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ABSTRACT

In this paper, we investigate model adaptation under domain and category shift,
where the final goal is to achieve Source-free Open-partial Domain Adaptation
(SF-OPDA), which addresses the situation where there exist both domain and
category shifts between source and target domains. Under the SF-OPDA setting,
the model cannot access source data anymore during target adaptation, which aims
to address data privacy concerns. We propose a novel training scheme to learn a
(n+1)-way classifier to predict the n source classes and the unknown class, where
samples of only known source categories are available for training. Furthermore,
for target adaptation, we simply adopt a weighted entropy minimization to adapt
the source pretrained model to the unlabeled target domain without source data.
In experiments, we show: 1) After source training, the resulting source model has
strong open classes detection ability for open-set single domain generalization; 2)
After target adaptation, our method surpasses current UNDA approaches which
demand source data during adaptation. The versatility to several different tasks
strongly proves the efficacy and generalization ability of our method. 3) When aug-
mented with a closed-set domain adaptation approach during target adaptation, our
source-free method further outperforms the current state-of-the-art UNDA method
by 2.5%, 7.2% and 13% on Office-31, Office-Home and VisDA respectively.

1 INTRODUCTION

Modern deep learning models excel at close-set recognition tasks across various computer vision
application areas. However, there are several inevitable obstacles lying on the path to deploying those
methods to the challenging real world environments. As there may be 1) some unseen categories in
practical scenarios, or 2) distributional shift between training and testing data. The first problem is
usually defined as open-set recognition (OSR) (Chen et al., 2020; Ge et al., 2017; Neal et al., 2018a;
Sun et al., 2020; Zhang et al., 2020; Shu et al., 2020; Vaze et al., 2022) where the model should be able
to distinguish samples as coming from unseen categories. The second problem is mostly investigated
in the domain generalization (DG) (Shi et al., 2022; Robey et al., 2021; Vedantam et al., 2021;
Gulrajani & Lopez-Paz, 2021; Wang et al., 2021) and domain adaptation (DA) community (Long
et al., 2018a; 2015; 2016; Tzeng et al., 2017; Zhang et al., 2019; Cicek & Soatto, 2019; Liang
et al., 2021a; Deng et al., 2019; Tang et al., 2020; Cui et al., 2020). DG aims to tackle the domain
shift problem in the absence of target domains, while DA seeks to transfer knowledge from labeled
source domains to unlabeled target domains with training on them with utilizing both labeled source
and unlabeled target data, there is distribution/domain shift between source and target domains. In
recent years, several works introduce open-set recognition into DG and DA, which are formalized as
open domain generalization (ODG) (Shu et al., 2021; Zhu & Li, 2022), open-set domain adaptation
(OSDA) (Saito et al., 2018b; Bucci et al., 2020; Liu et al., 2019; Pan et al., 2020; Jing et al., 2021;
Feng et al., 2019; 2021) and universal domain adaptation (UNDA) (Fu et al., 2020; Li et al., 2021a;
You et al., 2019; Saito et al., 2020; Saito & Saenko, 2021; Liang et al., 2021b), respectively.

The various settings described above are summarized in Tab. 1. Usually one method tailored for
a specific setting in Tab. 1 does not work well under a different setting. Most existing works in
Open-set Recognition are computationally demanding, either requiring the generation of unknown
categories (Neal et al., 2018a) or conducting additional learning (Kong & Ramanan, 2021; Sun et al.,
2020; Chen et al., 2020). Additionally, those methods are likely to suffer from performance degrada-
tion if test data are from different distributions. The recent CrossMatch (Zhu & Li, 2022) tackles
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Table 1: Related setting. Cs and Ct denote label set of source and target domain (for evaluation), Ps

and Pt denote source and target distribution, transductive means model can be trained on target data.
Task Cs = Ct Ps = Pt Transductive

Open-set Recognition (OSR) ✗ ✓ ✗
Domain Generalization (DG) ✓ ✗ ✗

Open Domain Generalization (ODG) ✗ ✗ ✗
Domain Adaptation (DA) ✓ ✗ ✓

Open-partial Domain adaptation (OPDA) ✗ ✗ ✓

Open-set Single Domain Generalization problem. It proposes to use multiple open class detectors
which are put on top of existing single domain generalization methods, and it achieves good results at
the expense of introducing multiple open-set detectors and auxiliary unknown sample generation. For
open-partial domain adaptation, most works are based on an explicitly designed unknown-sample
rejection module, which typically requires various hyper-parameters. More importantly, those UNDA
methods all require access to source data during target adaptation, which is infeasible if having data
privacy issues and deployed on devices of low computation capacity.

In this paper we investigate how to detect open classes efficiently under the domain shift. Thus,
a question arises, how to build a model training from only known categories aiming to learn to
distinguish samples of unknown categories? Since we have no access to unknown class data, we can
only use the known class data to train this classifier. We hypothesize that the closest (most similar)
class to any known class can be an unknown class. Given the open-endedness of the unknown class
this is a reasonable assumption. This hypothesis allows us to train the classifier, enforcing the most
probable class to be the ground truth class, and the runner-up class to be the background class for all
source data. This is achieved by introducing an extra category in the classifier which represents the
unknown classes, during training on samples of known categories (yielding a (n + 1)-way classifier
where n is the number of known classes), the classifier is expected to output the largest score for the
ground truth class, and the second-largest score for unknown class. This way, the model can learn
to reject samples of unknown categories by only training with known classes. The resulting model
training on source data can be directly deployed to open-set single domain generalization, in other
words, it can detect open class efficiently whether there is domain shift or not.

Furthermore, our source model with strong capacity to distinguish unknown categories can be easily
adapted to target domain without access to source data under the challenging source-free open-partial
domain adaptation setting, where both source and target domains have their private classes. We
propose to simply use a weighted entropy minimization to achieve the adaptation.

We summarize our contributions as below:

• We propose a simple method called OneRing, which excels at recognising open class (even with
domain shift) after source training, thus it can be directly deployed to open-set single domain
generalization (OS-SDG) and open-set recognition (OSR).

• We can easily adapt the source model to target domain by using weighted entropy minimization
under source-free open-partial domain adaptation setting (SF-OPDA).

• In experiments, we show our method is on par with or outperform current state-of-the-art approaches
on several benchmarks for various different tasks, which proves the efficacy and generalization
ability of our method. Augmented with a close-set DA approach, our source-free method surpasses
current open-partial domain adaptation methods by a significant margin.

2 RELATED WORKS

Open-set Recognition. Open-set recognition (OSR) aims to recognize samples of unknown categories
which do not exist in the training set. Several recent methods in OSR do not utilize extra data for
training. OpenHybrid (Zhang et al., 2020) introduces a flow-based density estimation module, and
ARPL (Chen et al., 2020; 2021) proposes to learn a reciprocal point per category, which is intuitively
regarded as the farthest point from the corresponding feature group. More recently (Vaze et al.,
2022) shows that actually OSR performance is enhanced when improving the model performance
on the training set, for example by using improved data augmentation and other training tricks. In
this paper, we propose a simple model training directly with two cross entropy losses without either
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auxiliary data or an extra learning process. Our proposed OneRing classifier shares similarity with
Proser (Zhou et al., 2021a), which aims to assign the second-largest logit to the unknown classes.
However, Proser is much more complex compared to ours: it first trains a good |Cs|-way close-set
classifier and then augment this classifier to |Cs|+C-way, and retrain; Further, it needs to synthesize
novel samples for training the |Cs|+ C-way classifier; And they also need to calibrate the output of
the dummy classifier over the extra validation set by ensuring 95% of validation data are recognized
as known. While in this paper, we directly train the |Cs|+ 1-way classifier with a simple objective;
Another main difference is that they only address open-set recognition, while in our paper we also
consider the domain shift, i.e., the challenging source-free open-partial domain adaptation.

Domain Generalization. In Domain Generalization (DG), a model is typically trained on multiple
labeled source domains. It is expected to have good generalization ability on unseen target domains
with which domain shift exists. A typical solution for domain generalization is to learn domain
invariant features, which can be achieved by meta learning (Li et al., 2018; 2019; Dou et al., 2019) or
additional data generation (Zhou et al., 2021b; 2020). In recent years, there are several DG works that
only use a single source domain. This setting is known as single domain generalization (SDG) (Qiao
et al., 2020; Wang et al., 2021; Fan et al., 2021; Li et al., 2021b). While most of those methods only
consider the situation where source and target domains share the same label space, Open Domain
Generalization (ODG) (Shu et al., 2021) is recently proposed to deal with the problem where the
target domain contains open classes. More recently, CrossMatch (Zhu & Li, 2022) introduces an even
more challenging setting called Open-set Single Domain Generalization (OS-SDG) which only relies
on one source and where the target domains contains unknown categories. CrossMatch is built on
a complex network model and needs to synthesize samples of unknown categories. It also applies
entropy-based unknown class rejection with a manually set threshold. In this paper, our simple source
trained model can be directly deployed to OS-SDG task and gets surprisingly decent results.

Domain Adaptation. Early methods to tackle domain adaptation (DA) conduct feature align-
ment (Long et al., 2015; Sun et al., 2016; Tzeng et al., 2014) to eliminate the domain shift.
DANN (Ganin et al., 2016), CDAN (Long et al., 2018b) and DIRT-T (Shu et al., 2018) further
resort to adversarial training to learn domain invariable features. Similarly, (Lee et al., 2019; Lu et al.,
2020; Saito et al., 2018a) are based on multiple classifier discrepancy to achieve alignment between
domains. Other methods like SRDC (Tang et al., 2020), CST (Liu et al., 2021) address domain shift
from the perspective of either clustering or improved pseudo labeling. And there are also methods
considering category shift source and target domains. They can be grouped into partial-set DA (Cao
et al., 2018; 2019; Liang et al., 2020b), open-set DA (Panareda Busto & Gall, 2017; Saito et al.,
2018b; Liu et al., 2019; Bucci et al., 2020) and universal DA (You et al., 2019; Li et al., 2021a; Saito
& Saenko, 2021; Fu et al., 2020; Saito et al., 2020) depending on the intersection degree of source
and target label space. OVANet (Saito & Saenko, 2021) is a universal DA method. It trains extra n
binary classifiers with hard negative classifier sampling to reject unknown samples, OVANet needs
to check the normal classifier head and the corresponding binary classifier for the final prediction.
While in this paper, we simply train a n+ 1-way classifier with normal cross entropy, and the final
prediction is directly provided by the classifier.

Source-free Domain Adaptation. Recently, several works address source-free domain adaptation
(SFDA), where a source pretrained model is adapted to target without source data. SHOT (Liang et al.,
2020a) proposes to use mutual information maximization along with pseudo labeling. BAIT (Yang
et al., 2020) adapts MCD (Saito et al., 2018a) to source-free setting. 3C-GAN (Li et al., 2020) resorts
to fake target-style images generation. HCL (Huang et al., 2021) conducts Instance Discrimina-
tion (Wu et al., 2018) over different historical models to cluster features, with the companion of
pseudo labeling. A2Net (Xia et al., 2021) learns extra classifier specifically for the target domain
and introduce a category-wise matching module for feature clustering. G-SFDA (Yang et al., 2021b)
and NRC (Yang et al., 2021a) are all based on neighborhood clustering through local prediction
consistency. AaD (Yang et al., 2022) further treats SFDA as a typical unsupervised clustering problem
and proposes to optimize an upperbound of a clustering objective. Beyond close-set DA, FS (Kundu
et al., 2020b) and USFDA (Kundu et al., 2020a), which are for source-free open-set and open-partial
DA respectively. However, they both synthesize extra training samples of unknown categories, which
help to detect the open classes. OSHT Feng et al. (2021) tackles source-free open-set DA, which
adopts pseudo labeling for adaptation and entropy-based metric to reject open classes. UMAD Liang
et al. (2021b) is for source-free universal DA, it proposes an informative consistency score to detect
open class, then adopts mutual information for source-free adaptation.. In this paper, we show that
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Figure 1: (Left) Illustration of training OneRing model on source data with only known categories.
(Right) Toy Example, the decision boundaries and prediction regions (colorized randomly) after
training on 3 known classes with (3 + 1)-way classifier. Purple points are from unknown category.

our source pretrained model can be adapted to the target domain easily by simply minimizing entropy
to achieve source-free open-partial DA.

3 METHOD

3.1 PRELIMINARY

In this paper, we divide data samples into two groups/domains: the labeled source domain with Ns

samples as Ds = {(xs
i , y

s
i )}

Ns
i=1 on which the model will be first trained, and the unlabeled target

domain with Nt samples as Dt = {xt
i}

Nt
i=1. Dt is used for evaluation. We denote Cs and Ct as the

label set of the source and target domain, and Ps and Pt as the distribution of source and target data
respectively. In this paper, we consider three different tasks that vary in the relation between source
and target domain data: 1) Open-set Recognition1 (OSR) where the model is only trained on the
source domain, and directly tested on the target domain which contains some unknown categories
but without domain shift (Cs ⊂ Ct,Ps = Pt, inductive); 2) Open-set Single Domain Generalization
(Zhu & Li, 2022) (OS-SDG) which is similarly to OSR trained on a single source domain, however
here there exists a domain shift between source and target domains (Cs ⊂ Ct,Ps ̸= Pt, inductive);
3) Source-free open-partial domain adaptation (SF-OPDA) which is similar to OS-SDG, here the
source model has to adapt to the target domain without access to any source data and both domains
have private categories (Cs ∩ Ct ̸= ∅/Cs/Ct,Ps ̸= Pt, transductive). For these settings, we use the
same network model containing two parts: a feature extractor f and a classifier head g.

3.2 SOURCE TRAINING: ONE RING TO FIND UNKNOWN CATEGORIES

The first stage is to train a model on the labeled source domain which has |Cs| categories. We expect
the resulting model to have the ability to detect unknown categories which do not exist in the source
data. To achieve this, we build a classifier head as a (|Cs|+1)-way classifier, where the additional
dimension aims to distinguish unknown categories. Then the following problem arises: how to train a
(|Cs|+ 1)-way classifier without any sample from the last/unknown category? Note, if only training
with the normal cross entropy (CE) loss on the source data, the model cannot directly give prediction
to unknown categories.

As mentioned in Sec. 1, we hypothesize that any non-ground-truth category could be regarded
as unknown categories. This hypothesis gives us a feasible solution to train a open-set classifier
without actually accessing open classes. Specifically, we propose to use a simple variant of cross
entropy loss with only samples of known categories to train the (|Cs|+ 1)-way classifier, which has 2
properties: 1) The largest output logit of the source samples corresponds to the ground truth class and
2) The second-largest output logit of source samples will be the unknown class ((|Cs|+ 1)-th class in
classifier). This way, the model is expected to detect samples of unknown categories even without
training on them. The proposed objective to achieve it is formalized as follows:

Lsource = Exi∼Ds [Lce(p(xi), yi) + Lce(p̂(xi), ŷi)] (1)

1Results for OSR are in the appendix, only aiming to show the generalization ability of our method.
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where p(xi) = g(f(xi)) ∈ R|Cs|+1 is the output vector of the (|Cs| + 1)-way classifier, while
p̂(xi) ∈ R|Cs| is the output vector removing the dimension corresponding to the ground truth class,
and ŷi ∈ R|Cs| is a one-hot label with unknown class as ground truth label. As illustrated in Fig. 1
(right), if we have a sample xi belonging to the first class, the first CE loss in Eq. 1 is the typical
CE loss on p(xi) with ground truth label, p̂(xi) is produced by removing the first dimension and the
second CE loss is applied on p̂(xi) with unknown (last) category as label.

We adopt a toy example to illustrate it. As shown in upper part of Fig. 1 (right), we generate isotropic
Gaussian blobs with 4 categories, where the last one is treated as the unknown category (in Purple)
and others as known classes (thus |Cs| = 3). We first train the (|Cs|+1)-way classifier which contains
4 linear layers with the normal cross entropy loss on samples of known categories, and then evaluate
it on all classes. Upper part of Fig. 1 (right) shows that the samples of the unknown category (Purple)
are misclassified as there are only 3 prediction regions for 3 known categories. As shown in lower
part of Fig. 1 (right) that there are 4 prediction regions (3 known + 1 unknown categories), after
training on 2 CE losses the classifier can detect samples of unknown category which is unseen before.
We attach a demo video to show the difference between training the (|Cs|+ 1)-way classifier with
only standard CE loss and those 2 CE losses.

An intuitive understanding of the proposed method is that, we can split the (|Cs|+1)-way classification
into 2 levels: 1) if we check the prediction p(xi) we would say xi has to belong to category yi; 2) if
we check the prediction p̂(xi) we would say that xi is impossible to belong to all other categories
except the potential unknown categories. Since in Eq. 1 the output score of unknown category (last
dimension) will always rule other non-ground-truth categories, we call the last dimension of the
classifier head as OneRing dimension and our model as OneRing. In the experimental section, we will
show that our OneRing model trained on source data can be directly deployed to open-set recognition
and open-set single domain generalization.

3.3 TARGET ADAPTATION: ONE RING TO BIND ALL CATEGORIES WITHOUT THE SOURCE

Our source-pretrained OneRing model is empowered with the ability to recognition unknown classes
in the target domain. We further posit that it can easily be adapted to target domains where domain
shift and unknown categories exist. The key part is to rectify the wrong predictions due to the domain
shift. We propose to simply use entropy minimization, which is widely used in DA (Shu et al.,
2018; Long et al., 2018b; Liang et al., 2020a; Saito et al., 2020; Saito & Saenko, 2021), to achieve
adaptation with only a slight but indispensable modification:

Ltarget =
bs

n̂kall

Eȳi∈CsLent(p(xi)) +
bs

n̂uall

Eȳi∈CuLent(p(xi)) (2)

which is computed in the mini-batch (bs denotes batch size), and ȳi is the predicted label, n̂kall
is

the number of samples in the whole dataset which are predicted as known category Cs, n̂uall
is the

number of those predicted as unknown category Cu also in the whole dataset. Here bs
n̂kall

= Nt

n̂kall

× bs
Nt

(similar for bs
n̂uall

), where Nt = n̂kall
+ n̂uall

and Nt

n̂kall

is the reciprocal of the known/unknown
category ratio (a prior information according to the predictions). The reason to deploy these weights
is to balance the two entropy terms, and bs

Nt
is a scale factor. 2 With this simple objective, the source

model can be adapted to the target domain under domain and category shift efficiently.

Augmented with Attracting-and-Dispersing. Since our OneRing method can equip models to
efficiently detect unknown classes, it can be used as a baseline to be combined with methods in
close-set source-free DA. Here we integrate our method with a simple state-of-the-art SFDA method
Attracting-and-Dispersing (AaD) (Yang et al., 2022), note AaD can not directly tackle the open-
partial domain adaptation setting. AaD has an objective with only 2 dot product terms: Ldis for
discriminability and Ldiv for diversity, more details can be found in AaD paper. The resulting
objective is:

Ltarget+ =
bs

n̂kall

Eȳi∈Cs [Lent(p(xi)) + Ldis + Ldiv] +
bs

n̂uall

Eȳi∈Cu [Lent(p(xi)) + Ldis] (3)

2Instead of using the predictions over the whole dataset to compute known-unknown ratio, we can also use
prediction of current mini-batch for approximation (thus Nt will be replaced by bs, and similar for n̂uall and
n̂kall ), in the experiment we empirically found these two different estimation manners lead to almost the same
results.
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Table 2: Accuracy (%) on Office-31 dataset using ResNet-18. Open-set Single Domain Generaliza-
tion where |Cs| = 10, |Ct| = 21, |Cs ∩ Ct| = 10. All other results are from (Zhu & Li, 2022).

Metric ERM +CM (Zhu & Li, 2022) ADA +CM (Zhu & Li, 2022) MEADA +CM (Zhu & Li, 2022) OneRing-S
Acc 79.8 78.3 80.1 78.6 80.3 79.0 67.3

UNK 27.0 37.6 25.2 34.5 25.1 41.1 77.0
OS* 85.1 82.4 85.6 83.0 85.8 82.8 66.3
H 40.7 51.1 38.7 48.5 38.6 54.7 71.3

where we do not deploy the diversity term for samples predicted as an unknown class since there is
only one single unknown class.

4 EXPERIMENTS

Here we provide quantitative results and analyses related to open-set single domain generalization
and source-free open-partial domain adaptation, and also open-set recognition in the appendix.

4.1 DATASETS

Open-set Single Domain Generalization. For OS-SDG the model is trained on source data and
evaluated on target data containing both known and unknown categories, but here domain shift exists
between source and target domains. We use the following benchmarks just as CrossMatch (Zhu & Li,
2022): 1) Office31 (Saenko et al., 2010) has 31 classes with 3 different domains: amazon (A), dslr
(D) and webcam (W). The 10 classes shared by Office-31 and Caltech-256 (Gong et al., 2012) will
be used as source categories. Then the last 11 classes in alphabetical order along with the 10 source
categories will be used as target categories. Following CrossMatch, we only adopt A as the source
domain, since D and W contain a relatively small amount of samples. 2) Office-Home (Venkateswara
et al., 2017) has 4 domains: Artistic (A), Clip Art (C), Product (P), and Real-World (R) with 65
categories. In alphabetic order, the first 15 classes are adopted as source categories. And all classes
are used as target categories. 3) PACS (Li et al., 2017) has 4 domains: Art Paint, Cartoon, Sketch,
and Photo. It has 7 categories. Of these, 4 classes (dog, elephant, giraffe, and guitar) will be used as
source categories and all classes will be used as target categories. For Office-Home and PACS, the
model will be trained on one domain and evaluated on all remaining domains.

Source-free Univeral Domain Adaptation. For SF-OPDA, the model is trained on the source
domain first, then adapted to the target domain without access to any source data. Here both the
source and target domains have their private categories and the target domain has some unknown
categories. We evaluate our method on several benchmarks following the same setting as previous
work in UNDA (You et al., 2019; Saito et al., 2020; Saito & Saenko, 2021): 1) Office-31 shares 10
classes with Caltech-256 which will be used as the common categories. Then the next 10 classes
in alphabetical order will be source private, and the remaining classes will be target private. 2)
Office-Home The first 10 classes in alphabetical order are shared between domains, and the next 5
categories will be source private, and the remaining classes are target private. 3) VisDA (VisDA-C
2017) (Peng et al., 2017) The 6 classes out of 12 classes will be the shared categories, and source and
target domain both have 3 private classes. 4) DomainNet (Peng et al., 2019) DomainNet is one of the
largest domain adaptation benchmarks with around 0.6 million images. Following previous works,
we will use 3 domains: Painting (P), Real (R), and Sketch (S). We will use the first 150 classes as
shared categories, the next 50 classes are source private and the remaining 145 as target private. The
number of source, target and shared categories is described in the title of each Table.

4.2 MODEL DETAILS AND EVALUATION

For all setting, we directly adopt the prediction of our OneRing model, without using any extra
process for unknown category detection. To ensure fair comparison with previous methods, our
method is based on the original code released by UNDA method OVANet (Saito & Saenko, 2021)
(modified for OS-SDG and SF-OPDA).

For OS-SDG, we train our OneRing model on source with Eq. 1 and directly evaluate on the target.
For SF-OPDA, after finishing source training with Eq. 1, we will adapt the source pretrained model to
target domain without using source data. Only on the very large DomainNet under SF-OPDA setting
we found that our method had difficulties converging. Therefore, we applied a two-phase training on
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Table 3: Accuracy (%) on Office-Home using ResNet-18. Open-set Single Domain Generalization
where |Cs| = 25, |Ct| = 65, |Cs ∩ Ct| = 25. Other results are copied from (Zhu & Li, 2022).

Artistic Clipart Product Real World Average
OS* UNK H OS* UNK H OS* UNK H OS* UNK H OS* UNK H

ERM (Koltchinskii, 2011) 68.4 20.5 31.1 66.8 24.7 35.8 62.8 26.3 36.3 69.5 23.2 33.9 66.9 23.7 34.3
ERM+CM (Zhu & Li, 2022) 66.5 48.6 52.9 64.8 42.0 50.5 59.2 40.9 47.3 69.4 43.7 52.6 65.0 43.8 50.8

ADA (Volpi et al., 2018) 71.4 22.1 32.9 67.4 31.2 42.1 62.9 24.6 34.7 69.9 23.9 34.9 67.9 25.4 36.2
ADA+CM (Zhu & Li, 2022) 67.5 39.6 46.7 64.1 40.7 49.3 59.9 40.7 47.5 68.5 40.8 50.5 65.0 40.4 48.5
MEADA (Zhao et al., 2020) 71.4 22.4 33.3 66.5 31.3 42.1 62.8 25.6 35.7 69.9 23.7 34.7 67.6 25.7 36.4

MEADA+CM (Zhu & Li, 2022) 66.6 45.3 52.3 64.3 37.8 48.9 59.7 37.7 45.3 68.8 41.3 50.8 64.9 40.5 49.6
OneRing-S 58.9 68.2 63.2 57.6 69.9 63.2 52.0 69.0 59.3 58.9 69.0 63.6 56.9 69.0 62.3

Table 4: Accuracy (%) on PACS dataset using ResNet-18. Open-set Single Domain Generalization
where |Cs| = 4, |Ct| = 7, |Cs ∩ Ct| = 4. Other results are copied from (Zhu & Li, 2022).

Art Paint Cartoon Sketch Photo Average
OS* UNK H OS* UNK H OS* UNK H OS* UNK H OS* UNK H

ERM (Koltchinskii, 2011) 68.8 24.6 38.9 59.5 33.1 41.0 43.3 20.3 28.9 37.5 30.0 35.7 52.3 27.0 36.1
ERM+CM (Zhu & Li, 2022) 68.7 44.6 44.9 62.3 43.2 48.3 41.0 33.2 30.4 39.9 54.2 41.6 53.0 44.5 41.3

ADA (Volpi et al., 2018) 71.0 28.8 39.0 62.1 33.8 41.6 43.2 22.4 26.9 40.7 38.8 38.1 54.2 30.9 36.4
ADA+CM (Zhu & Li, 2022) 72.9 40.1 42.4 64.4 49.1 51.8 45.0 40.9 35.2 43.3 52.5 42.8 56.4 45.6 43.0
MEADA (Zhao et al., 2020) 70.9 28.7 38.9 62.1 33.6 41.3 43.4 22.9 26.4 39.8 40.3 38.2 54.1 31.4 36.2

MEADA+CM (Zhu & Li, 2022) 70.5 33.4 41.9 63.8 53.7 51.4 40.3 48.8 35.8 42.9 50.6 41.6 54.3 46.6 42.7
OneRing-S 57.3 38.4 46.0 56.0 50.3 53.0 25.9 86.6 39.8 35.7 22.1 27.1 43.7 49.4 41.5

Table 5: Accuracy (%) on Office-31 and VisDA dataset using ResNet-50. open-partial domain
adaptation where for Office-31: |Cs| = 20, |Ct| = 21, |Cs ∩ Ct| = 10; and for VisDA: |Cs| = 9,
|Ct| = 9, |Cs ∩Ct| = 6. The second highest H score is underlined. SF indicates whether source-free.

Office-31 SF A2W D2W W2D A2D D2A W2A Avg VisDA
OS H OS H OS H OS H OS H OS H OS H H

OSBP (Saito et al., 2018b) ✗ 66.1 50.2 73.6 55.5 85.6 57.2 72.9 51.1 47.4 49.8 60.5 50.2 67.7 52.3 27.3
UAN (You et al., 2019) ✗ 85.6 58.6 94.8 70.6 98.0 71.4 86.5 59.7 85.5 60.1 85.1 60.3 89.2 63.5 30.5
ROS (Bucci et al., 2020) ✗ - 71.3 - 94.6 - 95.3 - 71.4 - 81.0 - 81.2 - 82.1 -
CMU (Fu et al., 2020) ✗ 86.7 67.3 96.7 79.3 98.0 80.4 89.1 68.1 88.4 71.4 88.6 72.2 91.1 73.1 34.6
DCC (Li et al., 2021a) ✗ 91.7 78.5 94.5 79.3 96.2 88.6 93.7 88.5 90.4 70.2 92.0 75.9 93.1 80.2 43.0

DANCE (Saito et al., 2020) ✗ - 71.5 - 91.4 - 87.9 - 78.6 - 79.9 - 72.2 - 80.3 4.4
OVANet (Saito & Saenko, 2021) ✗ - 79.4 - 95.4 - 94.3 - 85.8 - 80.1 - 84.0 - 86.5 53.1

USFDA Kundu et al. (2020a) ✓ - 79.8 - 90.6 - 81.2 - 85.5 - 83.2 - 88.7 - 84.8 -
UMAD Liang et al. (2021b) ✓ - 77.4 - 90.7 - 97.2 - 79.1 - 87.4 - 90.4 - 87.0 58.3

OneRing-S 69.0 67.9 92.5 90.6 96.5 89.4 81.9 74.9 64.8 74.8 69.9 78.8 79.1 79.4 35.2
OneRing ✓ 78.8 83.8 94.7 95.2 97.5 96.0 86.6 85.7 82.0 85.8 81.0 84.7 86.8 88.5 60.7

OneRing+ ✓ 85.3 85.4 94.0 94.2 97.0 93.6 88.4 86.1 88.9 90.7 87.3 84.0 90.2 89.0 66.1

Table 6: H-score (%) on Office-Home dataset using ResNet-50 as backbone. open-partial domain
adaptation where |Cs| = 15, |Ct| = 60, |Cs ∩ Ct| = 10. The second highest H score is underlined.
SF indicates whether source-free.

SF A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg
OSBP (Saito et al., 2018b) ✗ 39.6 45.1 46.2 45.7 45.2 46.8 45.3 40.5 45.8 45.1 41.6 46.9 44.5

UAN (You et al., 2019) ✗ 51.6 51.7 54.3 61.7 57.6 61.9 50.4 47.6 61.5 62.9 52.6 65.2 56.6
CMU (Fu et al., 2020) ✗ 56.0 56.9 59.1 66.9 64.2 67.8 54.7 51.0 66.3 68.2 57.8 69.7 61.6
DCC (Li et al., 2021a) ✗ 58.0 54.1 58.0 74.6 70.6 77.5 64.3 73.6 74.9 81.0 75.1 80.4 70.2

DANCE (Saito et al., 2020) ✗ - - - - - - - - - - - - 49.2
OVANet (Saito & Saenko, 2021) ✗ 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8

UMAD (Liang et al., 2021b) ✓ 61.1 76.3 82.7 70.7 67.7 75.7 64.4 55.7 76.3 73.2 60.4 77.2 70.1
OneRing-S 55.7 72.4 79.6 64.6 65.3 74.6 65.9 51.5 77.9 72.1 57.8 75.0 67.7
OneRing ✓ 63.3 72.4 81.0 68.8 67.2 74.6 73.3 60.8 80.9 78.1 63.9 76.7 71.8

OneRing+ ✓ 69.5 81.4 87.9 73.2 77.9 82.4 81.5 68.6 88.1 81.1 70.5 85.7 79.0

the source data. In the first phase, we train with the standard CE loss. Then after convergence, we
add the second CE loss for a few epochs. For all experiments under SF-OPDA setting, the OneRing
classifier is fixed during target adaptation. When augmented with AaD (Yang et al., 2022), we set
the hyperparameter K in Ldis same as AaD, and β in Ldiv as 1. We use the predictions in current
mini-batch to estimate the known/unknown ratio in Eq. 2, since it does not require access to the whole
dataset, and we show it achieves similar results as using the one over whole dataset in Tab. 9 in the
appendix.
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Table 7: H-score (%) on DomainNet using ResNet-50 as backbone. open-partial domain adapta-
tion where |Cs| = 200, |Ct| = 295, |Cs ∩ Ct| = 150. The second highest H score is underlined. SF
indicates whether source-free.

Method SF P2R R2P P2S S2P R2S S2R Avg
OSBP (Saito et al., 2018b) ✗ 33.6 33.0 30.6 30.5 30.6 33.7 32.0
DANCE (Saito et al., 2020) ✗ 21.0 47.3 37.0 27.7 46.7 21.0 33.5

UAN (You et al., 2019) ✗ 41.9 43.6 39.1 38.9 38.7 43.7 41.0
CMU (Fu et al., 2020) ✗ 50.8 52.2 45.1 44.8 45.6 51.0 48.3
DCC (Li et al., 2021a) ✗ 56.9 50.3 43.7 44.9 43.3 56.2 49.2

OVANet (Saito & Saenko, 2021) ✗ 56.0 51.7 47.1 47.4 44.9 57.2 50.7
UMAD Liang et al. (2021b) ✓ 59.0 50.1 44.3 32.0 42.1 55.3 47.1

OneRing-S 59.1 42.9 43.8 35.5 39.5 52.9 45.6
OneRing ✓ 57.9 52.0 46.5 49.6 44.1 57.8 51.3

Figure 3: (Left) H value of our source model and entropy based rejection on A2C of Office-Home.
t-SNE visualization of features with either only source known categories (Middle) or also with 10
source extra unknown categories (Right) from source model on Artistic of Office-Home, where the
cross is the class prototype. The red denotes known classes while other for unknown class.

Figure 2: H value of open-partial domain adap-
tation on Office-Home. We vary the number of
unknown classes as shown in the x axis. Here
’ours’ denotes OneRing without being augmented
with AaD, OVANet and ROS demand source data.

For OS-SDG, we will report average per-class
accuracy over known categories (OS∗), un-
known class accuracy (UNK) and harmonic
mean (H) between OS∗ and UNK. For SF-
OPDA, we will mainly report the harmonic
mean, as all previous methods did, and also the
average per-class accuracy over all categories
(OS) on Office-31. Note for OS-SDG and SF-
OPDA, the model is expected to have high per-
formance on both known and unknown accuracy,
which should result in a high harmonic mean
(H). As pointed out by ROS (Bucci et al., 2020),
OS is not a reasonable evaluation metric and
can be quite high even when UNK is 0, since
OS= |Cs|

|Cs|+1×OS∗+ 1
|Cs|+1×UNK. In the following tables, we will denote our model trained with

only source data as OneRing-S, model after target adaptation as OneRing, and model augmented
with AaD after target adaptation as One Ring+.

4.3 QUANTITATIVE RESULTS

Open-set Single Domain Generalization. In Tab. 2-4, we show the results of our source model
OneRing-S on Office-31, Office-Home and PACS. ERM (Koltchinskii, 2011), ADA (Volpi et al., 2018)
and MEADA (Zhao et al., 2020) are methods originally designed for typical domain generalization,
CrossMatch (CM) (Zhu & Li, 2022) is plugged into these methods which empower them with the
ability to detect unknown classes in the target domain with several complex modules, as well as
generating unknown samples. While our OneRing-S is elegantly simple, the results show it can better
detect open classes under domain shift compared to CM. Note, we have no module specifically for
DG in OneRing-S. The fact that OneRing-S has better performance proves the efficacy of our method.

Source-free open-partial domain adaptation In Tab. 5-7, we show the results under open-partial
DA setting where SF column indicates whether source-free. Note that our method does not need
source data during target adaptation. As shown in the tables, our source model (One Ring-S) already
achieves decent H performance. The simple OneRing with only entropy minimization already

8
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outperforms all other methods on all 4 benchmarks, adding AaD (Yang et al., 2022) into method as
shown in Eq. 3 (OneRing+) can further improve the results significantly, leading to 0.5%, 5.4% and
7.2% improvement on Office-31, VisDA and Office-Home respectively, and it surpasses the current
state-of-the-art OVANet by by 2.5%, 7.2% and 13% on these 3 benchmarks respectively.

4.4 ANALYSIS

Compare One Ring with entropy based unknown rejection. We also show the results with
entropy based unknown rejection, where a sample is predicted as unknown if the entropy (maximal
normalized) of the prediction (with normal classifier head) is higher than a manually set threshold.
Fig. 3 (left) shows the H value of source pretrained model on A2C task of Office-Home under
open-partial DA setting, where the x axis denotes the threshold. Our source model gets better results
without any extra effort.

Figure 4: Results on PACS (OS-SDG), with differ-
ent weight factors applied to the normal CE loss.

Trade-off between 2 CE losses. In this paper,
we show results where the two CE losses have
equal weight, and hence our method does not
have any hyperparameter. However, in Eq. 1, we
can also multiply a weight factor to the standard
CE loss as a trade-off. Intuitively, a smaller fac-
tor to the standard CE loss gives more weight to
unknown-class recognition and vice verse. The
results under OS-SDG setting in Fig. 4 verify
this , where the x axis denotes the weight factor
multiplied to the standard CE loss. As can be
seen, this trade-off can be used to further im-

prove results. However, for the sake of simplicity, and given the already good results, we choose not
to optimize this parameter.

Visualization of features and class prototypes. In Fig. 3 (Middle), we visualize the source features
and class prototypes (weights of OneRing classifier) from source model with t-SNE. The prototype of
the unknown category is in the corner with no source features around it. In Fig. 3 (Right), we further
visualize 10 extra unknown classes. It shows that those features of unknown categories will not
cluster around any of the known classes, but they are close to the unknown prototype. This implies
that the OneRing model can efficiently distinguish known and unknown categories.

Importance of weight in entropy minimization. We ablate the weights in entropy minimization
in Eq. 2. If removing weights, the OS*, UNK and H on R2C (Office-Home) will decrease from
57.8/71.6/63.9 to 19.2/97.8/32.1 respectively, showing the deployed weights are important and
effective to balance the two terms in Eq. 2.

Robustness to amount of unknown categories. In Fig. 2, we compare our source-free OneRing
(without being augmented with AaD) to ROS (Bucci et al., 2020) and OVANet (Saito & Saenko,
2021) under UNDA setting with different amount of unknown categories from target domain. The
results show that our method is robust to the amount of unknown categories.

5 CONCLUSION

In this paper, we first introduce a simple method with the proposed OneRing classifier head, it
possesses strong ability to detect unknown categories from target data even no matter without or with
domain shift after training with two simple cross entropy losses. Then, we further adapt the model to
the target domain which contains unknown categories, with only weighted entropy minimization and
no access to source data. In the experiment, we show that our method achieves good performance on
open-set single domain generalization and source-free open-partial domain adaptation, which proves
the effectiveness of our method.
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REPRODUCIBILITY STATEMENT

We will release our code if accepted. The code is based on pytorch 1.3 with cuda 10.0, and the results
of the submission can be reproduced with the code, with the random seed as 2021 or 2022.

REFERENCES

Silvia Bucci, Mohammad Reza Loghmani, and Tatiana Tommasi. On the effectiveness of image
rotation for open set domain adaptation. In ECCV, pp. 422–438. Springer, 2020.

Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial adversarial domain adaptation.
In ECCV, pp. 135–150, 2018.

Zhangjie Cao, Kaichao You, Mingsheng Long, Jianmin Wang, and Qiang Yang. Learning to transfer
examples for partial domain adaptation. In CVPR, pp. 2985–2994, 2019.

Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia Li, Tiejun Huang, Shiliang Pu, and
Yonghong Tian. Learning open set network with discriminative reciprocal points. In ECCV, 2020.

Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian. Adversarial reciprocal points
learning for open set recognition. IEEE TPAMI, 2021.

Safa Cicek and Stefano Soatto. Unsupervised domain adaptation via regularized conditional alignment.
In ICCV, pp. 1416–1425, 2019.

Shuhao Cui, Shuhui Wang, Junbao Zhuo, Liang Li, Qingming Huang, and Qi Tian. Towards
discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations.
CVPR, 2020.

Zhijie Deng, Yucen Luo, and Jun Zhu. Cluster alignment with a teacher for unsupervised domain
adaptation. In ICCV, pp. 9944–9953, 2019.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization
via model-agnostic learning of semantic features. NeurIPS, 32, 2019.

Xinjie Fan, Qifei Wang, Junjie Ke, Feng Yang, Boqing Gong, and Mingyuan Zhou. Adversarially
adaptive normalization for single domain generalization. In CVPR, pp. 8208–8217, 2021.

Qianyu Feng, Guoliang Kang, Hehe Fan, and Yi Yang. Attract or distract: Exploit the margin of open
set. In ICCV, pp. 7990–7999, 2019.

Zeyu Feng, Chang Xu, and Dacheng Tao. Open-set hypothesis transfer with semantic consistency.
IEEE Transactions on Image Processing, 30:6473–6484, 2021.

Bo Fu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang. Learning to detect open classes for
universal domain adaptation. In ECCV, pp. 567–583. Springer, 2020.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
JMLR, 17(1):2096–2030, 2016.

Zongyuan Ge, Sergey Demyanov, and Rahil Garnavi. Generative openmax for multi-class open set
classification. In BMVC, 2017.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
domain adaptation. In CVPR, pp. 2066–2073. IEEE, 2012.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. ICLR, 2021.

Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. Model adaptation: Historical contrastive
learning for unsupervised domain adaptation without source data. NeurIPS, 34, 2021.

Taotao Jing, Hongfu Liu, and Zhengming Ding. Towards novel target discovery through open-set
domain adaptation. In ICCV, pp. 9322–9331, 2021.

10



Under review as a conference paper at ICLR 2023

Vladimir Koltchinskii. Oracle inequalities in empirical risk minimization and sparse recovery
problems: École D’Été de Probabilités de Saint-Flour XXXVIII-2008, volume 2033. Springer
Science & Business Media, 2011.

Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. ICCV,
2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Jogendra Nath Kundu, Naveen Venkat, and R Venkatesh Babu. Universal source-free domain
adaptation. CVPR, 2020a.

Jogendra Nath Kundu, Naveen Venkat, Ambareesh Revanur, R Venkatesh Babu, et al. Towards
inheritable models for open-set domain adaptation. In CVPR, pp. 12376–12385, 2020b.

Chen-Yu Lee, Tanmay Batra, Mohammad Haris Baig, and Daniel Ulbricht. Sliced wasserstein
discrepancy for unsupervised domain adaptation. In CVPR, pp. 10285–10295, 2019.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In ICCV, pp. 5542–5550, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to generalize: Meta-
learning for domain generalization. In AAAI, 2018.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales. Episodic
training for domain generalization. In ICCV, pp. 1446–1455, 2019.

Guangrui Li, Guoliang Kang, Yi Zhu, Yunchao Wei, and Yi Yang. Domain consensus clustering for
universal domain adaptation. In CVPR, pp. 9757–9766, 2021a.

Lei Li, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xiaoyue Mi, Zhengze Yu, Xiaoya Li, and
Boyang Xia. Progressive domain expansion network for single domain generalization. In CVPR,
pp. 224–233, 2021b.

Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model adaptation: Unsupervised
domain adaptation without source data. In CVPR, pp. 9641–9650, 2020.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. ICML, 2020a.

Jian Liang, Yunbo Wang, Dapeng Hu, Ran He, and Jiashi Feng. A balanced and uncertainty-aware
approach for partial domain adaptation. In ECCV, pp. 123–140. Springer, 2020b.

Jian Liang, Dapeng Hu, and Jiashi Feng. Domain adaptation with auxiliary target domain-oriented
classifier. In CVPR, pp. 16632–16642, 2021a.

Jian Liang, Dapeng Hu, Jiashi Feng, and Ran He. Umad: Universal model adaptation under domain
and category shift. arXiv preprint arXiv:2112.08553, 2021b.

Hong Liu, Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Qiang Yang. Separate to adapt: Open
set domain adaptation via progressive separation. In CVPR, pp. 2927–2936, 2019.

Hong Liu, Jianmin Wang, and Mingsheng Long. Cycle self-training for domain adaptation. In
NeurIPS, 2021.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features with
deep adaptation networks. ICML, 2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Unsupervised domain adaptation
with residual transfer networks. In NIPS, pp. 136–144, 2016.

Mingsheng Long, Yue Cao, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Transferable
representation learning with deep adaptation networks. TPAMI, 41(12):3071–3085, 2018a.

11



Under review as a conference paper at ICLR 2023

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In NIPS, pp. 1647–1657, 2018b.

Zhihe Lu, Yongxin Yang, Xiatian Zhu, Cong Liu, Yi-Zhe Song, and Tao Xiang. Stochastic classifiers
for unsupervised domain adaptation. In CVPR, pp. 9111–9120, 2020.

Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
with counterfactual images. In ECCV, 2018a.

Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
with counterfactual images. In ECCV, pp. 613–628, 2018b.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

Yingwei Pan, Ting Yao, Yehao Li, Chong-Wah Ngo, and Tao Mei. Exploring category-agnostic
clusters for open-set domain adaptation. In CVPR, pp. 13867–13875, 2020.

Pau Panareda Busto and Juergen Gall. Open set domain adaptation. In ICCV, pp. 754–763, 2017.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda:
The visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In ICCV, pp. 1406–1415, 2019.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In CVPR,
pp. 12556–12565, 2020.

Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization.
NeurIPS, 34:20210–20229, 2021.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In ECCV, pp. 213–226. Springer, 2010.

Kuniaki Saito and Kate Saenko. Ovanet: One-vs-all network for universal domain adaptation. In
ICCV, pp. 9000–9009, 2021.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier
discrepancy for unsupervised domain adaptation. In CVPR, pp. 3723–3732, 2018a.

Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open set domain adaptation
by backpropagation. In ECCV, pp. 153–168, 2018b.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate Saenko. Universal domain adaptation through
self supervision. NeurIPS, 33, 2020.

Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel
Synnaeve. Gradient matching for domain generalization. ICLR, 2022.

Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain
adaptation. ICLR, 2018.

Yang Shu, Zhangjie Cao, Chenyu Wang, Jianmin Wang, and Mingsheng Long. Open domain
generalization with domain-augmented meta-learning. In CVPR, pp. 9624–9633, 2021.

Yu Shu, Yemin Shi, Yaowei Wang, Tiejun Huang, and Yonghong Tian. P-odn: Prototype-based open
deep network for open set recognition. Scientific Reports, 2020.

Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation. In
AAAI, 2016.

Xin Sun, Zhenning Yang, Chi Zhang, Guohao Peng, and Keck-Voon Ling. Conditional gaussian
distribution learning for open set recognition. In CVPR, 2020.

12



Under review as a conference paper at ICLR 2023

Hui Tang, Ke Chen, and Kui Jia. Unsupervised domain adaptation via structurally regularized deep
clustering. In CVPR, pp. 8725–8735, 2020.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In CVPR, pp. 7167–7176, 2017.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good closed-
set classifier is all you need. In ICLR, 2022. URL https://openreview.net/forum?id=
5hLP5JY9S2d.

Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation of
domain generalization with empirical risk minimizers. NeurIPS, 34, 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In CVPR, pp. 5018–5027, 2017.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. NeurIPS, 31, 2018.

Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. Learning to diversify
for single domain generalization. In ICCV, pp. 834–843, 2021.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In CVPR, pp. 3733–3742, 2018.

Haifeng Xia, Handong Zhao, and Zhengming Ding. Adaptive adversarial network for source-free
domain adaptation. In ICCV, pp. 9010–9019, 2021.

Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui. Unsupervised
domain adaptation without source data by casting a bait. arXiv preprint arXiv:2010.12427, 2020.

Shiqi Yang, Joost van de Weijer, Luis Herranz, Shangling Jui, et al. Exploiting the intrinsic neighbor-
hood structure for source-free domain adaptation. NeurIPS, 34, 2021a.

Shiqi Yang, Yaxing Wang, Joost van de Weijer, Luis Herranz, and Shangling Jui. Generalized
source-free domain adaptation. In ICCV, pp. 8978–8987, 2021b.

Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, and Joost van de Weijer. Attracting and
dispersing: A simple approach for source-free domain adaptation. arXiv preprint arXiv:2205.04183,
2022.

Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Universal
domain adaptation. In CVPR, pp. 2720–2729, 2019.

Hongjie Zhang, Ang Li, Jie Guo, and Yanwen Guo. Hybrid models for open set recognition. In
ECCV, pp. 102–117. Springer, 2020.

Yabin Zhang, Hui Tang, Kui Jia, and Mingkui Tan. Domain-symmetric networks for adversarial
domain adaptation. In CVPR, pp. 5031–5040, 2019.

Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data augmenta-
tion for improved generalization and robustness. NeurIPS, 33:14435–14447, 2020.

Da-Wei Zhou, Han-Jia Ye, and De-Chuan Zhan. Learning placeholders for open-set recognition. In
CVPR, pp. 4401–4410, 2021a.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
domains for domain generalization. In ECCV, pp. 561–578. Springer, 2020.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. ICLR,
2021b.

Ronghang Zhu and Sheng Li. Crossmatch: Cross-classifier consistency regularization for open-set
single domain generalization. In ICLR, 2022.

13

https://openreview.net/forum?id=5hLP5JY9S2d
https://openreview.net/forum?id=5hLP5JY9S2d


Under review as a conference paper at ICLR 2023

Table 8: Results of Open-set Recognition task. All results indicate the area under the Receiver-
Operator curve (AUROC) averaged over five ‘known/unknown’ class splits. All methods are
augmented with improved optimization strategies from (Vaze et al., 2022). Results are taken from
(Vaze et al., 2022).

Method SVHN CIFAR10 CIFAR + 10 CIFAR + 50

OSRCI (Neal et al., 2018b) 89.9 87.2 91.1 90.3
(ARPL + CS) (Chen et al., 2021) 96.8 93.9 98.1 96.7

MSP (Vaze et al., 2022) 96.0 90.1 95.6 94.0
MLS (Vaze et al., 2022) 97.1 93.6 97.9 96.5

OneRing-S 97.3 93.7 97.8 96.2

A APPENDIX

Open-set Recognition. We also evaluate on open-set recognition to further show the generalization
ability of our method, where the model is trained on the source data and directly tested on the target
data containing unknown classes. We use the following benchmarks to evaluate our method with
the same setting as (Vaze et al., 2022): 1) SVHN (Netzer et al., 2011) contains 10 street-view house
numbers respectively. 2) CIFAR10 (Krizhevsky et al., 2009) consists of natural images of 10 classes
covering animals and vehicles. For these benchmarks, the model will be trained on 6 out of 10
categories and evaluated on the remaining 4 classes . 3) CIFAR + N (Krizhevsky et al., 2009) is an
extension of CIFAR10. Here, methods are trained on 4 classes from CIFAR10 and evaluated on N
classes from CIFAR100, where N is set to 10 or 50 classes . We will report AUROC to quantify the
open class detection performance. All results are the average of three random runs, except for OSR
which we only run once under 5 different splitting.

Even though in this paper our focus is on open-set recognition under domain shift, we also include
results for OSR (which does not include any domain shift) in Tab. 8. All methods in the table use
the same training tricks to improve the source performance including learning rate decay, warmup,
label smoothing and more data augmentations, which are proposed in (Vaze et al., 2022). Note
OSRCI (Neal et al., 2018b) and ARPL+CS (Chen et al., 2021) are complex methods which either
need to generate open-set samples or learn extra reciprocal points. The results show that our source
model OneRing-S can work quite well on OSR task without any extra learning process, indicating
good generalization ability. It is important to observe that we do not have any hyperparameter.

Table 9: H-score (%) on Office-Home dataset using ResNet-50 as backbone. open-partial domain
adaptation where |Cs| = 15, |Ct| = 60, |Cs ∩ Ct| = 10. The second highest H score is underlined.
SF indicates whether source-free. * indicates using predictions over the whole dataset instead of
mini-batch in Eq. 2.

SF A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P Avg
OVANet (Saito & Saenko, 2021) ✗ 62.8 75.6 78.6 70.7 68.8 75.0 71.3 58.6 80.5 76.1 64.1 78.9 71.8

OneRing-S 55.7 72.4 79.6 64.6 65.3 74.6 65.9 51.5 77.9 72.1 57.8 75.0 67.7
OneRing ✓ 63.3 72.4 81.0 68.8 67.2 74.6 73.3 60.8 80.9 78.1 63.9 76.7 71.8

OneRing* ✓ 60.9 72.1 80.9 67.7 66.0 73.7 73.1 60.4 81.4 77.7 63.4 78.2 71.3
OneRing+ ✓ 69.5 81.4 87.9 73.2 77.9 82.4 81.5 68.6 88.1 81.1 70.5 85.7 79.0
OneRing*+ ✓ 70.1 82.5 88.9 75.1 80.1 83.0 82.5 64.6 89.3 81.0 66.4 86.0 79.1

Known/unknown ratio estimation through mini-batch or whole dataset. In Eq. 2, we have two
choice to estimate the known/unknown ratio, which will be utilized to balance the 2 entropy terms.
In Tab. 9, we show that these 2 different manners lead to almost the same results. Though there
may exist some imbalance mini-batches which only contain few samples predicted as known or
unknown, the results imply that the known/unknown ratio estimated by the mini-batch is enough to
achieve decent performance. Note the Office-Home here is not a well balance (amount of samples
per category) dataset, and also in the target domain the unknown categories (50) are much more than
known (10).

Ablation study of the weight in entropy minimization. In Tab. 10, we show OS*, UNK, OS and H
to ablate the effectiveness of the weight in Eq. 2. The results show that the weight it important to
achieve high known accuracy OS*.
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Table 10: Ablation study (R2C of Office-Home) on the proposed weight in the weighted entropy
minimization. Results of OVANet are from our running based on their official code.

R2C OS* UNK OS H
OVANet Saito & Saenko (2021) 55.1 70.0 56.5 61.7

w/o weight in Eq.2 19.2 97.8 26.3 32.1
w/ weight in Eq.2 (OneRing) 57.8 71.6 59.1 63.9

+ AaD (OneRing+) 61.5 82.7 63.4 70.5

Table 11: Open-partial DA on VisDA, results of OVANet are from our running based on their code.

VisDA source-free OS* UNK OS H
OVANet Saito & Saenko (2021) ✗ 60.5 46.4 58.5 52.5

OneRing-S 25.7 55.9 30.0 35.2
OneRing ✓ 57.2 64.6 58.3 60.7

OneRing+ ✓ 65.5 66.8 65.7 66.1

Table 12: Open-set DA on Office-31 (VGG19), results (H) except ours are from OVANet.

ODA/UnDA methods source-free A2D A2W D2A D2W W2D W2A Avg
OSBP ✗ 81.0 77.5 78.2 95.0 91.0 72.9 82.6
ROS ✗ 79.0 81.0 78.1 94.4 99.7 74.1 84.4

OVANet ✗ 89.5 84.9 89.7 93.7 85.8 88.5 88.7
OneRing ✓ 91.0 84.5 90.1 96.0 93.7 90.1 90.9

Table 13: Closed-set DA on Office-31 (ResNet50), results (accuracy) except ours are from DANCE,
and results of OVANet are from our running based on their official code.

UNDA methods source-free A2W D2W W2D A2D D2A W2A Avg
ETN ✗ 87.9 99.2 100 88.4 68.7 66.8 85.2
STA ✗ 77.1 90.7 98.1 75.5 51.4 48.9 73.6
UAN ✗ 86.5 97.0 100 84.5 69.6 68.7 84.4

DANCE ✗ 88.6 97.5 100 89.4 69.5 68.2 85.5
OVANet ✗ 88.1 97.0 99.1 88.6 68.8 67.0 84.8
OneRing ✓ 89.0 97.3 100 89.0 70.1 68.5 85.7

Table 14: Accuracy (%) on open-partial DA.

Office-Home
Ar → Cl Ar → Pr Ar → Rw Cl→ Ar Cl → Pr Cl → Rw

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
OneRing-S 42.9 79.3 55.7 75.7 69.5 72.4 91.7 70.3 79.6 52.9 82.1 64.4 60.0 71.7 65.3 75.2 74.0 74.6
OneRing 54.1 73.9 62.5 78.5 69.8 73.9 93.3 72.5 81.6 65.9 73.0 69.3 67.5 66.1 66.8 80.0 69.0 74.1

OneRing+ 58.5 84.4 69.1 78.3 84.8 81.4 92.6 84.4 88.3 62.7 88.2 73.3 72.1 86.3 78.6 80.4 86.0 83.1
Pr → Ar Pr → Cl Pr → Rw Rw→ Ar Rw → Cl Rw → Pr

OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS OS* UNK HOS
OneRing-S 55.9 80.2 65.9 38.6 77.1 51.5 86.9 70.5 77.9 70.4 73.9 72.1 46.6 76.0 57.8 82.6 68.7 75.0
OneRing 73.1 73.2 73.1 52.8 70.2 60.3 91.6 73.4 81.5 77.9 78.1 78.0 57.7 70.2 63.4 88.2 70.3 78.2

OneRing+ 77.4 86.7 82.2 58.3 82.3 68.3 92.2 84.7 88.3 76.5 86.2 81.1 61.5 82.7 70.5 86.9 85.4 86.1

Table 15: Results of OneRing with different number of unknown categories on R2A of Office-Home.

R2A, shared classes = 10 (OS*/UNK/H) OneRing
unknown classes = 5 77.3/84.4/80.7

unknown classes = 10 84.4/81.1/82.7
unknown classes = 50 77.9/78.1/78.0

Table 16: Results of OneRing with different number of unknown categories on C2A of Office-Home.

C2A, shared classes = 10 (OS*/UNK/H) OneRing
unknown classes = 5 65.6/82.8/73.2

unknown classes = 10 72.1/80.3/76.0
unknown classes = 50 65.9/73.0/69.3
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Results with OS*, UNK and H on open-partial DA. In Tab. 11, we report OS*, UNK, OS and H on
VisDA under open-partial DA, we outperform OVANet on the metrics of both OS and H.

Results on open-set DA. In Tab. 12, we report the results of several open-set or open-partial DA
methods under open-set DA. Our method still get the best performance.

Results on closed-set DA In Tab. 13, we report the results of several UNDA methods under closed-set
DA, our method is still superior to other methods.

OS*, UNK, H on Office-Home. In Tab. 14, we report the detailed results of our method under
open-partial DA (the H may not be exactly the same as Tab. 6 in the submission, which is the average
over three random run as mentioned in the paper details). As shown in the table, we can conclude
that OneRing clearly has higher known accuracy compared to the source model (OneRing-S). After
augmented with AaD, OneRing+ can get even higher known and unknown accuracy.

Detailed results with different number of unknown categories. In Tab. 15 and Tab. 16, we show
the detailed results when the amount of unknown categories vary, the results are corresponding to
Fig. 2.
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