to the phone’s homepage.

• Ops 2: BroDroid repeats the previous operation as the former
step but takes a screenshot when inputting the username.

• Ops 3: BroDroid first switches to private mode and opens the
same website browsed in normal mode. Subsequently, BroDroid
enters a different username and password and taps the "submit"
button. Then, BroDroid visits a new webpage that does not oc-
cur in normal mode. After a while, BroDroid closes the browser.

• Ops 4: BroDroid repeats the same operation as Ops 3 except
for visiting the new webpage. In addition, it takes a screenshot
when inputting the username.

Challenges. We encountered two challenges in implementing
browsing automation. In particular, to successfully visit test web-
sites in private mode automatically, we need to position the UI
components in the browser to accomplish at least two tasks: (1)
launch of private browsing mode, (2) access to the test website.
However, the UI layouts of browser apps are diverse, which creates
an enormous barrier to implementing automated browsing.

For Task (1), some browsers can launch their private mode by the
corresponding launching activities, like the IncognitoTabLauncher
activity for Chrome. However, other browsers cannot launch pri-
vate mode in this way because the launching activity is restricted
by its attribute (exported="false"), or there is no activity for
browsers to launch this mode at all. Therefore, BroDroid needs to
click the private mode switch to open it, as users do. This operation
is not easy because it is unknownwhether the private switch button
is displayed on the browser’s homepage.

For Task (2), when we tried to drive the browser to visit our test
websites, we found that many browser apps prevent their private
windows from being viewed by the tool we used (i.e., Appium),
directly affecting the UI positioning.
Solutions. To overcome the challenge in Task (1), we first investi-
gated the most popular browser apps to find the commonality of
switching to private mode. Then we proposed empirical solutions
for an automated process to follow, summarized as follows:
• The private mode can be launched in one step: users can tap the

switching button on the home page of the browser, and then it
switches to private browsing mode at once, e.g., Figure 1(b).

• The private mode can be launched in two steps: first, the user
taps the button next to the search bar in the top right corner of
the home page, and then it shows the indicated text, like "New
Incognito Tab". Second, the user goes on to tap it, and a new
private tab starts, e.g., Figure 1(a).

• The private mode can be launched in three steps: first, the user
taps the button that means "tabs view" of the bottom toolbar,
and then more function buttons emerge. Second, the user taps
the text of the private hint so that it can switch to private mode.
At last, the user taps the plus sign (presented as "+" in almost
situation) to open the private browsing tab, then the user can
browse in private mode, e.g., Figure 1(c).
To solve the challenge of Task (2), we studied the reason why

Appium cannot view the layout, and then we found that it is be-
cause of apps’ FLAG_SECURE employment. To block this feature, we
utilized the LSPosed framework [6], an ART (Android Runtime)
hooking framework, and rebooted the test device to enable it. After
solving these challenges, we can finally position the UI components
to perform Tasks (1) and (2).

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW 2024, May 13-17,2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Normal Mode

Private Mode Submit

Name
Ops 1

Ops 2

Ops 3

Ops 4

Test WebSite

Ops 4
Link

New Webpage Third-party Test Website

Password

Figure 4: Automated browsing process.

4.3 Network Traffic Analysis
Network traffic analysis mainly detects whether browser apps com-
ply with Rule 2, 5, and 6. BroDroid uses Tshark [9] to analyze
traffic packets associated with the test sites.
Normal mode traffic. BroDroid captures the network packets in
Ops 2. And BroDroid detectsRule 2 in normal browsing according
to these network traffic packets.
• For Rule 2, in Ops 1, after login, the test website sets a cookie

for the browser (i.e., "Flag=1"). If the browser saves the cookie,
it may be carried to access the test website the second time of
normal browsing. If "Flag=1" is found, it violates Rule 2.

Privatemode traffic.Different from the normal mode traffic analy-
sis, BroDroid captures the network packets twice in private brows-
ing of Ops 3 and Ops 4, respectively. And we detect Rule 2, 5, and
6 there:
• For Rule 2, like normal mode traffic analysis, BroDroid de-

tects whether the cookie got from the first private browsing (i.e.,
"FlagPrivate =2") in the traffic packets of Ops 4.

• For Rule 5, when the browser loads images from a third-party
website in Ops 3, the response message will carry a third-party
cookie ("FlagThirdParty=3").BroDroid searches for that cookie
in the package of Ops 4 to verify if it was saved and carried.

• For Rule 6, BroDroid searches for the cookie key-value pair
("Flag=1") in traffic packets of Ops 3 to analyze whether the
browser shares cookies received in normal mode with private
mode.
Overall, for Rule 2, 5, and 6, if those key-value pairs are found,

the browser violates the corresponding rules.

4.4 Local Storage Analysis
Local storage analysis mainly checks whether the browser apps
comply with Rule 1 - 5. BroDroid double-checks Rule 2 and 5
using local storage analysis to support the accuracy of our research
method. We manually analyzed some cases to find the storage
location of user private data. The results indicate the app database
records some browsing information, and some files related to the
Web cache are written into the "cache" directory. Thus, we take
database files, "cache" directories into consideration to analyze local
storage. Specifically, BroDroid analyzes the internal storage of the
browser after the end of normal browsing and private browsing.

Database content analysis. User-submitted form data, browsing
history, and cookies are usually stored in database files. For Rule 1,
2, 4, and 5, BroDroid needs to verify the following data in database
files to judge the compliance of the rules in private browsing:
• For Rule 1, we need to check if the URL of the new webpage

entered in Ops 3 exists in the database files.
• For Rule 2, we need to check if the cookie got from private

browsing (i.e., "FlagPrivate=2") is in the database files.
• For Rule 4, we need to check if the username and password

entered in Ops 4 (i.e., "uvw") exist in the database files.
• For Rule 5, we need to check if the third party’s cookie ("Flag-

ThirdParty=3") exists in the database files.
The browser app violates the corresponding rule if the above

data is found.
Differential analysis. To verify Rule 3, BroDroid analyzes the
difference between the app storage after normal browsing and
private browsing. In detail, for database files and cache directories,
it compares their file size of normal browsing and private browsing.
As the image in Ops 3 - 4 is around 1.8 MB, it can make an apparent
change in file size if it is not cleared in private browsing. It is taken
as the Web cache representative. Empirically, if a file size changes
over 1 MB, it is thought to violate Rule 3.
Screenshot analysis. To further verify Rule 4, a screenshot in
Ops 4 is used to check whether the username in Ops 3 (i.e., "uvw")
is auto-filled or prompted in a drop-down box near the input box
or not. If the full username is identified by character recognition, it
means that the last private browsing saves the form data. Therefore,
the browser disobeys Rule 4.

In addition, to distinguish private browsing features, we apply
the same local storage analysis method to detectRule 2, 4 in normal
browsing, with different key-values "Flag=1" and "try", respectively.

5 EVALUATION RESULTS AND FINDINGS
This section describes how the experiment was conducted and
summarizes our findings.

5.1 Experiment Setup
Implementation of BroDroid.We implemented a prototype of
BroDroid. It was built on Appium, tcpdump, and Tshark. In total,
we implemented it with 2,460 lines of Python code.
Browser app dataset. We collected 60 browser apps on Google
Play with over 5 million downloads. Among them, four apps not
equipped with private browsing mode were filtered out. Besides, we
filtered out two browsers that could not run on our test device (these
browsers crashed at runtime). Finally, the remaining 54 browser
apps make up our dataset.
Execution environment.We took a rooted Pixel 3a mobile phone
with Android 12, as our test device. It was connected to the PC
using a USB interface and turned on the "development option" and
"debugging option". Also, in our experiment, BroDroid runs on
a Windows 11 PC equipped with Intel Core i7 2.50GHz CPU and
16G RAM. Moreover, our 2 test websites are deployed on 2 Apache
servers, which operating system is Ubuntu 20.04, equipped with
Intel Xeon Gold 6226R CPU 2.90GHz and 256G RAM.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW 2024, May 13-17,2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Overall detection results.

Violated Rules Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6
of browser apps 3 17 15 3 4 16
% of browser apps 6.1% 34.7% 30.6% 6.1% 8.2% 32.7%
of promised capabilities 35 11 12 12 11 2
of violated capabilities 1 2 2 0 0 2

We installed the listed browser apps on the phone and configured
them, including accepting user privacy and service policies. After
that, the browser apps kept their default configurations.

5.2 Findings
Our findings are summarized in Table 1 and Table 3 (in the Ap-
pendix). At the app level, BroDroid successfully evaluated 49
browser apps3 and discovered 58 violations. At the rule level, few
browsers violate the rules widely known as classic private fea-
tures: three browsers save the browsing history (Rule 1, 6.1%)), and
three browsers save form data (Rule 4, 6.1%). Furthermore, some
browsers do not performweb-related behaviors well: Four browsers
save third-party cookies (Rule 5, 8.2%), and 16 browsers share cook-
ies with private mode (Rule 6, 32.7%). Besides, 17 browsers save the
cookie (Rule 2, 34.7%) in private browsing, and 15 browser apps
save the web cache (Rule 3, 30.6%). These violations can disclose
user identity and privacy. At the promised capabilities level, these
49 browsers claimed 86 capacities corresponding to our rules, and
6 of these capabilities were violated (from 3 browsers, respectively).
Table 1 shows the statistical result of our evaluation, indicating that
mobile private browsing is not quite reliable. The causes of these
problems are various. On the one hand, developers need more sys-
tematic consensus on mobile private browsing, although the same
question has beenwell-discussed on PC platforms [11, 14, 18, 25, 30].
On the other hand, even though some developers pay attention
to enhancing private browsing by means, they may ignore testing
their products or private browsing effectiveness. The details of our
analysis results are as follows:
To Rule 1. Three browser apps (i.e., Yandex Browser, Maxthon,
Samsung Internet Beta) save the private browsing history. Gener-
ally, no browsing history is the most basic requirement of private
browsing. However, some browsers still leave the related informa-
tion, though not intentionally. In our experiment, the browsers do
not save the URL of the new webpage’s on purpose, but they may
record the browsing address when describing other data. For in-
stance, Maxthon recorded the browsing history in the database file
com.mx.browser/databases/mxcommon.db, and the table name is
"mxfavicons". According to this name, we can infer that this ta-
ble is used to store the favorite icon information of websites. This
table has three attributes (or column names): host, favicon, and
TOUCH_ICON. We found that the URL is listed in the "host" column.
This violation reveals that browsers do not clear the browsing his-
tory as fine-grained.
To Rule 2.We used two methods to verify this rule, and 17 browser
apps failed to pass both. Besides, we observed an interesting fact
contrary to our experience. Ordinarily, in private browsing, a cookie
should be temporarily saved before a current session ends and

3Five browser apps cannot access our test sites. We give the reasons in Section 6.

Figure 5: Cache files of Aloha (Rule 3).

deleted along with this session. However, we findMaxthon does
not save the private cookie in local storage immediately after suc-
cessful login. In contrast, if staying on the web page for a while,
it will do so. In fact, considering the data restoration threat, it is
recommended that browsers not save cookies in private browsing
rather than deleting them later. In addition, for the privacy browser
DuckDuckGo, it is needed to be clicked a specific button on the tool-
bar before closing the browser to delete data generated by browsing;
otherwise, it will violate Rule 2. However, it requires the user to
pay more attention to cleaning their browsing data, which may
worsen the user experience.
To Rule 3. For cache file directories, 15 browser apps change their
cache directory size to over 1 MB after private browsing. In con-
trast, no database files of these apps change so much. Taking Aloha
as an example, to ensure the correctness of the verification re-
sults, we reinstalled this browser app and visited the test website
in private mode. After successful login, we closed the private tab,
private mode, and browser. According to the recorded file paths (i.e.,
data/data/com.aloha.browser/cache/WebView/Default/HTTP
Cache) of our former detection results, we inspected this cache file
using a tool called ChromeCacheView [3]. It showed that some
cache files directly reveal what the user browsed in private mode.
As Figure 5 shows, the cache files of private browsing include the
figure (i.e., 3.jpg) from our third-party test website and anHTML file
named "result.html" that can only be returned in private login. This
finding means the browser did not remove the web cache generated
in private browsing. Besides, while inspecting the local storage
cache files of these 15 browser apps, we found that some HTML
files and images from the new webpage used to verify Rule 1 also
existed. The HTML file name contains the exact website address.
As this address information was stored in the web cache form, we
considered saving the web cache instead of browsing history.
To Rule 4. Three browser apps (i.e., XBrowser, UC Browser, Sez-
nam.cz) saved the form data. For XBrowser and UC Browser, it
can be observed that the login page of our test website preloads
the username we input last time, when reopening the browser and
logging to the test website. For UC Browser and Seznam.cz, these
form data were stored in database files. However, we searched for
the username and password text in the local storage of XBrowser
but failed to find them. Therefore, we considered its form data was
stored as Web cache somewhere.
To Rule 5. Our result shows that four browser apps (APUS,Max-
thon, XBrowser, Seznam.cn) save the third-party cookie. We de-
tected this rule using two kinds of methods: network traffic analysis
and local storage analysis, and none of these browsers can pass
either of these methods. Moreover, these results are confirmed in
two ways: searching the database files to look for the third-party
cookie and printing the cookie on the third-party test website.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW 2024, May 13-17,2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Detection results of normal browsing.

Violated Rule Rule 2 Rule 4
of browser app 45 22
% of browser app 97.8% 47.8%

We find all these browsers saved the third-party cookie in their
database file, and the concrete file path is data/data/packagename/
app_webview/Default/Cookies, and the table name is "cookie".
Besides, these browsers all carried that cookie when asking for the
image again, e.g.,Maxthon, showing as Listing 1.
1 Hypertext Transfer Protocol
2 GET /static /3. jpg HTTP /1.1\r\n
3 Host: 10.102.32.217:5000\r\n
4 ...
5 X-Requested -With: com.mx.browser\r\n
6 Referer: http ://10.102.32.216:3243/\r\n
7 ...
8 Cookie: FlagThirdParty =3\r\n
9 ...

10 [Full request URI: http ://10.102.32.217:5000/ static
/3.jpg]

Listing 1: HTTP message with third-party cookie (Rule 5).

However, it is easy to distinguish and block it because the third-
party cookie has a different domain from the first-party cookie
that roots in the website the user is visiting. In particular, some
browsers, like Chrome, remind the user that blocking third-party
cookies is the default setting when opening a private tab.
To Rule 6. In total, 16 browser apps share cookies in normal mode
with private mode. Taking APUS Browser as an example, when it
visited the test website in the first private browsing, one package
was captured as Listing 2 shows. In our setting, the cookie "Flag=1"
can only be obtained in normal browsing. However, if the private
mode allows this cookie to be shared, it may inadvertently provide
key information for websites to link a user in private mode with
the same user in normal mode.
1 Hypertext Transfer Protocol
2 Host: 10.102.32.216:3243\r\n
3 ...
4 X-Requested -With: com.apusapps.browser\r\n
5 ...
6 Cookie: Flag =1\r\n
7 ...
8 [Full request URI: http ://10.102.32.216:3243/]

Listing 2: HTTP message with shared cookie (Rule 6).

Normal browsing feature. As we stated before, we also detected
Rules 2 and 4 for 46 browser apps’ normal browsing (three privacy
browser apps are ruled out). The results are shown in Table 2. Com-
paring the normal mode with the private mode, it is evident that the
latter does pay attention to protecting user privacy. Accordingly,
many browsers do not save form data even in normal browsing. It
makes sense that form data is directly related to users’ privacy and
should better not be saved.
Chromium-based browsers.Chromium [4] is a well-known open-
source browser project. Based on the Chromium developer docu-
mentation and our assessment of the essential components of the
browsers, we identified a total of 23 browsers that are based on
Chromium. These browsers are listed in Table 3. In fact, of these 23

(a) Before (b) After

This icon represents

the private mode.

Figure 6: The private mode changes to normal mode when
reopening Xbrowser.

browsers, 21 did not violate any rules, including the Chrome fam-
ily of products (3 browsers). However, two browsers (i.e., Yandex
Browser andUC Browser) violated one rule, respectively. Therefore,
it is inferred that these two Chromium-based browsers present an
unexpected threat to private browsingwhen customizing their prod-
ucts. On the whole, Chromium-based browsers behaved better than
other browsers. Indeed, the private browsing of non-Chromium-
based browsers is not necessarily flawed. However, achieving right-
on private browsing is not easy.

5.3 Accuracy
False positives. We find three false positive cases in 58 violations
about Brave, Ecosia andMi Browser) from Rule 3. Based on our de-
tection reports, three browsers actually changed the size of recorded
cache files to over 1 MB. However, we cannot find the test image
in those files. Also, those cache files cannot be parsed by Chrome-
CacheView. Therefore, we cannot find what kind of files caused
its size change. Finally, we determine them as false positives. In
addition, these three browsers do not violate any of the six rules.
False negatives.We found one false negative during our manual
verification. It was about UC Browser from Rule 6. we find UC
Browser does not save any cookies after closing itself. Thus, it failed
to verify Rule 6 due to the disappearance of the cookie in normal
browsing (i.e., Flag=1), and BroDroid incorrectly considered it
complied with this rule because this cookie was not found in Ops
3. However, if we get this cookie in normal mode and switch to
private mode without closing the browser, it will share this cookie
with a new private tab. Therefore, it is considered a false negative.
In addition, we found that the storage of private browsing data is
related to time for some browsers. That is, the time to analyze stor-
age after closing private browsing can affect the evaluation results.
In our experiment, we stayed 30 seconds after closing browsers
to leave enough time for browsers to clear their browsing data.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW 2024, May 13-17,2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

After that, we analyzed the storage status. If the stay time is shorter
or there is no remaining stay time, the browsing data may not be
completely cleared.

5.4 Case Study
To demonstrate how an inappropriate implementation of private
browsing exposes user privacy, we takeXbrowser as a case.Xbrowser
provides two ways to enter private browsing: one is to turn on the
privacy mode switch, and the other is to create a new private tab.
The former switches all tabs in the browser to private mode (both
existing and new ones), while the latter switches only new tabs
to private mode. When the private mode switch is used to enter
the private browsing state, the contents of the existing tabs are
retained. Then, when the switch is turned off, the contents of the
private tabs are retained and converted to normal contents. If the
user exits the browser at this point, the previous privacy data will
not be automatically cleared. Additionally, no matter how private
browsing is accessed, if the user closes the browser directly through
background management (a common behavior), all privacy content
will be loaded when the browser is relaunched. In contrast, if the
user exits through the browser’s exit button, the browser will clear
the data normally. Figure 6 shows the screenshots taken while test-
ing Xbrowser. We first opened a website in a private tab, and in the
screenshot, we can see that the page is in private mode; then, we
exited the browser without closing the current tab and reopening
it. It can be found that the web page just reloaded, and the tabs
changed to regular tabs.

We believe that browser app developers should not require users
to actively turn off privacy mode before exiting the browser. It
requests browser developers to pay more attention to the logic of
their browser’s private mode implementation and develop products
from the user’s perspective.

6 DISCUSSIONS
There are several potential threats to the validity of our study:
Positioning UI elements. Due to significant differences in UI design
among browser apps,BroDroidmay not position someUI elements.
For example, the privacy toggle button of UC browser is a mask
icon, and this mask icon does not contain any text information or
resource-id description, BroDroid cannot handle this situation.
There are a total of four browser apps, and BroDroid evaluated
these browser apps with the help of manual work.
VPN/Tor-based browsers. Four browser apps use VPN services or
Tor network [16] for access to the Internet by default, and their
proxy nodes cannot access our LAN IP addresses. Since there will
be an uncertain delay when accessing public IP addresses, for the
sake of test efficiency, we did not host the test website on the public
network. In addition, the VPN/Tor connections of these browser
apps are not stable in our region, so we did not evaluate them
during the experiment.
Non-uniform privacy data cleaning conditions. There is no uniform
standard for triggering browser apps to clean the data generated
in private modes, of which may be closing the browser apps, clos-
ing private tabs, or exiting the private mode. During our browsing
automation process, simply closing the browser apps does not guar-
antee that they will close the private tabs and exit the private mode.

In addition, there is no uniform method of closing the browser apps
along with closing the private tabs and private mode automatically.
Therefore, we manually close browser apps, close private tabs, and
exit private mode (if an app cannot do this work by our automation
operations) to trigger the data cleaning condition.

7 RELATEDWORK
Private browsing analysis.Wu et al. [37] compared four desktop
and mobile browsers (Chrome, Firefox, Safari, Edge) to study their
private browsing strategies, revealing differential implementations
on both platforms. Aggarwal et al. [11] analyzed the private mode
implementations of several popular desktop browsers and put for-
ward the goals that private mode should achieve. Subsequently,
the works of Lerner et al. [29] and Zhao et al. [39] analyzed the
privacy breach issues caused by third-party browsers’ plugins and
proposed the corresponding identification and improvement ap-
proaches. Wu et al. [36] showed that the browser’s explanation
about private browsing should be clearer to reduce the user’s mis-
understanding. There is also some work focusing on the design and
implementation of privacy browsing frameworks, such as Veil [35],
PrivateDroid [28] and CYCLOSA [31]. Mobile private browsing has
been relatively overlooked compared to its PC counterpart. Our
work focused on mobile private browsing and evaluated large scale
browsers, rather than a few specific popular browsers.
Forensic investigation. Younis et al. [38] detected whether user
artifacts are exposed from Web history or email communications
in private and non-private modes on four popular mobile browsers.
Arshad et al. [12] investigated the performance of the Tor privacy
browser for protecting digital browsing traces on Windows 10 and
Android 10 devices. Barghouthy et al. [13] proved that critical pri-
vate data can be found from Orweb (unavailable now) when rooted.
Flowers et al. [19] analyzed the private mode of IE, Chrome, Fire-
fox, and Opera. They found that the user’s browser evidence was
still recoverable in some specific areas. Tsalis et al. [34] found that
some worthless files can also recover users’ browsing history (e.g.,
bookmarks) and proposed using a virtual filesystem to protect pri-
vacy. Hughes et al. [24] analyzed four mainstream browsers (Brave,
Chrome, Edge, and Firefox) and showed that volatile flash memory
might disclose critical private data. In our work, we developed an
automated analysis framework to detect private browsing trace
because it is more suitable for rapidly updated browser apps than
the previous manual work.

8 CONCLUSION
In this work, we systemically studied mobile private browsing and
proposed six rules for browser apps to follow according to the
promised capabilities of private browsing from apps and previous
works on PC platforms. To verify these rules, we designed an au-
tomated device-independent and browser-independent analysis
framework, BroDroid. Finally, we implemented BroDroid and
conducted experiments based on 49 popular browser apps with
more than 5 million downloads. According to the detection reports,
BroDroid discovered 58 violations, demonstrating the effective-
ness of our tool and revealing the improper implementations of
mobile private browsing.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW 2024, May 13-17,2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2023. Androguard. Retrieved October 5, 2023 from https://github.com/androgu

ard/androguard
[2] 2023. Appium. Retrieved October 5, 2023 from https://appium.io/
[3] 2023. ChromeCacheView. Retrieved October 5, 2023 from http://www.nirsoft.ne

t/utils/chrome_cache_view.html
[4] 2023. Chromium-projects. Retrieved October 5, 2023 from https://www.chromi

um.org/chromium-projects
[5] 2023. Lsposed. Retrieved October 5, 2023 from https://source.android.com/docs/

security/app-sandbox
[6] 2023. Lsposed. Retrieved October 5, 2023 from https://github.com/LSPosed/LSP

osed
[7] 2023. Permission. Retrieved October 5, 2023 from https://developer.android.co

m/guide/topics/permissions/overview
[8] 2023. Tcpdump. Retrieved October 5, 2023 from https://www.tcpdump.org/
[9] 2023. Tshark. Retrieved October 5, 2023 from https://www.wireshark.org/docs

/man-pages/tshark.html
[10] Ruba Abu-Salma and Benjamin Livshits. 2020. Evaluating the End-User Expe-

rience of Private Browsing Mode. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (CHI), Honolulu, HI, USA, April 25-30, 2020.

[11] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. 2010. An
Analysis of Private Browsing Modes in Modern Browsers. In Proceedings of the
19th USENIX Security Symposium (USENIX-Sec), Washington, DC, USA, August
11-13, 2010.

[12] Muhammad Raheel Arshad, Mehdi Hussain, Hasan Tahir, Sana Qadir, Faraz
Iqbal Ahmed Memon, and Yousra Javed. 2021. Forensic Analysis of Tor Browser
on Windows 10 and Android 10 Operating Systems. IEEE Access (2021).

[13] Nedaa Al Barghouthy and Andrew Marrington. 2014. A Comparison of Forensic
Acquisition Techniques for Android Devices: A Case Study Investigation of
Orweb Browsing Sessions. In Proceedings of the 6th International Conference on
New Technologies, Mobility and Security (NTMS), Dubai, United Arab Emirates,
March 30 - April 2, 2014.

[14] Hui Cai, Fan Ye, Yuanyuan Yang, Yanmin Zhu, and Jie Li. 2020. Towards Cor-
related Queries on Trading of Private Web Browsing History. In Proceedings of
the 39th IEEE Conference on Computer Communications (INFOCOM), Toronto, ON,
Canada, July 6-9, 2020.

[15] Francisco Handrick da Costa, Ismael Medeiros, Thales Menezes, João Victor da
Silva, Ingrid Lorraine da Silva, Rodrigo Bonifácio, Krishna Narasimhan, and Már-
cio Ribeiro. 2022. Exploring the use of static and dynamic analysis to improve the
performance of the mining sandbox approach for android malware identification.
Journal of Systems and Software 183 (2022), 111092.

[16] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
generation Onion Router. Technical Report. Naval Research Lab Washington
DC.

[17] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David A. Wag-
ner. 2011. Android Permissions Demystified. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS), Chicago, Illinois,
USA, October 17-21, 2011.

[18] Xosé Fernández-Fuentes, Tomás F. Pena, and José Carlos Cabaleiro. 2022. Digital
forensic analysis methodology for private browsing: Firefox and Chrome on
Linux as a case study. Computers and Security 115 (2022), 102626.

[19] Cassandra Flowers, Ali Mansour, and Haider M. Al-Khateeb. 2016. Web Browser
Artefacts in Private and Portable Modes: A Forensic Investigation. International
Journal of Electronic Security and Digital Forensics 8, 2 (2016), 99–117.

[20] Google. 2023. Application Fundamentals. Retrieved October 5, 2023 from https:
//developer.android.com/guide/components/fundamentals

[21] Google. 2023. Data-storage. Retrieved October 5, 2023 from https://developer.an
droid.com/training/data-storage

[22] Google. 2023. Safe-data. Retrieved October 5, 2023 from https://developer.andr
oid.com/topic/security/best-practices#safe-data

[23] Graeme Horsman, Ben Findlay, Josh Edwick, Alisha Asquith, Katherine Swannell,
Dean Fisher, Alexander Grieves, Jack Guthrie, Dylan Stobbs, and Peter McKain.
2019. A forensic examination of web browser privacy-modes. Forensic Science
International: Reports (2019).

[24] Kris Hughes, Pavlos Papadopoulos, Nikolaos Pitropakis, Adrian Smales, Jawad
Ahmad, and William J. Buchanan. 2021. Browsers’ Private Mode: Is It What We
Were Promised? Computers 10, 12 (2021), 165.

[25] Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. 2006. Protecting
Browser State from Web Privacy Attacks. In Proceedings of the 15th International
Conference on World Wide Web (WWW), Edinburgh, Scotland, UK, May 23-26,
2006.

[26] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. 2015. “My Data
Just Goes Everywhere:” User Mental Models of the Internet and Implications for
Privacy and Security. In Proceedings of Eleventh Symposium on Usable Privacy
and Security (SOUPS), 2015.

[27] kingroot studio. 2023. KingRoot. Retrieved October 5, 2023 from https://kingro
otapp.net/

[28] Su Mon Kywe, Christopher Landis, Yutong Pei, Justin Satterfield, Yuan Tian,
and Patrick Tague. 2014. PrivateDroid: Private Browsing Mode for Android.
In Proceedings of the 13th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), Beijing, China, September
24-26, 2014.

[29] Benjamin S. Lerner, Liam Elberty, Neal Poole, and Shriram Krishnamurthi. 2013.
Verifying Web Browser Extensions’ Compliance with Private-Browsing Mode.
In Proceedings of the 18th European Symposium on Research in Computer Security
(ESORICS), Egham, UK, September 9-13, 2013 .

[30] Donny Jacob Ohana and Narasimha Shashidhar. 2013. Do Private and Portable
Web Browsers Leave Incriminating Evidence? A Forensic Analysis of Residual
Artifacts from Private and Portable Web Browsing Sessions. In Proceedings of
the 2013 IEEE Symposium on Security and Privacy Workshops (IEEE-SPW), San
Francisco, CA, USA, May 23-24, 2013.

[31] Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak, Antoine
Boutet, Pascal Felber, Rüdiger Kapitza, Marcelo Pasin, and Valerio Schiavoni.
2018. CYCLOSA: Decentralizing PrivateWeb Search through SGX-Based Browser
Extensions. In Proceedings of the 38th IEEE International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2-6, 2018.

[32] rovo89. 2023. Xposed. Retrieved October 5, 2023 from https://github.com/rovo8
9/Xposed

[33] topjohnwu. 2023. Magisk. Retrieved October 5, 2023 from https://github.com/t
opjohnwu/Magisk

[34] Nikolaos Tsalis, Alexios Mylonas, Antonia Nisioti, Dimitris Gritzalis, and Vasilios
Katos. 2017. Exploring the protection of private browsing in desktop browsers.
Computers and Security 67 (2017), 181–197.

[35] FrankWang, JamesMickens, and Nickolai Zeldovich. 2018. Veil: Private Browsing
Semantics Without Browser-side Assistance. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, California,
USA, February 18-21, 2018.

[36] Yuxi Wu, Panya Gupta, Miranda Wei, Yasemin Acar, Sascha Fahl, and Blase Ur.
2018. Your Secrets Are Safe: How Browsers’ Explanations Impact Misconceptions
About Private Browsing Mode. In Proceedings of the 2018 International World
Wide Web Conference (WWW), Lyon, France, April 23-27, 2018.

[37] Yuanyi Wu, Dongyu Meng, and Hao Chen. 2017. Evaluating Private Modes
in Desktop and Mobile Browsers and Their Resistance to Fingerprinting. In
Proceedings of 2017 IEEE Conference on Communications and Network Security
(CNS), Las Vegas, NV, USA, October 9-11, 2017.

[38] Lojin Bani Younis, Safa Sweda, and Ahmad Alzu’bi. 2021. Forensics Analysis
of Private Web Browsing Using Android Memory Acquisition. In Proceedings
of the 12th International Conference on Information and Communication Systems
(ICICS).

[39] Bin Zhao and Peng Liu. 2015. Private Browsing Mode Not Really That Private:
Dealing with Privacy Breach Caused by Browser Extensions. In Proceedings of
the 45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Rio de Janeiro, Brazil, June 22-25, 2015.

A APPENDIX
The detailed results of evaluation are shown in Table 3. Besides, to
better understand the private browsing features of mobile browsers
and the goal of private browsing, we collected the private mode
capabilities descriptions of our tested browsers from their privacy
policy or instructions on the private mode, as shown in Table 4.

9

https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://appium.io/
http://www.nirsoft.net/utils/chrome_cache_view.html
http://www.nirsoft.net/utils/chrome_cache_view.html
https://www.chromium.org/chromium-projects
https://www.chromium.org/chromium-projects
https://source.android.com/docs/security/app-sandbox
https://source.android.com/docs/security/app-sandbox
https://github.com/LSPosed/LSPosed
https://github.com/LSPosed/LSPosed
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://www.tcpdump.org/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/training/data-storage
https://developer.android.com/training/data-storage
https://developer.android.com/topic/security/best-practices#safe-data
https://developer.android.com/topic/security/best-practices#safe-data
https://kingrootapp.net/
https://kingrootapp.net/
https://github.com/rovo89/Xposed
https://github.com/rovo89/Xposed
https://github.com/topjohnwu/Magisk
https://github.com/topjohnwu/Magisk

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW 2024, May 13-17,2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 3: Detection results by apps.

Package Name App Version Chromium-based Rule1 Rule2 Rule3 Rule4 Rule5 Rule6
browser4g.fast.internetwebexplorer 24.10.15 No ✓ # #
com.aloha.browser 4.4.4 Yes # # # # #
com.alohamobile.browser 4.4.4 Yes # # # # #
com.android.chrome 106.0.5249.118 Yes ✓ ✓ ✓ ✓ ✓ #
com.apusapps.browser 3.1.10 No ✓ # #
com.brave.browser 1.45.120 Yes ✓ # ∗ # # #
com.browser.tssomas 6.5 Yes ✓ ✓ ✓ ✓ ✓ #
com.chrome.beta 108.0.5359.38 Yes ✓ ✓ ✓ ✓ ✓ #
com.chrome.dev 109.0.5382.0 Yes ✓ ✓ ✓ ✓ ✓ #
com.coccoc.trinhduyet 111.0.174 Yes ✓ ✓ ✓ ✓ ✓ #
com.ecosia.android 7.0.2 Yes ✓ # ∗ ✓ # #
com.hsv.freeadblockerbrowser 96.0.2016123590 Yes ✓ ✓ ✓ ✓ ✓ #
com.jio.web 3.0.6 Yes ✓ # # # # #
com.kaweapp.webexplorer 4.5.2 No # # #
com.kiwibrowser.browser Git210216Gen570536402 Yes # # # # # #
com.mi.globalbrowser 13.16.1-gn Yes ✓ ✓ ×∗ ✓ ✓ #
com.mi.globalbrowser.mini 3.9.3 Yes ✓ # #
com.microsoft.emmx 105.0.1418.28 Yes ✓ ✓ ✓ ✓ ✓ #
com.mx.browser 6.2.0.1000 No #
com.naver.whale 2.7.7.2 Yes ✓ ✓ ✓ # # #
com.opera.browser 65.1.3381.61266 Yes ✓ # # # # #
com.opera.browser.beta 72.0.3764.67976 Yes ✓ # # # # #
com.opera.gx 1.6.7 No ✓ # # # # #
com.opera.mini.native 65.1.2254.63284 No ✓ # # # # #
com.opera.mini.native.beta 66.0.2254.63780 No ✓ # # # # #
com.opera.touch 2.9.9 No ✓ # # # # #
com.sec.android.app.sbrowser.beta 19.0.1.2 Yes # # # # #
com.talpa.hibrowser v2.5.9.1 No ✓ # # # #
com.ume.browser.international 6.0.15 No # # #
com.ume.browser.northamerica 6.0.15 No # # #
com.xbrowser.play 3.8.3 No # #
com.yandex.browser 22.11.0.224 Yes × # # # # #
fast.explorer.web.browser 5.9.0 No ✓ × × ✓ ✓ ×
mark.via.gp 4.4.5 No # # #
mobi.mgeek.TunnyBrowser 12.2.9 No # # # # #
net.fast.web.browser 5.1.0 No ✓ # #
org.adblockplus.browser 3.2.1 Yes ✓ ✓ ✓ ✓ ✓ #
org.easyweb.browser 2.3.0 No ✓ # # #
org.mozilla.firefox 105.2.0 No ✓ # # # # #
org.mozilla.firefox_beta 106.0b5 No ✓ # # # # #
privacy.explorer.fast.safe.browser 2.1.0 No ✓ # #
webexplorer.amazing.speed 24.8.14 No ✓ # # #
com.explore.web.browser † 3.9.0 No ✓ × ✓ ✓ ✓ ×
com.UCMobile.intl † 13.4.0.1306 Yes ✓ # # #∗

cz.seznam.sbrowser † 9.1.1 No # #
ru.yandex.searchplugin † 22.97 Yes ✓ # # # # #
com.duckduckgo.mobile.android ‡ 5.141.0 No # # # # -
nu.tommie.inbrowser ‡ 2.43 No ✓ # ✓ # # -
org.mozilla.focus ‡ 106.1.0 No # # # # # -
The rule is not promised but obeyed; The rule is not promised and violated. ✓ The rule is promised and obeyed. × The rule is promised but violated.
∗: the results suffer from false negatives or false positives, and we discuss them below.
†: The browsing automation operations for these browsers were assisted with manual work. Our automation strategy cannot deal with them.
‡: These browsers are designed for private browsing without normal mode. Therefore, Rule 6 is not suitable for them.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

From Promises to Practice: Evaluating the Private Browsing Modes of Android Browser Apps WWW 2024, May 13-17,2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 4: Promised private browsing capabilities of mobile browsers.

Package name Not promised capabilities Promised capabilities
browser4g.fast.internetwebexplorer N/A Incognito mode ensures your privacy. Incognito

tab won’t record any browsing and search
history. (Rule 1)

com.aloha.browser Some websites will still be able to track you. N/A
com.alohamobile.browser Some websites will still be able to track you. N/A
com.android.chrome
com.browser.tssomas
com.chrome.beta
com.chrome.dev
com.coccoc.trinhduyet
com.hsv.freeadblockerbrowser
com.mi.globalbrowser
org.adblockplus.browser

Your activity might still be visible to:
·Website you visit
·Your employer or school
·your internet service provider
Downloads,bookmarks and reading list items
will be saved

Browser won’t save the following information:
·Your browsing history (Rule 1)
·Cookies and site data (Rule 2-3)
·Information entered in forms (Rule 4)
Other people who use this device won’t see
your activity
Block third-party cookies (Rule 5)

com.apusapps.browser N/A Incognito mode ensures your privacy. Incognito
tab won’t record any browsing and search
history. (Rule 1)

com.brave.browser Even though sites you visit in private tabs are
not saved locally, they do not make you
anonymous or invisible to your ISP, your
employer, or to the sites you are visiting.

Sites you visit in private tabs are not saved
locally. (Rule 1)

com.ecosia.android N/A Ecosia won’t remember the pages you visited,
your search history or your autofill information
once you close a tab. (Rule 1 and Rule 4)

com.jio.web Bookmarks added in incognito mode remains
private. Your activity might be visible to
websites you visit and your internet service
provider.

Your search keywords, browsing history are not
recorded. (Rule 1)

com.kaweapp.webexplorer N/A Browse. Erase. Repeat.
com.kiwibrowser.browser N/A N/A
com.mi.globalbrowser.mini Remenber that the files you download and the

bookmarks you add will still be saved.
Your browsing and search history won’t be
saved in incognito mode. (Rule 1)

com.microsoft.emmx Saves Collections, favorites and download (but
not download history).
Does not hide your browsing from your school,
employer, or internet service provider.
Does not give you additional protection from
tracking by default.
Does not add additional protection to what’s
available in normal browsing.

Microsoft Edge will delete your browsing
history, cookies, and site data, as well as
passwords, address, and form data when you
close all InPrivate tabs. (Rule 1-4)
Other people using this device won’t see your
browsing activity.
Prevent Microsoft Bing searches from being
associated with you.

com.mx.browser N/A You’re incognito.
com.naver.whale N/A Incognito mode allows you to browse the web

without leaving traces of your Internet connect,
including your search history, recent searches,
cookies, and temporary files. (Rule 1-3)

com.opera.browser N/A Opera won’t save the browsing history of your
private tabs. (Rule 1)

com.opera.browser.beta N/A Opera beta won’t save the browsing history of
your private tabs. (Rule 1)

com.opera.gx N/A Opera GX won’t save the browsing history of
your private tabs in private mode. (Rule 1)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW 2024, May 13-17,2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Package name Not promised capabilities Promised capabilities
com.opera.mini.native N/A Opera Mini won’t save the browsing history of

your private tabs. (Rule 1)
com.opera.mini.native.beta N/A Opera Mini beta won’t save the browsing

history of your private tabs. (Rule 1)
com.opera.touch N/A Opera Touch won’t save the browsing history of

your private tabs in private mode. (Rule 1)
com.sec.android.app.sbrowser.beta N/A N/A
com.talpa.hibrowser N/A Hi Browser will not keep your browsing history.

(Rule 1)
com.ume.browser.international N/A N/A
com.ume.browser.northamerica N/A N/A
com.xbrowser.play N/A N/A
com.yandex.browser Please note that you will start being "visible" on

social media and other sites if you log in.
Your history searches, and passwords will not be
saved. (Rule 1 and Rule 4)

fast.explorer.web.browser N/A Incognito browsing prevents any information
from being stored locally. (Rule 1,Rule 2,Rule
3,Rule 4-5,Rule 6)

mark.via.gp N/A You’ve gone incognito.
mobi.mgeek.TunnyBrowser N/A N/A
net.fast.web.browser Downloaded files and new bookmarks will still

be saved to your device.
We won’t remember any history. (Rule 1)

org.easyweb.browser Downloaded files and new bookmarks will still
be saved to your device.

We won’t remember any history. (Rule 1)

org.mozilla.firefox Does not make you anonymous to websites or
your internet service provider make it easier to
keep what you do online private from anyone
else who uses this device.

Firefox clears your search and browsing history
from private tabs when you close them or quit
the app. (Rule 1)

org.mozilla.firefox_beta Does not make you anonymous to websites or
your internet service provider make it easier to
keep what you do online private from anyone
else who uses this device.

Firefox Beta clears your search and browsing
history from private tabs when you close them
or quit the app. (Rule 1)

privacy.explorer.fast.safe.browser Downloaded files and new bookmarks will still
be saved to your device.

We won’t remember any history. (Rule 1)

webexplorer.amazing.speed N/A Incognito mode ensures your privacy. Incognito
tab won’t record any browsing and search
history. (Rule 1)

com.explore.web.browser N/A Incognito browsing prevents any information
from being stored locally. (Rule 1,Rule 2,Rule
3-5,Rule 6)

com.UCMobile.intl Files downloaded and bookmarks will be kept. Your browsing history and search history won’t
be recorded. (Rule 1)

cz.seznam.sbrowser N/A N/A
ru.yandex.searchplugin N/A Your search and browsing history isn’t saved.

(Rule 1)
com.duckduckgo.mobile.android N/A N/A
nu.tommie.inbrowser N/A You’re now leaving InBrowser. All cache and

history will be deleted. (Rule 1 and Rule 3)
org.mozilla.focus N/A N/A

The Bold indicates that the rule was violated.

12

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Android Security Mechanisms
	2.2 Private Browsing
	2.3 Motivation

	3 Private Rules for Mobile Browsers
	4 Design of BroDroid
	4.1 Environment Preparation
	4.2 Browsing Automation
	4.3 Network Traffic Analysis
	4.4 Local Storage Analysis

	5 Evaluation Results and Findings
	5.1 Experiment Setup
	5.2 Findings
	5.3 Accuracy
	5.4 Case Study

	6 Discussions
	7 Related Work
	8 Conclusion
	References
	A Appendix

