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ABSTRACT

We first pose the Unsupervised Progressive Learning (UPL) problem: an online
representation learning problem in which the learner observes a non-stationary
and unlabeled data stream, learning a growing number of features that persist
over time even though the data is not stored or replayed. To solve the UPL
problem we propose the Self-Taught Associative Memory (STAM) architecture.
Layered hierarchies of STAM modules learn based on a combination of online
clustering, novelty detection, forgetting outliers, and storing only prototypical
features rather than specific examples. We evaluate STAM representations using
clustering and classification tasks. While there are no existing learning scenarios
that are directly comparable to UPL, we compare the STAM architecture with two
recent continual learning models, Memory Aware Synapses (MAS) and Gradient
Episodic Memories (GEM), after adapting them in the UPL setting.

1 INTRODUCTION

The Continual Learning (CL) problem is predominantly addressed in the supervised context with
the goal being to learn a sequence of tasks without “catastrophic forgetting” (Goodfellow et al.,
2013; Parisi et al., 2019; van de Ven & Tolias, 2019). There are several CL variations but a common
formulation is that the learner observes a set of examples {(xi, ti, yi)}, where xi is a feature vector,
ti is a task identifier, and yi is the target vector associated with (xi, ti) (Chaudhry et al., 2019a;b;
Lopez-Paz & Ranzato, 2017). Other CL variations replace task identifiers with task boundaries that
are either given (Hsu et al., 2018) or inferred (Zeno et al., 2018). Typically, CL requires that the
learner either stores and replays some previously seen examples (Aljundi et al., 2019a;b; Gepperth &
Karaoguz, 2017; Hayes et al., 2019; Kemker et al., 2018; Rebuffi et al., 2017) or generates examples
of earlier learned tasks (Kemker & Kanan, 2018; Liu et al., 2020; Shin et al., 2017).

The Unsupervised Feature (or Representation) Learning (FL) problem, on the other hand, is unsu-
pervised but mostly studied in the offline context: given a set of examples {xi}, the goal is to learn
a feature vector hi = f(xi) of a given dimensionality that, ideally, makes it easier to identify the
explanatory factors of variation behind the data (Bengio et al., 2013), leading to better performance
in tasks such as clustering or classification. FL methods differ in the prior P (h) and the loss function.
Autoencoders, for instance, aim to learn features of a lower dimensionality than the input that enable
a sufficiently good reconstruction (Bengio, 2014; Kingma & Welling, 2013; Tschannen et al., 2018;
Zhou et al., 2012). A similar approach is self-supervised methods, which learn representations by
optimizing an auxiliary task (Berthelot et al., 2019; Doersch et al., 2015; Gidaris et al., 2018; Kuo
et al., 2019; Oord et al., 2018; Sohn et al., 2020).

In this work, we focus on a new and pragmatic problem that adopts some elements of CL and FL
but is also different than them – we refer to this problem as single-pass unsupervised progressive
learning or UPL for short. UPL can be described as follows:
1. the data is observed as a non-IID stream (e.g., different portions of the stream may follow different
distributions and there may be strong temporal correlations between successive examples),
2. the features should be learned exclusively from unlabeled data,
3. each example is “seen” only once and the unlabeled data are not stored for iterative processing,
4. the number of learned features may need to increase over time, in response to new tasks and/or
changes in the data distribution,
5. to avoid catastrophic forgetting, previously learned features need to persist over time, even when
the corresponding data are no longer observed in the stream.
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The UPL problem is encountered in important AI applications, such as a robot learning new visual
features as it explores a time-varying environment. Additionally, we argue that UPL is closer to how
animals learn, at least in the case of perceptual learning (Goldstone, 1998). We believe that in order
to mimic that, ML methods should be able to learn in a streaming manner and in the absence of
supervision. Animals do not “save off" labeled examples to train in parallel with unlabeled data, they
do not know how many “classes” exist in their environment, and they do not have to replay/dream
periodically all their past experiences to avoid forgetting them.

To address the UPL problem, we describe an architecture referred to as STAM (“Self-Taught Associa-
tive Memory”). STAM learns features through online clustering at a hierarchy of increasing receptive
field sizes. We choose online clustering, instead of more complex learning models, because it can be
performed through a single pass over the data stream. Further, despite its simplicity, clustering can
generate representations that enable better classification performance than more complex FL methods
such as sparse-coding or some deep learning methods (Coates et al., 2011; Coates & Ng, 2012).
STAM allows the number of clusters to increase over time, driven by a novelty detection mechanism.
Additionally, STAM includes a brain-inspired dual-memory hierarchy (short-term versus long-term)
that enables the conservation of previously learned features (to avoid catastrophic forgetting) that have
been seen multiple times at the data stream, while forgetting outliers. To the extent of our knowledge,
the UPL problem has not been addressed before. The closest prior work is CURL (“Continual
Unsupervised Representation Learning”) (Rao et al., 2019). CURL however does not consider the
single-pass, online learning requirement. We further discuss this difference with CURL in Section 6.

2 STAM ARCHITECTURE

In the following, we describe the STAM architecture as a sequence of its major components: a
hierarchy of increasing receptive fields, online clustering (centroid learning), novelty detection, and a
dual-memory hierarchy that stores prototypical features rather than specific examples. The notation
is summarized for convenience in the Supplementary Material (SM) (section SM-A).

I. Hierarchy of increasing receptive fields: An input vector xt ∈ Rn (an image in all subsequent
examples) is analyzed through a hierarchy of Λ layers. Instead of neurons or hidden-layer units, each
layer consists of STAM units – in its simplest form a STAM unit functions as an online clustering
module. Each STAM unit processes one ρl × ρl patch (e.g. 8 × 8 subvector) of the input at the
l’th layer. The patches are overlapping, with a small stride (set to one pixel in our experiments) to
accomplish translation invariance (similar to CNNs). The patch dimension ρl increases in higher
layers – the idea is that the first layer learns the smallest and most elementary features while the top
layer learns the largest and most complex features.

II. Centroid Learning: Every patch of each layer is clustered, in an online manner, to a set of
centroids. These time-varying centroids form the features that the STAM architecture gradually learns
at that layer. All STAM units of layer l share the same set of centroids Cl(t) at time t – again for
translation invariance.1 Given the m’th input patch xl,m at layer l, the nearest centroid of Cl selected
for xl,m is

cl.j = arg min
c∈Cl

d(xl,m, c) (1)

where d(xl,m, c) is the Euclidean distance between the patch xl,m and centroid c.2 The selected
centroid is updated based on a learning rate parameter α, as follows:

cl,j = αxl,m + (1− α)cl,j, 0 < α < 1 (2)

A higher α value makes the learning process faster but less predictable. A centroid is only updated
by at most one patch and the update is not performed if patch is considered "novel" (defined in the
next paragraph). We do not use a decreasing value of α because the goal is to keep learning in a
non-stationary environment rather than convergence to a stable centroid.

III. Novelty detection: When an input patch xl,m at layer l is significantly different than all centroids
at that layer (i.e., its distance to the nearest centroid is a statistical outlier), a new centroid is created

1We drop the time index t from this point on but it is still implied that the centroids are dynamically learned
over time.

2We have also experimented with the L1 metric with only minimal differences. Different distance metrics
may be more appropriate for other types of data.
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in Cl based on xl,m. We refer to this event as Novelty Detection (ND). This function is necessary so
that the architecture can learn novel features when the data distribution changes.

To do so, we estimate in an online manner the distance distribution between input patches and their
nearest centroid (separately for each layer). The novelty detection threshold at layer l is denoted by
D̂l and it is defined as the 95-th percentile (β = 0.95) of this distance distribution.

Figure 1: A hypothetical pool of STM and LTM centroids visu-
alized at seven time instants. From ta to tb, a centroid is moved
from STM to LTM after it has been selected θ times. At time tb,
unlabeled examples from classes ‘2’ and ‘3’ first appear, triggering
novelty detection and new centroids are created in STM. These
centroids are moved into LTM by td. From td to tg , the pool of
LTM centroids remains the same because no new classes are seen.
The pool of STM centroids keeps changing when we receive “out-
lier” inputs of previously seen classes. Those centroids are later
replaced (Least-Recently-Used policy) due to the limited capacity
of the STM pool.

IV. Dual-memory organization:
New centroids are stored temporarily
in a Short-Term Memory (STM) of
limited capacity ∆, separately for
each layer. Every time a centroid is
selected as the nearest neighbor of an
input patch, it is updated based on (2).
If an STM centroid cl,j is selected
more than θ times, it is copied to
the Long-Term Memory (LTM) for
that layer. We refer to this event as
memory consolidation. The LTM has
(practically) unlimited capacity and
the learning rate is much smaller (in
our experiments the LTM learning
rate is set to zero).

This memory organization is inspired
by the Complementary Learning Sys-
tems framework (Kumaran et al.,
2016), where the STM role is played
by the hippocampus and the LTM
role by the cortex. This dual-memory
scheme is necessary to distinguish be-
tween infrequently seen patterns that
can be forgotten ("outliers”), and new

patterns that are frequently seen after they first appear ("novelty").

When the STM pool of centroids at a layer is full, the introduction of a new centroid (created through
novelty detection) causes the removal of an earlier centroid. We use the Least-Recently Used (LRU)
policy to remove atypical centroids that have not been recently selected by any input. Figure 1
illustrates this dual-memory organization.

V. Initialization: We initialize the pool of STM centroids at each layer using randomly sampled
patches from the first few images of the unlabeled stream. The initial value of the novelty-detection
threshold is calculated based on the distance distribution between each of these initial STM centroids
and its nearest centroid.

3 CLUSTERING USING STAM

We can use the STAM features in unsupervised tasks, such as offline clustering. For each patch of
input x, we compute the nearest LTM centroid. The set of all such centroids, across all patches of x,
is denoted by Φ(x). Given two inputs x and y, their pairwise distance is the Jaccard distance of Φ(x)
and Φ(y). Then, given a set of inputs that need to be clustered, and a target number of clusters, we
apply a spectral clustering algorithm on the pairwise distances between the set of inputs. We could
also use other clustering algorithms, as long as they do not require Euclidean distances.

4 CLASSIFICATION USING STAM

Given a small amount of labeled data, STAM representations can also be evaluated with classification
tasks. We emphasize that the labeled data is not used for representation learning – it is only used to
associate previously learned features with a given set of classes.
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I. Associating centroids with classes: Suppose we are given some labeled examples XL(t) from a
set of classes L(t) at time t. We can use these labeled examples to associate existing LTM centroids
at time t (learned strictly from unlabeled data) with the set of classes in L(t).

Given a labeled example of class k, suppose that there is a patch x in that example for which the
nearest centroid is c. That patch contributes the following association between centroid c and class k:

fx,c(k) = e−d(x,c)/D̄l (3)

where D̄l is a normalization constant (calculated as the average distance between input patches
and centroids). The class-association vector gc between centroid c and any class k is computed
aggregating all such associations, across all labeled examples in XL:

gc(k) =

∑
x∈XL(k) fx,c(k)∑

k′∈L(t)

∑
x∈XL(k′) fx,c(k′)

, k = 1 . . . L(t) (4)

where XL(k) refers to labeled examples belonging to class k. Note that
∑

k gc(k)=1.

Figure 2: An example of the classification process. Every
patch (at any layer) that selects a CIN centroid votes for the
single class that has the highest association with. These patch
votes are first averaged at each layer. The final inference is
the class with the highest cumulative vote across all layers.

II. Class informative centroids: If a cen-
troid is associated with only one class k
(gc(k) = 1), only labeled examples of that
class select that centroid. At the other ex-
treme, if a centroid is equally likely to be
selected by examples of any labeled class,
(gc(k) ≈ 1/|L(t)|), the selection of that
centroid does not provide any significant
information for the class of the correspond-
ing input. We identify the centroids that
are Class INformative (CIN) as those that
are associated with at least one class sig-
nificantly more than expected by chance.
Specifically, a centroid c is CIN if

max
k∈L(t)

gc(k) >
1

|L(t)|
+ γ (5)

where 1/|L(t)| is the chance term and γ is
the significance term.

III. Classification using a hierarchy of centroids: At test time, we are given an input x of class
k(x) and infer its class as k̂(x). The classification task is a “biased voting” process in which every
patch of x, at any layer, votes for a single class as long as that patch selects a CIN centroid.

Specifically, if a patch xl,m of layer l selects a CIN centroid c, then that patch votes vl,m =
maxk∈L(t) gc(k) for the class k that has the highest association with c, and zero for all other classes.
If c is not a CIN centroid, the vote of that patch is zero for all classes.

The vote of layer l for class k is the average vote across all patches in layer l (as illustrated in
Figure 2):

vl(k) =

∑
m∈Ml

vl,m

|Ml|
(6)

where Ml is the set of patches in layer l. The final inference for input x is the class with the highest
cumulative vote across all layers:

k̂(x) = arg max
k′

Λ∑
l=1

vl(k) (7)

5 EVALUATION

To evaluate the STAM architecture in the UPL context, we consider a data stream in which small
groups of classes appear in successive phases, referred to as Incremental UPL. New classes are
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introduced two at a time in each phase, and they are only seen in that phase. STAM must be able to
both recognize new classes when they are first seen in the stream, and to also remember all previously
learned classes without catastrophic forgetting. Another evaluation scenario is Uniform UPL, where
all classes appear with equal probability throughout the stream – the results for Uniform UPL are
shown in SM-G. We include results on four datasets: MNIST (Lecun et al., 1998), EMNIST (balanced
split with 47 classes) (Cohen et al., 2017), SVHN (Netzer et al., 2011), and CIFAR-10 (Krizhevsky
et al., 2014). For each dataset we utilize the standard training and test splits. We preprocess the
images by applying per-patch normalization (instead of image normalization), and SVHN is converted
to grayscale. More information about preprocessing can be found in SM-H.

We create the training stream by randomly selecting, with equal probability, Np data examples from
the classes seen during each phase. Np is set to 10000, 10000, 2000, and 10000 for MNIST, SVHN,
EMNIST, and CIFAR-10 respectively. More information about the impact of the stream size can be
found in SM-E. In each task, we average results over three different unlabeled data streams. During
testing, we select 100 random examples of each class from the test dataset. This process is repeated
five times for each training stream (i.e., a total of fifteen results per experiment). The following plots
show mean ± std-dev.

For all datasets, we use a 3-layer STAM hierarchy. In the clustering task, we form the set Φ(x)
considering only Layer-3 patches of the input x. In the classification task, we select a small portion of
the training dataset as the labeled examples that are available only to the classifier. The hyperparameter
values are tabulated in SM-A. The robustness of the results with respect to these values is examined
in SM-F.

Baseline Methods: We evaluate the STAM architecture comparing its performance to two state-
of-the-art baselines for continual learning: GEM and MAS. We emphasize that there are no prior
approaches which are directly applicable to UPL. However, we have taken reasonable steps to adapt
these two baselines in the UPL setting. Please see SM-B for additional details about our adaptation
of GEM and MAS.

Gradient Episodic Memories (GEM) is a recent supervised continual learing model that expects
known task boundaries (Lopez-Paz & Ranzato, 2017). To turn GEM into an unsupervised model, we
combined it with a self supervised method for rotation prediction (Gidaris et al., 2018). Additionally,
we allow GEM to know the boundary between successive phases in the data stream. This makes the
comparison with STAM somehow unfair, because STAM does not have access to this information.
The results show however that STAM performs better even without knowing the temporal boundaries
of successive phases.

Memory Aware Synapse (MAS) is another supervised continual learning model that expects known
task boundaries (Aljundi et al., 2018). As in GEM, we combined MAS with a rotation prediction
self-supervised task, and provided the model with information about the start of each new phase in
the data stream.

To satisfy the stream requirement of UPL, the number of training epochs for both GEM and MAS is
set to one. Deep learning methods become weaker in this streaming scenario because they cannot
train iteratively over several epochs on the same dataset. For all baselines, the classification task is
performed using a K = 1 Nearest-Neighbor (KNN) classifier – we have experimented with various
values of K and other single-pass classifiers, and report only the best performing results here. We
have also compared the memory requirement of STAM (storing centroids at STM and LTM) with the
memory requirement of the two baselines. The results of that comparison appear in SM-C.

Clustering Task: The results for the clustering task are given in Figure 3. Given that we have the
same number of test vectors per class we utilize the purity measure for clustering accuracy. In MNIST,
STAM performs consistently better than the two other models, and its accuracy stays almost constant
throughout the stream, only dropping slightly in the final phase. In SVHN, STAM performs better
than both deep learning baselines with the gap being much smaller in the final phase. In CIFAR-10
and EMNIST, on the other hand, we see similar performance between all three models. Again, we
emphasize that STAM is not provided task boundary information while the baselines are and is still
able to perform better, significantly in some cases.
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Figure 3: Clustering accuracy for MNIST (left), SVHN (left-center), CIFAR-10 (right-center), and EMNIST
(right). The task is expanding clustering for incremental UPL. The number of clusters is equal to 2 times the
number of classes in the data stream seen up to that point in time.

Figure 4: Classification accuracy for MNIST (left), SVHN (center), CIFAR-10 (right-center), and EMNIST
(right). The task is expanding classification for incremental UPL, i.e., recognize all classes seen so far. Note
that the number of labeled examples is 10 per class for MNIST and EMNIST and 100 per class for SVHN and
CIFAR-10.

Classification Task: We focus on an expanding classification task, meaning that in each phase we
need to classify all classes seen so far. The results for the classification task are given in Figure 4.
Note that we use only 10 labeled examples per class for MNIST and EMNIST, and 100 examples per
class for SVHN and CIFAR-10. We emphasize that the two baselines, GEM and MAS, have access
to the temporal boundaries between successive phases, while STAM does not.

As we introduce new classes in the stream, the average accuracy per phase decreases for all methods
in each dataset. This is expected, as the task gets more difficult after each phase. In MNIST, STAM
performs consistently better than GEM and MAS, and STAM is less vulnerable to catastrophic
forgetting. For SVHN, the trend is similar after the first phase but the difference between STAM
and both baselines is smaller. With CIFAR-10, we observe that all models including STAM perform
rather poorly – probably due to the low resolution of these images. STAM is still able to maintain
comparable accuracy to the baselines with a smaller memory footprint. Finally, in EMNIST, we see a
consistently higher accuracy with STAM compared to the two baselines. We would like to emphasize
that these baselines are allowed extra information in the form of known tasks boundaries (a label that
marks when the class distribution is changing) and STAM is still performs better both on all datasets.
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A closer look at Incremental UPL: As we introduce new classes to the incremental UPL stream,
the architecture recognizes previously learned classes without any major degradation in classification
accuracy (left column). The average accuracy per phase is decreasing, which is due to the increasingly
difficult expanding classification task. For EMNIST, we only show the average accuracy because
there are 47 total classes. In all datasets, we observe that layer-2 and layer-3 (corresponding to the
largest two receptive fields) contain the highest fraction of CIN centroids (center column). The ability
to recognize new classes is perhaps best visualized in the LTM centroid count (right column). During
each phase the LTM count stabilizes until a sharp spike occurs at the start of the next phase when new
classes are introduced. This reinforces the claim that the LTM pool of centroids (i) is stable when
there are no new classes, and (ii) is able to recognize new classes via novelty detection when they
appear.

In the CIFAR-10 experiment, the initial spike of centroids learned is sharp, followed by a gradual and
weak increase in the subsequent phases. The per-class accuracy results show that STAM effectively
forgets certain classes in subsequent phases (such as classes 2 and 3), suggesting that there is room
for improvement in the novelty detection algorithm because the number of created LTM centroids
was not sufficiently high.

In the EMNIST experiment, as the number of classes increases towards 47, we gradually see fewer
“spikes" in the LTM centroids for the lower receptive fields, which is expected given the repetition of
patterns at that small patch size. However, the highly CIN layers 2 and 3 continue to recognize new
classes and create centroids, even when the last few classes are introduced.

Figure 5: STAM Incremental UPL evaluation for MNIST (row-1), SVHN (row-2), EMNIST (row-3) and
CIFAR-10 (row-4). Per-class and average classification accuracy (left); fraction of CIN centroids over time
(center); number of LTM centroids over time (right). The task is expanding classification, i.e., recognize all
classes seen so far.

Ablation studies: Several STAM ablations are presented in Figure 6. On the left, we remove the
LTM capability and only use STM centroids for classification. During the first two phases, there is
little (if any) difference in classification accuracy. However, we see a clear dropoff during phases 3-5.
This suggests that, without the LTM mechanisms, features from classes that are no longer seen in
the stream are forgotten over time, and STAM can only successfully classify classes that have been
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Figure 6: Ablation study: A STAM architecture without LTM (left), a STAM architecture in which the LTM
centroids are adjusted with the same learning rate α as in STM (center), and a STAM architecture with removal
of layers (right)

recently seen. We also investigate the importance of having static LTM centroids rather than dynamic
centroids (Fig. 6-middle). Specifically, we replace the static LTM with a dynamic LTM in which
the centroids are adjusted with the same learning rate parameter α, as in STM. The accuracy suffers
drastically because the introduction of new classes “takes over" LTM centroids of previously learned
classes, after the latter are removed from the stream. Similar to the removal of LTM, we do not see
the effects of “forgetting" until phases 3-5. Note that the degradation due to a dynamic LTM is less
severe than that from removing LTM completely.

Finally, we look at the effects of removing layers from the STAM hierarchy (Fig. 6-right). We see
a small drop in accuracy after removing layer 3, and a large drop in accuracy after also removing
layer 2. The importance of having a deeper hierarchy would be more pronounced in datasets with
higher-resolution images or videos, potentially showing multiple objects in the same frame. In such
cases, CIN centroids can appear at any layer, starting from the lowest to the highest.

6 RELATED WORK

The UPL problem has some similarities with several recent approaches in the machine learning
literature but it is also different in important aspects we describe in this section. Each paragraph
highlights the most relevant prior work and explains how it is different from UPL.

I: Continual learning: In addition to CL models cited in the introduction, other supervised CL
methods include regularization-based approaches (Aljundi et al., 2018; Golkar et al., 2019; Hayes
& Kanan, 2019; Kirkpatrick et al., 2017; Yoon et al., 2018; Zenke et al., 2017), expanding ar-
chitectures (Lomonaco & Maltoni, 2017; Maltoni & Lomonaco, 2019; Rusu et al., 2016), and
distillation-based methods (Lee et al., 2019; 2020; Li & Hoiem, 2017). Their main difference with
UPL and STAM is that they are designed for supervised learning, and it is not clear how to adapt
them for non-stationary and unlabeled data streams.

II. Offline unsupervised learning: Additional offline representation learning methods include
clustering (Caron et al., 2018; Jiang et al., 2017a; Xie et al., 2016; Yang et al., 2016), generative
models (Eslami et al., 2016; Jiang et al., 2017b; Kosiorek et al., 2018; 2019), information theory
(Hjelm et al., 2019; Ji et al., 2019), among others. These methods require prior information about the
number of classes present in a given dataset (to set the number of cluster centroids or class outputs)
and iterative training (i.e. data replay), and therefore cannot be directly applied in the UPL setting.

III. Semi-supervised learning (SSL): SSL methods require labeled data during the representation
learning stage and so they are not compatible with UPL (Kingma et al., 2014; Lee, 2013; Miyato
et al., 2018; Oliver et al., 2018; Rasmus et al., 2015; Springenberg, 2015; Tarvainen & Valpola, 2017).

IV. Few-shot learning (FSL) and Meta-learning: These methods recognize object classes not seen
in the training set with only a single (or handful) of labeled examples (Fei-Fei et al., 2006; Finn et al.,
2017; Ren et al., 2018; Snell et al., 2017). Similar to SSL, FSL methods require labeled data to learn
representations and therefore are not applicable in the UPL context. Centroid networks (Huang et al.,
2019) do not require labeled examples at inference time but require labeled examples for training.
Few-Shot Incremental Learning (Ayub & Wagner, 2020) includes a similar evaluation protocol to our
work, but includes pre-training and learns centroids using data labels.

V. Multi-Task Learning (MTL): Any MTL method that involves separate heads for different tasks
is not compatible with UPL because task boundaries are not known a priori in UPL (Ruder, 2017).
MTL methods that require pre-training on a large labeled dataset are also not applicable to UPL (Pan
& Yang, 2010; Yosinski et al., 2014).
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VI. Online and Progressive Learning: Many earlier methods learn in an online manner, meaning
that data is processed in fixed batches and discarded afterwards. This includes progressive learn-
ing (Venkatesan & Er, 2016) and streaming with limited supervision (Chiotellis et al., 2018; Li et al.,
2018; Loo & Marsono, 2015), both of which require labeled data in the training stream. (Caccia
et al., 2019) is another very recent work which focuses on online continual compression using a
discrete auto encoder and self-replay.

VII. Continual Unsupervised Representation Learning (CURL): Similar to the UPL problem,
CURL (Rao et al., 2019) focuses on continual unsupervised learning from non-stationary data with
unknown task boundaries. Like STAM, CURL also includes a mechanism to trigger dynamic capacity
expansion as the data distribution changes. However, a major difference is that CURL is not a
streaming method – it processes each training example multiple times. We have experimented with
CURL but we found that its performance collapses in the UPL setting due to mostly two reasons: the
single-pass through the data requirement of UPL, and the fact that we can have more than one new
classes per phase. For these reasons, we choose not to compare STAM with CURL because such a
comparison would not be fair for the latter.

VIII. Data dimensionality and clustering-based representation learning: As mentioned earlier
in this section, clustering has been used successfully in the past for offline representation learning
(e.g., (Coates et al., 2011; Coates & Ng, 2012)). Its effectiveness, however, gradually drops as the
input dimensionality increases (Beyer et al., 1999; Hinneburg et al., 2000). In the STAM architecture,
we avoid this issue by clustering smaller subvectors (patches) of the input data. If those subvectors
are still of high dimensionality, another approach is to reduce the intrinsic dimensionality of the input
data at each layer by reconstructing that input using representations (selected centroids) from the
previous layer.

VIII. Related work to other STAM components: STAM relies on online clustering. This algorithm
can be implemented with a rather simple recurrent neural network of excitatory and inhibitory spiking
neurons, as shown recently (Pehlevan et al., 2017). The novelty detection component of STAM is
related to the problem of anomaly detection in streaming data (Dasgupta et al., 2018) — and the
simple algorithm currently in STAM can be replaced with more sophisticated methods (e.g., (Cui
et al., 2016; Yong et al., 2012)). Finally, brain-inspired dual-memory systems have been proposed
before for memory consolidation (e.g., (Kemker & Kanan, 2018; Parisi et al., 2018; Shin et al., 2017)).

7 DISCUSSION

The STAM architecture aims to address the following desiderata that is often associated with Lifelong
Learning (Parisi et al., 2019):

I. Online learning: STAMs update the learned features with every observed example. There is no
separate training stage for specific tasks, and inference can be performed in parallel with learning.

II. Transfer learning: The features learned by the STAM architecture in earlier phases can be also
encountered in the data of future tasks (forward transfer). Additionally, new centroids committed to
LTM can also be closer to data of earlier tasks (backward transfer).

III. Resistance to catastrophic forgetting: The STM-LTM memory hierarchy of the STAM archi-
tecture mitigates catastrophic forgetting by committing to "permanent storage" (LTM) features that
have been often seen in the data during any time period of the training period.

IV. Expanding learning capacity: The unlimited capacity of LTM allows the system to gradually
learn more features as it encounters new classes and tasks. The relatively small size of STM, on the
other hand, forces the system to forget features that have not been recalled frequently enough after
their creation.

V. No direct access to previous experience: STAM only needs to store data centroids in a hierarchy
of increasing receptive fields – there is no need to store previous exemplars or to learn a generative
model that can produce such examples.
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