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Abstract

This study investigates the impact of context
relevancy on the performance of in-context
learning. To quantify that impact, we created
a novel database of open-form questions, each
paired with different contexts of various rele-
vancy. Next, we perform manual grading (in-
troducing six-fold redundancy to minimize the
impact of individual graders), measuring the
quality of generated responses in several dimen-
sions. We show that counterintuitively, in many
cases, less relevant contexts can perform as
well as, or even better than, more relevant ones.
By controlling for task novelty and question dif-
ficulty, we demonstrate that this phenomenon
is particularly pronounced for open-form ques-
tions and questions with high perceived novelty
or difficulty. This result reveals a fundamen-
tal difference in how large language models
process closed-form and open-form questions.
Furthermore, our findings raise critical ques-
tions about optimal context selection for large
language models, particularly in open-response
scenarios — a question critical when building
Retrieval-Augmented Generation (RAG) sys-
tems.

1 Introduction

Large Language Models (LLMs), despite their
indisputable successes (Bommasani et al., 2021;
Drori et al., 2022; Chang et al., 2024), often strug-
gle to answer challenging questions (Rawte et al.,
2023). While LLMs can achieve superhuman accu-
racy on many benchmarks (Luo et al., 2024), they
also suffer from hallucinations (Ye et al., 2023;
Azamfirei et al., 2023), lack of coherence (Xie et al.,
2023b), and are prone to cognitive errors (Jones
and Steinhardt, 2022; Hagendorff et al., 2023). To
make the difficult situation even worse, it is not al-
ways easy to detect mistakes committed by LLMs
since their responses are often presented in a way
that emulates correct and coherent answers (Bender
et al., 2021; Scheurer et al., 2023). Therefore, for

practical reasons, many existing benchmarks only
test the ability to answer either closed (Chang et al.,
2024) or easy-to-verify questions, e.g., regarding
common knowledge (Bisk et al., 2020; Clark et al.,
2018) or questions that can be algorithmically veri-
fied (Srivastava et al., 2024).

Another challenge concerning LLMs is the prob-
lem of updating or adding new factual knowledge.
Re-training or fine-tuning is both expensive (Ben-
der et al., 2021; Luccioni et al., 2023) and techni-
cally challenging (Kandpal et al., 2023; Gaspers
et al., 2022). While some techniques like Low-
Rank Adaptation (LoRa) can reduce the cost of
adaptation to new tasks (Hu et al., 2021), it does not
solve the main issue, namely, how to allow LLMs
to leverage new pieces of information that were not
a part of the initial training corpus (Liu, 2017) in a
sustainable way. In that regard, one of the promis-
ing approaches is in-context learning (Brown et al.,
2020). By embedding examples in the prompt,
LLMs can demonstrate an improved performance
without the need to update the model parameters
(Brown et al., 2020). Despite the progress, the
question of how LLM accesses and processes novel
information from the context remains vital. A lot
is at stake, as this ability of LLMs to extract novel
information from the context is central for the cor-
rect operations of popular Retrieval-Augmented
Generation (RAG) systems (Gao et al., 2024) that
build the majority of modern commercial chatbot
assistants (Vakayil et al., 2024).

Given the growing popularity of RAG-based sys-
tems, in this paper, we examine the role of context
relevancy in in-context learning. Our findings re-
veal an intriguing and somehow counterintuitive
behavior: In-context learning performance does
not always improve with increasing context rele-
vance. In addition, the relationship between the
quality of the generated answer and the context
relevance level seems to depend on several factors,
including whether the question is of the open or



closed format and whether LLLM had prior knowl-
edge of the subject of the question.

In the following sections, we introduce our novel
dataset, which we created to capture the mentioned
behavior. Next, we compare (and contrast) our
findings with the results of Min et al. (2022b). As
an additional validation, we then partly replicate
the results of Min et al. (2022b), and to extend
our analysis, we repeat our experiments on two ad-
ditional close-formed question datasets, MetalCL
(Min et al., 2022a) and NephSAP (Wu et al., 2023).
By comparing all our results and by contrasting
the diverging behaviors on closed- and open-ended
question-banks, we came to the conclusion that the
main impact comes from the format of the question
(whether open or closed), with additional effects re-
lated to the difficulty or novelty of those questions,
revealing how essential is the prior knowledge of
LLM on the subject for effective utilization of the
in-context learning.

2 Related Work

Large Language Models. LLMs have shown
remarkable capabilities in various tasks, includ-
ing code generation (Kojima et al., 2022; Siddiq
and Santos, 2023), text summarization (Sahu et al.,
2023), and database query optimization (Li et al.,
2023). They demonstrate a surprising ability to
perform in-context learning (Brown et al., 2020),
where an LLM “learns” to perform a task simply by
conditioning on a prompt containing some input-
output examples. However, there has been little
understanding of how the model leverages the con-
text and what makes in-context learning work. In
addition, their performance significantly depends
on the contextual information provided and, as dis-
cussed in this paper, on the form and type of the
queries.

In-Context Learning. Unlike traditional fine-
tuning methods, in-context learning adapts models
to unseen tasks by incorporating examples directly
into the input context (Brown et al., 2020). Xie et al.
(2022) discussed how in-context learning can be
understood as implicit Bayesian inference, where
models infer latent concepts to generate coherent
responses. Techniques such as chain-of-thought
prompting (Wei et al., 2022; Press et al., 2023;
Wang et al., 2022; Zhou et al., 2023; Imani et al.,
2023; Besta et al., 2023) have shown significant im-
provements in reasoning tasks. Recent frameworks
like OpenICL (Wu et al., 2023) have further stream-

lined the implementation of in-context learning by
providing unified and flexible tools for integrating
various retrieval and inference methods.

Many recent research studies focus on the exam-
ple selection strategies of in-context learning. One
of the most common strategies is to select exam-
ples for demonstration based on similarity in the
embedding space (Liu et al., 2022; Qin et al., 2023;
Gao et al., 2021). In-context learning seems robust
to label-noise, as indicated by work of Min et al.
(2022b), in which authors show that demonstra-
tions, even one with randomly shuffled or replaced
labels, can still significantly improve LLM’s per-
formance.

Evaluation Benchmarks. Benchmarking is es-
sential for understanding LLM performance across
different domains. Existing benchmarks like
AGIEval (Zhong et al., 2023), ChenLLMBench
(Guo et al., 2023), SCIEval (Sun et al., 2023),
PIXIU (Xie et al., 2023a), and MME (Fu et al.,
2024) provide comprehensive datasets for evalu-
ating LLMs. While these benchmarks are useful
for understanding the general capabilities of LLMs,
they do not fully capture the complexity of more
open-ended and context-sensitive queries. Here,
the added value of our work, as we believe the
novel open-form question bank accompanied by
the context of variable relevance that we created
and shared through this paper, will help to at least
partly fill that gap.

3 Originality, Impact, and Model Choice

Originality. While Min et al. (2022b) have
shown that context significantly affects LLM per-
formance, they have not quantified how different
levels of context relevancy impact the quality of
generated responses. The authors also neither con-
trolled for the “openness” nor the difficulty of the
questions. Our research addresses this by focusing
on open, challenging questions and bt explicitly
controlling for the context relevancy level. An-
other difference is that instead of using automated
evaluation metrics like BLEU score, METEOR, or
BERTScore, we choose a labor-intensive approach,
where we manually grade the generated outputs by
a panel of experts. This allowed us to better capture
the settled differences present in generated answers
and score them in several dimensions (complete-
ness, relevancy, logic, reasoning, etc.) while cap-
turing problems related to hallucination, omission,
irrelevancy, etc.



The impact of the paper. Our work suggests ar-
eas for improvement regarding generated output
evaluation methodologies and the overall Retrieval-
Augmented Generation (RAG) systems design prin-
ciples. Current RAG studies focus on providing
context during model inference, and the most com-
mon evaluation frameworks used to tune RAG
hyper-parameters utilize various automated bench-
marks. Given our observation of the inconsistent
relationship between the relevance of context and
model performance for different question types
(open-form vs. closed-form), we believe that the
context retrieved by comparing vector similarity
using RAG may not always correlate with the most
helpful context for enhancing LLM inference per-
formance.

Model Choice. Due to the manual and labor-
intensive process of grading generated answers, in
this study, we restricted ourselves only to ChatGPT
(based on GPT-4) from OpenAl. We are aware of
that shortcoming and urge the other researchers to
present results of similar analyses for other model
versions and architectures. Nevertheless, ChatGPT
is arguably the most widely popular (at least in the
eyes of the popular audience) LLM-based conver-
sational assistant, so the results presented in this
paper should still be relevant for many.

4 Methodology

Novel question bank. To investigate the relation-
ship between the relevance of context and the per-
formance of LLM, we created an original open-
form questions dataset comprising physics and
computer science questions of varying difficulty
levels (easy, medium, and hard) and originality
(known, paraphrased, and original). The ques-
tion’s originality was related to how it was har-
vested. Known questions come from popular text-
books — a source likely known to the model of our
interest (OpenAl’s GPT-4). Paraphrased questions
were rewritten and modified versions of known
questions. Original questions were handcrafted by
the authors of this paper.

For each question, we created a ground truth an-
swer for scoring reference and four context types
with different levels of relevance. The four context
types were (1) “no context” to serve as a control
group, (2) “irrelevant context”, which consists of
text on topics that do not match the subject of the
question, (3) “vague context”, which incorporates
some topics or keywords related to the question,

and (4) “relevant context”, which provides reason-
ing context for the question, or answer to a highly
related question. Next, for each unique pair of
question-context, we generated a response employ-
ing the OpenAl’s gpt-4-1106-preview model.

After retrieving the responses, we constructed
160 question-response pairs, each accompanied by
the corresponding ground truth. Aware that human
grading can be subjective in their judgement, we
decided that each question would be evaluated by
six independent graders using a pre-defined scoring
sheet. Our volunteer graders were composed of
five students (aged 20-25) and one faculty (aged
35-40) at our university, whose expertise ranged
from physics to computer science. This gave us
960 evaluation responses in total.

While all annotators were residing in the United
States at the time of the study, they had interna-
tional backgrounds, originating from either Europe
or Asia. This diverse demographic contributed a
range of perspectives to the evaluation process.

The Supplementary Material includes examples
of the questions and context types, as well as the
evaluation sheets.

Evaluation. Our evaluation system comprised
three main categories: Completeness and Rele-
vancy (5 points), Logic and Reasoning (5 points),
and Truthfulness (understood as lack of hallucina-
tion) (5 points). In addition, graders had the option
to identify specific problems in the responses, such
as hallucinations, omissions, irrelevancy, calcula-
tion errors, and logic errors. The graders could
also highlight portions of the responses as incor-
rect, correct, or irrelevant. In addition, an open
response section was provided for graders to give
comments and feedback about the generated re-
sponses. Finally, graders were asked to rate how
confident they felt in giving those grades. These
options allowed us to gain deeper insights into the
grading process and to assess the quality of the
generated responses in detail.

All question-response pairs were presented to
graders in random order and without information
about the type of context used to generate the re-
sponses. For the purpose, we used potato annota-
tion system (Pei et al., 2022). To enhance the accu-
racy and reliability of our evaluation, we ensured
that all graders assessed all 160 questions. This uni-
form evaluation approach significantly simplified
the subsequent statistical analysis, while by involv-
ing multiple graders for each response, we reduced



the impact of individual biases and other statistical
errors. As demonstrated later, this approach signif-
icantly improved the accuracy and consistency of
our findings.

5 Results

Context Relevancy. In Fig. 1, we illustrate the
relation between the context types and the quality
of the corresponding generated responses. In panel
A, we show the average raw score for each grader
and each context type. Note that the difference
between the graders is likely due to their individual
tolerance for different types of errors. However, af-
ter the grades are standardized and average (panel
B), a clear trend emerges, as illustrated in panel
C. Contrary to what one could expect, we see the
best performance for no context case and the lowest
score associated with the relevant context case, in-
dicating that adding relevant context does not help
(contrary, it hurts the performance of the model).

To further investigate how the difficulty of ques-
tions affects the quality of generated responses,
we compared the results across three difficulty lev-
els (easy, medium, and hard) for each of the four
context types, as presented in Fig. 2. In panel A,
we can observe a clear trend of decreasing scores
as the difficulty of the questions increased from
medium to hard (consistent result for each con-
text type), indicating that GPT-4’s performance
declines with greater question difficulty. This re-
sult also indicates that the questions that a hu-
man perceived as difficult were, in fact, correlated
with the factual difficulty experienced by GPT-
4, a result interesting on its own. However, for
easy and medium-difficulty problems, GPT-4 gen-
erated responses with similar scores, indicating
that the alignment between the human-perceived
and machine-perceived difficulty might be highly
nonlinear, though mostly monotonic. One could
potentially leverage this to map human-perceived
difficulty to machine-perceived one, but given that
nonlinear relation, the creation of such a map would
require careful calibration.

In panel B of Fig. 2, we compare the aggregated
standardized score for the different levels of origi-
nality for each context type. It is evident that GPT-4
scores highest for known questions, likely because
these questions were part of its training data. In-
terestingly, the score for known questions given
irrelevant context is twice as high as for relevant
context. This suggests that an irrelevant context

might be more helpful than a relevant context for
known questions, at least for the open type of ques-
tion, as measured here.

Analyzing those results, we can see that re-
sponses generated with no additional context or
with the help of irrelevant context are, on aver-
age, of higher quality than responses generated for
queries incorporating highly relevant context. This
result is in striking difference to results of Min et al.
(2022b). To further understand this discrepancy, in
the next section, we replicate the key findings of
Min et al. (2022b) and discuss what might cause
the difference in the observed behavior.

Comparison with existing studies. Min et al.
(2022b) demonstrates that in-context learning al-
lows us to achieve significantly better results than
in the “no context” case. Moreover, the authors
show that in-context learning is robust to irrele-
vant context. Specifically, they demonstrate that
the quality of responses for closed-form questions,
such as multiple-choice and true/false questions,
remains largely unaffected as long as the structure
of the context is preserved, even if its content is
irrelevant to the question.

To ensure a meaningful comparison between
our and their results and to eliminate the effect
of different versions of ChatGPT playing a poten-
tial role here (Min et al. (2022b) used GPT-3, while
our study focuses on GPT-4), we decided to repli-
cate the key results from Min et al. (2022b) us-
ing precisely the same framework and the same
model as described in the previous section. For this
replication, we utilized two existing benchmarks,
MetalCL under Attribution-NonCommercial 4.0 In-
ternational license (Min et al., 2022a) and a dataset
from NephSAP under Apache license 2.0. For the
MetalCL dataset, we took a subset of 10 different
tasks, each containing multiple-choice questions.
For the NephSAP dataset, we focused on multiple-
choice questions, choosing among 20 subjects. We
share details about tasks, subjects, and sample ques-
tions in the Supplementary Materials.

We conducted an 80-20 train test split for both
datasets. Next, for each multiple-choice question in
the test set, we generated a response using the gpt-
4-1106-preview model. We did it three times: once
without any context (no-context control group),
once with a randomly sampled demonstration from
a different task or subject from the training set of
the dataset, and once with a randomly sampled
demonstration with the same subject or task from
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Figure 1: (A) Raw average scores of generated responses for each context type (no context, irrelevant context, vague
context, and relevant context) evaluated for Completeness and Relevancy (Correctness), Logic and Reasoning (Logic
Score), and Truthfulness (lack of hallucination), assessed by six different graders. (B) The process of standardizing
raw scores from each grader to calculate the overall standardized average scores. (C) Standardized average scores of
generated responses for each context type aggregated across all graders.

the training set. To quantify the context relevancy,
we computed its cosine similarity to the question in
the embedded space. That allowed us to separate
the context into classes of relevancy (denoted as
similarity bins in Fig. Figs. 3-5). Next, treating
the results of the control group (with no context) as
a reference point, we record the general score im-
provement of the response within each embedding
similarity bin.

Analyzing results in Figs. 3—4, note how context
similarity is positively correlated with the mean
score improvement for both tested closed-question
datasets (MetalICL and NephSAP). Note also that
in both closed-question datasets, the context with
the lowest levels of similarity scores has a tendency
to have a negative mean improvement (meaning,

adding irrelevant context hurts the results). As
contexts with low levels of similarities are more
likely to be contexts with a different subject or task,
this result is consistent with the findings in Liu
et al. (2021), where it was reported that irrelevant
demonstrations hurt the performance of LLM.

Next, we repeated the same procedure in the
open-form questions scenario, leveraging our orig-
inal dataset. In Fig. 5, we show the results. Our
open-form question results display a negative cor-
relation between context similarity and mean im-
provement, meaning that context with a lower level
of similarity can be more helpful in improving the
quality of the response, whereas context with a
higher level of similarity can actually hurt the qual-
ity of the response. This stands in a striking con-



o
IS
L

0.4 1

o
[N]

0.2 4

o
o

0.0 4

|
e
[N

—0.2 1

|
o
'S

0.4 1

14
L J

|
e
o

—0.6

standardized average score
standardized average score

pedu™  pard

irrelevant

edior® Aard

no context

osY

0.4

0.4

0.2 1 0.2 1

0.0 1 0.0 1

-0.2 1 —0.2 A

—0.4 0.4 4

standardized average score
standardized average score

| | - | ! ~
wnow® parap‘“ased ongine Know® Parapmased origine

no context irrelevant

standardized average score

standardized average score

—0.2 4

—0.4

—0.6

—0.2 1

—0.4

0.4 1 0.4 1

0.2 4 0.2
0.0 4 0.0 -
-0.2 1

-0.4 4

—0.6

standardized average score

ediu™ pard sy edu™® Hard

vague

T
oY
relevant
0.4

04—
== correctness
logic score

== lack of hallucination

4

0.2 1 0.2 1

0.0 1

0.0 1

—0.2 A

-0.4 4

standardized average score

' ' el R
wnow® Parapmased ongin? oWt parap‘“ased ongine

vague relevant

Figure 2: (A): Standardized average scores of generated responses for each context type (no context, irrelevant
context, vague context, and relevant context), categorized by three levels of question difficulty (easy, medium, and
hard) for correctness, logic errors, and lack of hallucination. (B): Standardized average scores of generated answers
for each context type, subdivided into known, paraphrased, and original categories, evaluated for correctness, logic

score, and lack of hallucination.

trast to the results for closed-form questions (cf.
again Figs. 3-4).

6 Discussion

Impact. Our findings indicate that context might
play fundamentally different roles depending on
the format of the question (whether open or closed-
format), as evidenced by the reversed relationship
between context similarity and performance im-
provement in these two cases (see Fig.5 versus
Figs.3—4). This result carries two significant im-
plications. First, choosing an optimal context for
in-context learning might be highly task-dependent,
and factors such as the question’s “openness”, per-
ceived difficulty, or novelty might play a significant
role. Second, selecting context based solely on the
minimal embedding distance to the question may
not always be optimal, particularly for tasks involv-
ing open-form questions. This insight has profound
implications for Retrieval-Augmented Generation
(RAG) systems, many of which address open-form
scenarios and complex tasks.

Interpretation. The different behaviors exhib-
ited in the open-form and closed-form answer gen-
eration scenarios seem to stem from a different
treatment of the context in those two cases. We
provide a hypothetical interpretation of that mech-
anism. In closed-form multiple-choice questions,
the evaluated language model is treated as a classi-

fication model. A relevant demonstration provided
as a context can improve the LLM’s performance
by aligning it with the correct choice. However, in
the open-form answer generation tasks, the eval-
uated language model is treated as a generative
model. Instead of being either correct or incorrect,
an open-form response can be anywhere between.
A relevant context provides alignment with one
way of approaching the question, but it can also
introduce bias, leading at the end to performance
degradation instead of improvement.

Furthermore, for highly complex and difficult
questions (which are common among many open-
form questions), the evaluated language model can
have difficulty learning from the logic and method-
ology applied in the relevant context. Without
properly understanding the reasoning behind the
relevant context, the relevant context can hardly
provide any more help. However, LLMs can still
benefit from the provided examples by mimicking
the correct style of the answer, as it happened in
Min et al. (2022b), thus the improvements over
the baseline when vague or irrelevant context was
present.

Implications The results discussed in this work
have a profound impact on strategies regarding the
implementation of RAG-based systems. Our work
points out at the difference between the impact
of context relevancy on the model performance
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for open-form and closed-form questions. This
suggests that the performance of in-context learn-
ing, and as a result, RAG-based systems, might be
highly application-dependent and related to many
factors, such as the form of the question, its diffi-
culty, “openness”, etc. In particular, we suggest
that the strategy for context retrieval for open-form
applications should be different from those em-
ployed in closed-form scenarios. This also creates
additional complexity when tuning the hyperpa-
rameters of RAG systems. Employing automated
frameworks utilizing both closed-form benchmarks
and automated scoring mechanisms might be short-
sighted. A good performance on a close-question
benchmark might not indicate similarly good op-
eration in open-form scenarios. Therefore, more
complex and therefore expensive evaluation meth-
ods might be required.

One final, practical remark touches the strategies
for context retrieval for RAG-based systems. Espe-
cially in open-form applications, when retrieving
context it seems important to include some other
factors than only its embedding distance. For ex-
ample, instead of selecting passages that simply lie
near a certain point in the embedding space (e.g.,
representing the query), a better choice could be
to include more complex retrieval protocols that
promote passages from some intermediate distance.
The logic would be that a piece of context that is a
bit further in the embedding distance to the ques-
tion might still provide valuable information while
not reinforcing the hidden bias inside the question.

7 Limitations

We measured the quality of the generated answers
manually to quantify their quality. This restricted
our ability to check different architectures and ver-
sions of the model. It also limited our ability to
test different prompt versions (prompt engineering).
For practical reasons, we limited ourselves to the
most popular model at the time (provided by Ope-
nAl). To partially assess the impact of prompt engi-
neering, we explored the effects of different prompt
formats on the generated outputs (see Supplemen-
tary Materials). These experiments reassured us
that the results gathered with the help of our prompt
were representative. However, a dedicated study
would be valuable to examine how other LL.Ms
respond to contexts of differing quality.

This particular study is limited to English only.
Whether the described behavior generalizes to other

languages is open and requires dedicated research.

We also recognize the potential for the evalu-
ation of open-form questions on a much larger
scale using automatic methods. We experimented
with BLEURT, an automatic evaluation method, on
our open-form data (see Supplementary Materials).
The results show little to no correlation between
the scores of manual evaluation and the scores gen-
erated with this automated method. This leads us to
believe that carefully designed manual evaluation,
even conducted on a smaller scale, is still important.
Aligning automatic evaluations to better represent
manual ones can be a great direction for future re-
search, and new automatic evaluation methods can
provide more scalable solutions for the evaluation.

Risks Regarding Potential Societal Impact

The findings of this work highlight the nuanced role
of context relevancy in in-context learning, which
could inadvertently reinforce biases or lead to un-
intended outcomes when applied in real-world sys-
tems. Specifically, the observed tendency for less
relevant contexts to sometimes outperform more
relevant ones in open-form scenarios might be mis-
used to justify the use of less precise or contextually
mismatched information, potentially amplifying
misinformation, perpetuating biases, or producing
unreliable outputs in critical applications such as
legal, medical, or educational systems.

Code

Code that can be used to replicate all re-
sults of this work is available at https:
//github.com/Context-matters-research/
Context-matters.

Data

The dataset of open-form questions with
accompanying contexts of varying rel-
evancy is intended strictly for research
purposes and can be found at https:
//github.com/Context-matters-research/
Context-matters/tree/main/open_dataset.
Its primary use is to advance understanding of
large language models’ behavior in generative
tasks.

Use of AI Assistants

The use of Al Assistants was limited only to the fol-
lowing activities: grammar and spelling correction,
and synonym search.
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Supplementary Material
A Sample question

A.1 Sample Question for Open Dataset

Question: Given the wavelength of an electron is
0.364 - 1079 m, calculate the speed of the electron.

Ground Truth for Grading:

A =0.364 x 107" m

Mass of electron, m = 9.1 x 10731 kg
Planck’s Constant, b = 6.62607015 x 1073 Js
The de Broglie wavelength is given by A =

mv
Velocity of the electron, v = 2 x 10° ms™!

Relevant Context
The De Broglie states that A = % The mass of
an electron is about 9.109 - 10~ 3 kg

Vague Context

Wave-particle duality is the concept in quantum
mechanics that quantum entities exhibit particle
or wave properties according to the experimental
circumstances.

Irrelevant Context

Quantum physics is the study of matter and energy
at the most fundamental level. At very small scale,
classical theories may not be applicable any more.
That is where quantum theories come into play.

A.2 Sample question for Metal CL dataset

Test Input: Bird feet can also vary greatly among
different birds. Some birds, such as gulls and terns
and other waterfowl, have webbed feet used for
swimming or floating (Figure below). Other birds,
such as herons, gallinules, and rails, have four long
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spreading toes, which are adapted for walking del-
icately in the wetlands (Figure below). You can
predict how the beaks and feet of birds will look
depending on where they live and what type of food
they eat. Flightless birds also have long legs that
are adapted for running. Flightless birds include
the ostrich and kiwi. Some birds, such as gulls and
terns and other waterfowl, have what type of feet
used for swimming or floating?

Test Output: webbed

Test Options:
1. lobed
2. quad toed
3. bipedal
4. webbed

For our task selections from the MetalCL dataset,
please visit our GitHub repository, where the task
category selections and code are presented.

A.3 Sample question for NephSAP dataset

A 54-year-old man with ESRD is admitted for man-
agement of presumed catheter—related bacteremia.
He had no pre-ESRD nephrology care and recently
started maintenance hemodialysis on an urgent ba-
sis for symptomatic uremia. Two days ago, he
developed acute onset of fever to 40 C, chills, and
rigors during dialysis. After obtaining blood cul-
tures, he received intravenous vancomycin and cef-
tazidime at the outpatient dialysis center before ad-
mission. His tunneled dialysis catheter is removed
because of erythema and purulent exudate at the
exit site. His fever is now resolved. He does not
have back pain, cough, dental complaints, or rash.
On physical examination, he is now afebrile. The
BP is 136/88 mmHg. There is a 1-cm area of ery-
thema at the tunneled dialysis catheter removal site.
He has no stigmata of emboli. He has no obvious
dental issues on gross inspection of the orophar-
ynx. The cardiac examination shows a grade 2
early peaking systolic crescendo-decrescendo mur-
mur along the right sternal border without radia-
tion. The remainder of the examination is unre-
markable. The blood cultures drawn before im-
plementation of antibiotic therapy grew S. aureus
within 12 hours. The results of sensitivity testing
and repeat blood cultures are pending. Laboratory
studies show sodium 138 mEq/L, potassium 3.8
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mEq/L, chloride 102, total CO2 25 mmol/L, BUN
45 mg/dl, and creatinine 6.4 mg/dl.

In addition to continued antibiotic therapy,
which ONE of the following is the next BEST step
in management?

A. Arrange for placement of a tunneled dialysis
catheter today

Transesophageal echocardiography
Magnetic resonance imaging of the spine

Bone scintigraphy (bone scan)

m U 0 =

Examination for an occult dental source of
bacteremia

B Generated Answer

B.1 Sample Response for Question in A.1

Response with No Context: To calculate the
speed of the electron, we can utilize de Broglie’s
equation that relates the momentum of a particle to
its wavelength. Here is the formula:

A= -
p

Where:
* ) is the wavelength
e h is Planck’s constant

* pis the momentum.

If we rearrange the terms to express momentum:

p:X

The momentum of a particle can also be described
as its mass times its velocity:

p=m-v

We know that the mass of an electron (m) is 9.11 x
1073! kg. And Planck’s constant (k) is 6.626 x
10734 Js.

So the velocity (v) is given as:

h

mA

v

Substituting the known values, we get:
6.626 x 10734
v = ‘
9.11 x 10731 . 0.364 - 109

After solving this, the velocity of the electron
comes out to be approximately 7.24 x 10 m/s.




Response with Irrelevant Context: The speed
of an electron given its wavelength can be calcu-
lated using the de Broglie’s equation:

A= —
muv

where:
* )\ is the wavelength,

¢ his Planck’s constant, which is roughly equals
t0 6.626 x 10734 Js,

* m is the mass of the electron, which is roughly
equals to 9.109 x 103! kg,

* v is the velocity of the electron.

We can rearrange the equation to solve for the ve-

locity:
h

mA

Substitute the given values into the equation:

v =

Y 6.626 x 1073*Js
©9.109 x 10731 kg x 0.364 x 10~2m

and calculate the velocity.

Response with Vague Context: The wavelength
of a matter wave, such as an electron, can be found
using De Broglie’s equation, which is given by:

A=
p

where:
* ) is the wavelength
* h is Planck’s constant (6.626 x 10734 Js)

* p is the momentum of the particle, which can
be expressed as p = mv

Since we want to find the speed of the electron (v),
we can rearrange this equation in terms of v:

h

 m
Given that A = 0.364 x 10~ m and the mass of an
electron is m = 9.109 x 1073 kg, we can substi-

tute these values into the equation:

_ 6.626 x 1034
~9.109 x 10731 x 0.364 x 10—?

v

Evaluating this will give the speed of the electron
in m/s.
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Response with Relevant Context: The De
Broglie equation relates the wavelength of a parti-
cle to its momentum. According to De Broglie’s
principle, every object in motion has a wave char-
acter. The De Broglie wavelength is given by the
formula:

A= —
muv

where:
* ) is the wavelength,

e h is Planck’s constant (6.626 x 10734 m? -
kg/s),

* m is the mass of the particle,
* v is the velocity (or speed) of the particle.

We are given that A = 0.364 x 107? m, and the
mass m of an electron is 9.11 x 1073 kg. We can
find the speed v by rearranging the above formula:

b b
T m

Substitute the known values into the rearranged
equation to find v, the speed of the electron:

6.626 x 10734 m? - kg/s
(9.11 x 1031 kg)(0.364 x 10~9 m)

v =

Solving the above expression will give us the speed
of the electron.

C Grading Interface

To better evaluate the open response to our physics
questions, we modified the potato annotation sys-
tem (Pei et al., 2022) and applied it as our evalua-
tion system. Our evaluation system not only allows
users to select numeric grades for each response
but also enables the user to highlight parts of the
response, apply labels, and write descriptions to
justify their grading. In addition, the system ran-
domly shuffles the order of the responses for each
grader to mitigate any potential bias in grading as
a result of the ordering of responses. The instruc-
tions given to the graders are shown in table 1, and
a short video tutorial is provided at the beginning
page to provide guidance and alignment in grading.

A screenshot of the interface of the evaluation
system is shown in Fig. 6.



D Sanity Check

To check whether our context relevancy is well de-
fined, we compute the embedding of the questions
and their respective contexts for both our open-
form question dataset and the two closed-form
question datasets we use. We then calculate the
cosine distance between the embedding of each
question and the different contexts associated with
them. We show the results for the open question
dataset in Fig. 7.

We computed the embedding of each question
and each context using OpenAl’s “text-embedding-
3-large” model. For the no-context part, we used a
space as a placeholder instead of an empty string.
As expected, the results show that more relevant
contexts, as perceived by us when designing the
dataset, receive a higher mean similarity score with
their respective questions. Different question types
can result in a large standard deviation in similarity
scores in different contexts. We show the details
breakdown of those results in Fig. 8.

All question types except hard paraphrased ques-
tions display the same trend, confirming the re-
lationship between context types and embedding
similarities.

For the closed datasets, the similarity score be-
tween context and question is shown in Table 2.
For both datasets, the same task/subject demonstra-
tions possess a higher mean similarity score than
the different task/subject demonstrations. To fur-
ther verify this relationship, we have also plotted
the similarity score of the same task demonstrations
and different task demonstrations for each task in
the MetalCL dataset in Fig. 9. The results confirm
that the same task demonstration displays higher
mean similarity than the different task demonstra-
tion in every task in the dataset.

E BLEURT score vs Manual Score

We used BLEURT (Sellam et al., 2020) to grade the
response of GPT-4 to questions in our open dataset.
We then plot the BLEURT score against the results
of our standardized manual grading. The results
are shown in Fig.10. Since no obvious correlation
is found, BLEURT fails to capture the trend of our
manual grading, suggesting potential limitations
for this automatic evaluation technique. At the
same time, those results validate the sensibleness
of our labor-intensive, manual approach.
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F Generalizability and prompt
adaptability

We test a different prompt template and repeat
our experiment with our open-form dataset and
MetalCL (Min et al., 2022a) with GPT-4. The sam-
ple prompt template is shown below:

I want you to act as an expert in physics,
math, and computer science. I will pro-
vide problems and sometimes some con-
text, and it will be your job to answer
them in easy-to-understand terms. This
could include providing step-by-step in-
structions for solving a problem, demon-
strating various techniques with visuals
or suggesting online resources for further
study.

For MetalCL, the plot of performance improve-
ment against the embedding distance of demon-
stration is shown in Fig. 12. It is clear that the
results obtained through the new template effec-
tively capture the trend in our finding in Fig. 11.
This result suggests that the relationship between
embedding similarity of demonstration and per-
formance improvement might be independent of
prompt in closed-form benchmark.

Since conducting another round of manual eval-
uation is very costly, we choose to apply faithful-
ness metrics (Es et al., 2024) instead to evaluate
responses to the new prompt. Treating the original
responses to the same question (four for each ques-
tion since we have four different levels of context)
as a reference, we plot the faithfulness score of our
new response to each of the original responses to
the same question. The results are shown in Fig. 13.
The plot suggests no obvious difference in faithful-
ness mapping between the same context type and
different context types in the new responses and
the original ones.

One possible explanation is that the faithful-
ness measure fails to capture differences in objec-
tive truth and mistakes in different responses in a
human-like manner. However, prompt can poten-
tially be a more important factor here as we need
to recognize the fundamental difference between
open-form benchmarks and closed-form bench-
marks. This only further supports the case for
manual evaluation in the case of open-form answer
generation.



Category Details

Procedures You will be presented with 160 short document-question pairs and tasked to answer the question
by highlighting part of the document.

Risks Risks are no greater than those ordinarily encountered in daily life, such as when surfing the
internet.

Benefits There may be no personal benefit, but the knowledge gained may have academic or industrial
value.

Confidentiality Researchers may disclose your consent form, data, or personally identifiable information as

required by law. Otherwise, confidentiality will be maintained by: (1) assigning participants a
number; (2) recording data by number, not name; (3) storing recordings and files in a secured
location accessed only by authorized researchers.

Voluntary Partici-
pation

Participation is voluntary. You may discontinue at any time.

Table 1: Potato grading instructions.

Question:The speed of an particle is 0.000035c, where c is the speed of light
and is estimated to be $3 \cdot 10°{8} ms"{-1}$. The wavelength of the particle
is $7.01 \cdot 107{-9}m$. What is the mass of the particle in terms of e, where e
stands for mass of electron and is estimated at $9.109 \cdot 10"{-31} kg$

Generated Answer:The de Broglie wavelength of a particle is given by the
formula:

Ao b

muv

Where: - A is the wavelength, - h is the Planck constant (approximately
6.63 x 10 34m%g/s), - mis the mass of the particle, and - v is the velocity of
the particle. You provided that the velocity of the particle is 0.000035¢ (where c
is the speed of light, hence v = 0.000035 x 3 x 108m/s) and the de Broglie
wavelength of the particle as 7.01 x 10~ %m. We can solve for m in the de
Broglie formula to find the mass of the particle:

h
m=-—
Av
Substituting the given values:
6.63 x 10 %

m=
7.01 x 107 x 0.000035 x 3 x 108

After the calculation, m is found to be approximately 8.54 x 10~ *'kg. The
electron mass is approximately 9.109 x 10 3]lcg So, we can find the mass of
the particle in terms of e (mass of electron) as:

8.54 x 107!
9.109 x 103!

Myparticle ~

This gives us a mass of approximately 0.937 e.] So the particle is slightly lighter
than an electron.

Ground Truth:\ = 7.01x10"-9m Velocity of the particle, v
=0.000035x3x10"8=1.05x10"4 ms”-1 Planck’s Constant, h =
6.62607015x10"-34 Js The de-Broglie wavelength is given by A = h/mv Mass
of the particle, m =9.002x10"-30 kg = 9.88 e

How good is the generated answer?

Figure 6: The potato grading interface used in evaluation.

O incorrect
O correct
O irrelevant

(J No answer

Problems

Hallucinations
) Omission

O Irrelevant

O Calculation Error

O Logic Error

Everything is ok.

How much does the answer match the
ground truth (deduct points if disagree or
omit content)?

Not Good C O O Awesome

How well does the answer reasons (deduct
points if logic or explanation does not make
sense)?

NotGood O O O O O Awesome

Comments

Descriptive grade

Comments

What is the truthfulness (lack of
hallucination) score?

NotGood O O O

D O Awesome

How confident you are about your scoring?

Uncertain O O O O O Confident

Move backward

Dataset

Average Different Task Similarity

Average Same Task Similarity

MetalCL 0.719

0.787

NephSAP 0.443

0.557

Table 2: Mean context similarity for closed datasets.
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