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ABSTRACT

Continual learning aims to equip models with the ability to retain previously
learned knowledge like a human. Recent work incorporating Parameter-Efficient
Fine-Tuning has revitalized the field by introducing lightweight extension mod-
ules. However, existing methods usually overlook the issue of information leakage
caused by the fact that the experiment data have been used in pre-trained models.
Once these duplicate data are removed in the pre-training phase, their performance
can be severely affected. In this paper, we propose a new LoRA-based rehearsal-
free method named DESIRE. Our method avoids imposing additional constraints
during training to mitigate catastrophic forgetting, thereby maximizing the learn-
ing of new classes. To integrate knowledge from old and new tasks, we propose
two efficient post-processing modules. On the one hand, we retain only two sets of
LoRA parameters for merging and propose dynamic representation consolidation
to calibrate the merged feature representation. On the other hand, we propose de-
cision boundary refinement to address classifier bias when training solely on new
class data. Extensive experiments demonstrate that our method achieves state-of-
the-art performance on multiple datasets and strikes an effective balance between
stability and plasticity. Our code will be publicly available.

1 INTRODUCTION

Despite the remarkable achievements, AI is still far from becoming truly human-like in intelli-
gence. Continual learning (CL) aims to address catastrophic forgetting (Kirkpatrick et al., 2017; Li
& Hoiem, 2017; Verwimp et al., 2023), where AI systems tend to forget previously learned tasks as
they learn new ones. CL encompasses both task-incremental learning (TIL) and class-incremental
learning (CIL) scenarios (Wang et al., 2024), where the former allows the model to identify which
task the test samples belong to during inference, while the latter requires the model to recognize all
seen classes without knowing the task identity. This paper focuses on the more challenging setting
of rehearsal-free CIL (Zhu et al., 2021; Liang & Li, 2024), where the model can only access the
training data of the current task at each stage.

Recently, with the widespread use of pre-trained models and various parameter-efficient fine-
tuning (PEFT) (Houlsby et al., 2019; Hu et al., 2021; Jia et al., 2022) methods, the field of CIL
has seen rapid advancements. On the one hand, pre-trained models provide good generalization ca-
pabilities, making them naturally better than training from scratch in terms of performance. On the
other hand, PEFT methods such as LoRA (Hu et al., 2021) and Prompt (Jia et al., 2022) achieve re-
sults comparable to the full fine-tuning with a significantly small number of parameters, making the
application of CIL methods possible. For example, L2P (Wang et al., 2022c) and DualPrompt (Wang
et al., 2022b) combine prompt tuning with pre-trained models and achieve remarkable performance.
O-LoRA (Wang et al., 2023) and InfLoRA (Liang & Li, 2024) demonstrate the superiority of LoRA
on CIL tasks. In addition, LAE (Gao et al., 2023) integrates Adapter, Prompt, and LoRA for CIL.
All of these methods highlight the potential for applying PEFT to CIL tasks.

Nevertheless, we observe that despite such high performance achieved by these methods, two cru-
cial issues remain: (1) The performance is highly dependent on information leakage. Several stud-
ies (Kim et al., 2022; Liu et al., 2023; Lin et al., 2024) have pointed out that in the absence of strong
supervised pre-trained weights (e.g., ImageNet-21k), the performance of all the existing methods
suffers from varying degrees of degradation, and even lower than methods not designed for PEFT.
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Figure 1: Stability and plasticity analysis. We visualize the accuracy of the final task (AccT ) and
the average accuracy of the previous T − 1 tasks ( 1

T−1

∑T−1
t=1 Acct) at the last stage (T = 10) for

different methods under three datasets. Methods that are closer to the diagonal and nearer to the
upper-right corner of the graph are superior. More detailed results can be seen in Sec 4.4.

This phenomenon can be attributed to information leakage due to classes overlap between the ex-
periment data in CIL and the data used in pre-trained model (Kim et al., 2023), which indirectly
boosts the model’s performance. (2) Lack of balance between stability and plasticity. Intuitively,
a robust CIL system should neither sacrifice performance on new tasks to retain knowledge of old
ones, nor forget old tasks excessively in order to learn new ones. However, as shown in Fig. 1,
we revisit the stability and plasticity and observe that existing methods fail to maintain an opti-
mal balance between stability and plasticity. Specifically, these methods often introduce additional
constraints to mitigate catastrophic forgetting when learning new classes. For example, traditional
regularization-base methods typically employ knowledge distillation loss (Li & Hoiem, 2017; Zhu
et al., 2021) or regularization of parameters (Kirkpatrick et al., 2017); Recent LoRA-based meth-
ods (Liang & Li, 2024; Wang et al., 2023) leverage the idea of orthogonality to restrict the updating
of new tasks, thereby reducing inter-task interference. However, when no information is leaked,
excessive constraints can hinder the learning of new classes (e.g., InfLoRA), while focusing solely
on new classes often leads to forgetting old tasks (e.g., L2P). This ultimately results in an imbalance
between stability and plasticity for old and new tasks.

In this paper, we first discard the common paradigm of introducing constraints to mitigate catas-
trophic forgetting when learning new classes. Instead, The LoRAs are updated independently at
each stage, allowing them to fully learn each task. At this point, the core question to address is
how to integrate knowledge from old and new tasks in order to balance stability and plasticity
while improving overall accuracy. To this end, we design two efficient post-processing strategies
named Dynamic rEpresentation conSolidation and decIsion boundaRy rEfinement (DESIRE). On
the one hand, inspired by model fusion tasks that merge the backbones of models trained on dif-
ferent datasets during inference (Ilharco et al., 2022), we propose a Continual Merging Paradigm
for LoRA-based continual learning. Specifically, we uniformly keep only two sets of previous and
current LoRA parameters at each stage and merge them during inference. To better consolidate the
representation of the merged model, a feature representation attribution loss is designed to learn the
merging coefficients of the previous and current LoRA modules using a tiny subset of unlabeled
test data. On the other hand, the independent training at different stages leads to classifiers that
struggle to learn more generalized decision boundaries. To address this issue, we propose to refine
the decision boundary of the classifier by reconstructing the high-dimensional feature distribution
of the classes and sampling pseudo-features to retrain the classifier. Results on multiple datasets
demonstrate the superiority of our method and a schematic of DESIRE is shown in Fig. 2.

In general, this paper makes three contributions: (i) We propose a new LoRA-based rehearsal-free
CIL method that avoids introducing additional constraints when learning new classes to mitigate
catastrophic forgetting, thereby maximizing the performance on each task. (ii) To better integrate
knowledge from old and new tasks, we propose two efficient post-processing strategies, which can
significantly improve performance by using only a tiny amount of unlabeled test data and statisti-
cal information from the training data. (iii) Experimental results indicate that our method signif-
icantly outperforms other rehearsal-free methods and performs comparable with latest rehearsal-
based method (Lin et al., 2024) across multiple datasets and achieves the best balance between
stability and plasticity.
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Figure 2: (a) Joint training using the full data achieves optimal performance (Upper bound). (b) Fine-
tuning old models using only new data can lead to catastrophic forgetting. (c) Regularization-based
methods protect old tasks by imposing additional constraints when learning new tasks. (d) Our
method integrates knowledge by merging parameters from previous and current tasks and proposes
DESIRE to consolidate the feature representation and refine the classifier.

2 RELATED WORK

Parameter-Efficient Fine-Tuning. To achieve better performance, training larger models is gradu-
ally becoming more mainstream (Achiam et al., 2023; Yin et al., 2023; Zhao et al., 2023). Although
large models can cover multiple tasks, fine-tuning such a large model can become troublesome when
addressing specific downstream tasks. To address this, Parameter-Efficient Fine-Tuning (PEFT)
methods primarily based on LoRA (Hu et al., 2021), Prompt (Jia et al., 2022), and Adapter (Houlsby
et al., 2019) have emerged. Specifically, LoRA reduces the number of parameters by parallelizing
low-rank matrices at the attention layers of a frozen pre-trained model. Prompt tuning inserts addi-
tional tokens into the input embeddings at each layer and trains only these tokens during training.
Adapter is similar to LoRA, but is usually serially embedded after specific layer of a pre-trained
model. In summary, all of these methods fine-tune the entire large model with a small number of
trainable parameters and can rival full fine-tuning in terms of performance (Fu et al., 2022; Hung
et al., 2019; Zaken et al., 2021).

Class Incremental Learning. Existing CIL methods can be broadly categorized into expansion-
based, regularization-based and rehearsal-based methods (Wang et al., 2024). With the widespread
use of pre-trained models in recent years, expansion-based CIL methods using PEFT have gained
significant attention. For instance, L2P (Wang et al., 2022c) maintains a prompt pool to select
appropriate prompts for optimization across different tasks, and designs a frequency penalty loss
to encourage diversified selection. LAE (Gao et al., 2023) introduces a CIL framework that is
compatible with Adapter, Prompt and LoRA, demonstrating the extensibility of PEFT for CIL tasks.
For LoRA-based methods, InfLoRA (Liang & Li, 2024) maintains a projection matrix to ensure
that the LoRA parameters for the new task remain orthogonal to the inputs of the old task. O-
LoRA (Wang et al., 2023), on the other hand, maintains a series of parameter matrices for the old
tasks to constrain the model’s updates to the parameter space orthogonal to the old tasks. However,
the performance of these methods drops dramatically in the absence of information leakage and
lacks a balance between stability and plasticity. Some recent works (Chitale et al., 2023; Guo et al.,
2024) have also utilized the idea of merging old and new LoRA parameters for continual learning,
but they all store the parameters from each stage and merge them with pre-defined coefficients.
This paradigm will become redundant in long-term continual learning tasks (e.g., T = 20) because
the model needs to store too many parameters from old tasks, while the fixed merging coefficient
also limits performance. To this end, we propose a continual merging paradigm, where only the
two parameter sets of the previous and current tasks are retained during fusion, and the merging
coefficients are dynamically learned to better consolidate representation.

3 METHODOLOGY

3.1 PRELIMINARIES

Class Incremental Learning: CIL aims to learn a sequence of tasks {1, ..., T}, where each task t

contains a training dataset Dt = {Xt,Yt} = {xt
j , y

t
j}

Nt
j=1 and Nt denotes the number of training

samples in the current task. The class sets between different tasks are disjoint. Formally, we define
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the model to consist of two parts: a feature extractor Fθ and a classifier Gϕ. When learning task t,
the loss function of CIL methods can usually be expressed as the following two parts:

L(θ(t), ϕ(t)) = Lce(G(F(Xt; θt);ϕt),Yt) + Ωt, (1)

where Lce(G(F(Xt; θt);ϕt),Yt) denotes the cross-entropy loss, and Ωt represents the loss of reg-
ularization imposed in order not to forget old task knowledge. For example, Ωt can be realized
by knowledge distillation loss (Li & Hoiem, 2017; Zhu et al., 2021), parameter regularization
loss (Wang et al., 2023) and so on. In addition to the constraints imposed by the loss function,
Liang & Li (2024) designs the parameter subspace in advance of learning a new task, Other methods
overcome catastrophic forgetting by embedding appropriate modules in reasoning, but also require
training additional selection modules (Wang et al., 2022c; Yu et al., 2024).

Low-Rank Adaption: LoRA (Hu et al., 2021) assumes that updating to the parameters of the large
language model during downstream task training lies on the low-rank space, and thus proposed
to achieve comparable results to full fine-tuning by training only low-rank matrices concatenated
in the original parameter space. Specifically, we define the linear layer in the pre-trained model
as W ∈ Rd×k, LoRA decomposes it into two low-rank matrices: A ∈ Rd×r and B ∈ Rr×k,
where r ≪ min {d, k}. By doing so, the forward propagation process in the linear layer can be
re-expressed as z = (W + AB)x, where z and x represent the outputs and inputs of the linear
layer. In the implementation, in order not to affect the output of the model at the beginning, A is
initialized by a random Gaussian, while B is initialized with zero. In our method, we insert LoRA
at the Q and V matrices in the self-attention module at each block of the pre-trained transformer
model. For clarity, we use LoRA inserted at Q as an example in all subsequent discussions.

3.2 DYNAMIC REPRESENTATION CONSOLIDATION AND DECISION BOUNDARY REFINEMENT

Our method can be divided into the following three steps: individual training without additional
constraints (Sec. 3.2.1), dynamic representation consolidation (Sec. 3.2.2), and decision boundary
refinement (Sec. 3.2.3). Fig. 3 illustrates the framework of our method.

3.2.1 INDIVIDUAL TRAINING WITHOUT CONSTRAINTS

Unlike existing methods that require additional constraints to protect information from old tasks
while training the current task, we treat each training stage as independent of the others. Specifically,
the LoRA parameters are reinitialized at each stage and only the cross-entropy loss Lce in Eq. (1)
is optimized. This has two benefits: (i) Individual training allows the model to focus on improving
the performance of the current task, which indirectly enhances performance after merging. (ii) We
find that since the LoRA is reinitialized for each task, it naturally maintains good orthogonality
with the parameter space of previous tasks after training (See Appendix A.3), which creates a solid
prerequisite for the fusion of model parameters.

In order to perform the dynamic representation consolidation and decision boundary refinement,
we count the statistical information of each class after training each task. Specifically, we assume
that the features learned by the feature extractor can be approximated by a mixture of Gaussian
distributions (Luo et al., 2021; Lindsay, 1995). Therefore, the feature distribution of class i can be
reconstructed by counting the mean µi and covariance Σi matrices:

µi =
1

Ni

Ni∑
j=1

zi,j , Σi =
1

Ni − 1

Ni∑
j=1

(zi,j − µi)(zi,j − µi)
T , (2)

where zi,j = F(xi,j ; θt) is the feature of the j-th sample and Ni is the number of training data of
class i. In the implementation, we keep µi and Σi for all the classes the model has seen.

3.2.2 PARAMETERS MERGING WITH DYNAMIC REPRESENTATION CONSOLIDATION

By individually training, we obtain the LoRA parameters for each task and denote them by
{θ1,At , ..., θl,At } and {θ1,Bt , ..., θl,Bt }, where t represents the task identity and l denotes the num-
ber of blocks in pre-trained model. In practice, new tasks would emerged continually, and it is
crucial to get a unified model that embraces all the task information through these individual model
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Figure 3: Illustration of the proposed DESIRE. Left: The backbone of the model is frozen during
individual training and only the LoRA and classifier are trainable. Middle: We obtain the knowl-
edge of the old and new tasks by merging the parameter space (LoRA). To better consolidate the
representations, we sample tiny unlabeled test data to optimize the merging coefficients through our
proposed attribution loss (Sec. 3.2.2). Right: We reconstruct the pseudo-features using the counted
statistical informations and use them to refine the decision boundaries of the classifier.

parameters. Existing model merging researches (Ilharco et al., 2022; Chitale et al., 2023) have
shown that fusing different tasks directly on the parameter space is promising. The merging process
can be expressed formally as θm = θinit +

∑T
t=1 λtτt, where τt = θt − θinit and λt is a scaling

hyperparamter. Unlike these model merging methods that focus on merging at the model backbone
level, we concentrate on acquiring knowledge of old and new tasks through merging LoRAs. In
the CIL community, some recent works (Chitale et al., 2023; Sun et al., 2023; Zheng et al., 2023)
have also proposed to overcome catastrophic forgetting through model merging. However, these
methods inherit the model merging paradigm directly, which retains the parameters of each stage
and assigns an empirical coefficient (e.g., 1/T ) for direct merging. Although good results can be
achieved, it is inappropriate for the CIL task. Specifically, on the one hand, CIL learns a much larger
number of tasks (e.g., T = 20), and it is not practical to store the parameters of all previous tasks in
each subsequent stage. On the other hand, the choice of the merging hyperparameters could have a
significant impact on the performance as it directly affects the feature representation of the merged
model, while these existing methods usually use fixed empirical values. To this end, we propose a
new continual merging paradigm to better address these two issues.

Continual Merging Paradigm. To avoid storing LoRA parameters for each task, we define
the model to keep only two sets of parameters for the current and previous at each task t (e.g.,
{θ1,At,c , ..., θl,At,c } and {θ1,At,p , ..., θl,At,p }). Specifically, we leverage greedy algorithm to obtain the pre-
vious parameters:

θi,At,p = λi,A
t−1,c ∗ θ

i,A
t−1,c + λi,A

t−1,p ∗ θ
i,A
t−1,p, (3)

where λi,A
t−1,c and λi,A

t−1,p represent the learned merging coefficients of block i obtained from t − 1
task . The same merging operation is applied to the B matrix as well. This not only integrates all
the old task parameters into one set, which greatly reduces the memory occupy (from (T − 1) · l
to l), but also avoids reinitializing the merging coefficients of all tasks at the time of consolidation,
which improves the convergence speed. We compare different merging methods in Sec 4.3 to better
emphasize the superiority of our paradigm.

To better consolidate the feature representation of the merged model, we propose to learn the merg-
ing coefficients by minimising the entropy of the model output distribution (Grandvalet & Bengio,
2004; Roy et al., 2022). However, in CIL tasks, directly optimizing entropy minimisation loss using
logits from the classifier’s output is not reasonable, as the classifier tend to be baised towards newly
learned classes (Wu et al., 2019; Hou et al., 2019). To this end, we propose a feature-level attri-
bution loss to update the merging coefficients using the mean µi and covariance Σi counted after
individual training (Sec 3.2.1). Specifically, with the µi and Σi, the distribution of the class i in the
feature space can be reconstructed. For a feature representation zj of a test sample xj , the logarithm
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of the probability density between zj and the feature distribution of each class is:

σi = logφ(z;µi,Σi)

= −1

2
[(zj − µi)

TΣ−1
i (zj − µi) + d log(2π) + log |Σi|],

(4)

where d is the dimension of the feature. Intuitively, σi represents the similarity between zj and the
distribution of class i. Therefore, σ can be served as a surrogate logits for entropy minimization
loss. In summary, the proxy optimization objective for the parameter space re-calibration phase can
be expressed as:

min
λ1,...,λN

N∑
n=1

∑
xj∈Dm

H(σ̂/κ), where σ̂ =
σ −min(σ)

max(σ)−min(σ)
, (5)

where N is the number of LoRA parameters to be merged, Dm represents the sampled mini test
dataset, H(·) is the Shannon Entropy (Shannon, 1948) and κ denotes the temperature coefficient (we
set κ = 0.1 in our experiments).

3.2.3 DECISION BOUNDARY REFINEMENT

Algorithm 1 Our proposed DESIRE

Inputs: Pre-trained backbone Fθ; classifier Gϕ; cur-
rent LoRA θc and previous LoRA θp; training
dataset Dt and mini merging dataset Dm.

Output: Unified model Fθ̂ ∝ Gϕ̂.
1: for t = 1 → T do
2: # individual training.
3: for e = 1 → Epochind do
4: Train θc and Gϕ with Lce in Eq. (1) on Dt.
5: end for
6: Calculate µi and Σi using Eq. (2)
7: # Dynamic representation consolidation.
8: for e = 1 → Epochr do
9: Train merging coefficients λc and λp with

µ and Σ using Eq. (5) on Dm.
10: end for
11: Consolidate θp with λc and λp using Eq. (3).
12: # Decision boundary refinement.
13: Sample Ẑ from N (µ,Σ) for all seen classes.
14: for e = 1 → Epochc do
15: Train classifier Gϕ̂ with pseudo-features Ẑ

using Eq. (6).
16: end for
17: end for

In addition to catastrophic forgetting in
feature representation, confusion of de-
cision boundaries at the classifier level
also limits model performance. Existing
literature suggests that training a model
without data from old tasks makes the
classifier heavily biased towards newly
learned classes (Wu et al., 2019; Hou et al.,
2019), leading the model to misclassify
old classes as new ones, thereby exacer-
bating the forgetting of old classes. To
address this issue, we propose to refine
the decision boundary by leveraging the
sampled pseudo-features to calibrate the
biased classifier. Specifically, with the
statistical information (µi,Σi) of each
class i obtained from Eq 2, we can re-
construct the feature distribution Ni, and
the pseudo-features Ẑi = {ẑi,1, ..., ẑi,Ni

}
of class i can be formed by sampling
from the distribution Ni, where Ni is the
number of pseudo-features for each class.
Then, we optimize the classifier with the
set of pseudo-features of all seen classes
Ẑ = [Ẑ1, ..., ẐC ] directly through cross-
entropy loss:

min
ϕ

C∑
i=1

Ni∑
j=1

Lce(Gϕ(ẑi,j), yi), (6)

where C is the number of all seen classes. We thus obtain the calibrated feature extractors Fθ̂ and
classifier Gϕ̂ that are used for subsequent inference. It is worth mentioning that our post-processing
module requires only a minimal amount of training time at the end of each stage (See Sec 4.4).

Remarks. Although both our method and SLCA (Zhang et al., 2023) enhance the classifier by
sampling features for retraining, our method is superior in reconstructing the feature distribution.
This is primarily because SLCA trains the entire backbone sequentially, causing the old feature space
to inevitably drift when training new classes, even if the learning rate is low. In contrast, our method
effectively maintains the independence of each task’s feature space by training them individually and
combines them by calibrating the parameter space, ensuring consistency between the reconstructed
distribution and the true distribution. A detailed analysis is provided in Appendix A.4.
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Table 1: Comparison of the performance of different CIL methods. The best result in each setting
is highlighted in bold. We report the upper bound on performance under each setting in Joint,
which is obtained by training each task with the dataset of all seen classes. The rehearsal-free
methods (below) and rehearsal-based methods (above) are divided into two parts by the dashed
line. Our methods belongs to the rehearsal-free method and the results in table are marked in gray.
The detailed results with standard deviation can be seen in Tables 4 - 6 of Appendix A.2.

C100-5T C100-10T T200-5T T200-10T I380-5T I380-10T
Alast Avg Alast Avg Alast Avg Alast Avg Alast Avg Alast Avg

Joint 81.83 87.24 81.51 88.05 71.64 77.43 71.54 78.28 79.50 84.01 79.87 84.73
MEMO 64.36 77.36 60.12 75.60 43.28 61.72 35.74 58.35 51.22 66.40 49.79 67.98

FOSTER 71.36 81.23 70.89 81.08 57.58 70.09 56.09 68.80 62.93 74.65 64.29 74.15
MORE 71.38 80.64 69.82 79.78 62.79 71.94 60.44 70.88 72.75 80.63 69.26 78.44
ROW 74.96 83.11 74.01 83.31 62.79 71.72 61.76 72.29 73.12 80.63 72.09 80.61
TPL 75.87 84.11 75.02 84.67 66.86 75.04 64.89 74.67 76.88 82.69 75.32 81.79

LAE-Adapter 68.72 78.58 66.01 77.45 63.32 72.48 60.04 70.71 66.13 76.02 59.85 71.46
LAE-Prefix 68.52 78.67 65.73 77.09 63.12 72.29 58.99 69.93 70.02 78.67 64.55 75.14
LAE-LoRA 68.66 78.91 65.75 77.75 63.58 72.63 59.57 70.69 69.73 78.15 64.49 75.75

L2P 67.73 78.47 63.26 75.47 60.91 70.03 56.39 68.47 66.22 74.70 62.41 71.14
DualPrompt 68.08 78.22 63.83 75.25 60.44 69.53 57.53 68.65 65.54 75.58 62.86 74.40

CODA-Prompt 70.36 80.22 66.28 77.85 61.98 71.42 58.44 69.91 68.93 77.65 65.04 75.82
PASS 72.19 81.20 68.97 79.36 63.33 72.44 60.62 71.20 67.49 76.09 64.40 74.88

O-LoRA 67.32 78.16 64.35 77.16 61.45 72.22 60.66 71.59 59.95 75.98 58.28 72.09
EASE 68.72 77.66 66.15 77.49 56.93 66.36 56.70 67.70 64.88 72.71 64.40 73.78

InfLoRA 69.66 79.70 63.86 76.31 56.43 68.36 56.43 68.36 72.50 80.30 67.53 77.57
Ours 72.89 81.34 72.47 81.55 64.42 73.68 64.36 74.56 74.90 81.83 72.69 81.29

4.54

3.50

5.71

Figure 4: Results of accuracy curve on CIFAR100, TinyImageNet and ImageNet380 under 10T.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Baselines. We compare our methods with state-of-the-art continual learning methods, including
rehearsal-free methods: PASS (Zhu et al., 2021), LAE (Gao et al., 2023), L2P (Wang et al., 2022c),
DualPrompt (Wang et al., 2022b), CODA-Prompt (Smith et al., 2023), O-LoRA (Wang et al., 2023),
EASE (Zhou et al., 2024), InfLoRA (Liang & Li, 2024), and rehearsal-based methods: iCaRL (Re-
buffi et al., 2017), DER (Yan et al., 2021), FOSTER (Wang et al., 2022a), MORE (Kim et al., 2022),
ROW (Kim et al., 2023) and TPL (Lin et al., 2024). For fair comparison, we re-ran the correspond-
ing open-source codes for each method using the same pre-trained weights. For methods not based
on PEFT, we freeze the backbone and fine-tune it with LoRA.

Architecture and Training Details. In order to exclude information leakage due to the class overlap
between the data used in the pre-trained models and the experiment data, we follow the setup in Lin
et al. (2024); Kim et al. (2023; 2022) and use the same Deit-S/16 model (Touvron et al., 2021),
which uses the ImageNet-1k (Russakovsky et al., 2015) in removing the classes that are similar or
identical to the CIFAR100 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015) for pre-
training. The LoRAs are inserted in the query and value of the self-attention module and freeze the
model backbone during training to train only LoRA modules and classifier. In experiments, the rank
of LoRA is set to 4, and the number of epochs for dynamic representation consolidation and decision
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6.31

7.65

9.18

Figure 5: Results of accuracy curve on CIFAR100, TinyImageNet and ImageNet380 under 20T.

boundary refinement are set to 5 and 10, respectively. The size of tiny unlabeled test data are set to
500, 1000 and 1900, respectively. More implementation details are given in Appendix A.1.

Datasets and Evaluation Metric. We use CIFAR100, TinyImageNet and ImageNet380 (Lin et al.,
2024) to train and evaluate the models. CIFAR100 and TinyImageNet are widely used in exist CIL
works. Imagenet380 is a large-scale dataset consisting of 380 classes randomly selected from the
389 classes removed from ImageNet-1k. Following existing CIL work (Wang et al., 2022c), we first
randomly shuffle the class order of the datasets and then split then into 5, 10 and 20 tasks. We report
the averaged metrics over 3 random orders. For rehearsal-based methods, the replay buffer size is
set as 1000 for CIFAR100 and TinyImageNet, and 3800 for ImageNet380. Note that our DESIRE
is rehearsal-free method and we do not save any old samples.

We report the standard metrics to evaluate the CIL methods (Lin et al., 2024): Alast is computed as
the accuracy of all seen classes that have already been learned after learning the final task. Avg is
computed as the average accuracy of each task: Avg = 1

T

∑T
t=1 At, where T is the total number of

tasks and At is the accuracy of all seen classes that have learned after learning task t.

4.2 EXPERIMENTAL RESULTS

A summary of the results is provided in Table 1, Fig. 4 and 5. The detailed results with standard
deviation can be seen in Tables 4 - 6 and Fig. 9 of Appendix A.2. Our method outperforms ex-
isting rehearsal-free methods across three datasets (CIFAR100: C100, TinyImageNet: T200 and
ImageNet380: I380) and three task settings (5T, 10T and 20T), achieving an average improvement
of 4.42% and 3.08% on Alast and Avg metrics, respectively. It is noteworthy that when there is no
information leakage, existing PEFT-based methods all show varying degrees of degradation, while
PASS, which is not designed for PEFT, achieves relatively higher performance. This result aligns
with the findings of TPL (Lin et al., 2024). However, PASS suffers from high training time overhead,
whereas our method significantly enhances the performance of rehearsal-free method in a limited
amount of time (See Sec 4.4). Meanwhile, we observe that for the same dataset, all other methods
experience a significant decrease in the Alast metric as the number of tasks increases (e.g., InfLoRA
drops from 72.50% to 61.80% on ImageNet380). This suggests that when the number of tasks is
small (e.g., T = 5), existing methods can effectively overcome catastrophic forgetting by imposing
additional constraints. However, as the number of tasks increases, the constraints imposed to protect
old tasks will continuously squeeze the solution space for new tasks, resulting in a significant de-
crease in performance. In contrast, our method maintains the solution space for each task as much
as possible and organically combines old and new tasks through dual calibration, thereby greatly
reducing the performance difference between the number of short and long tasks (our method drops
from 74.90% to 72.45% on ImageNet380). Compared to rehearsal-based methods, our method
does not impose the stringent requirement of preserving old task samples and significantly reduces
the gap with latest rehearsal-based methods.

4.3 ABLATION STUDY

Performance results. Fig. 6 (a) illustrates the effect of each compoent on the Alast and Avg met-
rics. We use the traditional model merging paradigm as a baseline, with the merging coefficients set
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(a) Performance results (b) Different merging methods

Figure 6: Ablation Studies. (a) Performance gains on three datasets by adding each component. (b)
Performance comparison of different merging methods on C100-10T, T200-10T and I380-10T.

to the empirical values (λ = 1/T ). The average Alast and Avg metrics are 63.89% and 75.23%,
respectively. After consolidating the representation (Baseline+DRC), the performance improves by
3.65% and 2.09%, respectively. This suggests that dynamically update the merging coefficients
can provide better feature representations and thus improve performance. Decision boundary refine-
ment (Baseline+DBR) can yield a 3.11% and 1.80% performance improvement, demonstrating that
classifiers obtained through direct concatenation suffer from decision boundary confusion, while our
post-calibration can effectively modified the classifiers. When the two modules are added, they can
be organically combined and bring about a 6.40% and 3.81% performance improvement.

Different Merging Methods. We compare various merging strategies for LoRA based on decision
space calibration and the results are presented in Fig. 6 (b). Seq LoRA refers to sequential fine-
tuning of the same LoRA, which inevitably leads to catastrophic forgetting. Weight average refers
to saving the LoRA parameters for each task and merging all LoRA parameters on average at the
t-th task during inference. It is evident that direct average merging can effectively mitigate catas-
trophic forgetting and we provide further analysis in Appendix A.3. O-LoRA (Wang et al., 2023)
acquires knowledge of old and new tasks by concatenating LoRA instead of merging and introduces
an orthogonality loss in the parameter space. However, enforcing strict orthogonality in the param-
eter space may hinder the model’s ability to learn general information across tasks, thereby limiting
performance improvements. Adamerging (Yang et al., 2023) updates the merging coefficients by
optimizing the entropy-minimizing loss of the logits obtained from the classifier, but the logits ob-
tained by the classifier are suboptimal. Our proposed continual merging paradigm (CMP) avoids
error accumulation due to classifier drift by computing the attribution degree in the feature space
instead of logit. Moreover, we retain only two sets of LoRA parameters at each stage instead of
saving all the LoRA parameters, which significantly reduces memory usage.

4.4 FURTHER ANALYSIS

Table 2: Results of SD(Acc) on three datasets under long-
phase settings (T = 10 and 20).

CIFAR100 TinyImageNet ImageNet380 Average10T 20T 10T 20T 10T 20T

LAE-Adapter 9.22 11.80 7.26 6.34 20.28 17.16 12.01
LAE-Prefix 6.71 10.06 8.95 7.64 9.94 10.15 8.91
LAE-LoRA 8.39 10.35 7.40 7.00 6.21 7.98 7.89

PASS 4.18 5.66 3.48 5.30 3.14 3.50 4.21
L2P 8.23 11.07 7.78 8.73 17.87 17.64 11.89

DualPrompt 7.34 11.58 6.98 9.79 11.31 6.18 8.86
CODA-Prompt 5.41 10.44 7.41 9.22 5.84 6.82 7.52

O-LoRA 5.18 11.17 4.39 6.96 4.23 5.50 6.24
EASE 5.81 10.84 6.16 8.20 6.45 7.19 7.45

InfLoRA 5.19 12.13 4.33 9.15 3.37 4.93 6.52
Ours 4.10 5.59 3.06 5.00 3.25 3.65 4.11

Stability and plasticity analysis.
We emphasize that a robust CIL
method requires not only high perfor-
mance on both Alast and Avg met-
rics, but also a balance between sta-
bility and plasticity, especially for
long-phase tasks. In the previous sec-
tion, we primarily highlighted the re-
sults of our method on the first two
metrics, and in this section we focus
on analyzing the stability and plastic-
ity of different methods. In Fig. 1, we
visualize the accuracy of current task
and average accuracy of all previous
tasks in the last stage. It can be observed that existing methods experience dvarying degrees of im-
balance across three datasets, and only our method achieves the highest robustness. Additionally,
we define Standard Deviation of task-wise accuracy (SD(Acc)) for quantitative analysis, which cal-
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culates the standard deviation of the model’s accuracy in the last stage for each task. Specifically,
a lower SD(Acc) indicates a less fluctuation and more robust performance across different tasks.
In contrast, a higher SD(Acc) indicates that performance variations across different tasks are more
pronounced, making it more likely to forget certain tasks. We present the results for long-phase
settings (T = 10 and 20) across three datasets. As shown in Table 2, our method achieves the best
performance among all methods, while the other methods fluctuate significantly at different settings.
It is noteworthy that PASS also achieves similar results to ours. However, when considering both
Alast and Avg metrics, our method significantly outperforms all other methods.

Task 2 Task 3 Task 4 Task 5

Figure 7: Visualisation of merging co-
efficients.

Merging coefficients analysis. Fig. 7 illustrates the
merging coefficients learned by our proposed continual
merging paradigm under CIFAR100-5T, where Qp and
Qc represents the LoRAs previously and currently em-
bedded in Q matrix of the self-attention. Ai and Bi rep-
resent the downsampling and upsampling matrices of the
LoRA for layer i. We observe that: (i) The merging co-
efficients generally remain stable, which in conjunction
with the analyses in Appendix A.3 illustrates that model
parameter merging can effectively integrate knowledge
from old and new tasks. (ii) Only a small amount of vari-
ation in the merging coefficients plays a crucial role in
performance improvement, and these variations can be
efficiently captured through training. (iii) The changes
in the merging coefficients of the LoRAs embedded in Q
and V exhibit different trends: the former updates focus
on the top layer, while the latter concentrate near the mid-
dle layer. This suggests that LoRAs at different locations
capture distinct information and simple average merging could lose this specificity, potentially lead-
ing to sub-optimal performance.

Individual training

Dynamic representation consolidation

Decision boundary refinement

Figure 8: Demonstration of training ef-
ficiency.

Training efficiency analysis. For CIL tasks, especially
those based on pre-trained models, models are expected
to quickly adapt and acquire knowledge of both old and
new tasks, thereby accelerating their application to down-
stream tasks. We measure the average time taken to
train each epoch for different methods on the same de-
vice (RTX 4090). For a fair comparison, we set the batch
size to 64 for both. As can be seen in Fig. 8, although
our method consists of three stages, it does not require
excessive additional training time. In contrast, the self-
supervised learning and knowledge distillation strategies
employed in PASS take up a significant amount of train-
ing time, which contradicts the purpose of rapidly adapt-
ing to downstream tasks using the PEFT-based CIL method. Moreover, our method achieves signif-
icantly better performance than other rehearsal-free methods while adapting rapidly.

5 CONCLUSION

In this paper, we propose a novel PEFT-based rehearsal-free CIL method named DESIRE. Our
method fully learns each task by training each stage independently and integrates knowledge from
both old and new tasks through efficient dynamic representation consolidation and decision bound-
ary refinement to overcome catastrophic forgetting and improve model performance. Experimental
results demonstrate that our method achieves state-of-the-art performance compared to the existing
rehearsal-free methods, while maintaining a good balance between stability and plasticity.

Limitations and future works: While our proposed method demonstrates strong performance in
image classification tasks, this represents only a subset of the broader potential of AI systems. In
future work, we plan to extend and adapt our approach to tackle more complex and diverse visual
tasks, such as object detection and image segmentation. Expanding to these areas will help us
understand the method’s broader applicability in real-world scenarios.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The training configuration of our method on three datasets is shown in Table 3. For a fair compari-
son, we re-run the open-source code of other methods using the same pre-trained model and tune the
performance of other methods as much as possible using our training configuration as a reference.

Table 3: Training configuration and hyperparameter settings

config CIFAR100 TinyImageNet ImageNet380

Individual
training

(Sec 3.2.1)

training epoch 20 20 10
optimizer SGD SGD SGD

learning rate 5e-3 5e-3 5e-3
momentum 0.9 0.9 0.9
batch size 64 64 128
scheduler CosineAnnealing CosineAnnealing CosineAnnealing

Dynamic
representa-

tion
consolida-

tion(Sec 3.2.2)

training epoch 5 5 5
optimizer SGD SGD SGD

learning rate 0.1 0.15 0.04
momentum 0.9 0.9 0.9
batch size 64 64 64

merge dataset size 500 1000 1900
κ in Eq.(3) 0.1 0.1 0.1

[λp,init, λc,init] [0.5, 0.5] [0.5, 0.5] [0.5, 0.5]

Decision
boundary

refine-
ment(Sec 3.2.3)

training epoch 10 10 10
optimizer SGD SGD SGD

learning rate 5e-3 5e-3 5e-4
momentum 0.9 0.9 0.9
batch size 64 64 64

Ni 200 200 200
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A.2 MAIN RESULTS

We report the quantitative results of different methods on three datasets (CIFAR100, TinyImageNet
and ImageNet380) under three settings (5T, 10T and 20T) in Tables 4, 5 and 6. In Fig. 9. we
also plot the performance curve of the different methods for different settings. Compared with the
rehearsal-free methods, our method achieve an average improvement of 4.42% and 3.08% on Alast

and Avg metrics.

Table 4: Comparison of the performance of different CIL methods on CIFAR100. We test the results
of different methods under three class orders and report the mean and standard deviation.

C100-5T C100-10T C100-20T Average
Alast Avg Alast Avg Alast Avg Alast Avg

Joint 81.83±0.26 87.24±0.73 81.51±0.22 88.05±0.68 81.81±0.21 88.58±0.76 81.72 87.96
MEMO 64.36±0.25 77.36±0.90 60.12±0.50 75.60±0.55 53.29±1.91 71.78±1.14 59.26 74.91

FOSTER 71.36±0.50 81.23±0.39 70.89±0.52 81.08±0.68 69.54±0.26 80.16±0.78 70.60 80.82
MORE 71.38±1.01 80.64±0.98 69.82±0.41 79.78±0.96 67.92±1.08 78.35±1.64 69.71 79.59
ROW 74.96±0.20 83.11±0.62 74.01±0.21 83.31±0.91 74.29±0.23 83.92±0.67 74.42 83.45
TPL 75.87±0.26 84.11±0.54 75.02±0.19 84.67±0.53 74.98±0.47 84.52±0.75 75.29 84.43

LAE-Adapter 68.52±0.60 78.67±0.71 66.01±0.30 77.45±0.77 60.55±1.23 73.74±1.33 65.03 76.62
LAE-Prefix 68.72±0.78 78.58±0.58 65.73±0.68 77.09±0.89 59.92±0.66 72.68±0.56 64.79 76.12
LAE-LoRA 68.66±0.60 78.91±0.70 65.75±1.19 77.75±0.32 60.40±0.60 73.05±1.90 64.93 76.57

L2P 67.73±0.95 78.47±0.73 63.26±1.19 75.47±0.51 55.39±0.53 69.41±1.35 62.13 74.45
DualPrompt 68.08±0.42 78.22±0.59 63.83±0.42 75.25±0.64 55.36±1.87 69.37±2.08 62.42 74.28

CODA-Prompt 70.36±0.87 80.22±1.01 66.28±0.52 77.85±1.17 59.94±1.16 73.74±1.70 65.53 77.27
PASS 72.19±0.33 81.20±0.73 68.97±0.50 79.36±0.52 64.65±2.17 76.25±1.55 68.60 78.94

O-LoRA 67.32±0.95 78.16±1.12 64.35±1.26 77.16±2.0 58.59±0.54 72.08±1.64 63.42 75.80
EASE 68.72±0.22 77.66±0.82 66.15±0.42 77.49±1.36 60.04±0.16 73.66±1.34 64.97 76.27

InfLoRA 69.66±0.88 79.70±0.66 63.86±1.16 76.31±0.94 55.09±0.16 70.71±1.24 62.87 75.57
Ours 72.89±0.35 81.34±0.64 72.47±1.00 81.55±1.28 70.97±0.82 80.61±0.67 72.11 81.17

Table 5: Comparison of the performance of different CIL methods on TinyImageNet. We test the
results of different methods under three class orders and report the mean and standard deviation.

T200-5T T200-10T T200-20T Average
Alast Avg Alast Avg Alast Avg Alast Avg

Joint 71.64±0.15 77.43±0.56 71.54±0.19 78.28±0.64 71.99±0.08 79.23±0.47 71.72 78.31
MEMO 43.28±0.13 61.72±0.55 35.74±1.24 58.35±0.23 31.16±1.30 54.94±1.20 36.73 58.34

FOSTER 57.58±0.18 70.09±0.11 56.09±0.73 68.80±0.05 53.31±0.42 66.73±0.11 55.66 68.54
MORE 62.79±0.13 71.94±0.46 60.44±0.27 70.88±0.24 57.69±0.69 68.98±0.22 60.31 70.60
ROW 62.79±0.41 71.72±0.50 61.76±0.45 72.29±0.58 60.07±0.31 71.83±0.39 61.54 71.95
TPL 66.86±0.32 75.04±0.63 64.89±0.22 74.67±0.53 64.53±0.16 74.08±0.47 65.43 74.60

LAE-Adapter 63.12±0.34 72.29±0.70 60.04±0.87 70.71±1.36 55.44±0.95 67.54±1.62 59.53 70.18
LAE-Prefix 63.32±0.59 72.48±0.93 58.99±1.36 69.93±1.63 55.57±0.87 67.46±1.32 59.29 69.96
LAE-LoRA 63.58±0.23 72.63±0.76 59.57±1.29 70.69±1.26 55.45±1.08 67.36±1.81 59.53 70.23

L2P 60.91±0.53 70.03±0.68 56.39±0.61 68.47±0.23 52.51±0.81 65.59±0.75 56.60 68.03
DualPrompt 60.44±0.22 69.53±0.65 57.53±0.90 68.65±0.71 52.41±0.28 65.22±0.92 56.79 67.80

CODA-Prompt 61.98±0.31 71.42±0.32 58.44±0.45 69.91±0.78 54.80±0.56 67.57±0.25 58.40 69.63
PASS 63.33±0.37 72.44±0.44 60.62±0.15 71.20±0.47 57.40±0.64 69.20±0.76 60.45 70.94

O-LoRA 61.45±0.48 72.22±0.40 60.66±0.66 71.59±0.79 55.77±0.25 68.44±0.41 59.29 70.75
EASE 56.93±0.31 66.36±0.26 56.70±0.34 67.70±0.72 54.81±0.73 67.09±0.29 56.15 67.05

InfLoRA 60.32±0.29 70.14±0.52 56.43±0.35 68.36±0.15 51.49±0.38 64.80±0.32 56.08 67.77
Ours 64.42±0.67 73.68±0.50 64.36±1.11 74.56±0.87 63.62±0.24 73.73±0.38 64.13 73.99
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Table 6: Comparison of the performance of different CIL methods on ImageNet380. We test the
results of different methods under three class orders and report the mean and standard deviation.

I380-5T I380-10T I380-20T Average
Alast Avg Alast Avg Alast Avg Alast Avg

Joint 79.50±0.08 84.01±0.47 79.87±0.17 84.72±0.53 79.46±0.23 85.46±0.38 79.61 84.73
MEMO 51.22±0.89 66.40±1.33 49.79±0.76 67.98±1.76 51.83±0.81 68.51±1.64 50.95 67.63

FOSTER 62.93±0.59 74.65±1.16 64.29±0.42 74.15±1.86 63.10±0.61 73.31±1.58 63.44 74.04
MORE 72.75±0.18 80.63±0.44 69.26±0.55 78.44±0.76 66.80±1.03 76.41±1.34 69.60 78.49
ROW 73.12±0.24 80.63±0.56 72.09±0.22 80.61±0.36 70.95±0.32 80.45±0.47 72.05 80.56
TPL 76.88±0.21 82.69±0.46 75.32±0.12 81.79±0.39 74.95±0.21 81.45±0.54 75.72 81.98

LAE-Adapter 66.13±1.25 76.02±0.87 59.85±2.57 71.46±0.51 55.85±2.97 68.00±1.58 60.61 71.83
LAE-Prefix 70.02±0.73 78.67±0.43 64.55±0.96 75.14±0.25 59.82±0.59 71.49±0.42 64.80 75.10
LAE-LoRA 69.73±0.28 78.15±0.62 64.49±1.04 75.75±0.64 60.29±0.92 71.93±0.45 64.84 75.28

L2P 66.22±0.90 74.70±0.51 62.41±1.27 71.14±0.67 58.66±2.30 68.19±0.96 62.43 71.34
DualPrompt 65.54±0.91 75.58±0.97 62.86±1.11 74.40±0.53 61.70±1.39 73.28±0.58 63.37 74.42

CODA-Prompt 68.93±0.71 77.65±0.74 65.04±0.54 75.82±0.18 61.31±1.65 73.42±0.25 65.09 75.63
PASS 67.49±0.09 76.09±0.44 64.40±1.29 74.88±0.73 62.23±1.53 73.52±1.57 64.71 74.83

O-LoRA 59.95±0.44 75.98±0.02 58.28±1.13 72.09±0.86 50.78±1.13 69.76±0.87 56.34 72.61
EASE 64.88±0.49 72.71±0.77 64.40±0.27 73.78±0.55 62.70±0.44 73.63±0.56 63.99 73.37

InfLoRA 72.50±0.08 80.30±0.52 67.53±0.95 77.57±0.33 61.80±0.56 73.98±0.60 67.28 77.28
Ours 74.90±0.04 81.83±0.36 72.69±0.58 81.29±0.34 72.45±0.21 80.59±0.22 73.35 81.24
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Figure 9: Results of accuracy curve on CIFAR100, TinyImageNet and ImageNet380.
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A.3 SIMILARITY BETWEEN LORAS FOR DIFFERENT TASKS

In Fig. 10. We plot the average cosine similarity between the different tasks of LoRA at the
CIFAR100-10T setting. It can be seen that the natural orthogonality between the LoRA parame-
ters of the different tasks is still exhibited without imposing additional constraints. The advantage
of maintaining orthogonality between parameter spaces is that it lends itself to the ability to access
different tasks directly through parameter fusion (Ilharco et al., 2022).

Figure 10: Visualization of cosine similarity between LoRAs for different task. The parameter
spaces of the different task LoRAs maintain natural orthogonality with each other.
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A.4 FEATURE SPACE VISUALIZATION

Feature space of first task (SLCA) Feature space of first task (Ours)

Feature space of first task at final task (SLCA) Feature space of first task at final task (Ours)

Figure 11: t-SNE visualization of the first task test dataset features after learned in the first stage
and in the final stage. The mean feature of each class counted in training stage is denoted as ⋆. We
highlight the phenomenon of feature drift with a red circle box.

In the training process, we calibrate the classifier by sampling pseudo-features and utilizing the per-
class feature means and covariance matrices. We want the feature means of each class are as close
as possible to the centers of their respective feature clusters and remain stable during subsequent
training. However, as shown in Fig. 11, SLCA exhibits significant feature drift (we highlight in red
circle box). This can lead to pseudo-features generated during the calibration stage to deviate from
the true distribution and be confused with other classes, thus affecting the final performance. In
contrast, our method mitigates feature drift by dynamically integrating the parameter spaces of both
old and new tasks.
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