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Abstract

Maximal cliques (MAC) represent a novel state-of-the-
art approach for 3D registration from correspondences,
however, it still suffers from extremely severe outliers. In
this paper, we introduce a robust learning-free estima-
tor called MAC++, exploring maximal cliques for 3D
registration from the following two perspectives: 1) A
novel hypothesis generation method utilizing putative seeds
through voting to guide the construction of maximal clique
pools, effectively preserving more potential correct hy-
potheses. 2) A progressive hypothesis evaluation method
that continuously reduces the solution space in a “global-
clusters-cluster-individual” manner rather than traditional
one-shot techniques, greatly alleviating the issue of miss-
ing good hypotheses. Experiments conducted on U3M,
3DMatch/3DLoMatch, and KITTI-LC datasets show the
new state-of-the-art performance of MAC++. MAC++
demonstrates the capability to handle extremely low inlier
ratio data where MAC fails (e.g., showing 27.1%/30.6%
registration recall improvements on 3DMatch/3DLoMatch
with < 1% inliers).

1. Introduction
3D point cloud registration (PCR) is a foundational prob-
lem in 3D computer vision, critical for applications such as
autonomous driving [41, 56], simultaneous localization and
mapping (SLAM) [6], and 3D reconstruction [13, 37]. PCR
aligns point clouds to estimate a six-degree-of-freedom (6-
DoF) pose transformation, generally from a set of corre-
spondences. However, registration from extremely noisy
correspondences remains a challenging issue.

Hypothesis generation and evaluation (HGE) is a popu-
lar paradigm for PCR with correspondences, which are ei-
ther traditional or deep-learned. For traditional methods,
the widely applied RANSAC and its variants [4, 12, 16,
18, 39, 46] follow an iterative sampling and verification
pipeline. RANSAC-based approaches are characterized by
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Figure 1. Comparison of MAC++ and MAC on data with low
inlier ratios. Please refer to Tables 1 and 2 for more results.

their simplicity and efficiency but degrade with severe out-
liers. Some approaches [5, 10, 27, 28, 44] employ branch-
and-bound (BnB) to achieve the global optimal solution,
while they are time-consuming when dealing with consider-
ably large data and a high proportion of outliers. For deep-
learned methods, many approaches [3, 15, 19, 26, 33] focus
on improving the quality of correspondences for hypothe-
sis generation. However, deep-learned methods require ex-
tensive training data and often lack generalization ability to
new scenarios.

In recent years, several approaches [40, 43, 52] per-
form inlier selection using the maximum clique search tech-
nique. These methods assume inliers are mutually com-
patible, forming a maximum clique within the graph con-
structed from correspondences. However, this assumption
is questionable as inliers also suffer from matching errors,
and existing compatibility metrics have measuring errors.
Recently, Zhang et al. [57] relaxed the maximum clique
constraint to the maximal cliques (MAC) and have achieved
promising results. However, we find that MAC still has two
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limitations: 1) Correct cliques are missed. The node-guided
(NG) clique selection method, which relies on clique weight
to identify suitable cliques, can overlook many correct ones
due to its sensitivity to measurement errors in compatibility
metrics. 2) Correct hypotheses are missed. MAC uses tra-
ditional one-shot hypothesis evaluation metrics that are less
selective when faced with massive false hypotheses.

In this paper, we introduce a robust learning-free estima-
tor called MAC++ for 3D registration. It can handle chal-
lenging data that MAC encounters difficulties, as illustrated
in Fig. 1. First, more correct maximal cliques are retained.
Given the high probability of correct cliques being present
around reliable nodes, we utilize a clique voting mechanism
to select potential seed nodes, ensuring that clique sampling
is guided by these seeds. Furthermore, we establish a clique
pool for each seed, thus relaxing the single maximal clique
constraint to the maximal clique pool for each node. It can
enhance the probability of sampling correct cliques. Sec-
ond, hypotheses are more reliably evaluated. Previous one-
shot evaluation approaches struggle to identify correct hy-
potheses in ultra-noisy hypothesis space caused by heavy
outliers. By contrast, we propose a hierarchical approach
and introduce a “global-clusters-cluster-individual” strategy
to prune incorrect matches and hypotheses simultaneously.

To summarize, our main contributions are as follows:
• We introduce a novel hypothesis generation method,

which utilizes a group of voted putative seeds to con-
struct maximal clique pools and guide the clique sampling
process. This approach further relaxes the constraints on
nodes and effectively retains more correct hypotheses.

• We propose a progressive hypothesis evaluation mod-
ule that reduces the solution space in a “global-clusters-
cluster-individual” manner. Compared to one-shot evalu-
ation approaches, it greatly alleviates the issue of missing
correct solutions in the presence of heavy outliers.

• We introduce MAC++, a learning-free robust estimator
for 3D registration. It excels in handling challenging sce-
narios such as extremely low inlier ratios, low overlap
rates, and long distances, where MAC fails. It reaches
new state-of-the-art performance on challenging datasets
and also acts as a booster to deep-learned methods.

2. Related Work

2.1. Traditional PCR Methods

HGE-based Methods. The RANSAC algorithm [18] is
commonly employed in the HGE-based registration pro-
cess, which iteratively performs random sampling and eval-
uation. Since the discovery of its simplicity and effective-
ness, numerous researchers have made efforts toward en-
hancing the correspondence sampling [4, 16, 39, 46, 48] and
evaluation metrics [47] for further improvements. Heuristic
sampling techniques have been introduced to improve both

efficiency and quality. Yang et al. [46] proposed SAC-COT,
which samples correspondence triplets under the guidance
of graph properties. Accurate registration heavily relies on
the presence of efficient and resilient evaluation metrics. As
a solution to the current challenges associated with eval-
uation metrics that are both time-consuming and sensitive
to noise, Yang et al. [47] investigated how inliers and out-
liers affect the computation and present a range of met-
rics aimed at substantially improving the registration per-
formance. However, these RANSAC-based methods suffer
from low time efficiency and limited accuracy in cases with
high outlier rates. To address the ambiguity of commonly
used spatial consistency [36], Chen et al. [11] presented a
second-order compatibility measurement (SC2) to distin-
guish inliers and obtain reliable sampling. Zhang et al. [57]
introduced MAC, which employs maximal cliques in the
SC2 graph to mine local consensus and generate transfor-
mation hypotheses.
Others. In recent times, a number of approaches utilizing
BnB have emerged since it can provide the globally best
solution. These methods [5, 10, 27, 28, 44] recursively di-
vide the parameter space into smaller branches and elimi-
nate those that are incapable of containing the optimal solu-
tion through bound checks. Bustos and Chin [5] presented
guaranteed outlier removal (GORE) to reject true outliers
by reducing the original 6-DoF problem to a 3-DoF prob-
lem. Chen et al. [10] designed a two-stage search strategy
to decompose the 6-DoF into (2+1)-DoF and (1+2)-DoF
sub-problems. However, BnB techniques will be slow for
large-scale inputs.

2.2. Deep-learned PCR Methods

Some methods [3, 15, 19, 26, 33] focus on efficient in-
lier prediction. Deep global registration (DGR) [15] and
3DRegNet [33] classify a given correspondence by train-
ing end-to-end neural networks and using operators such as
sparse convolution and point-by-point MLP. PointDSC [3]
explicitly explores spatial consistency for removing outlier
correspondences and 3D point cloud registration. Lee [26]
presented DHVR to identify the consensus among the cor-
respondences from the 6D Hough space. Yao et al. [50] pro-
posed Hunter to learn the high-order consistency among in-
liers in a global-to-local exploration scheme. More recently,
several methods [8, 35, 53] estimate the transformation in
an end-to-end way. CoFiNet [53] extracts correspondences
from coarse to fine without keypoint detection. GeoTrans-
former [35] learns geometric features for robust superpoint
matching and is robust in low-overlap cases and invariant to
rigid transformation. RegFormer [30] performs end-to-end
registration on large-scale point clouds without any further
post-processing.

Despite their impressive capabilities, deep learning
methods often require extensive training data and struggle
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Figure 2. Pipeline of MAC++. 1. Construct a graph for the input correspondences and search for maximal cliques within the graph
space. 2. Hypothesis generation with voted maximal clique pool (VMP). 3. Progressive hypothesis evaluation in a “global-clusters-cluster-
individual” (GCCI) manner. 4. The best hypothesis is selected to perform 3D registration.

to generalize well to new scenarios.

3. Revisiting MAC

The key insight of MAC [57] is to loosen the previous max-
imum clique constraint, and mine more local consensus in-
formation in a graph to generate accurate hypotheses. 1)
It represents the initial correspondence set as a compatibil-
ity graph with the SC2 measurement. 2) It then detects
maximal cliques within the graph space and utilizes a node-
guided clique filtering method (NG) to associate each graph
node with the most appropriate maximal clique. Because
maximal cliques provide a more flexible constraint com-
pared to the maximum cliques and enable the extraction
of additional local information from the graph, this method
can generate numerous accurate hypotheses from the graph.
3) Finally, the generated hypotheses are directly evaluated
through RANSAC metrics to find the optimal solution.

The shortcomings of the MAC pipeline are twofold. 1)
Hypothesis generation: The NG selection strategy in MAC
considers the clique with the largest weight around each
node as the best local consensus set. However, the clique
that can generate the correct hypothesis is not necessarily
the one with the highest weight among neighboring cliques.
NG may lose many correct cliques, resulting in the inability
to provide enough correct hypotheses for subsequent eval-
uation (as verified in Tables 10 and 11). 2) Hypothesis
evaluation: When faced with a large number of outliers,
two challenges emerge: firstly, the upstream generates sig-
nificantly fewer correct hypotheses compared to incorrect
ones. In such scenarios, the conventional one-shot evalu-
ation method struggles to identify the correct solution (as
verified in Table 12). Secondly, the existing RANSAC met-
rics have difficulty identifying the maximum inlier set and

determining the correct hypothesis, as they rely on calcu-
lating the inlier count within the correspondence set. The
existence of these two issues makes it difficult for MAC to
handle data with extremely low inlier ratios and limits its
performance in practical applications.

In the next section, we will provide a detailed expla-
nation of MAC++ to address the shortcomings of MAC.
Specifically, we propose a novel hypothesis generation
method with voted maximal clique pool to produce more
correct hypotheses and a progressive hypothesis evaluation
method to find the correct solution from severe outliers.

4. MAC++

4.1. Problem Formulation

Given source cloud Ps and target cloud Pt, we first ex-
tract local features for them using geometric or learned
descriptors. Let {ps} and {pt} denote the points in the
Ps and Pt, respectively. An initial correspondence set
Cinitial = {c} can be formed by matching local features,
where c = (ps,pt). The goal is to estimate an accurate
transformation from Cinitial. Since 3D correspondences
are unordered in the Euclidean space, we suggest repre-
senting them as a graph. Specifically, we model the in-
put correspondences as a compatibility graph G = (V,E),
where nodes V represent correspondences and edges E con-
nect nodes that exhibit geometric compatibility. Given that
the second-order graph (SOG) possesses characteristics that
are more consistent and robust compared to the first-order
graph (FOG) [11, 57], we perform a clique search in SOG
as [57] and obtain the maximal clique set MACinitial. The
pipeline of our method is shown in Fig. 2. Compared with
MAC, our approach has more robust and efficient hypothe-



sis generation and evaluation modules.

4.2. Hypothesis Generation with Voted Maximal
Clique Pool

As MACinitial is typically large, it needs filtering to re-
duce its magnitude while preserving correct cliques for hy-
pothesis generation. To address the issue of missing correct
cliques in MAC, we propose a novel hypothesis generation
method with voted maximal clique pool (VMP), which in-
cludes three steps: voting-guided node selection, maximal
clique pool construction, and clique ranking.
Voting-Guided Node Selection. Given a clique CLi =
(Vi,Ei), the weight w(CLi) is calculated as:

w(CLi) =
∑

ej∈Ei

w(ej), (1)

where w(ej) represents the edge weight of ej in the adja-
cent matrix of SOG. For each node vi ∈ V, the MACs that
contain it are regarded as its neighbor cliques and the neigh-
bor clique set is denoted as NC(vi) = {CLj |vi ∈ CLj}.
Then, vi is voted by NC(vi) as:

w(vi) =
∑

CLj∈NC(vi)

w(CLj). (2)

The voting score w(vi) is related to both the size of NC(vi)
and the consistency of each CLj in the set. A higher score
indicates a higher likelihood of correct cliques being present
in NC(vi). The nodes are sorted in descending order by
their scores, and the top-ranked ones are selected as reliable
seeds (i.e., putative correspondences). Specifically, we se-
lect nodes with scores higher than the average as the final
seeds. Defining some reliable seed nodes enhances the cor-
rectness of the following generated hypotheses and supports
the later evaluation.
Maximal Clique Pool Construction. We loosen the NG-
based maximal clique selection constraint in [57] by ex-
tending one to a pool. Following the seed ranking order,
each seed selects the top-K1 weighted cliques in NC(vi)
to place in the pool P (vi). If the pool generated by a lower-
priority seed contains the same cliques as the pool of a
higher-priority seed, they will be removed from the lower-
priority pool. Compared to the method of selecting a unique
clique for each node, our sampling approach can effectively
mine more correct cliques.
Clique Ranking. After the maximal clique pools are con-
structed, we consolidate the cliques from all the pools and
arrange them in descending order by their weights, and then
finally retain the top-K2 cliques. Every maximal clique
represents a coherent collection of correspondences. Each
maximal clique can generate a hypothesis via SVD.

4.3. GCCI-based Progressive Hypothesis Evalua-
tion

After obtaining the hypotheses, our objective is to select
the most suitable one. When the data is heavily influenced
by outliers, determining the most appropriate transforma-
tion straightforwardly becomes a challenging task. Con-
sequently, we assess hypotheses progressively rather than
in the previous one-shot manner. Our approach consists of
three parts: first, clustering all generated hypotheses (from
global to clusters); then, evaluating and selecting the best
cluster from clusters (from clusters to a single cluster); and
finally, refining individuals based on the selected cluster
(from cluster to individual). This process is denoted as
GCCI, exhibiting a “global-clusters-cluster-individual” pro-
gressive fashion.
Transformation Clustering. Based on the assumption that
correct transformations are similar to each other while in-
correct ones are distributed discretely under heavy outliers,
we partition the solution space into several clusters (as
shown in Fig. 2), aiming to hierarchically search for the cor-
rect solution. For each hypothesis hi = (Ri, ti), where the
rotation matrix Ri ∈ SO(3) and translation vector ti ∈ R3,
we convert Ri to an Euler angle vector ri. Each angle vector
can be treated as a 3D point, and all the angular vectors of
the transformations form a point cloud representing the res-
olution space. Then, we employ the segmentation algorithm
ConditionalEuclideanClustering provided by the PCL [38]
library to segment the point cloud (refer to the supplemen-
tary). Transformation clustering can systematically orga-
nize the diverse transformations in the solution space, and
simultaneously filter out outlier transformations.
Evaluation with Outlier-Aware MAE. The initial corre-
spondence set Cinitial is typically formed by finding the
nearest neighbors of points in the source cloud Ps among
target points of Pt in the feature space. Commonly applied
metrics [47] (e.g., inlier-count, MAE, and MSE) evaluate
the generated hypotheses as follows:

Score(hi) =

N∑
j=1

ϕ(
∥∥∥Rip

s
j + ti − pt

j

∥∥∥), (3)

where cj = (ps
j ,p

t
j) ∈ Cinitial, N = |Cinitial|, and ϕ

is a truncated function [47], meaning matches within a cer-
tain range of errors are considered. Due to the similarity
of features among neighbor points, multiple source points
can be shared by the same target point. In that case, most
matches formed by these points are outliers. As shown in
Fig. 3, for the same set of matches, when the number of
inliers predicted by the wrong transformation exceeds that
of the correct transformation, simply adding the score of
predicted inliers can result in a higher evaluation score for
incorrect transformations. This could cause the evaluation
failure of the metrics mentioned above. The situation be-



comes more severe when the inlier ratio is low, as fewer
correct hypotheses are generated, and the probability that
estimated inliers are outliers is higher. Based on the above
observations, we introduce an Outlier-Aware Mean Abso-
lute Error (OA-MAE) metric.

The motivation behind this is to enhance the contribution
of predicted inliers to the overall evaluation score and mit-
igate the negative impact of outliers. We represent source
points corresponding with a common target point pt

j in pre-
dicted inliers by a set Spt

j
. Thus, the correspondence set

forms relationships between sets and target points. The
evaluation score is calculated as follows:

Score(hk) =

M∑
j=1

1∣∣∣Spt
j

∣∣∣
∑

ps
i∈Spt

j

ϕmae(
∥∥∥Rkp

s
i + tk − pt

j

∥∥∥),
(4)

where M represents the number of target points in all
matches, and ϕmae is the MAE score function [47]. The
difference between Eq. 3 and Eq. 4 is, that Eq. 3 simply
sums up scores of all the matches to evaluate the hypothesis,
where Eq. 4 first calculates the average score of all matches
in each set, and then adds them up, which means that Eq. 4
suppresses the accumulation of scores for predicted inliers
in the same set. We use OA-MAE for hypothesis evaluation.
Cluster Selection. After clustering the transformations, we
obtain multiple clusters, each containing similar transfor-
mations. To find the cluster containing the potential optimal
solution, we propose a two-stage selection method.

In the first stage, we select cluster candidates from two
perspectives. The first perspective evaluates all cluster cen-
ters and chooses the one with the best center. Within each
cluster, we select the highest-scoring transformation as the
central transformation and evaluate these to determine the
best overall using the OA-MAE metric. To mitigate the ex-
clusion of correct solutions during clustering, MAC++ also
examines overall transformations from Sect. 4.2 from the
second perspective. The cluster containing the best trans-
formation is selected as the other candidate.

In the second stage, we perform a post-verification be-
tween the central transformation of the best cluster and the
best transformation of individuals. Because seed matches
described in Sect. 4.2 are generally more reliable compared
to initial matches, they can reveal the overlapping regions
of point clouds to some extent. As illustrated in Fig. 4, we
propose a match-to-patch method to generate semi-dense
point clouds using the putative seeds. Then, the two cen-
tral transformations of cluster candidates are verified using
the match-to-patch constraint. Specifically, the one yielding
the best Chamfer distance [22, 24, 49] metric (refer to the
supplementary) on the obtained point cloud patches is re-
tained. The cluster containing this transformation is served
as the final selected cluster. This cluster selection pro-
cess has considered both correspondence-level (OA-MAE

(a) Correct transformation (b) Wrong transformation

# Predicted inliers: 2 # Predicted inliers: 4

Point in Ps Point in PtDistance Center

Figure 3. Multiple source points are matched to the same target
point. The green and red lines denote ground truth inliers and out-
liers, respectively. The distance center ‘+’ represents the position
of the transformed target point in the source cloud. The points in
the red circle satisfy the spatial distance constraint with the trans-
formed target point, and the matches they formed are predicted
inliers. In this example, the predicted inliers of the wrong trans-
formation are more than those of the correct transformation.
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Cluster
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Best 
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Figure 4. Illustration of post verification. We first perform a
radius-NN search for every correspondence point to obtain a local
keypoint patch. Then, a point patch is generated by aggregating
all obtained local keypoint patches. Cluster candidates are finally
verified by the semi-dense point patch.

evaluation) and point-cloud-level (point-to-patch data) con-
straints to more convincingly find the best cluster.
Individual Refinement. Because the central transforma-
tion may not be optimal in the cluster, we apply individ-
ual refinement to find the best solution. We examine each
transformation within the cluster one by one. Simultane-
ously, we intersect seed correspondences with cluster corre-
spondences (which consist of all matches generating these
transformations within the same cluster) to improve the cor-
rectness of matches used for OA-MAE evaluation. The one
with the highest OA-MAE score is kept for registration.

5. Experiments
5.1. Experimental Setup

Datasets. We consider the object-scale dataset U3M [32],
the scene-scale indoor datasets 3DMatch [55] & 3DLo-
Match [23], and the scene-scale outdoor datasets KITTI-
LC [34] for evaluation. U3M contains various nuisances
presented in real-world scenarios. 3DLoMatch is the subset



Inlier ratio ≤ 1% ≤ 2% ≤ 3% ≤ 4% ≤ 5%
PointDSC[3] 27.97 38.26 56.62 67.59 75.17
TEASER++[43] 23.23 46.21 66.30 76.16 83.12
SC2-PCR[11] 36.41 57.24 72.64 80.28 86.69
MAC[57] 41.34 61.80 75.66 83.92 89.28
MAC++ 68.45 80.16 90.70 95.26 97.97

Table 1. Controlled experiments on 3DMatch dataset.

of 3DMatch, in which the point cloud pairs exhibit an over-
lap rate spanning from 10% to 30%, presenting a significant
level of difficulty. The KITTI-LC dataset contains more se-
quences compared to KITTI [20]. It provides a more com-
prehensive evaluation of registration methods as it takes dif-
ferent translation ranges into account for point cloud pairs.
Evaluation Criteria. For all experiments, we report reg-
istration recall (RR), which represents the percentage of
successful pairs under specific error thresholds. For the
object dataset U3M, we employ root mean squared error
(RMSE). In the comparative experiments on scene datasets,
the performance is evaluated using rotation error (RE) and
translation error (TE). Registration is considered success-
ful when RE ≤ 15°, TE ≤ 30 cm on 3DMatch & 3DLo-
Match datasets. For the KITTI-LC dataset, the sub-datasets
“easy [0-10m]”, “medium [10-20m]”, and “hard [20-30m]”,
employ TE thresholds of 60cm, 120cm, and 180cm, re-
spectively. The RE threshold is all set to 5°. In the
performance-boosting experiments, registration is success-
ful when RMSE < 20 cm, following the settings in [35].
Implementation Details. Our method is implemented in
C++ based on the point cloud library (PCL) and igraph li-
brary. We keep the same setting in [57] to generate corre-
spondences and construct the compatibility graph. By de-
fault, we set K1 and K2 mentioned in Sect. 4.2 to 10 and
the size of the input correspondence set, respectively. All
the experiments are conducted on a PC with an Intel 12700
CPU and 32GB RAM.

5.2. Controlled experiments on 3DMatch and
3DLoMatch

We generate point cloud pairs with varying inlier ratios
based on 3DMatch/3DLoMatch (please refer to supplemen-
tary). PointDSC [3], TEASER++ [43], SC2-PCR [11],
and MAC [57] are used for comparison. The results
shown in Tables 1 and 2 indicate that MAC++ is quite
robust even for inputs with extremely low inlier ratios.
MAC++ has 27.1%/30.6% registration recall improve-
ments on 3DMatch/3DLoMatch with lower than 1% inliers.

5.3. Experiments on Real Data

Results on U3M Dataset. We perform an exten-
sive comparison in Table 3. Here, the following meth-
ods are tested, including MAC [57], SC2-PCR [11], SAC-
COT [46], OSAC [45], SAC-IA [39], RANSAC [18],

Inlier ratio ≤ 1% ≤ 2% ≤ 3% ≤ 4% ≤ 5%
PointDSC[3] 1.35 8.14 29.70 49.35 59.74
TEASER++[43] 6.51 31.72 56.49 69.96 78.05
SC2-PCR[11] 3.31 28.58 53.96 68.56 75.91
MAC[57] 7.92 43.74 65.24 77.09 83.77
MAC++ 38.52 70.52 84.11 91.35 94.72

Table 2. Controlled experiments on 3DLoMatch dataset.

1 pr 2 pr 3 pr 4 pr 5 pr
PPF[17] 0 0.40 0.60 1.21 1.41
GO-ICP[44] 0.40 1.21 2.62 4.84 6.25
RANSAC[18] 3.23 10.28 15.93 17.94 20.77
OSAC[45] 10.48 20.16 25.00 26.61 28.23
SAC-IA[39] 2.42 10.08 16.13 20.77 22.98
FGR[58] 21.77 33.47 38.51 42.54 46.77
SAC-COT[46] 20.97 38.71 43.75 46.37 48.19
SC2-PCR[11] 29.34 35.04 37.04 38.45 39.60
MAC[57] 33.62 48.15 54.70 57.55 59.26
MAC++ 36.54 50.71 55.81 58.92 60.06

Table 3. Results on U3M dataset varying RMSE threshold.

FPFH Setting FCGF Setting
RR(%) RE(°) TE(cm) RR(%) RE(°) TE(cm)

i) Traditional
RANSAC-1M[18] 0.67 10.27 15.06 9.77 7.01 14.87
RANSAC-4M[18] 0.45 10.39 20.03 10.44 6.91 15.14
TEASER++[43] 35.15 4.38 10.96 46.76 4.12 12.89
SC2-PCR[11] 38.57 4.03 10.31 58.73 3.80 10.44
MAC[57] 40.88 3.66 9.45 59.85 3.50 9.75
ii) Deep learned
DGR[15] 19.88 5.07 13.53 43.80 4.17 10.82
PointDSC[3] 20.38 4.04 10.25 56.20 3.87 10.48
MAC++ 44.30 4.12 11.02 61.03 3.93 11.17

Table 4. Registration results on 3DLoMatch dataset.
(FPFH/FCGF: 1.76%/7.26% inliers)

FGR [58], GO-ICP [44], and PPF [17]. The RMSE thresh-
old is varied from 1 pr to 5 pr with a step of 1 pr (‘pr’ de-
notes point cloud resolution [48]). The results indicate that
MAC++ achieves the best performance at all thresholds.
Results on 3DLoMatch Datasets. Both geometric-
only and deep-learned methods including RANSAC [18],
TEASER++ [43], SC2-PCR [11], MAC [57], DGR [15],
and PointDSC [3] are considered for comparison.

On the 3DLoMatch dataset, MAC++ significantly im-
proves registration performance compared to MAC and
other competitors. As shown in Table 4, MAC++’s perfor-
mance is 3.82% higher than MAC’s when combined with
FPFH, and 1.18% higher when combined with FCGF. Note
that MAC++ achieves such performance without needing
additional matching [11].
Boosting Deep-learned Methods with MAC++. Several
deep-learned methods such as FCGF [14], SpinNet [1],
PREDATOR [23], CoFiNet [53] and GeoTransformer [35]
are integrated with MAC++ for evaluation. Each method is
tested under different numbers of sampled correspondences.
The results are reported in Table 6.

MAC++ working with GeoTransformer achieves com-



Subset 0-10m(3.32% inliers) 10-20m(0.86% inliers ⋆) 20-30m(0.32% inliers ⋆)
00 02 05 06 08 Total 00 02 05 06 08 Total 00 02 05 06 08 Total

RANSAC[18] 0.99 1.16 1.14 0 0 0.77 0 2.02 0 0.40 0 0.43 0.26 0.90 0.46 1.19 0.54 0.63
TEASER++[43] 91.42 59.88 81.82 89.66 74.79 79.32 54.55 22.73 50.75 62.55 23.46 45.79 12.60 2.69 5.94 28.57 0.54 11.11
SC2-PCR[11] 98.68 83.72 97.16 100 94.87 94.64 63.64 39.90 64.82 70.12 34.57 57.08 12.60 6.28 7.76 28.97 1.08 12.22
MAC[57] 98.02 86.63 99.43 100 90.60 94.31 69.79 52.02 69.85 74.50 44.44 64.21 23.10 10.76 11.87 41.27 3.78 19.76
MAC++ 99.67 87.21 100 100 96.16 96.50 72.73 52.53 71.86 82.47 50 68.03 25.20 11.21 13.70 42.06 4.86 21.11

Table 5. Registration results on KITTI-LC dataset. ‘⋆’ denotes ultra-challenging cases.

# Samples 3DMatch RR(%) 3DLoMatch RR(%)
5000 2500 1000 500 250 5000 2500 1000 500 250

FCGF[14] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
SpinNet[1] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
PREDATOR[23] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
CoFiNet[53] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer[35] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
FCGF w. MAC 91.3 92.2 91.6 90.4 85.6 57.2 56.0 52.6 42.4 32.1

FCGF w. MAC++ 93.3 93.5 93.2 90.9 89.8 59.5 58.9 56.2 51.9 43.2
8.2↑ 8.8↑ 9.9↑ 9.3↑ 18.4↑ 19.4↑ 17.2↑ 18.0↑ 16.5↑ 16.4↑

SpinNet w. MAC 95.3 95.1 93.3 91.4 81.2 72.8 69.9 59.2 54.8 32.1

SpinNet w. MAC++ 95.3 95.7 95.3 93.5 84.5 72.8 71.7 67.3 59.1 40.0
6.7↑ 9.1↑ 9.8↑ 10.0↑ 14.3↑ 13.0↑ 16.8↑ 19.0↑ 19.3↑ 13.2↑

PREDATOR w. MAC 94.6 94.4 94.0 93.5 92.3 70.9 70.4 69.8 67.2 64.1

PREDATOR w. MAC++ 94.7 94.5 94.5 93.8 93.2 73.7 72.5 70.9 69.5 67.5
5.7↑ 4.6↑ 3.9↑ 5.3↑ 6.6↑ 13.9↑ 11.3↑ 8.5↑ 8.7↑ 9.4↑

CoFiNet w. MAC 94.1 94.4 94.5 93.8 92.7 71.6 71.5 70.6 69.2 68.1

CoFiNet w. MAC++ 95.2 95.0 95.3 93.7 93.6 73.7 73.2 72.1 70.1 69.6
5.9↑ 6.1↑ 6.9↑ 6.3↑ 6.6↑ 6.2↑ 7.0↑ 7.9↑ 7.0↑ 8.6↑

GeoTransformer w. MAC 95.7 95.7 95.2 95.3 94.6 78.9 78.7 78.2 77.7 76.6

GeoTransformer w. MAC++ 95.7 95.7 95.1 95.3 94.7 79.1 79.0 78.1 77.7 76.7
3.7↑ 3.9↑ 3.3↑ 3.9↑ 3.5↑ 4.1 ↑ 4.2↑ 3.9↑ 3.6↑ 3.2↑

Table 6. Boosting results. Boost ratios of MAC++ are provided.

petitive registration recalls of 95.7% / 79.1% on 3DMatch /
3DLoMatch. The GeoTransformer baseline produces high-
quality matches, making it challenging to distinguish be-
tween MAC and MAC++. Remarkably, the performance-
boosting brought by MAC++ is generally more signifi-
cant than that of MAC, especially when the size of sam-
ples is low. The clear difference observed when compared
to lower-quality matching data indicates the advantages of
MAC++ in handling more challenging data.
Results on KITTI-LC Dataset. The results of
RANSAC [18], TEASER++ [43], SC2-PCR [11], and
MAC [57] are reported in Table 5. We apply the near-
est neighbor search to generate initial correspondences and
keep the magnitude to 5000 by random sampling. FPFH
descriptor is used for correspondence generation.

MAC++ outperforms others under all the settings. For
registration problems, it is more meaningful to investigate
more challenging data. MAC++ achieves 3.64% and 1.35%
RR improvements over MAC on the ultra-challenging 10-
20m and 20-30m data, respectively. As such, MAC++ is
more competitive on more challenging datasets.

5.4. Analysis Experiments

Parameter Analysis. We conduct experiments to evalu-
ate the impact of different parameter settings on MAC++’s
performance. The most critical parameter is the sample size
during hypothesis generation. As mentioned in Sect. 4.2,
MAC++ finds K1 cliques for each seed correspondence,
placing them in the pool, and retains the top-K2 highest-
scoring cliques for subsequent evaluation. In Table 7, K1 is

K1 RR(%) RE(°) TE(cm)

FPFH
Setting

1 84.29 / 43.80 1.77 / 4.25 5.76 / 11.12
5 83.86 / 44.53 1.74 / 4.18 5.74 / 11.06

10 83.73 / 44.30 1.74 / 4.12 5.66 / 11.02
20 83.67 / 44.19 1.75 / 4.17 5.70 / 11.04

FCGF
Setting

1 93.22 / 61.03 1.94 / 3.94 6.32 / 11.18
5 93.10 / 60.42 1.98 / 3.93 6.33 / 10.96

10 93.22 / 61.03 1.97 / 3.93 6.34 / 11.17
20 93.35 / 60.64 2.00 / 3.87 6.41 / 11.00

Table 7. Parameter analysis for K1.

K2 RR(%) RE(°) TE(cm)

FPFH
Setting

100 84.17 / 44.19 2.09 / 4.13 6.79 / 11.08
200 83.92 / 44.53 1.74 / 4.14 5.65 / 11.14
500 83.73 / 44.24 1.72 / 4.14 5.59 / 11.06
1000 83.73 / 44.30 1.73 / 4.16 5.58 / 11.16
2000 83.86 / 44.36 1.74 / 4.14 5.64 / 11.14

FCGF
Setting

100 93.16 / 60.89 1.94 / 3.86 6.30 / 10.91
200 93.04 / 61.03 1.94 / 3.89 6.28 / 11.09
500 93.22 / 61.09 1.96 / 3.90 6.34 / 11.03

1000 93.16 / 60.42 1.96 / 3.88 6.24 / 10.90
2000 93.22 / 60.86 1.96 / 3.90 6.34 / 10.98

Table 8. Parameter analysis for K2.

set to 1, 5, 10, and 20. In Table 8, K2 is set to 100, 200, 500,
1000, and 2000. Results for different descriptor settings on
the 3DMatch and 3DLoMatch datasets are presented.

As shown in Table 7, MAC++ performs optimally on
3DMatch when K1 is set to 1. This is because both de-
scriptors can generate matches with a relatively high inlier
ratio on 3DMatch, ensuring that each seed only needs to se-
lect one clique to guarantee sufficient correct hypotheses.
On 3DLoMatch with FPFH, performance initially improves
and then declines as K1 increases, indicating that too few
correct hypotheses are sampled when K1 is small, and too
many invalid hypotheses are sampled when K1 is large. Ta-
ble 8 shows that MAC++’s performance remains stable even
with a small K2, and fewer hypotheses reduce time con-
sumption. Overall, MAC++ is robust to parameter changes.
Comparative Efficiency Results. Table 9 displays the
time efficiency and memory consumption of various high-
performing methods. Correspondences with different mag-
nitude settings are generated with PREDATOR on the
3DMatch dataset. Each method’s time efficiency was tested
over ten rounds, with mean and standard deviation results
reported. All tests were performed using only the CPU.

MAC++ introduces advanced hypothesis generation and
evaluation mechanisms, slightly increasing computational



# Corr. 250 500 1000 2500 5000

PointDSC[3] 32.24±0.81 78.38±0.89 240.46±2.18 1401.97±12.24 5504.11±10.32
3531.46 3538.26 3582.57 3634.22 3736.10

TEASER++[43] 6.40±1.88 6.68±0.66 16.74±1.21 104.24±0.53 484.93±1.87
1631.92 1634.77 2029.22 2266.84 2484.83

SC2-PCR[11]
19.34±0.63 63.23±0.55 215.98±1.24 1282.73±4.05 5210.17±8.30

448.01 453.18 508.40 621.27 690.22

MAC[57] 7.32±0.55 23.32±0.38 56.45±1.41 282.67±7.83 3259.38±12.66
15.59 17.43 23.49 52.79 150.86

MAC++ 79.60±0.49 116.61±1.43 117.20±1.17 230.20±2.79 4620.39±23.23
25.26 26.79 30.95 60.87 187.12

Table 9. Efficiency results. Time (ms): upper value, memory
(MB): lower value.

# Hypo. RANSAC MAC MAC++

FPFH
Setting

100 0.76 / 0.05 50.67 / 12.22 79.63 / 32.81
200 1.50 / 0.09 89.27 / 17.59 154.19 / 56.20
500 3.68 / 0.21 162.41 / 23.32 358.71 / 104.52

1000 7.39 / 0.41 217.32 / 26.02 643.55 / 151.19
2000 14.90 / 0.81 254.13 / 29.31 1088.26 / 190.57

FCGF
Setting

100 10.45 / 1.25 61.94 / 30.47 91.86 / 57.02
200 20.76 / 2.52 119.20 / 55.57 181.95 / 111.18
500 51.74 / 6.21 269.06 / 109.32 437.05 / 261.07

1000 103.65 / 12.43 456.18 / 156.11 811.74 / 475.10
2000 208.24 / 24.80 669.32 / 202.12 1489.00 / 803.07

Table 10. Comparison of the number of correct hypotheses on the
3DMatch/3DLoMatch datasets.

n MAC MAC++

FPFH
Setting

1 96.30 / 75.01 97.10 / 77.88
5 90.39 / 52.27 94.58 / 65.30
10 85.95 / 41.66 92.79 / 59.01
20 78.68 / 30.71 90.76 / 50.81
50 67.10 / 14.94 87.37 / 40.48

FCGF
Setting

1 98.46 / 91.42 98.27 / 86.19
5 97.10 / 83.32 97.72 / 83.27
10 96.43 / 77.93 97.54 / 81.08
20 94.70 / 70.47 96.98 / 78.16
50 91.13 / 56.37 95.69 / 73.55

Table 11. Results of judging the correctness of hypotheses on
3DMatch/3DLoMatch.

overhead but remaining lightweight for input sizes below
2.5k. The hypothesis clustering part increases the runtime
due to the default setting of having the number of filtered
hypotheses (K2) equal to the input correspondences. Our
parameter analysis indicates that MAC++ can reduce the
time consumption by decreasing the number of hypothe-
ses (K1, K2) without compromising performance. Overall,
MAC++ is both time and memory-efficient in most cases.
Quality of Hypotheses. We evaluate the quality of the
generated hypotheses by comparing the hypotheses from
RANSAC, MAC, and MAC++ with the ground-truth trans-
formation, respectively. The results are shown in Table 10.

Compared to MAC, the number of correct hypotheses
generated by MAC++ multiplies under all settings, demon-
strating the effectiveness of the proposed hypothesis gener-
ation method with voted maximal clique pool.
Performance Upper Bound. Given an ideal hypothesis
evaluation metric that permits a point cloud pair can be
aligned whenever correct hypotheses are generated, we per-
form experiments in this configuration to assess the per-
formance upper bound of MAC++. We vary the judging
threshold for the number of generated correct hypotheses

NC VMP One-shot GCCI RR(%) RE(°) TE(cm) #CH
MAC ✓ ✓ 41.34 3.71 14.51 22.94
MAC++ w.o. VMP ✓ ✓ 67.65 2.94 10.81 22.94
MAC++ w.o. GCCI ✓ ✓ 42.47 3.68 14.56 47.90
MAC++ ✓ ✓ 68.45 2.95 10.80 47.90

Table 12. Module effectiveness experiments. NC: Node-guided
clique selection. VMP: Hypothesis generation with voted max-
imal clique pool. One-shot: Original one-shot hypothesis eval-
uation. GCCI: GCCI-based progressive hypothesis evaluation.
#CH: the number of correct hypotheses.

(a point cloud pair is considered alignable if at least n hy-
potheses are correct) and report the results in Table 11.

In general, MAC++ still has a large room for im-
provement. When n equals 1, the performance upper-
bound under the FCGF setting is lower than MAC, because
MAC++ enforces additional constraints during clique sam-
pling, which happens to filter out some correct maximal
cliques. However, MAC++ significantly mines more cor-
rect cliques in general as n increases. In addition, the gap
becomes significant under the FPFH setting and the upper
bound of MAC++ exceeds MAC consistently, indicating
a significant increase in the number of correct hypotheses
generated by most point cloud pairs.
Module Effectiveness Analysis. In this section, we vali-
date the effectiveness of each module in MAC++ using the
data corresponding to the “≤ 1%” setting in Table 1. We
establish MAC as our baseline, and the experimental results
are shown in Table 12.

The following observations can be made: 1) When the
module VMP is removed, MAC++ shows a notable 26.31%
increase over the baseline MAC, indicating the effective-
ness of GCCI in finding the correct solutions. 2) When re-
moving the GCCI module, the registration recall increases
by 1.13% compared to MAC. The VMP module leads to a
correct hypotheses increase of 109%, indicating its effec-
tiveness in selecting valid hypotheses. 3) MAC++ achieves
the highest performance when both VMP and GCCI are im-
plemented. These findings validate the effectiveness of each
novel contribution in MAC++.

6. Conclusion
In this paper, we have presented MAC++, a learning-free ro-
bust estimator that delves into maximal cliques for 3D reg-
istration from noisy correspondences. Our method is com-
petitive against existing competitors on several challenging
benchmarks. We will explore the feasibility of MAC++ to
2D-3D registration issues in the future.
Limitation. In Table 9, the overall runtime increases. We
hope to design a more suitable algorithm to improve the
time efficiency of the hypothesis clustering part.
Acknowledgments. This work is supported in part
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