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Instruction

(1-a) Source Video 

t=0s             t=15s          t=30s          t=45s          t=60s

(1-c) Instruction: “Make it Monet style”.

(1-b) Instruction: “Make it Van Gogh style”. 

t=0s             t=15s          t=30s          t=45s          t=60s

(2-c) Instruction: “Change it to daytime”.

(2-b) Instruction: “Make it Van Gogh style”. 

(2-a) Source Video 

Local Editing

Global Editing

(4-a) Source Video 

(4-a) Instruction: “Make it fashion”. 

(4-a) Source Video 

(4-a) Instruction: “Swap eyes with Superman's”. 

Figure 1: Video editing results by VIA. VIA excels in precise and consistent editing across diverse
video editing tasks. Above show consistent results over long videos with duration of 1 minute, which
is challenging in current literature. Below show consistent results of precise local editing.

Abstract

Video editing stands as a cornerstone of digital media, from entertainment and edu-
cation to professional communication. However, previous methods often overlook
the necessity of comprehensively understanding both global and local contexts,
leading to inaccurate and inconsistency edits in the spatiotemporal dimension, es-
pecially for long videos. In this paper, we introduce VIA, a unified spatiotemporal
VIdeo Adaptation framework for global and local video editing, pushing the limits
of consistently editing minute-long videos. First, to ensure local consistency within
individual frames, the foundation of VIA is a novel test-time editing adaptation
method, which adapts a pre-trained image editing model for improving consistency
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between potential editing directions and the text instruction, and adapts masked
latent variables for precise local control. Furthermore, to maintain global con-
sistency over the video sequence, we introduce spatiotemporal adaptation that
adapts consistent attention variables in key frames and strategically applies them
across the whole sequence to realize the editing effects. Extensive experiments
demonstrate that, compared to baseline methods, our VIA approach produces edits
that are more faithful to the source videos, more coherent in the spatiotemporal
context, and more precise in local control. More importantly, we show that VIA
can achieve consistent long video editing in minutes, unlocking the potentials for
advanced video editing tasks over long video sequences.

1 Introduction

With the exponential growth of digital content creation, video editing has become indispensable
for various purposes, including filmmaking [1, 2], advertising [3, 4], education [5, 6], and social
media [7, 8]. This task presents significant challenges, primarily in preserving the integrity of the
original video, accurately executing user instructions, and maintaining consistent editing quality
over time and space. These challenges become particularly pronounced with longer videos, where
ensuring long-range spatiotemporal consistency is critical.

To tackle these challenges, an extensive range of methods have been proposed [9–12]. One promising
approach, building on the remarkable success of image-based diffusion models [13–17], is to adapt
their image editing capabilities to ensure temporal consistency during test time [18, 19, 12, 20, 21].
However, there remains a crucial oversight in comprehensively addressing both global and local
contexts, leading to inaccuracies and inconsistencies in edits across spatiotemporal dimension. Most
existing methods are constrained by their ability to maintain spatiotemporal consistency, typically
limiting their edits to video sequences only seconds in duration. In fact, the source video itself can be
the best guide due to its inherent spatiotemporal consistency. Therefore, achieving effective video
editing across longer durations requires novel approaches that not only ensure temporal consistency
during testing but also encompass a deeper understanding of source video cues at both global and
local levels.

In this work, we introduce VIA, a unified spatiotemporal video adaptation framework towards faithful,
consistent, and precise video editing, pushing the limits of editing minute-long videos. First, the
foundation of our work is a novel test-time editing adaptation that adapts a pretrained image editing
model, to improve semantic understanding of the source video and consistency between potential
editing directions and the text instruction. We propose an augmentation pipeline to obtain the
in-domain tuning set for test-time adaptation, where the image editing model learns to associate
specific visual editing directions with the provided instructions, significantly enhancing semantic
understanding and editing consistency within individual frames. To further enhance local consistency,
we introduce local latent adaptation with automated mask generation powered by the multimodal
large language model and segmentation model, which achieves precise local control of the editing
targets across frames.

Second, adapting image editing models inherently lacks spatiotemporal consistency when applied to
video frames. To address this, we introduce spatio-temporal attention adaptation for maintaining
global editing consistency across frames. Specifically, we propose a gather-and-swap strategy for
efficient global editing, which leverages consistent attention variables from the model’s architecture,
and strategically applies them across the sequence. This method not only aligns with the continuity of
the video but also reinforces the fidelity of the editing process, ensuring that changes are harmonized
across frames and over time.

Through rigorous testing and evaluation, our methods have demonstrated superior performance over
existing techniques, offering significant improvements in both local edit precision and the overall
aesthetic quality of videos. By pushing the boundaries of what is possible in video editing, our work
opens new avenues for media production and creative content generation, marking a significant step
forward in the integration of AI-driven techniques into video editing. To the best of our knowledge,
we are the first to achieve minutes-long video editing.
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2 Related Work

2.1 Text-driven Video Editing

Text-driven Video Editing is a process to modify videos according to the instructions given by user.
Inspired by the remarkable success of text-driven image editing [16, 17, 22–24], extensive methods
have been proposed for video content editing [25, 18, 19, 12, 20, 21, 26]. One paradigm for video
editing is to adapt an image-based model to video. For example, [18] adapts image editing to
the video domain without any training or fine-tuning by changing the self-attention mechanisms in
Instruct-Pix2Pix to cross-frame attentions. [19] explicitly propagates diffusion features based on
inter-frame correspondences to enforce consistency in the diffusion feature space. [27] construct
a neural video field to enable encoding long videos with hundreds of frames in a memory-efficient
manner and then update the video field with image-based model to impart text-driven editing effects.
[26] plug in any existing image editing tools to support an extensive array of video editing tasks.
However, these methods are constrained by their ability to maintain global and local consistency,
limiting to edit short videos within seconds. To efficiently enable longer video editing, [12] centers
on the concept of anchor-based cross-frame attention, firstly achieving editing 27 seconds videos. In
our work, we built upon this line of work and improve editing and spatiotemporal consistency, firstly
pushing the limits of video editing to minutes-long videos.

2.2 Test-time Adaptation

Image-based video editing faces the challenge of ensuring temporal consistency during test time. To
address this, [10] propose to finetune a text-to-image model on a test video, enabling the generated
videos with similar motion patterns to the source video. [9] proposes light-weight spatial and
temporal adapters for efficient one-shot video editing. [11] adds a motion modeling module to the
frozen based text-to-image model, and trains it on video clips, thereby distilling a reasonable motion
prior. [12] uses the same training set that was used to training the image editing model, and applies
a data augmentation strategy for continuing pretraining to make the model equivariant to affine
transformations. Different from the above approaches, we propose two orthogonal approaches that
employs inference-time finetuing and local latent adaption, ensuring consistent and precise editing
across frames.

2.3 Spatiotemporal Consistency

Ensuring spatiotemporal consistency is critical for video editing, especially for long videos. [20]
makes the attempt to study and utilize the cross-attention and spatial-temporal self-attention during
DDIM inversion. [21] proposes a spatial regularization module to fidelity to the original video. [28]
presents spectral motion alignment (SMA), a framework that learns motion patterns by incorporating
frequency-domain regularization, facilitating the learning of whole-frame global motion dynamics,
and mitigating spatial artifacts. [12] improves the design of spatial temporal attention to anchor-
based cross-frame attention to ensure spatiotemporal consistency. In our work, we further ensure
consistency inside the anchor-based frames and propose a two-step gather-swap process to adapt
spatiotemporal attention for consistent global editing.

3 Preliminaries

Diffusion Models In this work, we adapt existing image editing model for instruction-based video
editing. Given an image x, the diffusion process produces a noisy latent zt from the encoded latent
z = E(x) where the noise level increases over timesteps t ∈ T . A network ϵθ is trained to minimize
the following optimization problem,

min
θ

Ey,ϵ,t

[∥∥ϵ− ϵθ(zt, t, E(cI), cT )
∥∥] (1)

where ϵ ∈ N (0, 1) is the noise added by the diffusion process and y = (cT , cI , x) is a triplet of
instruction, input image and target image. Here ϵθ usually operate on the U-Net architecture [29],
including convolutional blocks, as well as self-attention and cross-attention layers.

Attention Layer The attention layer first computes the attention map using query, Q ∈ Rnq×d,
and key, K ∈ Rnk×d where d, nq and nk are the hidden dimension, the numbers of the query and key
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Figure 2: Overview of our VIA framework. For local consistency, Test-time Editing Adaptation
finetunes the editing model with augmented editing pairs to ensure the consistent editing directions
with the text instruction, and Local Latent Adaptation achieves precise editing control and preserves
non-target pixels from the input video. For global consistency, Spatiotemporal Adaptation collects
and applies key attention variables across all frames.

tokens respectively. Then, the calculated attention map is applied to the value, V ∈ Rn×d, describing
as follows:

Z′ = Attention(Q,K,V) = Softmax(
QK⊤
√
d

)V, (2)

Q = ZWq, K = CWk, V = CWv, (3)

where Wq,Wk,Wv are the projection matrices to map the different inputs to the same hidden
dimension d. Z is the hidden state and C is the condition. For self attention layers, the condition is
the hidden state while the condition is text conditioning in cross attention layers.

Cross-frame Attention Given N frames from source video, cross-frame attention has been em-
ployed in video editing by incorporating K and V from previous frames into the current frame’s
editing process [30, 21, 12], as shown below:

ϕ = Softmax
(
Qcurr[Kcurr,Kgroup]

T

√
d

)
[Vcurr,Vgroup], (4)

where Kgroup = [K0, . . . ,Kk] and Vgroup = [V0, . . . ,Vk], and k is the group size. By incorporating
Kgroup and Vgroup during the video editing process for each frame, the temporal consistency is
improved. In this paper, we improve cross-frame attention with a two stage gather-swap process to
significantly improve the spatiotemporal consistency.

4 The VIA Framework

We introduce a unified framework to address key challenges in instruction-guided video editing,
particularly the issues of editing consistency and spatiotemporal consistency across video frames
using an image editing model as in Fig. 2. Below, we detail the distinct methodologies that underpin
our approach, each tailored to solve specific aspects of video editing challenges.

4.1 Test-Time Editing Adaptation for Consistent Local Editing

Videos typically exhibit significant variances across the temporal dimension, especially for long
videos. When adapting image editing models for video editing, the same edit instructions can lead to
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Change the cat in wood sculpture.

Make it to Van Gogh Style.

Replace it into Noodle.

Prompt:
Given this image and an editing instruction,
determine which part of the image should be edited.
Please always use the specific category name.

Large 
Vision-language

Model

cat mask

whole image

rice mask

Figure 3: Automatic mask generation. A single frame from the video, along with a tailored text
prompt that encapsulates the editing instruction, is fed into a Large Vision-Language Model (LVLM),
such as GPT-4, to generate a text description specifying the area to be edited. If the designated editing
area does not encompass the entire image, this text description is then input into a segmentation
model to create a mask for the targeted area.

diverse semantic interpretations and indicate different areas that should be altered in different frames.
This inherent variability makes it challenging to maintain consistent edits throughout the entire video.
To this end, we propose two orthogonal approaches for consistent local editing.

Drawing inspiration from DreamBooth [31], which employs inference-time fine-tuning to associate
specific objects with unique textual tokens, we also link visual editing outcomes with corresponding
editing instructions. We first propose a pipeline to obtain the in-domain tuning set without needing
external resources. For the video to be edited, the image editing model Ψ first edit a randomly
sampled frame Sroot with different random seed, and choose the best editing result Eroot. Given the
choosing editing result, Eroot, we use random affine transformation to both edited frame and source
frame. Consider Fk as the affine transformation:

T = {(Fk(S),Fk(E), I) | Fk ∈ F} (5)

where F is the set of transformation. So the tuning set T , consists of triples: source image, edited
image, and editing instruction. By fine-tuning the image editing model Ψ on this domain-specific
dataset, the model learns to associate specific visual editing directions with the provided instructions.

This approach offers two significant benefits. Firstly, it enhances semantic consistency across the
video, particularly for instructions that lack detailed editing specifications, by mitigating divergent
editing outcomes for different frames. Secondly, it improves the overall quality of edits by using
the best editing outcome as the root pair for further fine-tuning, a method particularly effective in
localized edits where performance might otherwise be less robust. In this way, the image editing
model reinforces its most successful editing strategies.

Local Latent Adaptation Editing instructions may indicate that only a particular area should be
altered. However, current end-to-end models for following such instructions often inadvertently
modify areas not targeted by the user. To address this issue, we propose a method for precise editing.
Initially, a Large Vision-Language Model (LVLM) is prompted to provide a textual description, P ,
of the area to be swapped for each frame. Based on this description, P , we employ the Segment
Anything model [32] to extract a mask delineating the area to be edited.

Previous methods in image domain achieved localized editing via directly blending the latent z from
source image and target image at each diffusion step [33, 34]. For video editing, rather than just the
source frame, the editing process should also consider other frames and maintain in-frame consistency.
Here, we propose to anneally increase the blend the latent from source frame to target frame. During
the diffusion process, we merge the inverted latent representation with the generated latent at each
timestep. Furthermore, we observed that this blending process benefits the overall video editing
workflow by ensuring that edits are confined to the targeted areas. By maintaining the integrity of
non-targeted regions, our approach compels the model to adhere strictly to the editing instructions
and focus on the specified areas. We further propose Progressive Boundary Integration to smoothly
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Figure 4: The gather and swap process for video editing. The left part of the diagram illustrates
the gathering process. We initially select k + 1 frames evenly distributed throughout the video. The
first frame undergoes standard editing using an image editing model, during which the attention
variables are captured and stored. For each of the subsequent k frames, the attention variable from the
preceding frame is swapped in, and its own attention variables are also preserved. In the right part,
the collected attention variables from all k + 1 frames are swapped into the editing process of each
frame. This includes applying the previously gathered attention variables to enhance the consistency
and quality of edits across the sequence.

merge the source latent and the target latent. This is accomplished through a linear interpolation
between the values 0 and 1 across the series. The mathematical representation is given by:

Msrc(x, y) =

{
Msrc(x, y) · t

T , if t ≤ T and Msrc(x, y) = 1
Msrc(x, y), otherwise

(6)

Here, Msrc(x, y) is predefined as 1 in a specific central area and 0 elsewhere. Within this central area,
Msrc(x, y) incrementally increases from 0 to 1 over T steps, while the values outside this central
region remain unchanged.

4.2 Spatiotemporal Adaptation for Consistent Global Editing

To improve the inefficiency issue of cross-frame attention, [12] proposed to sample a set of group
frames and edit them with an image-based model. However, this approach does not ensure consistency
inside the group frames as the attention variables in this group are still generated independently. Thus,
we propose a two-step gather-swap process to adapt spatiotemporal attention for consistent global
editing.

Firstly, in the group gathering stage, the model progressively edits the image, with key K and value
V from previous frames in the group, rather from their own Kcurr and Vcurr,

ϕ = softmax

(
QcurrK

T
prev√

d

)
Vprev, (7)

K(t+1)
group = [K(t)

group,Kcurr], V(t+1)
group = [V(t)

group,Vcurr] (8)
Since Kcurr and Vcurr are calculated by the ϕ from the last layer, which already has a stronger
dependency on other frames, the saved elements have a stronger consistency with previous group
elements, leading to in-group consistency.

In the second stage, we utilize the attention group in the editing process of all frames, including the
frames used to generate the attention group. In this way, we address the inconsistency of the first few
frames in the group, where they have less dependency on other frames. During the editing process,
each frame still does not utilize its own attention variables:

ϕ = softmax

(
QcurrK

T
group√
d

)
Vgroup, (9)
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Source Video

Replace into an alien Replace the animal to tiger Place the dog on Monet's water lilies

Source Video

Make the tree green Make the animal paper structure Make the background yellow

Figure 5: Local editing results. VIA is capable of diverse local editing tasks where only part of the
pixels in the frame should be altered, including identity swapping, object part editing, background
editing.

in this way, all frames share the same attention group that is consistent in itself, which yields maximum
consistency between edited frames. Furthermore, previous work has only utilized self-attention for
cross-frame attention. We found that cross-attention also serves a similar function, and combining
both yields maximum editing results. To maximize coverage of the dynamic changes within a video,
we select attention variables from frames that are evenly distributed throughout the video, thereby
ensuring a broad representation of frame differences. Figure 4 illustrates the two stages, where A
represents both K and V.

5 Evaluation

In this paper, we adapt open source image editing model MGIE [35] for video editing. For spa-
tiotemporal adaptation, we gather attention variables from 4 frames. For editing adaptation, we
design folowing transformations for each image-pair to enhance variability while maintaining the
structural integrity of the images: (i) slight rotation (up to ±5 degrees); (ii) translation (up to 5% both
horizontally and vertically); (iii) following the previous two, cropping transformed images from 75%
to 100% of its original size to simulate changes in the framing of video sequences. Additionally, the
images are sheared by up to 10 degrees. These affine transformations introduce realistic variations to
mimic the diversity of viewing angles typically encountered across different frames in a video. We
prompt GPT-4V to provide the localized textual descrption and extract editing mask using Grounding
DINO [36] and Segment Anything [37].

For comprehensive evaluations with state-of-the-art work, we first compare our results with the closed
source method, Fairy [12], which handles longest videos up to 27 seconds in length, using the video
from their paper. We then conduct qualitative and human evaluations with open-sourced state-of-the-
art baselines, AnyV2V [26], Rerender [38], Tokenflow [19], Video-P2P [30], and Tune-A-Video [10].
For AnyV2V, we use the first edited frame from VIA.

5.1 Long Video Editing

A direct consequence of the high consistency feature in our video editing framework is its proficiency
in editing longer videos. While one of our baselines, Fairy [12], has not made their code publicly
available, they report that their model can handle videos up to 27 seconds in length. We compare
our results on the same video using sample identical instructions in Figure 8. Remarkably, VIA
demonstrate superior global and local consistency, attributable to our unified adaptation framework.

7



Source Video

In Van Gogh
style

In Post-
impressionism

Make it black
and white

Make it night
with light
from camera

Figure 6: Global editing results. VIA demonstrates robust global editing performance across various
videos using a consistent set of editing instructions, producing high-quality results.

Source Video (a) “Make cat Monet style”

(b) “Make image Van Gogh style” (c) “Make the cat blue”

(d) “Make image grayscale” (e) “Make the cat green”

Figure 7: Global and local stylization. We show video editing results with different given instructions
in (a)-(e). Local Editing in VIA is not limited to object swapping. Whereas other methods can only
do stylization on the whole image, our model could achieve a local stylization.

5.2 Qualitative Results

Local editing results. Fig. 5 demonstrates the performance of VIA on various local editing tasks
where only specific parts of the frame are altered. VIA accurately identifies the target position and
performs precise edits, even with occluded subjects, as seen in the "Replace the animal with a tiger"
example. In addition to editing foreground subjects, VIA excels at background modifications. For
instance, it can seamlessly "Place the dog on Monet’s water lilies" in a video. In the challenging
skeleton video, where the background needs to fill the gaps between the bones, VIA maintains
consistent performance without affecting the dancing skeleton.

Global editing results. In Fig. 6, we show the global editing performance of VIA across various
videos using a consistent set of editing instructions, yielding high-quality results. The same set of
editing prompts was applied to different videos. The bottom example illustrates VIA’s ability to
understand and consistently apply visual effects across all frames.

Fig. 7 demonstrates the advanced video editing capabilities of our method, highlighting its ability to
perform both global and local stylization. Unlike previous methods, which are limited to applying
stylistic changes to the entire image, our approach allows for precise, localized edits. This flexibility
is illustrated through various examples in subfigures (a)-(e), where different instructions are applied
to achieve distinct editing effects. Whether it’s object swapping or specific regional stylization, our
model surpasses the limitations of traditional methods by enabling targeted modifications while
preserving the overall composition and aesthetic integrity of the video.
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Time Frame(s)
t=0.00             t=3.75            t=9.36            t=14.15          t=27.00

Source Video + Instruction: “In low poly art style”

(a) Ours

(b) Fairy Model

Figure 8: Comparison with the baseline model on the long video. We visualize editing results on
sampled frames from a 27-second duration video.

Source Video
Instruction: “Set time to be sunset” (a) Ours

(b) AnyV2V (c) Tokenflow

(d) Rerender (e) Tune-A-Video

Source Video
Instruction: “Change to a black chimpanzee” (a) Ours

(b) AnyV2V (c) Tokenflow

(d) Rerender (e) Tune-A-Video

Figure 9: Qualitative comparison with baselines. The left side video is a fast-moving cloud, while
the right side video is a monkey moving out of the camera. Our model is able to produce consistent
editing results.

Qualitative Comparison. In Figure 9, we present two example of video editing. In the first example,
the video features a rapidly moving cloud against a blue sky, with the editing directive set to "Set
the time to sunset." This task challenges the editing model to deduce the necessary visual alterations.
Despite the cloud’s swift movement—which places high demands on the model’s consistency—our
model demonstrates excellent consistency across various frames. Moreover, the Editing Adaptation
process enables VIA to effectively align the visual effects with the concept of "sunset." Conversely,
other models failed to execute this command adequately. Notably, the AnyV2V model managed to
partially achieve the desired visual effect by utilizing the initial frame from VIA. On the right, we
present an example of object swapping, where a monkey moves from inside the frame to outside the
frame. The challenge lies in ensuring a smooth transition from the whole subject to a partial subject.
While other methods often introduce artifacts and exhibit significant inconsistencies between the
edited frame and the source video, VIA achieves seamless subject identity swapping, maintaining
visual coherence and continuity throughout the transition.
5.3 Human Evaluation

Due to the free form nature of the editing process and the lack of ground truth, we use human
evaluation as the quantitative results. Here we sampled 400 videos for human evaluation. We
conducted a human evaluation study to assess the performance of our VIA (Ours) against open
sourced state-of-the-art baselines, including Rerender, TokenFlow, AnyV2V, Video-P2P, and Tune-
A-Video. The evaluation was carried out in three key criteria: Instruction Following, Consistency,
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Table 1: Human evaluation results. We compare our model with five previous open-source methods
from three aspects. ‘Tie’ indicates the two models are on par with each other.

Ours Rerender Tie Ours TokenFlow Tie Ours AnyV2V Tie Ours Video-P2P Tie Ours Tune-A-Video Tie

Instruction Following 50.50 34.00 15.5 75.75 16.00 8.25 56.00 29.00 15.00 74.00 16.25 9.75 70.25 20.75 9.00
Consistency 47.25 35.00 17.75 38.00 31.50 30.5 53.50 23.25 23.25 80.50 9.50 10.00 68.75 20.75 10.5

Overall Quality 53.50 29.00 17.5 61.75 22.75 15.5 63.50 30.00 6.5 63.75 22.75 13.5 56.00 22.25 21.75

Source Video
Instruction: "Change into tiger" (a) Our full model

(c) Without Test-Time Adaptation

(d) Without Spatiotemporal Adaptation (b) Without Local Latent Adaptation

(e) Without Cross-Attention Swap

Source Video
Instruction: "Make it Japanese woodblock print" (a) Our full model

(c) Without Test-Time Adaptation

(d) Without Spatiotemporal Adaptation

(e) Without Cross-Attention Swap

Figure 10: Ablation Study on components in VIA. On the left, we present an example of local
editing where only the pixels of the dog are altered. On the right, we demonstrate global editing.
Without the Local Latent Adaptation process, the background is inevitably affected during editing.
Test-time adaptation ensures robust visual effects that accurately adhere to the given instructions.
Without the gather-swap technique, object consistency across different frames is compromised.
Furthermore, incorporating cross-attention, in addition to self-attention, enhances consistency and
reduces artifacts.

and Overall Quality. The results are presented in Table 1. These results highlight the strengths of
our proposed method, particularly in Instruction Following and Consistency, while also indicating
potential areas for further improvement in terms of Overall Quality compared to certain baselines.

5.4 Ablation Study

In Fig. 10, we demonstrate the impact of various components of VIA on a 20-second video, in which
a dog rapidly moves head and shakes body. The editing instruction provided was "Change into a
tiger." Our Local Latent Adaptation process effectively identifies the target area and performs precise
editing. Additionally, our experiments reveal that the initial edited frames largely determine the
overall visual quality, as information from these root frames propagates through the entire video
sequence. Test-time adaptation helps the editing model adhere closely to the editing instructions. In
the absence of the gather-swap technique and relying solely on cross-frame attention, inconsistencies
appear across the frames. Moreover, while self-attention is a standard practice for ensuring frame
consistency, we discovered that cross-attention significantly enhances video editing quality. For
instance, excluding cross-attention results in less facial alignment with source video.

6 Limitation

While VIA demonstrated impressive performance in video editing, it is not without its limitations.
First, it inherits the constraints of the underlying image editing model, which restricts the range
of possible editing tasks to those predefined in the image model. Second, the self-tuning process
currently necessitates manual selection of a root pair by a human expert. In future iterations, we aim
to implement an evaluation model that can automate this selection process.

7 Conclusion
This paper introduced a novel video editing framework that addresses the significant challenges of
achieving temporal consistency and precise local edits. Our approach overcomes the limitations of
current frame-by-frame methods, ensuring coherent and immersive video experiences. Extensive
experiments demonstrate that our framework surpasses existing baselines in terms of temporal
dynamics, local edit precision, and overall video aesthetic quality. This advancement opens new
possibilities for media production and creative content generation, setting a new standard for future
developments in video editing technology.
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A Additional Implementation Details

The evaluation was conducted using a collection of online resources and video clips from Panda-
70M [39]. VIA can be applied to general image editing frameworks [40, 41, 35]. In this work, we
used MGIE [35] as the base image editing model. We set the diffusion step T to 10 and performed
spatiotemporal adaptation through all cross-attention and self-attention layers. Our experiments
showed that adaptation achieves the best performance when conducted on at least the first 8 steps.

We also observed that increasing the total diffusion step T improves image detail but simultaneously
raises the probability of artifacts. Through experimentation, we found that using a value between 5
and 10 generally yields good editing results while maintaining high processing speed. This balance
ensures high-quality edits without introducing undesirable visual inconsistencies. For spatiotemporal
adaptation, we collect attention variables from four frames.

Test-time Editing Adaptation is a process for refining the editing direction of the underlying model
without relying on external data. The pipeline begins with an Edit & Augment step, where a single
frame is edited, and transformations are applied to both the source and edited frames to create a
training set. Using this dataset, the underlying editing model is fine-tuned to adjust and improve
the editing direction. We introduce the following transformations for each image pair, aimed at
increasing variability while maintaining the structural integrity of the images: (i) slight rotation (up
to ±5 degrees); (ii) translation (up to 5% both horizontally and vertically); and (iii) after applying
these transformations, cropping the images to between 75% and 100% of their original size to
simulate changes in video sequence framing. Additionally, we apply shearing transformations of up
to 10 degrees. These affine transformations introduce realistic variations, simulating the diversity
of viewing angles typically encountered across different frames in a video. This approach helps
the model adapt to the natural changes in perspective that occur during video sequences. For the
tuning process, the training parameter for MGIE is the same as the tuning process of the underlying
model. Specifically, we are using a learning rate of 5e-4 with AdamW optimizer, with a batch
size of 16 and a total training of 200 steps. Our test-time adaptation process tunes the underlying
image editing model towards a fixed editing direction. However, to the best of our knowledge, most
video editing methods including the baselines used in this paper use an image generation or video
generation model [10, 9, 11]. One exception is one of our baselines, Fairy [12], which uses an image
editing model for video editing. However, since it did not open-source the code, it is hard to test the
performance of test-time adaptation on other models.

Baseline Implementation primarily follows the publicly available source code. For AnyV2V [26],
as it requires an edited first frame, we provide it with the first frame edited by VIA. It inverts the
source video into latent space and reconstructs the edited video using the edited frame as a condition.
Rerender [38] edits the first frame using a diffusion model, modifies key frames, and interpolates
the remaining frames based on the neighboring key frames. TokenFlow [19] inverts each video
frame using DDIM to extract tokens and computes inter-frame correspondences via nearest-neighbor
search. Keyframes are jointly edited at each denoising step to produce tokens, which are propagated
across frames using pre-computed correspondences. The network replaces generated tokens with the
propagated ones, iteratively refining the video into the final edited version. Video-P2P [30] employs
a diffusion model with a shared unconditional embedding optimized for the reconstruction branch,
while the initialized unconditional embedding is used for the editable branch, incorporating the
editing instruction. Their combined attention maps generate the target video. Tune-A-Video [10] uses
a text-video pair as input and leverages pretrained T2I diffusion models for T2V generation. During
fine-tuning, it updates the projection matrices in attention blocks with the standard diffusion training
loss. At inference, it generates a new video by sampling latent noise inverted from the input video,
guided by a modified prompt. For all methods requiring a new prompt rather than editing instructions,
we use ChatGPT to rewrite the prompt. For Fairy [12], as the code is not publicly available, we
directly retrieved the video from their official website. For detailed configurations, please refer to
their respective papers and open-source code.

From a high level, the difference between VIA and other methods lies in three aspects:

(i) Other models do not consider the local editing process, meaning the editing may fail to faithfully
follow the instruction across the entire frame. These methods typically rely on some attention-sharing
mechanism without addressing the nuances of video editing.

(ii) For the information-sharing process across different frames, other approaches often directly share
information without refinement, whereas VIA employs gather-and-swap to emphasize consistency
in the shared information.
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(iii) Their methods are often unsuitable for long videos due to limitations in the backbone architecture.
In contrast, our global adaptation process bypasses these limitations in current models and hardware
(e.g., GPU memory), enabling the editing of videos with up to a few thousand frames.

B Speed Analysis

VIA not only achieves great performance, but also offers impressive speed. The fine-tuning process
takes approximately 1 minute, regardless of the video’s length. For the global adaptation process, it
takes InstructPix2Pix [41] about 1 second per frame, and MGIE [35] around 3 seconds per frame.

Distribution Across GPUs: Once we gather the frames, the editing for all frames can be performed
on different GPUs simultaneously, as the frame editing process only depends on the fixed group
frames. We utilize 8 GPUs for processing, which helps manage the load effectively.

Total Processing Time for a 600-frame video:

• MGIE: 60 (fine-tuning) + 3×600
8 = 285 seconds.

• InstructPix2Pix: 60 (fine-tuning) + 1×600
8 = 135 seconds.

For the comparison with baselines, where only spatiotemporal adaptation is used (without fine-tuning
or local adaptation), the time is:

• MGIE (without fine-tuning): 3×600
8 = 225 seconds.

• InstructPix2Pix (without fine-tuning): 1×600
8 = 75 seconds.

C More Ablation Study

In the main paper, we presented an ablation study on long videos. Here, we demonstrate the impact
of various components of VIA on videos less than 20 seconds in duration, where a dog rapidly
moves its head and shakes its body. The provided editing instruction was "Change into a tiger." Our
Local Latent Adaptation process effectively identifies the target area and performs precise edits. Our
experiments also reveal that the initial edited frames largely determine the overall visual quality,
as information from these root frames propagates throughout the entire video sequence. Test-time
adaptation further ensures that the model adheres closely to the editing instructions.

In the absence of the gather-and-swap process, relying solely on cross-frame attention results in
inconsistencies across frames. Furthermore, while self-attention is commonly used to maintain frame
consistency, we found that cross-attention significantly improves the quality of video editing. For
example, when cross-attention is excluded, facial alignment with the source video is reduced, leading
to less accurate transformations. In the right part of the experiment, we applied a style change to
the video, transforming it into the aesthetic of a Japanese woodblock print. We observed that longer
videos exhibit slightly lower visual performance compared to short ones, as minor mismatches can
accumulate over a three-minute sequence with approximately 5,000 frames.

Source Video
Instruction: "Change into tiger" (a) Our full model

(c) Without Test-Time Adaptation

(d) Without Spatiotemporal Adaptation (e) Without Local Latent Adaptation

(b) Without Cross-Attention Swap

Source Video
Instruction: "Make it Japanese woodblock” (a) Our full model

(c) Without Test-Time Adaptation

(d) Without Spatiotemporal Adaptation

(b) Without Cross-Attention Swap

Figure 11: Ablation study on videos less than 20 seconds.
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Source Video

(a) “Change to a rock robot and dancing in the 
wild near a stone”

Source Video

(a) “Put into fog and drive out of it at the end”

Figure 12: Failure cases. In the left example, a misalignment occurs during the interaction between
the robot and the rock, despite accurately capturing the dance sequence. In the right example, while
the driver is seamlessly integrated into the fog, the sequence fails to depict driving out process,
leaving the edit incomplete.

D Analysis on Failure Cases

We highlight several failure cases where VIA did not achieve the expected performance, as shown
in Fig. 12. The first challenge involves handling complex interactions. In the example on the left,
while we successfully captured the intricate body dynamics during a sophisticated dance sequence, a
misalignment occurred when the robot was supposed to interact with a rock, leading to inaccuracies
at the point of contact. The second challenge relates to temporal dynamics. Although we seamlessly
integrated the driver into the fog, the sequence did not show the car emerging from the fog, leaving
the scene incomplete. In the future, we plan to incorporate more explicit temporal information into
the editing process to better address these issues.

E Automatic Mask Generation

We present an automated mask generation pipeline aimed at enhancing user experience and stream-
lining the editing process, particularly for large-scale edits. Editing instructions often specify
modifications to specific regions, but current end-to-end models tend to alter unintended areas. To
address this, we designed an automated pipeline for mask generation, as illustrated in Fig. 13.

First, a Large Vision-Language Model (GPT-4V in our experiment) is prompted to generate a textual
description, P , of the region to be modified for each frame. Using this description, we apply the
Segment Anything model [32] to extract a mask that accurately delineates the target area for editing.
It is important to note that we did not use GPT-4V during comparisons with baselines in the original
paper.

In the optimal setting, VIA involves further tuning in the local adaptation process, which some base-
lines do not utilize. For fairness in comparisons, we degraded our model to use only Spatiotemporal
Adaptation during all evaluations. This ensures that our results are directly comparable to baseline
models without additional enhancements from local adaptation or the automated mask generation
process.

F Performance on Other Backbone

VIA can be equipped with various backbones. Here, we present the performance of another backbone,
InstructPix2Pix [41]. As shown in Tab. 2, our model consistently outperforms baselines across
multiple metrics. Compared to the MGIE backbone, VIA demonstrates improved Consistency
performance but slightly lower Instruction Following performance. This aligns with the fact that
MGIE incorporates an external instruction understanding module [42], which enhances its ability to
handle complex editing instructions but diminishes the effect of shared group attention. A similar
trend is observed in Tab. 3, where VIA achieves higher performance on Tem-Con and Pixel-MSE
metrics but slightly lower performance on Frame-Acc. Furthermore, VIA offers faster editing, as it
bypasses the need for the additional instruction understanding process required by MGIE. Here for
InstructPix2Pix, we used the same parameter setting as MGIE. In Fig. 14, we present the results on
both long and short videos.
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Change the cat in wood sculpture.

Make it to Van Gogh Style.

Replace it into Noodle.

Prompt: 
Given this image and an editing instruction,
determine which part of the image should be edited.
Please  always use the specific category name.

Large 
Vision-language

Model

cat mask

whole image

rice mask

Figure 13: Automatic mask generation. A single frame from the video, along with a tailored text
prompt encapsulating the editing instruction, is fed into a Large Vision-Language Model (LVLM),
such as GPT-4, to generate a text description that specifies the region to be edited. If the designated
editing area does not cover the entire image, this text description is then passed into a segmentation
model, such as the Segment Anything model, to create a mask for the targeted region. This automated
process allows for precise identification of the area to be modified, ensuring that only the relevant
portion of the image is edited, while preserving the integrity of the rest of the frame.

Table 2: Human evaluation results. We compare our model with five previous open-source methods
from three aspects. ‘Tie’ indicates the two models are on par with each other. Only spatiotemporal
adaptation is used when compared with baseline models. Here we used InstructPix2Pix as the
backbone.

Ours Rerender Tie Ours TokenFlow Tie Ours AnyV2V Tie Ours Video-P2P Tie Ours Tune-A-Video Tie

Instruction Following 48.00 35.00 17.00 74.00 18.25 7.75 53.00 29.25 17.75 68.00 20.25 11.75 67.00 22.50 10.50
Consistency 48.00 35.50 16.50 40.00 31.50 28.50 54.50 22.75 22.75 78.50 9.50 12.00 67.75 19.75 12.50

Overall Quality 51.00 28.00 21.00 59.75 23.25 17.00 61.75 31.50 6.75 60.25 24.25 15.50 51.50 24.50 24.00

G Comparison on Attention Swapping Process

Attention variables within the U-net of diffusion models have proven to be highly correlated with
the generated visual content and are widely used in various editing tasks [40, 33, 43, 30? ]. In video
editing, some methods train models to reconstruct the original videos and swap key attention features
during the editing process [26, 30]. Others suggest collecting attention variables independently
from individual frame edits and applying them across frames [? 12]; however, these independently
generated attention variables often lack internal consistency.

In contrast, our recursive gather process ensures consistency within the attention group, which is
especially crucial for long video generation, where maintaining coherence across thousands of frames
is essential. Moreover, unlike previous methods that predominantly rely on self-attention, we also
examine the significance of cross-attention layers, as highlighted in the ablation study.

Following the test-time adaptation process, each frame can be edited independently on separate GPUs
during the spatiotemporal adaptation phase, significantly reducing the time required, particularly

Table 3: Automatic evaluation results. VIA outperforms open-sourced video editing models in
automatic metrics. Only spatiotemporal adaptation is used when compared with baseline models.
Here we used InstructPix2Pix as the backbone.

VIA Rerender TokenFlow AnyV2V Video-P2P Tune-A-Video

Frame-Acc ↑ 0.862 0.734 0.587 0.533 0.587 0.601
Tem-Con ↑ 0.985 0.954 0.932 0.856 0.912 0.927

Pixel-MSE ↓ 0.010 0.016 0.018 0.026 0.020 0.019
Latency(sec) ↓ 13 406 450 570 612 529
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(1-a, 10 seconds) Source Video

(1-a): Instruction: “Make Japanese woodblock prints” ”

(2-a, 2 mins) Source Video

(2-a): Instruction: “Change to Van Gogh style” ”

Figure 14: Editing results with InstructPix2Pix. The first one is a 10-second video, and the second
one is a 2-minute video.

for long videos. We found that longer videos with more dynamics and scene changes benefit from
a larger group size. In this work, we use a group size of 4 for all videos. The attention variable
substitution process is performed throughout the entire denoising process, including the classifier-free
guidance phase. The gather process is essential to the model’s success. As shown in Fig. 15, for the
same video, using the same random seed and editing instruction, attention gathering produces much
more consistent group frames. Without the gathering process, although each frame in the group still
follows the instruction, they exhibit different semantic editing directions. With the gathering process,
the group maintains internal consistency, and the attention variables from it provide stable guidance
for all video frames in the subsequent editing process.

H Blending Comparison

Our proposed Progressive Boundary Integration method differs significantly from traditional blending
techniques by dynamically maintaining boundaries across both spatial and temporal dimensions
in video editing. Unlike static methods that often cause artifacts like color bleeding or motion
inconsistencies, it integrates inverted latent representations progressively, ensuring precise, localized
edits without affecting non-targeted areas. The blending method commonly used in the diffusion
process could be described as:

17



Source Video

(a) No attention gather: “Make it black and white”

(b): Attention gather: “Make it black and white”

Figure 15: The edited group frames with&without attention gathering process. The gathering
process ensures in-group consistency, providing a fixed visual editing direction for all frames.

ztarget
t = Msrc · zedit

t + (1−Msrc) · zinverted
t (10)

zedit
t−1 = Sample(ztarget

t ,Φ, t) (11)

While this method works for individual frames, it fails to maintain consistent boundaries for dynami-
cally changing objects in video sequences. This inconsistency leads to variations across frames in the
editing area when replacing individual attention with group attention. In contrast, the dynamic mask
defined in Equation 6 adjusts adaptively with each time step, allowing the attention to align more
effectively with the target area as the diffusion process progresses. In Fig. 16, we present examples of
local editing applied to a dog’s eyes with the instruction, “Make the eyes glowing.” Both Progressive
Boundary Integration and direct latent blending successfully preserve the background. However,
while the latter performs well on individual frames, it struggles with consistency across the video,
as seen in the third frame from the left, where the glowing effect significantly shifts. Experiments
demonstrate that our method outperforms standard blending approaches, providing superior control
and making it particularly well-suited for video edits that require preserving the integrity of unedited
regions.

I Further Improvement with Better Root Frame

In our practice, we observed that a high-quality root frame pair generally leads to improved per-
formance, as illustrated in Fig. 17. In Tab. 4, we show that performance can be further enhanced
by incorporating an additional selector. It is important to note that neither a human selector nor an
automatic selector was used during the comparison with baselines. By selecting the optimal frame
based on editing quality, we ensure that the best possible results are achieved without requiring
complex video-level adjustments. This streamlined approach significantly enhances the effectiveness
of our method and addresses concerns related to frame selection, allowing for more consistent and
visually appealing edits across the video.

J Limitation

While VIA demonstrated impressive performance in video editing, it is not without its limitations.
First, it inherits the constraints of the underlying image editing model, which restricts the range
of possible editing tasks to those predefined in the image model. Second, the self-tuning process
currently necessitates manual selection of a root pair by a human expert. In future iterations, we aim
to implement an evaluation model that can automate this selection process.
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Source Video. Instruction: “Make the eyes glowing ”

(a) Progressive Boundary Integration

(b) Direct Latent Blending

Figure 16: Comparison between Progressive Boundary Integration and direct latent blending reveals
that the former achieves precise and consistent local editing results. For a closer examination, please
zoom in on the eye area to observe the editing details.

Table 4: The selection strategy further improves the results.

Manuel L1 DINO Random No Test-time Adaptation

Frame-Acc ↑ 0.891 0.882 0.887 0.873 0.871
Tem-Con ↑ 0.989 0.988 0.989 0.983 0.985

Pixel-MSE ↓ 0.0102 0.0107 0.0108 0.0111 0.0113

K Broader Impact

The advancements introduced by VIA have significant implications across various fields where
video editing plays a crucial role. By enabling more precise, consistent, and efficient video editing,
particularly for longer videos, VIA opens new possibilities for media production, education, and
entertainment, among other domains. Here are some key areas of broader impact:

• Media and Entertainment: Our method allows filmmakers, content creators, and adver-
tisers to produce higher-quality, longer-form content more efficiently. This could reduce
production time and costs while enhancing the visual appeal and coherence of edited videos.
Additionally, artists and creators can experiment with more complex and nuanced edits,
fostering greater creative expression.

Source Frame Edit 1 Edit 2 Edit 3 Edit 4 Edit 5, chosen

Figure 17: Example of frame editing with different seeds. Edited frames given the source frame on
the left and editing instruction “Driving on a river in a forest”
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• Education and Training: Video is a key tool in educational content, and VIA can signifi-
cantly improve the quality of instructional videos. Enhanced editing capabilities could lead
to better engagement, clearer demonstrations, and more effective communication of ideas.
For instance, complex concepts can be explained using tailored visual effects and transitions,
making learning more accessible and intuitive.

• Social Media and User-Generated Content: As social media platforms increasingly
rely on video content, our method can empower non-professional users to create polished,
professional-quality videos. This could democratize access to high-end video editing,
allowing users without technical expertise to achieve consistent, aesthetically pleasing
results.

• Advertising and Marketing: In advertising, maintaining brand consistency across video
content is critical. VIA’s ability to ensure smooth transitions and coherent edits across
frames can help marketers maintain the integrity of visual messaging over time, particularly
in dynamic, minute-long commercials or social campaigns.

• AI and Ethical Considerations: While VIA improves video editing efficiency and quality,
it also raises ethical concerns related to video manipulation. The ability to seamlessly edit
long videos with high precision could potentially be misused for creating deepfakes or
misleading media. As such, there is a need to implement ethical guidelines and detection
mechanisms to ensure the responsible use of this technology. Additionally, transparency
in editing processes and clear indicators of video manipulation will become increasingly
important to prevent misinformation.

• Environmental Impact: By improving the efficiency of video editing, VIA reduces the
computational resources required for long, complex video edits. This could lead to lower
energy consumption, contributing to more environmentally sustainable video production
workflows. Reducing the need for re-edits and long processing times could also have positive
downstream effects on energy use in large-scale media production.

Overall, the broader impact of VIA extends beyond technical advancements, offering transformative
potential across industries while also necessitating careful consideration of ethical and environmental
responsibilities.
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