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Abstract001

This study investigates the impact of context002
relevancy on the performance of in-context003
learning. To quantify that impact, we created004
a novel database of open-form questions, each005
paired with different contexts of various rele-006
vancy. Next, we perform manual grading (in-007
troducing six-fold redundancy to minimize the008
impact of individual graders), measuring the009
quality of generated responses in several dimen-010
sions. We show that counterintuitively, in many011
cases, less relevant contexts can perform as012
well as, or even better than, more relevant ones.013
By controlling for task novelty and question dif-014
ficulty, we demonstrate that this phenomenon015
is particularly pronounced for open-form ques-016
tions and questions with high perceived novelty017
or difficulty. This result reveals a fundamen-018
tal difference in how large language models019
process closed-form and open-form questions.020
Furthermore, our findings raise critical ques-021
tions about optimal context selection for large022
language models, particularly in open-response023
scenarios – a question critical when building024
Retrieval-Augmented Generation (RAG) sys-025
tems.026

1 Introduction027

Large Language Models (LLMs), despite their028

indisputable successes (Bommasani et al., 2021;029

Drori et al., 2022; Chang et al., 2024), often strug-030

gle to answer challenging questions (Rawte et al.,031

2023). While LLMs can achieve superhuman accu-032

racy on many benchmarks (Luo et al., 2024), they033

also suffer from hallucinations (Ye et al., 2023;034

Azamfirei et al., 2023), lack of coherence (Xie et al.,035

2023b), and are prone to cognitive errors (Jones036

and Steinhardt, 2022; Hagendorff et al., 2023). To037

make the difficult situation even worse, it is not al-038

ways easy to detect mistakes committed by LLMs039

since their responses are often presented in a way040

that emulates correct and coherent answers (Bender041

et al., 2021; Scheurer et al., 2023). Therefore, for042

practical reasons, many existing benchmarks only 043

test the ability to answer either closed (Chang et al., 044

2024) or easy-to-verify questions, e.g., regarding 045

common knowledge (Bisk et al., 2020; Clark et al., 046

2018) or questions that can be algorithmically veri- 047

fied (Srivastava et al., 2024). 048

Another challenge concerning LLMs is the prob- 049

lem of updating or adding new factual knowledge. 050

Re-training or fine-tuning is both expensive (Ben- 051

der et al., 2021; Luccioni et al., 2023) and techni- 052

cally challenging (Kandpal et al., 2023; Gaspers 053

et al., 2022). While some techniques like Low- 054

Rank Adaptation (LoRa) can reduce the cost of 055

adaptation to new tasks (Hu et al., 2021), it does not 056

solve the main issue, namely, how to allow LLMs 057

to leverage new pieces of information that were not 058

a part of the initial training corpus (Liu, 2017) in a 059

sustainable way. In that regard, one of the promis- 060

ing approaches is in-context learning (Brown et al., 061

2020). By embedding examples in the prompt, 062

LLMs can demonstrate an improved performance 063

without the need to update the model parameters 064

(Brown et al., 2020). Despite the progress, the 065

question of how LLM accesses and processes novel 066

information from the context remains vital. A lot 067

is at stake, as this ability of LLMs to extract novel 068

information from the context is central for the cor- 069

rect operations of popular Retrieval-Augmented 070

Generation (RAG) systems (Gao et al., 2024) that 071

build the majority of modern commercial chatbot 072

assistants (Vakayil et al., 2024). 073

Given the growing popularity of RAG-based sys- 074

tems, in this paper, we examine the role of context 075

relevancy in in-context learning. Our findings re- 076

veal an intriguing and somehow counterintuitive 077

behavior: In-context learning performance does 078

not always improve with increasing context rele- 079

vance. In addition, the relationship between the 080

quality of the generated answer and the context 081

relevance level seems to depend on several factors, 082

including whether the question is of the open or 083
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closed format and whether LLM had prior knowl-084

edge of the subject of the question.085

In the following sections, we introduce our novel086

dataset, which we created to capture the mentioned087

behavior. Next, we compare (and contrast) our088

findings with the results of Min et al. (2022b). As089

an additional validation, we then partly replicate090

the results of Min et al. (2022b), and to extend091

our analysis, we repeat our experiments on two ad-092

ditional close-formed question datasets, MetaICL093

(Min et al., 2022a) and NephSAP (Wu et al., 2023).094

By comparing all our results and by contrasting095

the diverging behaviors on closed- and open-ended096

question-banks, we came to the conclusion that the097

main impact comes from the format of the question098

(whether open or closed), with additional effects re-099

lated to the difficulty or novelty of those questions,100

revealing how essential is the prior knowledge of101

LLM on the subject for effective utilization of the102

in-context learning.103

2 Related Work104

Large Language Models. LLMs have shown105

remarkable capabilities in various tasks, includ-106

ing code generation (Kojima et al., 2022; Siddiq107

and Santos, 2023), text summarization (Sahu et al.,108

2023), and database query optimization (Li et al.,109

2023). They demonstrate a surprising ability to110

perform in-context learning (Brown et al., 2020),111

where an LLM “learns” to perform a task simply by112

conditioning on a prompt containing some input-113

output examples. However, there has been little114

understanding of how the model leverages the con-115

text and what makes in-context learning work. In116

addition, their performance significantly depends117

on the contextual information provided and, as dis-118

cussed in this paper, on the form and type of the119

queries.120

In-Context Learning. Unlike traditional fine-121

tuning methods, in-context learning adapts models122

to unseen tasks by incorporating examples directly123

into the input context (Brown et al., 2020). Xie et al.124

(2022) discussed how in-context learning can be125

understood as implicit Bayesian inference, where126

models infer latent concepts to generate coherent127

responses. Techniques such as chain-of-thought128

prompting (Wei et al., 2022; Press et al., 2023;129

Wang et al., 2022; Zhou et al., 2023; Imani et al.,130

2023; Besta et al., 2023) have shown significant im-131

provements in reasoning tasks. Recent frameworks132

like OpenICL (Wu et al., 2023) have further stream-133

lined the implementation of in-context learning by 134

providing unified and flexible tools for integrating 135

various retrieval and inference methods. 136

Many recent research studies focus on the exam- 137

ple selection strategies of in-context learning. One 138

of the most common strategies is to select exam- 139

ples for demonstration based on similarity in the 140

embedding space (Liu et al., 2022; Qin et al., 2023; 141

Gao et al., 2021). In-context learning seems robust 142

to label-noise, as indicated by work of Min et al. 143

(2022b), in which authors show that demonstra- 144

tions, even one with randomly shuffled or replaced 145

labels, can still significantly improve LLM’s per- 146

formance. 147

Evaluation Benchmarks. Benchmarking is es- 148

sential for understanding LLM performance across 149

different domains. Existing benchmarks like 150

AGIEval (Zhong et al., 2023), ChenLLMBench 151

(Guo et al., 2023), SCIEval (Sun et al., 2023), 152

PIXIU (Xie et al., 2023a), and MME (Fu et al., 153

2024) provide comprehensive datasets for evalu- 154

ating LLMs. While these benchmarks are useful 155

for understanding the general capabilities of LLMs, 156

they do not fully capture the complexity of more 157

open-ended and context-sensitive queries. Here, 158

the added value of our work, as we believe the 159

novel open-form question bank accompanied by 160

the context of variable relevance that we created 161

and shared through this paper, will help to at least 162

partly fill that gap. 163

3 Originality, Impact, and Model Choice 164

Originality. While Min et al. (2022b) have 165

shown that context significantly affects LLM per- 166

formance, they have not quantified how different 167

levels of context relevancy impact the quality of 168

generated responses. The authors also neither con- 169

trolled for the “openness” nor the difficulty of the 170

questions. Our research addresses this by focusing 171

on open, challenging questions and bt explicitly 172

controlling for the context relevancy level. An- 173

other difference is that instead of using automated 174

evaluation metrics like BLEU score, METEOR, or 175

BERTScore, we choose a labor-intensive approach, 176

where we manually grade the generated outputs by 177

a panel of experts. This allowed us to better capture 178

the settled differences present in generated answers 179

and score them in several dimensions (complete- 180

ness, relevancy, logic, reasoning, etc.) while cap- 181

turing problems related to hallucination, omission, 182

irrelevancy, etc. 183
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The impact of the paper. Our work suggests ar-184

eas for improvement regarding generated output185

evaluation methodologies and the overall Retrieval-186

Augmented Generation (RAG) systems design prin-187

ciples. Current RAG studies focus on providing188

context during model inference, and the most com-189

mon evaluation frameworks used to tune RAG190

hyper-parameters utilize various automated bench-191

marks. Given our observation of the inconsistent192

relationship between the relevance of context and193

model performance for different question types194

(open-form vs. closed-form), we believe that the195

context retrieved by comparing vector similarity196

using RAG may not always correlate with the most197

helpful context for enhancing LLM inference per-198

formance.199

Model Choice. Due to the manual and labor-200

intensive process of grading generated answers, in201

this study, we restricted ourselves only to ChatGPT202

(based on GPT-4) from OpenAI. We are aware of203

that shortcoming and urge the other researchers to204

present results of similar analyses for other model205

versions and architectures. Nevertheless, ChatGPT206

is arguably the most widely popular (at least in the207

eyes of the popular audience) LLM-based conver-208

sational assistant, so the results presented in this209

paper should still be relevant for many.210

4 Methodology211

Novel question bank. To investigate the relation-212

ship between the relevance of context and the per-213

formance of LLM, we created an original open-214

form questions dataset comprising physics and215

computer science questions of varying difficulty216

levels (easy, medium, and hard) and originality217

(known, paraphrased, and original). The ques-218

tion’s originality was related to how it was har-219

vested. Known questions come from popular text-220

books – a source likely known to the model of our221

interest (OpenAI’s GPT-4). Paraphrased questions222

were rewritten and modified versions of known223

questions. Original questions were handcrafted by224

the authors of this paper.225

For each question, we created a ground truth an-226

swer for scoring reference and four context types227

with different levels of relevance. The four context228

types were (1) “no context” to serve as a control229

group, (2) “irrelevant context”, which consists of230

text on topics that do not match the subject of the231

question, (3) “vague context”, which incorporates232

some topics or keywords related to the question,233

and (4) “relevant context”, which provides reason- 234

ing context for the question, or answer to a highly 235

related question. Next, for each unique pair of 236

question-context, we generated a response employ- 237

ing the OpenAI’s gpt-4-1106-preview model. 238

After retrieving the responses, we constructed 239

160 question-response pairs, each accompanied by 240

the corresponding ground truth. Aware that human 241

grading can be subjective in their judgement, we 242

decided that each question would be evaluated by 243

six independent graders using a pre-defined scoring 244

sheet. Our volunteer graders were composed of 245

five students (aged 20–25) and one faculty (aged 246

35-40) at our university, whose expertise ranged 247

from physics to computer science. This gave us 248

960 evaluation responses in total. 249

While all annotators were residing in the United 250

States at the time of the study, they had interna- 251

tional backgrounds, originating from either Europe 252

or Asia. This diverse demographic contributed a 253

range of perspectives to the evaluation process. 254

The Supplementary Material includes examples 255

of the questions and context types, as well as the 256

evaluation sheets. 257

Evaluation. Our evaluation system comprised 258

three main categories: Completeness and Rele- 259

vancy (5 points), Logic and Reasoning (5 points), 260

and Truthfulness (understood as lack of hallucina- 261

tion) (5 points). In addition, graders had the option 262

to identify specific problems in the responses, such 263

as hallucinations, omissions, irrelevancy, calcula- 264

tion errors, and logic errors. The graders could 265

also highlight portions of the responses as incor- 266

rect, correct, or irrelevant. In addition, an open 267

response section was provided for graders to give 268

comments and feedback about the generated re- 269

sponses. Finally, graders were asked to rate how 270

confident they felt in giving those grades. These 271

options allowed us to gain deeper insights into the 272

grading process and to assess the quality of the 273

generated responses in detail. 274

All question-response pairs were presented to 275

graders in random order and without information 276

about the type of context used to generate the re- 277

sponses. For the purpose, we used potato annota- 278

tion system (Pei et al., 2022). To enhance the accu- 279

racy and reliability of our evaluation, we ensured 280

that all graders assessed all 160 questions. This uni- 281

form evaluation approach significantly simplified 282

the subsequent statistical analysis, while by involv- 283

ing multiple graders for each response, we reduced 284
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the impact of individual biases and other statistical285

errors. As demonstrated later, this approach signif-286

icantly improved the accuracy and consistency of287

our findings.288

5 Results289

Context Relevancy. In Fig. 1, we illustrate the290

relation between the context types and the quality291

of the corresponding generated responses. In panel292

A, we show the average raw score for each grader293

and each context type. Note that the difference294

between the graders is likely due to their individual295

tolerance for different types of errors. However, af-296

ter the grades are standardized and average (panel297

B), a clear trend emerges, as illustrated in panel298

C. Contrary to what one could expect, we see the299

best performance for no context case and the lowest300

score associated with the relevant context case, in-301

dicating that adding relevant context does not help302

(contrary, it hurts the performance of the model).303

To further investigate how the difficulty of ques-304

tions affects the quality of generated responses,305

we compared the results across three difficulty lev-306

els (easy, medium, and hard) for each of the four307

context types, as presented in Fig. 2. In panel A,308

we can observe a clear trend of decreasing scores309

as the difficulty of the questions increased from310

medium to hard (consistent result for each con-311

text type), indicating that GPT-4’s performance312

declines with greater question difficulty. This re-313

sult also indicates that the questions that a hu-314

man perceived as difficult were, in fact, correlated315

with the factual difficulty experienced by GPT-316

4, a result interesting on its own. However, for317

easy and medium-difficulty problems, GPT-4 gen-318

erated responses with similar scores, indicating319

that the alignment between the human-perceived320

and machine-perceived difficulty might be highly321

nonlinear, though mostly monotonic. One could322

potentially leverage this to map human-perceived323

difficulty to machine-perceived one, but given that324

nonlinear relation, the creation of such a map would325

require careful calibration.326

In panel B of Fig. 2, we compare the aggregated327

standardized score for the different levels of origi-328

nality for each context type. It is evident that GPT-4329

scores highest for known questions, likely because330

these questions were part of its training data. In-331

terestingly, the score for known questions given332

irrelevant context is twice as high as for relevant333

context. This suggests that an irrelevant context334

might be more helpful than a relevant context for 335

known questions, at least for the open type of ques- 336

tion, as measured here. 337

Analyzing those results, we can see that re- 338

sponses generated with no additional context or 339

with the help of irrelevant context are, on aver- 340

age, of higher quality than responses generated for 341

queries incorporating highly relevant context. This 342

result is in striking difference to results of Min et al. 343

(2022b). To further understand this discrepancy, in 344

the next section, we replicate the key findings of 345

Min et al. (2022b) and discuss what might cause 346

the difference in the observed behavior. 347

Comparison with existing studies. Min et al. 348

(2022b) demonstrates that in-context learning al- 349

lows us to achieve significantly better results than 350

in the “no context” case. Moreover, the authors 351

show that in-context learning is robust to irrele- 352

vant context. Specifically, they demonstrate that 353

the quality of responses for closed-form questions, 354

such as multiple-choice and true/false questions, 355

remains largely unaffected as long as the structure 356

of the context is preserved, even if its content is 357

irrelevant to the question. 358

To ensure a meaningful comparison between 359

our and their results and to eliminate the effect 360

of different versions of ChatGPT playing a poten- 361

tial role here (Min et al. (2022b) used GPT-3, while 362

our study focuses on GPT-4), we decided to repli- 363

cate the key results from Min et al. (2022b) us- 364

ing precisely the same framework and the same 365

model as described in the previous section. For this 366

replication, we utilized two existing benchmarks, 367

MetaICL under Attribution-NonCommercial 4.0 In- 368

ternational license (Min et al., 2022a) and a dataset 369

from NephSAP under Apache license 2.0. For the 370

MetaICL dataset, we took a subset of 10 different 371

tasks, each containing multiple-choice questions. 372

For the NephSAP dataset, we focused on multiple- 373

choice questions, choosing among 20 subjects. We 374

share details about tasks, subjects, and sample ques- 375

tions in the Supplementary Materials. 376

We conducted an 80-20 train test split for both 377

datasets. Next, for each multiple-choice question in 378

the test set, we generated a response using the gpt- 379

4-1106-preview model. We did it three times: once 380

without any context (no-context control group), 381

once with a randomly sampled demonstration from 382

a different task or subject from the training set of 383

the dataset, and once with a randomly sampled 384

demonstration with the same subject or task from 385
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Figure 1: (A) Raw average scores of generated responses for each context type (no context, irrelevant context, vague
context, and relevant context) evaluated for Completeness and Relevancy (Correctness), Logic and Reasoning (Logic
Score), and Truthfulness (lack of hallucination), assessed by six different graders. (B) The process of standardizing
raw scores from each grader to calculate the overall standardized average scores. (C) Standardized average scores of
generated responses for each context type aggregated across all graders.

the training set. To quantify the context relevancy,386

we computed its cosine similarity to the question in387

the embedded space. That allowed us to separate388

the context into classes of relevancy (denoted as389

similarity bins in Fig. Figs. 3–5). Next, treating390

the results of the control group (with no context) as391

a reference point, we record the general score im-392

provement of the response within each embedding393

similarity bin.394

Analyzing results in Figs. 3–4, note how context395

similarity is positively correlated with the mean396

score improvement for both tested closed-question397

datasets (MetalICL and NephSAP). Note also that398

in both closed-question datasets, the context with399

the lowest levels of similarity scores has a tendency400

to have a negative mean improvement (meaning,401

adding irrelevant context hurts the results). As 402

contexts with low levels of similarities are more 403

likely to be contexts with a different subject or task, 404

this result is consistent with the findings in Liu 405

et al. (2021), where it was reported that irrelevant 406

demonstrations hurt the performance of LLM. 407

Next, we repeated the same procedure in the 408

open-form questions scenario, leveraging our orig- 409

inal dataset. In Fig. 5, we show the results. Our 410

open-form question results display a negative cor- 411

relation between context similarity and mean im- 412

provement, meaning that context with a lower level 413

of similarity can be more helpful in improving the 414

quality of the response, whereas context with a 415

higher level of similarity can actually hurt the qual- 416

ity of the response. This stands in a striking con- 417
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Figure 2: (A): Standardized average scores of generated responses for each context type (no context, irrelevant
context, vague context, and relevant context), categorized by three levels of question difficulty (easy, medium, and
hard) for correctness, logic errors, and lack of hallucination. (B): Standardized average scores of generated answers
for each context type, subdivided into known, paraphrased, and original categories, evaluated for correctness, logic
score, and lack of hallucination.

trast to the results for closed-form questions (cf.418

again Figs. 3–4).419

6 Discussion420

Impact. Our findings indicate that context might421

play fundamentally different roles depending on422

the format of the question (whether open or closed-423

format), as evidenced by the reversed relationship424

between context similarity and performance im-425

provement in these two cases (see Fig.5 versus426

Figs.3–4). This result carries two significant im-427

plications. First, choosing an optimal context for428

in-context learning might be highly task-dependent,429

and factors such as the question’s “openness”, per-430

ceived difficulty, or novelty might play a significant431

role. Second, selecting context based solely on the432

minimal embedding distance to the question may433

not always be optimal, particularly for tasks involv-434

ing open-form questions. This insight has profound435

implications for Retrieval-Augmented Generation436

(RAG) systems, many of which address open-form437

scenarios and complex tasks.438

Interpretation. The different behaviors exhib-439

ited in the open-form and closed-form answer gen-440

eration scenarios seem to stem from a different441

treatment of the context in those two cases. We442

provide a hypothetical interpretation of that mech-443

anism. In closed-form multiple-choice questions,444

the evaluated language model is treated as a classi-445

fication model. A relevant demonstration provided 446

as a context can improve the LLM’s performance 447

by aligning it with the correct choice. However, in 448

the open-form answer generation tasks, the eval- 449

uated language model is treated as a generative 450

model. Instead of being either correct or incorrect, 451

an open-form response can be anywhere between. 452

A relevant context provides alignment with one 453

way of approaching the question, but it can also 454

introduce bias, leading at the end to performance 455

degradation instead of improvement. 456

Furthermore, for highly complex and difficult 457

questions (which are common among many open- 458

form questions), the evaluated language model can 459

have difficulty learning from the logic and method- 460

ology applied in the relevant context. Without 461

properly understanding the reasoning behind the 462

relevant context, the relevant context can hardly 463

provide any more help. However, LLMs can still 464

benefit from the provided examples by mimicking 465

the correct style of the answer, as it happened in 466

Min et al. (2022b), thus the improvements over 467

the baseline when vague or irrelevant context was 468

present. 469

Implications The results discussed in this work 470

have a profound impact on strategies regarding the 471

implementation of RAG-based systems. Our work 472

points out at the difference between the impact 473

of context relevancy on the model performance 474
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Figure 3: The MetaICL dataset contains close-form questions. The last bin is insignificant as it contains only seven
samples of data. Note that the relationship between similarity and score improvement is positively correlated.

Figure 4: The NephSAP dataset contains close-form questions. The first bin and the last bin are insignificant as
they contain only 1 sample each. Note that the relationship between similarity and score improvement is positively
correlated.

Figure 5: Using the same methodology for our original dataset of open-form questions, we see that the relationship
between similarity and score improvement is anti-correlated. Thus, the trend recorded here is in a striking difference
with results for closed-form questions (cf. Figs. 3–4).
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for open-form and closed-form questions. This475

suggests that the performance of in-context learn-476

ing, and as a result, RAG-based systems, might be477

highly application-dependent and related to many478

factors, such as the form of the question, its diffi-479

culty, “openness”, etc. In particular, we suggest480

that the strategy for context retrieval for open-form481

applications should be different from those em-482

ployed in closed-form scenarios. This also creates483

additional complexity when tuning the hyperpa-484

rameters of RAG systems. Employing automated485

frameworks utilizing both closed-form benchmarks486

and automated scoring mechanisms might be short-487

sighted. A good performance on a close-question488

benchmark might not indicate similarly good op-489

eration in open-form scenarios. Therefore, more490

complex and therefore expensive evaluation meth-491

ods might be required.492

One final, practical remark touches the strategies493

for context retrieval for RAG-based systems. Espe-494

cially in open-form applications, when retrieving495

context it seems important to include some other496

factors than only its embedding distance. For ex-497

ample, instead of selecting passages that simply lie498

near a certain point in the embedding space (e.g.,499

representing the query), a better choice could be500

to include more complex retrieval protocols that501

promote passages from some intermediate distance.502

The logic would be that a piece of context that is a503

bit further in the embedding distance to the ques-504

tion might still provide valuable information while505

not reinforcing the hidden bias inside the question.506

7 Limitations507

We measured the quality of the generated answers508

manually to quantify their quality. This restricted509

our ability to check different architectures and ver-510

sions of the model. It also limited our ability to511

test different prompt versions (prompt engineering).512

For practical reasons, we limited ourselves to the513

most popular model at the time (provided by Ope-514

nAI). To partially assess the impact of prompt engi-515

neering, we explored the effects of different prompt516

formats on the generated outputs (see Supplemen-517

tary Materials). These experiments reassured us518

that the results gathered with the help of our prompt519

were representative. However, a dedicated study520

would be valuable to examine how other LLMs521

respond to contexts of differing quality.522

This particular study is limited to English only.523

Whether the described behavior generalizes to other524

languages is open and requires dedicated research. 525

We also recognize the potential for the evalu- 526

ation of open-form questions on a much larger 527

scale using automatic methods. We experimented 528

with BLEURT, an automatic evaluation method, on 529

our open-form data (see Supplementary Materials). 530

The results show little to no correlation between 531

the scores of manual evaluation and the scores gen- 532

erated with this automated method. This leads us to 533

believe that carefully designed manual evaluation, 534

even conducted on a smaller scale, is still important. 535

Aligning automatic evaluations to better represent 536

manual ones can be a great direction for future re- 537

search, and new automatic evaluation methods can 538

provide more scalable solutions for the evaluation. 539

Risks Regarding Potential Societal Impact 540

The findings of this work highlight the nuanced role 541

of context relevancy in in-context learning, which 542

could inadvertently reinforce biases or lead to un- 543

intended outcomes when applied in real-world sys- 544

tems. Specifically, the observed tendency for less 545

relevant contexts to sometimes outperform more 546

relevant ones in open-form scenarios might be mis- 547

used to justify the use of less precise or contextually 548

mismatched information, potentially amplifying 549

misinformation, perpetuating biases, or producing 550

unreliable outputs in critical applications such as 551

legal, medical, or educational systems. 552

Code 553

Code that can be used to replicate all re- 554

sults of this work is available at https: 555

//github.com/Context-matters-research/ 556

Context-matters. 557

Data 558

The dataset of open-form questions with 559

accompanying contexts of varying rel- 560

evancy is intended strictly for research 561

purposes and can be found at https: 562

//github.com/Context-matters-research/ 563

Context-matters/tree/main/open_dataset. 564

Its primary use is to advance understanding of 565

large language models’ behavior in generative 566

tasks. 567

Use of AI Assistants 568

The use of AI Assistants was limited only to the fol- 569

lowing activities: grammar and spelling correction, 570

and synonym search. 571
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Supplementary Material 868

A Sample question 869

A.1 Sample Question for Open Dataset 870

Question: Given the wavelength of an electron is 871

0.364 · 10−9 m, calculate the speed of the electron. 872

Ground Truth for Grading: 873

λ = 0.364× 10−9 m 874

Mass of electron, m = 9.1× 10−31 kg 875

Planck’s Constant, h = 6.62607015× 10−34 Js 876

The de Broglie wavelength is given by λ = h
mv 877

Velocity of the electron, v = 2× 106 ms−1 878

Relevant Context 879

The De Broglie states that λ = h
mv . The mass of 880

an electron is about 9.109 · 10−31kg 881

Vague Context 882

Wave-particle duality is the concept in quantum 883

mechanics that quantum entities exhibit particle 884

or wave properties according to the experimental 885

circumstances. 886

Irrelevant Context 887

Quantum physics is the study of matter and energy 888

at the most fundamental level. At very small scale, 889

classical theories may not be applicable any more. 890

That is where quantum theories come into play. 891

A.2 Sample question for MetaICL dataset 892

Test Input: Bird feet can also vary greatly among 893

different birds. Some birds, such as gulls and terns 894

and other waterfowl, have webbed feet used for 895

swimming or floating (Figure below). Other birds, 896

such as herons, gallinules, and rails, have four long 897
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spreading toes, which are adapted for walking del-898

icately in the wetlands (Figure below). You can899

predict how the beaks and feet of birds will look900

depending on where they live and what type of food901

they eat. Flightless birds also have long legs that902

are adapted for running. Flightless birds include903

the ostrich and kiwi. Some birds, such as gulls and904

terns and other waterfowl, have what type of feet905

used for swimming or floating?906

Test Output: webbed907

Test Options:908

1. lobed909

2. quad toed910

3. bipedal911

4. webbed912

For our task selections from the MetaICL dataset,913

please visit our GitHub repository, where the task914

category selections and code are presented.915

A.3 Sample question for NephSAP dataset916

A 54-year-old man with ESRD is admitted for man-917

agement of presumed catheter–related bacteremia.918

He had no pre–ESRD nephrology care and recently919

started maintenance hemodialysis on an urgent ba-920

sis for symptomatic uremia. Two days ago, he921

developed acute onset of fever to 40 C, chills, and922

rigors during dialysis. After obtaining blood cul-923

tures, he received intravenous vancomycin and cef-924

tazidime at the outpatient dialysis center before ad-925

mission. His tunneled dialysis catheter is removed926

because of erythema and purulent exudate at the927

exit site. His fever is now resolved. He does not928

have back pain, cough, dental complaints, or rash.929

On physical examination, he is now afebrile. The930

BP is 136/88 mmHg. There is a 1-cm area of ery-931

thema at the tunneled dialysis catheter removal site.932

He has no stigmata of emboli. He has no obvious933

dental issues on gross inspection of the orophar-934

ynx. The cardiac examination shows a grade 2935

early peaking systolic crescendo-decrescendo mur-936

mur along the right sternal border without radia-937

tion. The remainder of the examination is unre-938

markable. The blood cultures drawn before im-939

plementation of antibiotic therapy grew S. aureus940

within 12 hours. The results of sensitivity testing941

and repeat blood cultures are pending. Laboratory942

studies show sodium 138 mEq/L, potassium 3.8943

mEq/L, chloride 102, total CO2 25 mmol/L, BUN 944

45 mg/dl, and creatinine 6.4 mg/dl. 945

In addition to continued antibiotic therapy, 946

which ONE of the following is the next BEST step 947

in management? 948

A. Arrange for placement of a tunneled dialysis 949

catheter today 950

B. Transesophageal echocardiography 951

C. Magnetic resonance imaging of the spine 952

D. Bone scintigraphy (bone scan) 953

E. Examination for an occult dental source of 954

bacteremia 955

B Generated Answer 956

B.1 Sample Response for Question in A.1 957

Response with No Context: To calculate the 958

speed of the electron, we can utilize de Broglie’s 959

equation that relates the momentum of a particle to 960

its wavelength. Here is the formula: 961

λ =
h

p
962

Where: 963

• λ is the wavelength 964

• h is Planck’s constant 965

• p is the momentum. 966

If we rearrange the terms to express momentum: 967

p =
h

λ
968

The momentum of a particle can also be described 969

as its mass times its velocity: 970

p = m · v 971

We know that the mass of an electron (m) is 9.11× 972

10−31 kg. And Planck’s constant (h) is 6.626 × 973

10−34 Js. 974

So the velocity (v) is given as: 975

v =
h

mλ
976

Substituting the known values, we get: 977

v =
6.626× 10−34

9.11× 10−31 · 0.364 · 10−9
978

After solving this, the velocity of the electron 979

comes out to be approximately 7.24× 105 m/s. 980

12



Response with Irrelevant Context: The speed981

of an electron given its wavelength can be calcu-982

lated using the de Broglie’s equation:983

λ =
h

mv
984

where:985

• λ is the wavelength,986

• h is Planck’s constant, which is roughly equals987

to 6.626× 10−34 Js,988

• m is the mass of the electron, which is roughly989

equals to 9.109× 10−31 kg,990

• v is the velocity of the electron.991

We can rearrange the equation to solve for the ve-992

locity:993

v =
h

mλ
994

Substitute the given values into the equation:995

v =
6.626× 10−34 Js

9.109× 10−31 kg × 0.364× 10−9 m
996

and calculate the velocity.997

Response with Vague Context: The wavelength998

of a matter wave, such as an electron, can be found999

using De Broglie’s equation, which is given by:1000

λ =
h

p
1001

where:1002

• λ is the wavelength1003

• h is Planck’s constant (6.626× 10−34 Js)1004

• p is the momentum of the particle, which can1005

be expressed as p = mv1006

Since we want to find the speed of the electron (v),1007

we can rearrange this equation in terms of v:1008

v =
h

mλ
1009

Given that λ = 0.364× 10−9 m and the mass of an1010

electron is m = 9.109× 10−31 kg, we can substi-1011

tute these values into the equation:1012

v =
6.626× 10−34

9.109× 10−31 × 0.364× 10−9
1013

Evaluating this will give the speed of the electron1014

in m/s.1015

Response with Relevant Context: The De 1016

Broglie equation relates the wavelength of a parti- 1017

cle to its momentum. According to De Broglie’s 1018

principle, every object in motion has a wave char- 1019

acter. The De Broglie wavelength is given by the 1020

formula: 1021

λ =
h

mv
1022

where: 1023

• λ is the wavelength, 1024

• h is Planck’s constant (6.626 × 10−34 m2 · 1025

kg/s), 1026

• m is the mass of the particle, 1027

• v is the velocity (or speed) of the particle. 1028

We are given that λ = 0.364 × 10−9 m, and the 1029

mass m of an electron is 9.11× 10−31 kg. We can 1030

find the speed v by rearranging the above formula: 1031

v =
h

mλ
1032

Substitute the known values into the rearranged 1033

equation to find v, the speed of the electron: 1034

v =
6.626× 10−34 m2 · kg/s

(9.11× 10−31 kg)(0.364× 10−9 m)
1035

Solving the above expression will give us the speed 1036

of the electron. 1037

C Grading Interface 1038

To better evaluate the open response to our physics 1039

questions, we modified the potato annotation sys- 1040

tem (Pei et al., 2022) and applied it as our evalua- 1041

tion system. Our evaluation system not only allows 1042

users to select numeric grades for each response 1043

but also enables the user to highlight parts of the 1044

response, apply labels, and write descriptions to 1045

justify their grading. In addition, the system ran- 1046

domly shuffles the order of the responses for each 1047

grader to mitigate any potential bias in grading as 1048

a result of the ordering of responses. The instruc- 1049

tions given to the graders are shown in table 1, and 1050

a short video tutorial is provided at the beginning 1051

page to provide guidance and alignment in grading. 1052

A screenshot of the interface of the evaluation 1053

system is shown in Fig. 6. 1054
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D Sanity Check1055

To check whether our context relevancy is well de-1056

fined, we compute the embedding of the questions1057

and their respective contexts for both our open-1058

form question dataset and the two closed-form1059

question datasets we use. We then calculate the1060

cosine distance between the embedding of each1061

question and the different contexts associated with1062

them. We show the results for the open question1063

dataset in Fig. 7.1064

We computed the embedding of each question1065

and each context using OpenAI’s “text-embedding-1066

3-large” model. For the no-context part, we used a1067

space as a placeholder instead of an empty string.1068

As expected, the results show that more relevant1069

contexts, as perceived by us when designing the1070

dataset, receive a higher mean similarity score with1071

their respective questions. Different question types1072

can result in a large standard deviation in similarity1073

scores in different contexts. We show the details1074

breakdown of those results in Fig. 8.1075

All question types except hard paraphrased ques-1076

tions display the same trend, confirming the re-1077

lationship between context types and embedding1078

similarities.1079

For the closed datasets, the similarity score be-1080

tween context and question is shown in Table 2.1081

For both datasets, the same task/subject demonstra-1082

tions possess a higher mean similarity score than1083

the different task/subject demonstrations. To fur-1084

ther verify this relationship, we have also plotted1085

the similarity score of the same task demonstrations1086

and different task demonstrations for each task in1087

the MetaICL dataset in Fig. 9. The results confirm1088

that the same task demonstration displays higher1089

mean similarity than the different task demonstra-1090

tion in every task in the dataset.1091

E BLEURT score vs Manual Score1092

We used BLEURT (Sellam et al., 2020) to grade the1093

response of GPT-4 to questions in our open dataset.1094

We then plot the BLEURT score against the results1095

of our standardized manual grading. The results1096

are shown in Fig.10. Since no obvious correlation1097

is found, BLEURT fails to capture the trend of our1098

manual grading, suggesting potential limitations1099

for this automatic evaluation technique. At the1100

same time, those results validate the sensibleness1101

of our labor-intensive, manual approach.1102

F Generalizability and prompt 1103

adaptability 1104

We test a different prompt template and repeat 1105

our experiment with our open-form dataset and 1106

MetaICL (Min et al., 2022a) with GPT-4. The sam- 1107

ple prompt template is shown below: 1108

I want you to act as an expert in physics, 1109

math, and computer science. I will pro- 1110

vide problems and sometimes some con- 1111

text, and it will be your job to answer 1112

them in easy-to-understand terms. This 1113

could include providing step-by-step in- 1114

structions for solving a problem, demon- 1115

strating various techniques with visuals 1116

or suggesting online resources for further 1117

study. 1118

For MetaICL, the plot of performance improve- 1119

ment against the embedding distance of demon- 1120

stration is shown in Fig. 12. It is clear that the 1121

results obtained through the new template effec- 1122

tively capture the trend in our finding in Fig. 11. 1123

This result suggests that the relationship between 1124

embedding similarity of demonstration and per- 1125

formance improvement might be independent of 1126

prompt in closed-form benchmark. 1127

Since conducting another round of manual eval- 1128

uation is very costly, we choose to apply faithful- 1129

ness metrics (Es et al., 2024) instead to evaluate 1130

responses to the new prompt. Treating the original 1131

responses to the same question (four for each ques- 1132

tion since we have four different levels of context) 1133

as a reference, we plot the faithfulness score of our 1134

new response to each of the original responses to 1135

the same question. The results are shown in Fig. 13. 1136

The plot suggests no obvious difference in faithful- 1137

ness mapping between the same context type and 1138

different context types in the new responses and 1139

the original ones. 1140

One possible explanation is that the faithful- 1141

ness measure fails to capture differences in objec- 1142

tive truth and mistakes in different responses in a 1143

human-like manner. However, prompt can poten- 1144

tially be a more important factor here as we need 1145

to recognize the fundamental difference between 1146

open-form benchmarks and closed-form bench- 1147

marks. This only further supports the case for 1148

manual evaluation in the case of open-form answer 1149

generation. 1150
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Category Details
Procedures You will be presented with 160 short document-question pairs and tasked to answer the question

by highlighting part of the document.
Risks Risks are no greater than those ordinarily encountered in daily life, such as when surfing the

internet.
Benefits There may be no personal benefit, but the knowledge gained may have academic or industrial

value.
Confidentiality Researchers may disclose your consent form, data, or personally identifiable information as

required by law. Otherwise, confidentiality will be maintained by: (1) assigning participants a
number; (2) recording data by number, not name; (3) storing recordings and files in a secured
location accessed only by authorized researchers.

Voluntary Partici-
pation

Participation is voluntary. You may discontinue at any time.

Table 1: Potato grading instructions.

Figure 6: The potato grading interface used in evaluation.

Dataset Average Different Task Similarity Average Same Task Similarity

MetaICL 0.719 0.787

NephSAP 0.443 0.557

Table 2: Mean context similarity for closed datasets.
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Figure 7: Mean context similarity by context type for open-form questions’ context. the context of no context is
replaced by a space as a placeholder, as the embedding of an empty string cannot be computed.

Figure 8: Mean context similarity by context type across different originality and difficulty for open-form questions’
context.
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Figure 9: Mean context similarity by demonstration types across different MetaICL tasks.

Figure 10: BLEURT score vs manual score for open-form questions.

Figure 11: MetaICL performance improvement against context similarity using the original prompt template as in
figure 3 in the paper.
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Figure 12: MetaICL performance improvement against context similarity using the new prompt template for
comparison with the original template.

Figure 13: Faithfulness mapping between responses from new prompt and original ones. Each plot shows the
mapping of the new prompt with one specific context type against the four different context types from the original
response.
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