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ABSTRACT

This paper proposes an efficient consistency model (CM) training scheme tailored
for the policy distillation step common in reinforcement learning (RL). Specifi-
cally, we leverage the Probability Flow ODE (PF-ODE) and introduce two novel
training objectives designed to improve CM training efficiency when target policy
log-probabilities are available for a limited set of reference actions. We propose
Importance Weighting (IW) and Gumbel-Based Sampling (GBS) as strategies to
refine the learning signal under these limited sampling budgets. Our approach
enables more efficient training by directly incorporating target probability esti-
mates, which aims to reduce variance and improve sample efficiency compared
to standard CM training that relies solely on samples. Numerical experiments
in a controlled setting demonstrate that our proposed methods, particularly IW,
outperform conventional CM training, achieving more accurate policy representa-
tions with limited reference data. These findings highlight the potential of using
CMs, trained with our proposed objectives, as an efficient alternative method for
the policy distillation component within RL algorithms.

1 INTRODUCTION

Deep Generative Models (DGMs), especially diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020), excel at modeling complex distributions but their iterative sampling
hinders use in Reinforcement Learning (RL) where frequent environment interactions are needed.
Consistency Models (CMs) (Song et al., 2023) offer a faster alternative, capable of few-step sam-
pling, making them promising for RL policy representation (Ding & Jin, 2023). Prior work has
explored score-based models and CMs in RL, often within value-based or imitation learning frame-
works (Chi et al., 2023; Wang et al., 2022; Hansen-Estruch et al., 2023; Yang et al., 2023; Ding
et al., 2024; Psenka et al., 2023; Chen et al., 2023).

While this strategy works well in certain contexts, it is not ideal for RL algorithms that require ex-
plicit policy probabilities. Policy gradient RL methods (Sutton et al., 1999; Schulman et al., 2017;
Abdolmaleki et al., 2018) and model-based approaches (Schrittwieser et al., 2020; Hubert et al.,
2021) utilize explicit action log-probabilities during acting or training. These methods often involve
an improvement step yielding a target policy p∗, and a projection (distillation) step updating the pa-
rameterized policy πθ towards p∗. In this distillation phase, we have access to target log-probabilities
log p∗(xi) for a limited set of reference actions {xi}. Standard generative model training often only
uses samples, but we argue that leveraging available log p∗(xi) values can make CM training more
efficient for this distillation task.

We utilize the Probability Flow ODE (PF-ODE) (Song et al., 2020) formulation, which allows esti-
mating sample density, and focus on CMs (Song et al., 2023) for their sampling speed. We propose
two novel CM training losses for policy distillation that incorporate {log p∗(xi)} to reduce variance
compared to standard single-sample CM training (Appendix A.1), especially with limited reference
actions. We demonstrate their effectiveness in controlled experiments and briefly explore integration
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with PPO (Appendix A.3). Our primary focus is on improving the efficiency of the distillation step
(P) in a controlled setting, laying the groundwork for future application in broader RL scenarios.

2 PRELIMINARY

2.1 PROBLEM STATEMENT

Policy gradient methods can be cast as repeated applications of two main operators (Ghosh et al.,
2020): an improvement operator I and a projection operator P . Specifically:

Improvement I. Given a current policy πθ (parametrized by a neural network with parameters θ),
the operator I produces an improved policy Iπ that achieves strictly higher returns. Formally, for
all states s ∈ S, vIπ(s) ≥ vπ(s), where vπ is the value function under policy π. Examples of such
operators include MCTS-based methods (Hubert et al., 2021; Grill et al., 2020; Bertsekas, 2022),
which refine a given policy into an improved one by searching over possible actions.

Projection P . Once we have an improved policy Iπ, we need to distill it back into the parametric
policy network πθ. The operator P accomplishes this by projecting Iπ onto the space of policies
representable by our chosen function approximator. Typical operator P could be minimising the
cross-entropy between πθ and the improved policy Iπ: CE = Ex∼Iπ[− log πθ]. This two-step pro-
cess, P ◦I, is the core mechanism behind policy gradient algorithms. For example, MuZero (Schrit-
twieser et al., 2020) applies MCTS (I) at each step to obtain a tree-search policy, and then updates
(or distills) the policy network to match that improved policy (P).

In this work, we focus on the projection operator P . Specifically, we assume an improved policy
Iπ is already given, and our goal is to distill it into a policy represented by Consistency Model effi-
ciently. Suppose we have access to the improved policy’s log-probabilities, log p∗, over a (typically
small) set of actions {xi}. A naive application of Consistency Model training to these samples can
lead to high variance, although it remains unbiased (see Song et al., 2023, Lemma 1 in Appendix
A). One could reduce this variance by drawing more samples from the target policy, but that is often
computationally expensive. Thus, we aim to develop a more efficient approach that better leverages
the available improved action probabilities.

We adopt the usual Gaussian corruption scheme xt = x + σtz from VE-ODE (Song et al., 2020),
but specialize it to our setting. We recall the Consistency Model Training in Appendix A.1, given x
and xt, the score function∇ log pt(xt) can be estimated with−(xt−x)/t2. In standard Consistency
Model training, one uses a single sample x ∼ pdata as the training target; here, however, the “data”
distribution, which is unknown, is replaced by the improved policy distribution p∗(x). Hence, we
aim to approximate the posterior

p
(
x | xt

)
∝ p∗(x)N

(
xt | x, σ2

t I
)
,

which exploits the limited set of actions (and corresponding log-probabilities) from Iπ in a more
efficient manner.

3 EFFICIENT CONSISTENCY TRAINING FOR POLICY DISTILLATION

In this section, we show how knowledge of the improved policy Iπ’s log-density, log p∗(x), can
help reduce variance and improve efficiency in training Consistency Models.

We highlight two strategies that utilize log p∗(x) under a limited sampling budget:

• Importance Weighting (IW): For a small set of samples {xi} with known log p∗(xi), we
form an approximate posterior mean by importance weighting.

• Gumbel-Based Sampling (GBS): For discrete candidate action sets, we sample from the
posterior distribution using the Gumbel trick, which can further reduce variance in the
estimated denoising target.

Here we present two training algorithms (Algorithms 1 and 2) showing how to incorporate these
refined targets in CM training.
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3.1 IMPORTANCE WEIGHTING

Suppose we have access to a set {xi} of reference actions, each with a known (or stored) value of
log p∗(xi). We would like to approximate the posterior mean

µ(xt) = E[x | xt ]

An importance weighting (IW) strategy is:

1. For each xi in the reference set, compute the unnormalized posterior weight

wi = exp
(
log p∗(xi)

)
exp

(
− 1

2t2 ∥xt − xi∥2
)
. (1)

2. Normalize wi ← wi/
∑n

j=1 wj .

3. Form the IW estimate of the posterior mean:

µ̂IW(xt) =

n∑
i=1

wixi. (2)

This µ̂(xt) is an approximation to E[x | xt] restricted to the finite set {xi}. We then use

sIW(xt) = − xt − µ̂(xt)

t2

as an improved target for training the model’s denoiser. See Algorithm 1 for pseudocode that inte-
grates this step into a CM-like loss.

3.2 GUMBEL-BASED SAMPLING

An alternative to directly constructing the posterior mean is to draw approximate from p(x | xt),
using the Gumbel trick on a finite candidate set. For each reference xi, draw an i.i.d. Gumbel
variable gi ∼ Gumbel(0, 1) and pick

i∗ = argmax
i

[
log p∗(xi) − 1

2σ2
t
∥xt − xi∥2 + gi

]
.

And xsample = xi∗ . This yields a random draw from the discrete distribution whose unnormalized
log-probabilities are log p∗(xi) − 1

2σ2
t
∥xt− xi∥2. By re-sampling gi multiple times, we can obtain

multiple samples x
(1)
sample, x

(2)
sample, . . . from the approximate posterior. One may then average them

to get an empirical posterior mean, or simply treat the sampled xsample as a single-sample training
target. We adopt the latter one as demonstrated in Algorithm 2.

4 EXPERIMENT

To evaluate our proposed training methods for distilling the improved policy Iπ into a Consistency
Model, we conduct a controlled experiment in a two-dimensional action space. Specifically, we cre-
ate a mixture of truncated Gaussian components with randomly sampled means, scales, and mixture
weights (normalized to sum to one). We constrain the means and scales to lie within the action range
[xmin, xmax], and use this mixture distribution as the target policy. For each experiment instance,
we sample a set of actions along with their probabilities {xi, log p

∗(xi)}ni=1 from the target policy,
and then train Consistency Models under various loss formulations.

We quantify how well each loss recovers the target distribution by computing the mean-squared error
(MSE) between the estimated and true log-likelihoods. We repeat the experiment with 5 distinct
instances of the mixture distribution, each with 5 different random seeds. We adopt the same neural
network architecture as in Ding & Jin (2023) throughout.

In terms of implementation, we follow the Karras diffusion procedure (Karras et al., 2022), where
the probability flow ODE (PF-ODE) is given by

dx

dt
= −xt −Dθ(xt, t)

t
.
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Algorithm 1 CM Training with Importance
Weighting

1: Input: Denoiser Dθ, learning rate η, refer-
ence set {xi, log p

∗(xi)}ni=1, noise schedule
{σt}Tt=0.

2: repeat
3: Sample a batch {x(b)}Bb=1 from the refer-

ence set.
4: for each batch element b = 1, . . . , B do
5: Sample a time tb.
6: Generate z(b) ∼ N (0, I) and noise the

sample x
(b)
t = x(b) + σtbz

(b).
7: Compute importance weights

{w(b)
i }ni=1 via Eq. equation 1, us-

ing reference set.
8: Normalize w

(b)
i ← w

(b)
i /

∑n
j=1 w

(b)
j .

9: Compute µ̂(x
(b)
t ) =

∑n
i=1 w

(b)
i xi.

10: Denoise x̂(b) = Dθ(x
(b)
t , σtb).

11: MSE loss Lb = ∥x̂(b) − µ̂(x
(b)
t )∥2.

12: end for
13: θ ← θ − η∇θ

1
B

∑B
b=1 Lb

14: until convergence

Algorithm 2 CM Training with Gumbel-Base
Sampling

1: Input: Denoiser Dθ, learning rate η, refer-
ence set {xi, log p

∗(xi)}ni=1, noise schedule
{σt}Tt=0.

2: repeat
3: Sample a batch {x(b)}Bb=1 from the refer-

ence set.
4: for each batch element b = 1, . . . , B do
5: Sample a time tb.
6: Generate z(b) ∼ N (0, I) and noise the

sample x
(b)
t = x(b) + σtbz

(b).
7: Draw Gumbel variables {gi}ni=1, with

gi ∼ Gumbel(0, 1).
8: ℓi = log p∗(xi) − 1

2σ2
tb

∥x(b)
t −

xi∥2 + gi.
9: i∗ = argmaxi ℓi.

10: Evaluate x̂(b) = Dθ(x
(b)
t , σtb).

11: MSE loss Lb = ∥x̂(b) − xi∗∥2.
12: end for
13: θ ← θ − η∇θ

1
B

∑B
b=1 Lb

14: until convergence

We employ Hutchinson’s trick to compute the log-likelihood of generated actions, and for each
action sample {xi}, we obtain an estimated log-likelihood by first adding noise to generate xT = x+
σmax z and then solving the PF-ODE backward in time. We refer to this calculation as ”log probs”
in the following experiments. Finally, we compare these estimated log-likelihoods to those derived
via the sampling process, thereby assessing how closely the estimated log-likelihoods match each
other.

Table 1: Performance comparison of three loss functions. All metrics shown here are lower-is-better.

Loss Function LogP MSE LogP MAE Diff(samples-log probs) Score MAE
Original 8.3467 ± 1.9236 0.0210 12.9156 ± 5.2907
Gumbel 7.3514 ± 1.6057 0.0201 10.4524 ± 4.5369
Importance 7.2986 ± 1.4001 0.0009 9.5578 ± 3.3169

Table 1 compares three different loss functions with respect to three metrics, all of which are lower-
is-better. The Original loss function exhibits the highest (i.e., worst) errors across all metrics,
whereas the Gumbel and Importance achieve improvements. The Importance loss function yields
the lowest error in every category, indicating that it most effectively distills the target distribution.
Figure 2a, 2b demonstrates the evolving of LogP MSE and LogP MAE difference between sampling
and log probs calculation across epochs. Overall, the results highlight the advantage of incorporat-
ing importance weights, leading to more stable training and improved performance. More results
are presented in the Appendix A.2

5 CONCLUSION

In conclusion, the proposed Consistency Model training losses, Importance Weighting, and Gumbel-
Based Sampling, demonstrate clear benefits for policy distillation in reinforcement learning. By
reducing variance and improving sample efficiency, the proposed methods outperform conventional
Consistency Model training and deliver more accurate policy representations under limited sampling
conditions.
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A APPENDIX

A.1 RECALL OF CONSISTENCY MODEL TRAINING

Recall that the Consistency Training avoids the pre-trained score model by leveraging the unbiased
estimator:

∇ log pt(xt) = −E
[
xt − x

t2

∣∣∣∣xt

]
. (3)

where x ∼ pdata and xt ∼ N (xt | x, t2I). Then given x and xt,∇ log pt(xt) can be estimated with
−(xt − x)/t2. It participates in the Consistency Training loss LN

CT (θ, θ
−) as:

LN
CT (θ, θ

−) = E
[
λ(tn) d

(
fθ(xtn+1

, tn+1), fθ−
(
xtn+1

+ (tn − tn+1)tn+1
xtn+1 − x

t2n+1

, tn
))]

= E
[
λ(tn) d

(
fθ(xtn+1 , tn+1), fθ−

(
xtn+1 + (tn − tn+1)z, tn

))]
= E

[
λ(tn) d

(
fθ(x+ tn+1z, tn+1), fθ−

(
x+ tn+1z + (tn − tn+1)z, tn

))]
= E

[
λ(tn) d

(
fθ(x+ tn+1z, tn+1), fθ−

(
x+ tnz, tn

))]
leveraging z :=

xtn+1
−x

tn+1
∼ N (0, I).

A.2 EXPERIMENT

We evaluate the performance of different sampling methods by comparing their empirical distri-
butions against the true distribution in Figure 1. Each subplot represents a different experiment
instances. The x-axis corresponds to the action space, while the y-axis shows the density on a
logarithmic scale.

Overall, the results demonstrate that incorporating Gumbel and importance weighting strategies
improves the quality of sampled actions, yielding distributions that better approximate the true target.

A.3 CONSISTENCY MODEL AS PPO ACTOR

We evaluate a consistency-model-based Proximal Policy Optimization (PPO), referred to as CM-
PPO, on the dm control (Tunyasuvunakool et al., 2020) cheetah:run task using five different
random seeds. The key modification lies in the PPO loss function: in addition to the standard clipped
surrogate objective, we incorporate a conventional consistency loss scaled by the advantage and
modulated by a time-dependent factor that decreases as training progresses. Formally, the combined
objective is expressed as:

Lpolicy = Lclipped PPO + λ(t)E(s,x)∼πθ

[
A(s, x)Lconsistency(s, x)

]
,

6



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Figure 1: Sample distributions for Consisntecy Models trained with different losses, compared to
the target distribution

Table 2: Summary of experiment parameters.

Parameter Value
Number of mixture components 2,3
Action dimension 2
Number of epochs 105

Learning rate 1× 10−4

Size of reference set 16
Batch size 64
Number of diffusion steps 10
σmin 0.002
σmax 80
Action range [0, 1]

where A(s, x) denotes the advantage. While the resulting policy demonstrates some capacity for
control, as Figure 3 shows, its performance exhibits high variance and remains notably below that
of a standard continuous policy. These observations suggest that additional techniques may be nec-
essary to fully leverage the potential of Consistency Models and probability flow in policy gradient
methods.
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(a) LogP MSE across training epochs

(b) Difference in LogP MAE from sampling and log probs calculation across training epochs, closer to zero is
better
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Figure 3: Episode Returns with Confidence Interval across Actor Episodes

9


	Introduction
	Preliminary
	Problem Statement

	Efficient Consistency Training for Policy Distillation
	Importance Weighting
	Gumbel-Based Sampling

	Experiment
	Conclusion
	Appendix
	Recall of Consistency Model Training
	Experiment
	Consistency Model as PPO Actor


