
Federated Learning under Distributed Concept Drift

Ellango Jothimurugesan
Carnegie Mellon University
ejothimu@cs.cmu.edu

Kevin Hsieh
Microsoft Research

kevin.hsieh@microsoft.com

Jianyu Wang
Carnegie Mellon University
jianyuw1@andrew.cmu.edu

Gauri Joshi
Carnegie Mellon University
gaurij@andrew.cmu.edu

Phillip B. Gibbons
Carnegie Mellon University
gibbons@cs.cmu.edu

Abstract

Federated Learning (FL) under distributed concept drift is a largely unexplored
area. Although concept drift is itself a well-studied phenomenon, it poses particular
challenges for FL, because drifts arise staggered in time and space (across clients).
Our work is the first to explicitly study data heterogeneity in both dimensions. We
first demonstrate that prior solutions to drift adaptation, with their single global
model, are ill-suited to staggered drifts, necessitating multiple-model solutions. We
identify the problem of drift adaptation as a time-varying clustering problem, and
we propose two new clustering algorithms for reacting to drifts based on local drift
detection and hierarchical clustering. Empirical evaluation shows that our solutions
achieve significantly higher accuracy than existing baselines, and are comparable
to an idealized algorithm with oracle knowledge of the ground-truth clustering of
clients to concepts at each time step.

1 Introduction

Federated learning (FL) [25, 31] is a popular machine learning (ML) paradigm that enables collabora-
tive training without sharing raw training data. FL is crucial in the era of pervasive computing, where
massive IoT and mobile phones continuously generate relevant ML data that cannot be easily shared
due to privacy and communication constraints. Existing FL solutions generally assume the training
data comes from a stable underlying distribution, and the training data in the past is sufficiently similar
to the test data in the future. This assumption is often violated in the real world, where the underlying
data distribution is non-stationary and constantly evolves. For instance, user sentiment and preference
change drastically due to external environments such as the pandemic and macroeconomics [14, 24].
Data collected by cameras are also subject to various data changes such as unexpected weather and
novel objects, which can lead to significant ML model performance losses [2, 38].

This concept drift problem [42] in streaming data has been studied extensively in a centralized
learning environment [13, 39]. These centralized solutions, however, cannot address the fundamental
challenges of concept drifts in FL where data is heterogeneous over time and across different clients.
When different clients experience the data drift at different times, no single global model can perform
well for all clients. Similarly, when multiple concepts exist simultaneously, no centralized training
decision works well for all clients. Several recent works have recognized the problem of FL under
concept drift and proposed solutions that adapt learning rates or add regularization terms [8, 9, 17, 29].
Although these solutions perform better than drift-oblivious algorithms such as FedAvg [31], the
solutions still use a single global model for all clients, and hence fail to address the aforementioned
fundamental challenges of heterogeneity over time and across clients.

Workshop on Distribution Shifts, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

A A A A A B B B B B

time

cl
ie
n
ts

A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A

A A A A A B B B B B

A A A A A B B B B B

time

cl
ie
n
ts

Figure 1: Simplistic drifts studied in prior work.
(left) Simultaneous timing. (right) One majority
concept.

A A A B B B B B B B

A A A B B B B B B B

A A A A B B B B B B

A A A A B B B B B B

A A A A B B B B B B

A A A A A B B B B B

A A A A A A B B B B

A A A A A A B B B B

A A A A A A A A B B

A A A A A A A A B B

time

cl
ie
n
ts

Figure 2: Distributed
drift pattern (2 con-
cepts).

A A B B C C C D D A

A A B B C C D D A A

A A B B B C C C D D

A A C C B B B D D D

A A C C C C B B D D

A A C C C D D D B B

A A A A C C D D D C

A A A A B B B C C C

A A A D D D D B B C

A A A A A A D D D D

time

cl
ie
n
ts

Figure 3: Distributed
drift pattern (4 con-
cepts).

We present the first FL solution that employs multiple models to address FL under distributed concept
drift. Our solution aims to create one model for each new concept so that all clients under the same
concept can train that model collaboratively, similar to what is done for personalized or clustered
FL [11, 15, 16, 30, 35]. We introduce two new algorithms for client clustering to addresses the
challenges of distributed concept drift. Our first algorithm, FedDrift-Eager, is a specialized algorithm
that creates models based on drift detection. FedDrift-Eager is effective if new concepts are introduced
one at a time. Our second algorithm, FedDrift, is a general algorithm that isolates drifted clients
and conservatively merges clients via hierarchical clustering, so that FedDrift can effectively handle
general cases where an unknown number of new concepts emerge simultaneously.

We empirically evaluate our solution, comparing against state-of-the-art centralized concept drift
solutions (KUE [6] and DriftSurf [39]) and a recent FL solution that adapts to concept drifts (Adaptive-
FedAvg [7]). Our results show that (i) FedDrift-Eager and FedDrift consistently achieve much higher
and more stable model accuracy than existing baselines (average accuracy 93% vs. 88% for the best
baseline, across six dataset/drift combinations); (ii) FedDrift performs much better than FedDrift-
Eager when multiple new concepts are introduced at the same time; and (iii) our solution achieves a
similar model accuracy as Oracle (94% accuracy), an idealized algorithm that knows the timing and
distribution of concept drifts. On the real-world drift in the FMoW dataset [24], FedDrift achieves
64% accuracy vs. 58% accuracy for the best baseline.

2 Problem Setup

We consider a FL setting with P clients, assumed to be stateful and participating at each round, and a
central server that coordinates training across the clients. Training data are decentralized and arriving
over time. The data S

(t)
c at each client c = 1, 2, . . . , P and each time t = 1, 2, . . . are sampled from

a distribution (concept) P(t)
c (x, y). We consider that data may be non-IID in two dimensions, varying

across clients and time. We say that there is a concept drift at time t and at client c if P(t)
c ̸= P(t−1)

c .

The multiple-model FL problem is to learn a set of global models, and a time-varying clustering of
clients. For notation, we denote the global models as hm for m ∈ [M ], where M is the number of
models at a given time (and can vary over time). We denote the cluster identities by one-hot vectors
w

(t)
c , where w

(t)
c,m = 1 when the client c at time t uses model hm for inference; we denote h

w
(t)
c

to

represent the unique model hm where w
(t)
c,m = 1. The objective is to minimize over all time t,

P∑
c=1

E
(x,y)∼P(t)

c

[ℓ(h
w

(t)
c
(x), y)]. (1)

In presenting our multiple-model solution, we assume that there is one concept and one model at
time 1, and show in §4 how to learn the cluster identities w(τ)

c for each time τ > 1 as new data arrive.
Given the cluster identities, learning the set of global models from the clients’ data is by continuously
retraining via FedAvg [31] within each cluster, which is described precisely in Appendix B.

3 Motivation

The prior work on drift adaptation in FL has considered only restrictive settings such as (i) drifts
occurring simultaneously in time (e.g., Figure 1(left)), where a centralized approach works well [7],

2



or (ii) drifts with only minor deviations from a majority concept (e.g., Figure 1(right)), where updates
from drifting clients are suppressed and the minority concept goes unlearned [9, 29]. Our work is the
first to explicitly study the more general settings arising in distributed drifts, with heterogeneous data
across clients and over time.

Consider the distributed drift pattern depicted in Figure 2. This is representative of an emerging
trend (e.g., a breaking news event) that effects different clients at different times (e.g., due to their
lag in learning of the news). For example, consider a next word prediction app in the period when
“war” emerges as the popular next word after “Ukraine” or “slap” emerges after “Will Smith”. Even
for this simple case of a single staggered transition between two concepts, prior work results in
significant accuracy loss. In particular, their use of a single global model (and at best a single global
drift detection test) results in poor accuracy during the transition period (time steps 4–8 in Figure 2,
see Figure 5(left) in §5). We also consider more challenging cases, as depicted in Figure 3, where
multiple concepts emerge at the same time and concept drifts may be recurring (a.k.a. periodic).

<2010 2010 2011 2012 2013 2014 2015 2016 2017
Year

0.0

0.2

0.4

0.6

0.8

1.0

Cl
as

s F
re

qu
en

cy

Global

<2010 2010 2011 2012 2013 2014 2015 2016 2017
Year

Africa

crop field
military facility
place of worship
swimming pool

educational institution
multi-unit residential
recreational facility

ground transportation
parking lot or garage
single-unit residential

Figure 4: Class distribution over time in FMoW.
The drift viewed globally (left) is small relative to
the localized drift for Africa (right).

To demonstrate the challenge of distributed drift
in real-world data, we consider the Functional
Map of the World (FMoW) dataset adapted from
the WILDS benchmark [10, 24]. The task is to
classify the building type or land use from a
satellite image, where images are over 5 major
geographical regions (Africa, Americas, Asia,
Europe, and Oceania) and across 16 years. Con-
cept drift due to human activity and environ-
mental processes degrades predictive accuracy
over time. For the 10 most common classes, Fig-
ure 4 shows how the class distribution in Africa
changes more rapidly over time, such as a re-
duction in places of worship and an increase in
single-unit residential buildings. However, the
class distribution viewed globally is relatively
slow-changing. Our evaluation shows that the model trained on the global dataset only achieves 48%
accuracy on Africa after the major drift at 2014, compared to 66% on the rest of the world. This
real-world example highlights the necessity to mitigate concept drift differently across regions, and
existing centralized solutions cannot address this fundamental challenge.

4 Clustering Algorithms

In §4.1 we handle the case where only one new concept emerges at a time. Then in §4.2 we give an
algorithm that handles the general case where multiple new concepts may emerge simultaneously.

4.1 Special Case: One New Concept at a Time

When a new concept emerges, the clients that observe the drift should be split off to a new cluster to
start training a new model. In Algorithm 1 (FedDrift-Eager), we apply a drift detection test locally at
each client, and create a new cluster for all clients that detect a new concept.

Algorithm 1 FedDrift-Eager at time τ

ℓ
(τ)
c,m ← loss of model hm on client data S

(τ)
c

w
(τ)
c,m ← 1{m = argminm′ ℓ

(τ)
c,m′}

if minm ℓ
(τ)
c,m > minm ℓ

(τ−1)
c,m + δ at any client c

then // create one model for all drifted clients
M ←M + 1
Initialize a new global model hM

w
(τ)
c,∗ ← 0; w(τ)

c,M ← 1

There are many drift detection tests in the lit-
erature [1, 12, 18, 23, 32, 34, 39]. The partic-
ular test is not our focus and for simplicity we
consider a test of the form ℓ

(τ)
c,m > ℓ

(τ−1)
c,m + δ

where the loss degrades by a set threshold
δ. However, the desired condition for creat-
ing a new model should check only for drifts
that correspond to a concept previously unob-
served and ill-suited for all existing models.
Hence, in Algorithm 1, the drift detection test
compares against the best performing model.

3



Algorithm 1 groups all drifting clients in one cluster. However, under the drift in Figure 3 in which
concepts B and C emerge simultaneously, this sub-optimally trains a single model for both concepts.

4.2 General Case

When drifts to new concepts are detected at multiple clients, in general we do not know whether
the drifts all correspond to one or multiple concepts (or even zero in the event of false positives in
detection). We designed Algorithm 2 (FedDrift) for clustering in the face of this uncertainty. For each
client that detects drift to a new concept, Algorithm 2 conservatively isolates the clients to individual
clusters, and then merges clusters corresponding to the same concept slowly and safely over time by
iteratively applying classical hierarchical agglomerative clustering [21, 36].

Algorithm 2 FedDrift at time τ

ℓ
(τ)
c,m ← loss of model hm on client data S

(τ)
c

for each client c = 1, 2, . . . , P in parallel do
if minm ℓ

(τ)
c,m > minm ℓ

(τ−1)
c,m + δ then

Initialize a local model at client c to be added to the
set of global models at τ + 1, and assign client c to
its own cluster

else
w

(τ)
c,m ← 1{m = argminm′ ℓ

(τ)
c,m′}

for each i, j from 1, 2, . . . ,M in parallel do
Lij ← loss of model hi on subsample of∪

c,t:w
(t)
c,j=1

S
(t)
c

Cluster distances D(i, j)← max(Lij−Lii, Lji−Ljj , 0)
while mini ̸=j D(i, j) < δ do

MERGE(i, j,D) // subroutine described in Appendix C

Hierarchical clustering is generally
specified by a distance function and
a stopping criterion. The distance be-
tween clusters D(i, j) based on the
loss degradation of model hi over a
subsample of the data associated with
the cluster for model hj (and vice
versa for symmetry). This distance
corresponds to the magnitude of drift
between the concepts for each cluster,
analogous to the drift detection con-
dition for splitting clusters. Hence,
we naturally re-use the drift detec-
tion threshold δ to represent the tol-
erance level up to which clusters can
be merged, avoiding the addition of
another hyperparameter.

One subtlety to Algorithm 2 is that the hierarchical clustering is iteratively run at every time step,
because the cluster distances vary with time. A simpler alternative would be to only try merging
newly created clusters of local models after one time step of training. However, at that one time step,
even models corresponding to the same concept may fail to merge given the limited sample size and
limited number of training iterations. In other words, while the models are still warming-up, they
may still be separated by a distance exceeding δ, but as the models converge over time, the distance
may drop below δ, which iterative merging accounts for. A more complete description of Algorithm
2 is described in Appendix C.

5 Experimental Results
We empirically demonstrate that FedDrift-Eager and FedDrift are more effective than prior centralized
drift adaptation and achieve high accuracy comparable to an oracle algorithm in the presence of
distributed drifts. Our evaluation covers the synthetic drifts in Figures 2 and 3, which (i) occur across
clients with staggered timing, (ii) correspond to different concept changes across different clients,
and (iii) involve recurring concepts (e.g., the sequence A–B–C–D–A). The 2-concept and 4-concept
drift patterns are generated for the datasets SINE [33], CIRCLE [33], SEA [3], and MNIST [26],
described in Appendix D. We also evaluate on the real-world drift in the FMoW dataset (§3).

We compare against the following baselines. First, the Oblivious algorithm learns a single model with
FedAvg. Second, we consider drift adaptation algorithms applied at the server on top of FedAvg: the
drift detection method DriftSurf [39], two ensemble methods KUE [6] and AUE [5], and a Window
method that forgets data older than one time step. Third, Adaptive-FedAvg [7] is an FL algorithm that
learns a single model and adapts to drifts by centrally tuning the learning rate based on the variability
across updates. Fourth, we compare to static FL clustering algorithms IFCA [16] and CFL [35],
which we extend to the time-varying setting by adding a window method (more variations reported in
Appendix E). Fifth, Oracle has oracle access to the ground-truth clustering at training time.

In Table 1, we report the average test accuracy across clients and time. Across the 2-concept drift
datasets, we observe that the multiple-model algorithms FedDrift-Eager and FedDrift outperform prior
centralized solutions. In Figure 5(left), the accuracy is broken down per time step on CIRCLE-2,

4



Table 1: Average accuracy (%) across all clients and time (over 5 trials, intervals represent 1 std dev)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 50.44 ± 1.52 88.36 ± 0.27 86.37 ± 0.34 87.25 ± 0.14 85.38 ± 0.28 82.97 ± 0.04 58.46 ± 0.08
DriftSurf 83.90 ± 1.01 92.54 ± 0.67 87.27 ± 0.34 91.71 ± 1.60 85.48 ± 0.28 82.99 ± 0.05 58.42 ± 0.16
KUE 87.05 ± 0.12 93.83 ± 0.04 87.62 ± 0.42 89.74 ± 0.07 85.53 ± 0.12 79.78 ± 0.16 37.46 ± 7.95
AUE 86.06 ± 0.60 92.74 ± 0.51 87.46 ± 0.12 92.19 ± 0.07 85.55 ± 0.08 81.29 ± 0.19 54.22 ± 0.14
Window 86.42 ± 0.74 93.67 ± 0.15 88.08 ± 0.10 92.15 ± 0.34 85.76 ± 0.16 81.16 ± 0.46 58.79 ± 0.14
Adaptive-FedAvg 78.02 ± 10.73 86.26 ± 0.00 86.69 ± 0.39 92.16 ± 0.04 85.32 ± 0.25 81.62 ± 0.07 52.76 ± 0.23
IFCA+Window 98.49 ± 0.13 94.31 ± 1.62 88.04 ± 0.17 91.76 ± 0.50 86.17 ± 1.00 81.27 ± 0.43 49.40 ± 0.76
CFL+Window 95.15 ± 0.32 95.62 ± 1.14 87.66 ± 0.36 90.53 ± 0.81 85.67 ± 0.21 79.99 ± 0.58 58.70 ± 0.13

FedDrift-Eager 98.46 ± 0.03 97.86 ± 0.20 88.35 ± 0.37 95.99 ± 0.06 88.08 ± 0.24 89.21 ± 2.02 61.62 ± 0.45
FedDrift 98.48 ± 0.01 97.88 ± 0.17 88.65 ± 0.43 95.93 ± 0.01 88.41 ± 0.29 94.09 ± 0.08 64.91 ± 0.31

Oracle 98.46 ± 0.01 97.57 ± 0.59 88.53 ± 0.23 96.00 ± 0.02 88.75 ± 0.20 94.60 ± 0.04 -

where we observe that centralized algorithms particularly suffer during the transition period—when
both concepts simultaneously exist, there is no single model that is an accurate fit at all clients.
Even the ensemble algorithm (KUE) has poor performance because any new model added is updated
by each client, and during the transition period, there is no model trained solely over data from
the second concept. FedDrift-Eager and FedDrift learn models specialized for the second concept
immediately after it emerges, and learn to apply the appropriate model at each client during the
transition, matching the performance of Oracle. On the other hand, while the clustering algorithms
IFCA and CFL could flexibly employ specialized models across clients, they do sub-optimally and
their accuracy is overall behind (details in Appendix E). For the case of CFL, its iterative cluster
splitting reacts quickly, but creates excessive models for a staggered concept drift without unification.

For the 4-concept drift, the accuracy per time step on MNIST-4 is shown in Figure 5(right). We refer
to the clustering learned by FedDrift in Figure 6, in which each cell indicates the model ID, and the
background color indicates the ground-truth concept. We observe that at time 3, a local model is
created for 5 of the 6 drifted clients, and by time 5, under iterative hierarchical clustering, a distinct
model is learned for each concept with no excess models. The accuracy of FedDrift is close to Oracle
throughout, with a gap at time 3 when each local model is created. Meanwhile, for FedDrift-Eager,
just one model is initially created for both the yellow and green concepts, and its accuracy takes
longer to recover. The performance of the centralized baselines never recover.

Finally, we discuss the drift in the real-world FMoW dataset where we observe FedDrift has superior
performance. The authors of the WILDS benchmark primarily make note of the performance loss of a
globally trained model on data from Africa over time [24]. We observe FedDrift successfully adapts to
the local drift, switching the model applied at Africa at year 2014, the time with a significant increase
in single-unit residential buildings in Figure 4 in §3. Instead of creating a new model for 2014, we
find FedDrift joins the cluster for Oceania where a local model was previously created, and stays at
that cluster for 2014 and 2015, before then splitting into a new individual cluster for 2016 and 2017.
We also observe that FedDrift detects a drift at 2015 for both Europe and the Americas, creating two
more local models that contribute to higher accuracy. Meanwhile, FedDrift-Eager similarly adapts to
the change in Africa yielding a performance benefit, but it does not adapt well to the simultaneous
drift for Europe and the Americas. Both FedDrift and FedDrift-Eager outperform the centralized
adaptation baselines which fail to adapt to the drift when viewed globally (c.f. Figure 4).

To conclude, our evaluation under distributed drifts staggered in time and space demonstrates
that FedDrift-Eager and FedDrift achieve accuracy significantly higher than existing baselines and
comparable to an idealized algorithm with oracle knowledge of the ground-truth clustering.

0.82

0.85

0.88

0.91

0.94

0.97

1

Te
st

 A
cc

u
ra

cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift Oracle

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Te
st

 A
cc

u
ra

cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift Oracle

Figure 5: Accuracy at each time (averaged across clients) on CIRCLE-2
(left) and MNIST-4 (right).

0 0 1 1 4 4 4 6 6 0

0 0 2 1 4 4 6 6 0 0

0 0 3 1 1 4 4 4 6 6

0 0 4 4 1 1 1 6 6 6

0 0 5 4 4 4 1 1 6 6

0 0 0 4 4 6 6 6 1 1

0 0 0 0 4 4 6 6 6 4

0 0 0 0 1 1 1 4 4 4

0 0 0 6 6 6 6 1 1 4

0 0 0 0 0 0 6 6 6 6

time

cl
ie

n
ts

1←[1, 2, 3] 4←[4, 5]

Figure 6: FedDrift on
MNIST-4.

5



References
[1] Manuel Baena-García, José del Campo-Ávila, Raúl Fidalgo, Albert Bifet, R Gavaldà, and

R Morales-Bueno. Early drift detection method. In StreamKDD, pages 77–86, 2006.

[2] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Nikolaos Karianakis,
Yuanchao Shu, Kevin Hsieh, Victor Bahl, and Ion Stoica. Ekya: Continuous learning of video
analytics models on edge compute servers. CoRR, abs/2012.10557, 2020.

[3] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. MOA: Massive online
analysis. JMLR, 11:1601–1604, 2010.

[4] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical cluster-
ing of local updates to improve training on non-iid data. In International Joint Conference on
Neural Networks (IJCNN), 2020.

[5] Dariusz Brzezinski and Jerzy Stefanowski. Reacting to different types of concept drift: The
accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst, 25(1):81–94,
2013.

[6] Alberto Cano and Bartosz Krawczyk. Kappa updated ensemble for drifting data stream mining.
Machine Learning, 109(1):175–218, 2020.

[7] Giuseppe Canonaco, Alex Bergamasco, Alessio Mongelluzzo, and Manuel Roveri. Adaptive
federated learning in presence of concept drift. In International Joint Conference on Neural
Networks, pages 1–7, 2021.

[8] Fernando E Casado, Dylan Lema, Marcos F Criado, Roberto Iglesias, Carlos V Regueiro,
and Senén Barro. Concept drift detection and adaptation for federated and continual learning.
Multimedia Tools and Applications, pages 1–23, 2021.

[9] Yujing Chen, Zheng Chai, Yue Cheng, and Huzefa Rangwala. Asynchronous federated learning
for sensor data with concept drift. In IEEE International Conference on Big Data, pages
4822–4831, 2021.

[10] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the
world. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6172–6180, 2018.

[11] Moming Duan, Duo Liu, Xinyuan Ji, Yu Wu, Liang Liang, Xianzhang Chen, Yujuan Tan, and
Ao Ren. Flexible clustered federated learning for client-level data distribution shift. IEEE
Transactions on Parallel and Distributed Systems, 2021.

[12] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. Learning with drift detection.
In Advances in Artificial Intelligence-SBIA, pages 286–295, 2004.

[13] João Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
survey on concept drift adaptation. ACM Comput. Surv., 46(4), 2014.

[14] Abhinav Garg, Naman Shukla, Lavanya Marla, and Sriram Somanchi. Distribution shift in
airline customer behavior during COVID-19. CoRR, abs/2111.14938, 2021.

[15] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust federated learning
in a heterogeneous environment. arXiv preprint arXiv:1906.06629, 2019.

[16] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient framework
for clustered federated learning. In NeurIPS, pages 19586–19597, 2020.

[17] Yongxin Guo, Tao Lin, and Xiaoying Tang. Towards federated learning on time-evolving
heterogeneous data. arXiv preprint arXiv:2112.13246, 2021.

[18] Maayan Harel, Koby Crammer, Ran El-Yaniv, and Shie Mannor. Concept drift detection through
resampling. In ICML, pages 1009–1017, 2014.

6



[19] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh
Raskar, Qiang Yang, Murali Annavaram, and Salman Avestimehr. Fedml: A research library
and benchmark for federated machine learning. arXiv preprint arXiv:2007.13518, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[21] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

[22] Peter Kairouz, H Brendan McMahan, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[23] Ioannis Katakis, Grigorios Tsoumakas, and Ioannis Vlahavas. Tracking recurring contexts using
ensemble classifiers: an application to email filtering. Knowledge and Information Systems, 22
(3):371–391, 2010.

[24] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M. Beery, Jure
Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
WILDS: A benchmark of in-the-wild distribution shifts. In ICML, 2021.

[25] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. CoRR,
abs/1610.05492, 2016.

[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[27] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429–450, 2020.

[28] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under
concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31(12):
2346–2363, 2018.

[29] Dimitrios Michael Manias, Ibrahim Shaer, Li Yang, and Abdallah Shami. Concept drift detection
in federated networked systems. arXiv preprint arXiv:2109.06088, 2021.

[30] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

[31] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

[32] Ali Pesaranghader and Herna L Viktor. Fast hoeffding drift detection method for evolving data
streams. In ECML PKDD, pages 96–111, 2016.

[33] Ali Pesaranghader, Herna L Viktor, and Eric Paquet. A framework for classification in data
streams using multi-strategy learning. In ICDS, pages 341–355, 2016.

[34] Ali Pesaranghader, Herna L Viktor, and Eric Paquet. McDiarmid drift detection methods for
evolving data streams. In International Joint Conference on Neural Networks (IJCNN), 2018.

[35] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated learning: Model-
agnostic distributed multitask optimization under privacy constraints. IEEE transactions on
neural networks and learning systems, 32(8):3710–3722, 2020.

[36] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

7



[37] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of statistical planning and inference, 90(2), 2000.

[38] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao Ferreira. ODIN: Automated drift detection
and recovery in video analytics. Proceedings of the VLDB Endowment, 13(11), 2020.

[39] Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, and Phillip B. Gibbons. Drift-
Surf: Stable-state / reactive-state learning under concept drift. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2021.

[40] Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer Science
Department, Trinity College Dublin, 106(2), 2004.

[41] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
of local-update sgd algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021.

[42] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden
contexts. Machine learning, 23(1), 1996.

8



A Related Work

Concept drift refers to a change over time in the joint distribution P(x, y). By decomposing the joint
distribution P(x, y) = P(x)P(y|x), we distinguish between drifts where only P(x) changes versus
drifts where the feature-to-label mapping P(y|x) changes. Under the former case (which goes by the
names virtual drift [40], covariate drift [37], and feature-distribution skew [22]) a single model can
perform well despite change (although achieving fast convergence in an FL setting still requires a
specialized strategy; e.g., FedProx [27]). But under the latter case where the feature-to-label mapping
changes (real drift or concept drift [40]), lower loss can often be obtained by using specialized models
for different concepts.

Concept drift has been studied extensively in the centralized setting for decades. We refer the
reader to the surveys by Gama et al. [13] and Lu et al. [28]. As discussed in §1, directly applying
centralized adaptation to a single global model in FL is not well-suited for distributed concept drifts
with heterogeneous data across time and clients. Furthermore, centralized ensemble methods that use
multiple models for adapting to drift also suffer, because the models in an ensemble are distinguished
solely over time, and do not account for heterogeneity across clients—in response to a localized data
drift, any newly created global model is trained over a mixture of concepts. We demonstrate this in
our experimental evaluation, where we compare against state-of-the-art algorithms such as DriftSurf
[39] and KUE [6].

Drift in FL, on the other hand, has so far seen only preliminary study. One line of work considers
the setting where there is one concept in the system to be learned (either like the example in Figure
1(right) when a minority of clients drift, or when clients observe the main concept under random
noise), and seek to speed up the convergence of a model for that one concept by suppressing clients
with heterogeneous data via regularization [9, 17] or drift detection [29]. When it comes to adapting
to a new concept over time, we are only aware of two works, and both only consider drifts with
uniform timing like the example in Figure 1(left). First, Casado et al. [8] consider only the virtual
drift setting (where the labeling P(y|x) is fixed and only P(x) changes) and uses drift detection
to partition data from distinct concepts, in order to train a single model accurately in the course of
revisiting each partition (i.e., rehearsal). Second, Canonaco et al. [7] propose Adaptive-FedAvg, in
which the server tunes the learning rate used by all clients as a function of the variability across
updates, with the goal of reacting fast when drift occurs while also achieving stable performance in
the absence of drift. In our experimental evaluation, we compare against Adaptive-FedAvg.

Our solution to drift in FL relies on learning multiple models, which has been studied in prior work on
personalized FL and clustered FL. Clients with similar data can be grouped into clusters, where each
cluster of clients is associated with a global model that they collaboratively train [4, 11, 15, 16, 30, 35].
As we extend the problem of data heterogeneity in FL with an additional dimension of time, we train
multiple models with the algorithm in Appendix B, which is heavily inspired by the prior clustering
algorithms IFCA [16] and HypCluster[30]. This serves as the starting point of our solution, where
our main contribution is the creation of new clusters as new concepts arrive over time. Finally, our
solution in §4 to handle an unknown number of concepts relies on hierarchical clustering, which has
been studied in FL (in the static case) previously by Briggs et al. [4]. In the prior work, the clustering
is based on clients’ local updates, and it is unclear how to set the distance threshold at which to stop
merging. In contrast, an advantage of our approach is that the stopping criterion is identical to the
drift detection threshold, which has an intuitive interpretation of performance loss.

B Multiple-Model Training in FL

Distributed concept drift often means that multiple concepts are present simultaneously, necessitating
the need for multiple-model training. In §4, we presented algorithms to learn a time-varying clustering
of clients, where each cluster is associated with a global model. In this section, we show how train
models for each cluster in Algorithm 3.

We define a time step as the granularity at which new data may arrive at a client. A time step may
consist of multiple communication rounds. The set of data arriving at client c and time t is denoted
by S

(t)
c . The global models being trained are denoted by hm for m ∈ [M ], where M is the total

number of models at a given time. Each model is trained by a cluster of clients, where the clustering
may vary over time as concept drifts occur. The cluster identity of client c at time t is denoted by the

9



one-hot vector w(t)
c , where w

(t)
c,m = 1 when assigned to the cluster associated with model hm and 0

otherwise. The cluster identities w(t)
c,m indicate whether the data S

(t)
c that arrived at client c at time t

are sampled when computing a local update to the global model hm. Further, the cluster identity of a
client at a given time indicates which model is used for inference.

Within each time, the training of the global models in Algorithm 3 is equivalent to Federated
Averaging [31], since the aggregation weight of each client within each cluster is fixed at time
τ . So the convergence of Algorithm 3 can be guaranteed by directly using previous analyses for
Federated Averaging, such as [27, 41]. The difference here is that the objective function that clients
are minimizing at time τ is replaced by the following:

F̃ (τ)
m (hm) =

P∑
c=1

w̃τ
c,mF (τ)

c (hm) (2)

where F
(τ)
c denotes the local objective function on client c, and the normalized weight is defined as

w̃τ
c,m =

∑τ
t=1 w

(t)
c,mN

(t)
c /

∑P
c=1

∑τ
t=1 w

(t)
c,mN

(t)
c .

In the ideal case where each cluster maps to one concept in the system, each hm is specialized for
each concept that is sampled from a unique data distribution (P(x, y)), and these hm form a strong
solution to our overall objective in §2. This ideal solution is the Oracle algorithm in our evaluation in
§5, and we empirically demonstrate in §5 that our proposed solutions achieve comparable accuracy.

Algorithm 3 Multiple-model training at time τ

Input: Cluster identities w(t)
c,m

for each round i = 1, 2, . . . , R do
for each client c = 1, 2, . . . , P
and each model m = 1, 2, . . . ,M in parallel do
hc,m ← LOCALUPDATE(c, hm, {w(t)

c,m}τt=1)
for each model m = 1, 2, . . . ,M do
hm ←

∑P
c=1 hc,m

∑τ
t=1 w(t)

c,mN(t)
c∑P

c=1

∑τ
t=1 w

(t)
c,mN

(t)
c

LOCALUPDATE(c, hm, {w(t)
c,m}τt=1):

for each local step j = 1, 2, . . . ,K do
b← random minibatch of size B from

∪
t:w

(t)
c,m=1

S
(t)
c

hm ← hm − η∇ℓ(hm; b)
return hm

τ current time (prior time indexed by t)
P # clients (indexed by c)
M # global models (indexed by m)
R # communication rounds (indexed by i)
K # local steps per model per round (by j)
S

(t)
c new data arriving at client c at time t

N
(t)
c = |S(t)

c |
B minibatch size
η step size
hm global model m
hc,m local update of hm by client c
w

(t)
c,m is S(t)

c used to update hm?

Algorithm 4 Clustering to the lowest loss

ℓ
(τ)
c,m ← loss of hm on client data S

(τ)
c

w
(τ)
c,m ← 1{m = argminm′ ℓ

(τ)
c,m′}

Run Algorithm 3

Note that, as stated, each client c in Algorithm 3 retains its complete history of both the cluster
indicators w(t)

c,m and the local data arrivals S(t)
c . To reduce this overhead, each client could instead

maintain just a sliding window of the most recent time steps, as long as the window suffices for the
minibatch sampling in LOCALUPDATE.

In setting up the problem of distributed concept drift in FL (§2), we separated it into two components:
(i) determining the time-varying clustering of clients in response to concept drifts, which is then used
as input for (ii) the multiple-model training in Algorithm 3. Suppose, hypothetically, that there is a
global model already initialized for each concept up to some moderate accuracy. In this restrictive
setting, Algorithm 4 can be used to determine the cluster identities for each new time step. Each client
tests the global models from the previous time step over its newly arrived data and chooses to identify
with the model with the best loss (breaking ties randomly). The setting considered encompasses
time steps involving drifts that occur between concepts known to the system; e.g., the later stages of
a staggered drift from concept A to concept B after some clients have already observed concept B
(Figure 2). However, Algorithm 4 does not have any mechanism to spawn new clusters or determine
the number of clusters. In §4, we presented clustering algorithms that can spawn clusters over time to
react to drifts to new concepts.

10



C Detailed Description of FedDrift

In this section, we give a more complete presentation of Algorithm 2 (FedDrift) first described in §4.2.

Under distributed drift in FL, data are heterogeneous both over time and across clients, where the
concept at each time and client is the ground-truth clustering that we seek to learn. Ideally, the models
trained by each cluster correspond 1-to-1 to the concepts present in the system. Specifically, we want
to avoid two miss-clustering problems: (P1) spawning multiple clusters that correspond to a single
concept, because then each model would be trained over only a subset of the relevant data, not taking
full advantage of collaborative training, and (P2) merging clients corresponding to multiple concepts
into a single cluster (model poisoning).

Algorithm 2 incorporates a bottom-up technique that isolates clients that detect drift (addressing P2)
and iteratively merges clusters corresponding to the same concept (addressing P1) by leveraging
hierarchical clustering.

The generic hierarchical clustering procedure is specified by a distance function over the set of
elements to be clustered and a stopping criterion, and at each step until the stopping criterion is
met, merges the two closest clusters, where the distance between clusters of multiple elements is
commonly defined to be the maximum distance between their constituents (known as a max-linkage
clustering). Algorithm 2 merges clusters as shown in Algorithm 5, combining two clusters i and j by
averaging their models with weight proportional to the size of each model’s training dataset (over all
clients) and unifying the cluster identities.

Algorithm 5 MERGE(i, j,D)

Add a new model hk ←
hi

∑
c,t w

(t)
c,iN

(t)
c +hj

∑
c,t w

(t)
c,jN

(t)
c∑

c,t w
(t)
c,iN

(t)
c +

∑
c,t w

(t)
c,jN

(t)
c

w
(t)
c,k ← w

(t)
c,i + w

(t)
c,j for all c, t

D(k, l) = max(D(i, l), D(j, l)) for all l
Delete models hi, hj

To specify a distance function for hierarchical clustering, Algorithm 2 first aggregates at the server
the loss estimates Lij of the model hi evaluated over a subsample of the data associated with
the cluster for model hj . 1 Then the distances between each cluster are initialized as D(i, j) ←
max(Lij − Lii, Lji − Ljj , 0).2 The first term Lij − Lii measures the loss degradation of model hi

when evaluated over the data associated with hj , relative to the loss over its own data. We informally
interpret this difference as the magnitude of drift between the concept associated with hi to the
concept associated with hj , analogous to the drift detection condition (although not identical due to
the bias of Lii measuring a model’s accuracy over its own training data). The term D(i, j) is defined
to be symmetric by also accounting for the magnitude of the drift Lji − Ljj in the reverse direction
from concept j to concept i.

In addition to defining the cluster distances D(i, j), employing hierarchical clustering also requires
setting a stopping criterion. Typically, that corresponds to specifying either the desired number of
clusters (which in our case is unknown), or an upper limit on the distance between clusters to stop
merging. By our identification of the cluster distance as a magnitude of drift, we re-use the drift
detection threshold δ to also represent the tolerance level up to which clusters can be merged in
Algorithm 2, which avoids introducing another hyperparameter.

In Algorithm 2, both creating new clusters and merging existing clusters are based on the observed
difference of the models’ accuracy across two samples of data. For the clustering to accurately
distinguish concepts, we assume that relevant changes in the concepts are manifested in the degra-
dation of a model’s predictive accuracy, and that the local sample size is sufficient for statistical
significance—the same assumptions necessary for prior drift detection tests [18, 32, 34, 39].

1More precisely, at client c, the data clustered to hj are sampled proportionate to the size of the local dataset
relative to the global dataset for hj ,

∑
t w

(t)
c,jN

(t)
c /

∑
c′
∑

t w
(t)

c′,jN
(t)

c′ .
2We note that D(i, j) is not necessarily a true distance function as there is no guarantee that it satisfies the

triangle inequality.

11



The hierarchical clustering strategy of Algorithm 2 allows it to adaptively determine the appropriate
number of clusters even when an unknown number of new concepts emerge at a time, but it also incurs
additional computational resources relative to Algorithm 1. Algorithm 2 creates more global models
M , adding to the communication cost of sending O(MP ) models. Additionally, the hierarchical
clustering adds an O(M2 logM) time complexity at the server at every time step (using a heap data
structure for finding the minimum pairwise distance). In Appendix E, we discuss how we might
restrict Algorithm 2 to create fewer overall models for higher efficiency.

Similar to Algorithm 3, each client c could maintain w
(t)
c,m and S

(t)
c for just a sliding window of the

most recent time steps, as long as the window suffices for Algorithm 2’s subsampling step.

D Datasets and Experimental Parameters

We consider concept drift with respect to the following datasets previously used in the concept drift
and personalized FL literature [4, 5, 7, 29, 39]: SINE and CIRCLE [33] which each have 2 defined
concepts, and SEA [3] and MNIST [26], which have up to 4 concepts. In SINE, the first concept is a
decision boundary of the sine curve x2 < sin(x1) for data points sampled from the unit square, and
the second concept reverses the direction (swapping the labels). In CIRCLE, the two concepts are
each decision boundaries of two different circles in the unit square, representing a smaller concept
change than SINE. The first circle is centered at (0.2, 0.5) with radius 0.15 and the second circle is
centered at (0.6, 0.5) with radius 0.25. In SEA, each concept corresponds to a shifted hyperplane.
Each point in SEA has three attributees in [0, 10], where the label is determined by x1 + x2 ≤ θj
where j corresponds to 4 concepts, θA = 9, θB = 8, θC = 7, θD = 9.5. (The third attribute x3 is
not correlated with the label.) In SEA, at every concept there is noise in the observed labels, where
the label is swapped with 10% chance for each data point independently. In MNIST, concept A
corresponds to the original labeling of the hand-drawn digits, and under each other concept, the labels
of two of the digits are swapped (B swaps digits 1 and 2, C swaps digits 3 and 4, and D swaps digits
5 and 6).

Experiments are run using the FedML framework [19]. For each of the synthetic datasets in our
experiments, the training data are distributed across 10 clients and arrive over 10 time steps. The
partition of the data at each client and time is a constant 500 number of samples from the concept
corresponding to the concept drift patterns in Figures 2 and 3 in §1. SINE and CIRCLE each have
two defined concepts, and we generate partitions of the data under the 2-concept staggered drift of
Figure 2, while SEA and MNIST have more defined concepts, and we generate partitions under both
the 2-concept and 4-concept drift patterns of Figures 2 and 3.

In our experimental results, after training at each time τ we report the test accuracy over the data
at τ + 1. For clarification, in reporting the accuracy at the last time step 10, we test over an 11th
sample of data at each client that is from the same concept observed during training at time 10. We
report the accuracy averaged across all clients and all time steps (omitting the time of except for the
times of drifts. We omit the times of drift because there is no chance for a client to adapt to the drift
yet, and all algorithms suffer from the inevitable performance loss. By omitting the time of drift,
we eliminate the noise from beneficial clustering mistakes if by chance a client was clustered to the
model appropriate for the test data after the drift. For completeness, the results averaging over all
time steps including drifts are in Appendix E. Each experiment is run for 5 trials, and we report the
mean and the standard deviation.

We also evaluate on the real-world drift in the Functional Map of the World (FMoW) dataset included
in the WILDS benchmark [10, 24]. The learning task is to classify the land use or building type from
satellite images, which has significant practical relevance, “aiding policy and humanitarian efforts
in applications such as deforestation tracking, population density mapping, crop yield prediction,
and other economic tracking applications” [24]. Each image is RGB and square with a width of 224
pixels. The WILDS benchmark is not explicitly posed as a drift adaptation problem that we study
in this paper, but instead as a drift robustness problem, and so they originally partitioned the data
into train/validation/test splits. For our evaluation, we re-partition the dataset, distributing training
data across 5 clients arriving over 9 time steps, using the metadata annotation of each image by
region (Africas, Americas, Asia, Europe, Oceania) and year. The first 8 years from 2002–2009 have
much fewer images collected, which we group into one time step, and then we treat each year from
2010–2017 as one time step each. The partition of the data at each client and time step is a subsample

12



of up to 1000 images at the 10 classes that are the most common (counting across all regions and
years). The test data evaluated for the last time step are a disjoint subsample also from the same
year 2017 as the training data. Figure 4 in §3 depicts how the data drifts gradually over time, where
the development of new infrastructure is a result of social, political, economic, and environmental
factors. Viewed globally, the drift is small. Koh et al. [24] write: “intriguingly, a large subpopulation
shift across regions only occurs with a combination of time and region shift.” Further, they call for
solutions that “can leverage the structure across both space and time” and also hypothesize a benefit
to “potentially transfer knowledge of other regions with similar economies and infrastructure” which
we empirically confirm where FedDrift clusters Africa and Oceania together for years 2014–2015.

Across all algorithms we evaluate, the algorithms that learn a single model use FedAvg for training,
and the clustering algorithms that learn multiple models use Algorithm 3 in Appendix B for training
(which reduces to FedAvg when there is one cluster). For all the experiments on synthetic datasets,
the models trained under each algorithm are fully connected neural networks with a single hidden
layer of size 2d where d is the number of features. On the FMoW dataset, each algorithm trains
ResNet18 models pretrained on ImageNet [20]. The training parameters used in our experiments are
shown in Table 2. For efficiency of the larger FMoW experiments, we reduce to 10 rounds and batch
size 32—we observe that this suffices by convergence of the training accuracy.

Regarding the learning rate selection, first we discuss all algorithms excluding Adaptive-FedAvg.
We searched for learning rates of the form 10−a for a = 1, 2, 3, 4, for each dataset, and found that
η = 10−2 was the best for SINE-2, CIRCLE-2, SEA-2, and SEA-4, that η = 10−3 was best for
MNIST-2 and MNIST-4, and that η = 10−4 was best for FMoW. (This held for both of the two
extremes among our baselines, Oblivious and Oracle, and we apply the same learning rate across all the
algorithms. For FMoW, there is no known Oracle, so we searched only using the Oblivious baseline.)
Also note that for computing the LOCALUPDATE at each client, we use the implementation of Adam
in PyTorch with the options weight decay = 10−3 and amsgrad = True. We treat Adaptive-FedAvg
separately, because it uses SGD with its own internal learning rate scheduler as its mechanism to
react to drifts. We found that the initial learning rate of 10−2 was the best for each dataset with
the exception of SINE-2, instead using 10−1. (This higher learning rate explains the high standard
deviation in the reported accuracy of Adaptive-FedAvg on SINE-2.)

Next, we report the selection of the drift detection threshold δ in the algorithms DriftSurf, FedDrift-
Eager, and FedDrift. While the optimal δ is expected to vary across datasets, even for a fixed dataset,
different algorithms can peak in performance at varying δ. The performance of each of these three
algorithms for each dataset across δ in the range 0.02, 0.04, . . . , 0.20 is shown in Figure 7. To not
bias towards any one algorithm, the experimental results are reported for each algorithm and dataset
using its best δ. (The δ used for the FedDrift-C variant discussed in Appendix E is identical to that
used for FedDrift.) However, using a fixed δ = 0.04 for FedDrift-Eager and FedDrift makes at most a
1 pp difference in the results reported in Table 1 (on one trial).

For all other hyperparameters of the algorithms we evaluate, we follow the parameter choices stated
in the original papers, with the following exceptions: for DriftSurf we use r = 3 (which performed
better than their suggested r = 4); for CFL we use γ = 0.1 (for which there is no default, but is
shown to be a good setting from Theorem 1 and Figure 3 of their paper [35] given that the number of
distinct concepts at a time is at most 5 across all evaluated datasets); and for AUE we use K = 5 as
the total ensemble size (compared to the K = 10 in their paper they consider over a significantly
longer time horizon). In reporting FMoW results, for training efficiency, we further restrict to a total
ensemble size of 4 for AUE and KUE.

Table 2: Training parameters

Parameter Description Experimental setting Experimental setting
(all synthetic drifts) (FMoW)

R # communication rounds 100 10
K # local steps per model per round 50 50
B minibatch size 50 32
η step size varies varies

13



0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Te
st

 A
cc

u
ra

cy

δ
DriftSurf FedDrift-Eager FedDrift

(a) SINE-2

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Te
st

 A
cc

u
ra

cy

δ
DriftSurf FedDrift-Eager FedDrift

(b) CIRCLE-2

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Te
st

 A
cc

u
ra

cy

δ
DriftSurf FedDrift-Eager FedDrift

(c) SEA-2

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Te
st

 A
cc

u
ra

cy

δ
DriftSurf FedDrift-Eager FedDrift

(d) MNIST-2

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Te
st

 A
cc

u
ra

cy

δ
DriftSurf FedDrift-Eager FedDrift

(e) SEA-4

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Te
st

 A
cc

u
ra

cy

δ
DriftSurf FedDrift-Eager FedDrift

(f) MNIST-4

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Te
st

 A
cc

u
ra

cy

δ
DriftSurf FedDrift-Eager FedDrift

(g) FMoW

Figure 7: Average accuracy of each drift detection-based algorithm under varying thresholds δ.

Furthermore, for the FMoW dataset, which has more than one distinct data distribution at the initial
time step unlike the remaining datasets, we use a different initialization of IFCA variants and FedDrift.
For IFCA variants, clients initially self-select among 5 cluster centers instead of being all assigned
to a single cluster. For FedDrift, clients are initialized to a local model each, which can be merged
starting at the next time step. (If we instead initialize all clients to a single cluster that can later be
split, we observed the average test accuracy of FedDrift is 64.46%, or 0.45 pp worse.)

Finally, regarding the model training in Algorithm 3 at time τ , we apply one optimization for
efficiency to only train models that are currently clustered to. (Although note that any such models

14



are still retained by FedDrift-Eager and FedDrift in order to react to recurring drifts even if they are
not actively being trained.)

E Additional Experimental Results

We present additional experimental results on more baseline algorithms and on variants of our
algorithms restricted to limited memory or communication.

Additional Baseline Algorithms. The additional algorithms presented in this appendix are:

• Four traditional drift adaptation algorithms. AUE-PC is a variation of the ensemble
method AUE with the ensemble weights set per-client. Window-2 is a window method like
Window, except that it forgets data older than two time steps instead of one. Weighted-Linear
and Weighted-Exp also forget older data like window methods, but do so more gradually by
down-weighting older data with either linear or exponential decay.

• The FL clustering algorithm CFL [35]. In extending the original static algorithm to our
time-varying setting, we also consider a variant CFL-W, in which during training, each client
samples only from the window of the newest data arriving at each time.

• Three variations of the IFCA clustering algorithm [16] that we considered for extending
the original algorithm to the time-varying setting. First, IFCA(T) is exactly Algorithm 4 in §B,
which defines cluster identities for each client and each time, in order to associate the data
within a client that are heterogeneous over time across multiple clusters. IFCA(T) chooses
the cluster identity once per time step (where time steps consist of multiple communication
rounds)—this differs from the original algorithm described by Ghosh et al. [16], which
recomputes the cluster identity once per round. Second, IFCA does the per-round clustering;
more precisely, for each time step τ , the cluster identity w

(τ)
c,m is recomputed at every round

under the same equation used at the beginning of the time step in Algorithm 4. Third,
IFCA-W is a variant of IFCA that trains only over the most recent data arrivals at each
time, and the cluster identities of data from previous time steps are forgotten. In general,
the IFCA-based algorithms require the number of clusters as input, which we provide as
oracle knowledge—either 2 or 4 depending on the total number of concepts over time in
each dataset. This gives IFCA-based algorithms an advantage over all other algorithms
we evaluate, which do not know the number of clusters a priori. For the initialization
of all three variations, at time 1 and round 1, all clients are assigned to a single cluster,
matching the assumption we made for FedDrift and FedDrift-Eager in §4. The exception to
this initialization strategy is on FMoW, where the total number of concepts is not known,
and the concept at time 1 across clients is not identical; for this dataset, we instead initialize
all IFCA-based algorithms with a total of 5 clusters (matching the number of regions), and
where each client identifies with the best-performing randomly initialized model (same as
the original paper).

• A more communication-efficient variant of FedDrift. FedDrift-C is the algorithm referred
to in the last paragraph of §4 that is restricted to introducing one new global model per time
step. More details on this algorithm are described later in this section.

• Sliding window variants of FedDrift-Eager and FedDrift. FedDrift-Eager-W and FedDrift-W
are restricted to using only the most recent time step of data S(t)

c and cluster identities w(t)
c,m.

• A baseline sliding window variant Oracle-W, which has oracle access to the ground-truth
clustering but only uses the most recent time step of data in training.

In general, we use the -W suffix in the name of an algorithm to indicate a limited memory of a window
of one time step. This memory restriction reduces the number of samples used for training at a time
and might reduce the accuracy achievable under ground-truth clustering (Oracle-W vs. Oracle). Yet,
the window is not strictly a drawback: (i) forgetting the older data builds in a passive adaptation to
drift and (ii) in our setting it also guarantees that each client’s training data at a step are all drawn
from the same distribution—this is why we also investigate -W variants when extending the prior
static clustering algorithms CFL and IFCA to our setting when data arrive over time.

15



Table 3: Average test accuracy (%) across clients and time, omitting drifts (5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 50.44 ± 1.52 88.36 ± 0.27 86.37 ± 0.34 87.25 ± 0.14 85.38 ± 0.28 82.97 ± 0.04 58.46 ± 0.08
DriftSurf 83.90 ± 1.01 92.54 ± 0.67 87.27 ± 0.34 91.71 ± 1.60 85.48 ± 0.28 82.99 ± 0.05 58.42 ± 0.16
KUE 87.05 ± 0.12 93.83 ± 0.04 87.62 ± 0.42 89.74 ± 0.07 85.53 ± 0.12 79.78 ± 0.16 37.46 ± 7.95
AUE 86.06 ± 0.60 92.74 ± 0.51 87.46 ± 0.12 92.19 ± 0.07 85.55 ± 0.08 81.29 ± 0.19 54.22 ± 0.14
AUE-PC 87.67 ± 1.70 93.05 ± 0.19 87.61 ± 0.08 92.22 ± 0.09 85.60 ± 0.05 81.43 ± 0.22 54.15 ± 0.10
Window 86.42 ± 0.74 93.67 ± 0.15 88.08 ± 0.10 92.15 ± 0.34 85.76 ± 0.16 81.16 ± 0.46 58.79 ± 0.14
Window-2 85.21 ± 1.67 93.03 ± 0.46 87.71 ± 0.33 92.54 ± 0.37 85.67 ± 0.16 82.16 ± 0.32 59.44 ± 0.23
Weighted-Linear 72.78 ± 1.23 89.91 ± 0.65 87.00 ± 0.01 89.70 ± 0.12 85.49 ± 0.17 82.79 ± 0.05 58.05 ± 0.17
Weighted-Exp 82.77 ± 0.64 92.69 ± 0.25 87.59 ± 0.15 92.19 ± 0.17 85.59 ± 0.09 82.55 ± 0.06 58.49 ± 0.09
Adaptive-FedAvg 78.02 ± 10.73 86.26 ± 0.00 86.69 ± 0.39 92.16 ± 0.04 85.32 ± 0.25 81.62 ± 0.07 52.76 ± 0.23
CFL 60.27 ± 4.82 88.39 ± 0.40 86.36 ± 0.28 86.97 ± 0.40 85.33 ± 0.26 81.95 ± 0.55 57.92 ± 0.32
CFL-W 95.15 ± 0.32 95.62 ± 1.14 87.66 ± 0.36 90.53 ± 0.81 85.67 ± 0.21 79.99 ± 0.58 58.70 ± 0.13
IFCA(T) 98.45 ± 0.03 91.72 ± 5.19 86.46 ± 0.23 87.33 ± 0.15 85.44 ± 0.14 82.90 ± 0.05 47.76 ± 1.98
IFCA 98.46 ± 0.02 92.20 ± 5.32 86.45 ± 0.25 87.55 ± 0.25 85.35 ± 0.09 82.89 ± 0.04 48.17 ± 1.30
IFCA-W 98.49 ± 0.13 94.31 ± 1.62 88.04 ± 0.17 91.76 ± 0.50 86.17 ± 1.00 81.27 ± 0.43 49.40 ± 0.76

FedDrift-Eager 98.46 ± 0.03 97.86 ± 0.20 88.35 ± 0.37 95.99 ± 0.06 88.08 ± 0.24 89.21 ± 2.02 61.62 ± 0.45
FedDrift 98.48 ± 0.01 97.88 ± 0.17 88.65 ± 0.43 95.93 ± 0.01 88.41 ± 0.29 94.09 ± 0.08 64.91 ± 0.31
FedDrift-C 98.51 ± 0.11 97.42 ± 0.57 88.30 ± 0.53 95.85 ± 0.05 87.46 ± 0.42 93.22 ± 0.44 61.86 ± 0.30
FedDrift-Eager-W 98.51 ± 0.12 97.34 ± 0.76 88.43 ± 0.23 94.05 ± 0.02 87.90 ± 0.25 89.31 ± 0.38 61.94 ± 0.38
FedDrift-W 98.58 ± 0.17 97.68 ± 0.09 88.43 ± 0.22 93.95 ± 0.02 88.17 ± 0.39 91.47 ± 0.07 64.22 ± 0.60

Oracle 98.46 ± 0.01 97.57 ± 0.59 88.53 ± 0.23 96.00 ± 0.02 88.75 ± 0.20 94.60 ± 0.04 -
Oracle-W 98.47 ± 0.03 97.84 ± 0.11 88.70 ± 0.17 94.04 ± 0.02 88.74 ± 0.13 91.89 ± 0.05 -

Table 4: Average test accuracy (%) across clients and time, including drifts (5 trials)

SINE-2 CIRCLE-2 SEA-2 MNIST-2 SEA-4 MNIST-4 FMoW

Oblivious 45.77 ± 1.52 87.12 ± 0.26 86.12 ± 0.35 86.28 ± 0.12 85.11 ± 0.24 81.60 ± 0.03 58.46 ± 0.08
DriftSurf 79.19 ± 0.88 91.16 ± 0.68 87.00 ± 0.35 90.55 ± 1.68 85.13 ± 0.19 81.62 ± 0.04 58.42 ± 0.16
KUE 87.05 ± 0.12 93.83 ± 0.04 87.62 ± 0.42 89.74 ± 0.07 85.53 ± 0.12 79.78 ± 0.16 37.46 ± 7.95
AUE 81.28 ± 0.81 91.50 ± 0.46 87.21 ± 0.11 91.07 ± 0.07 85.15 ± 0.07 79.65 ± 0.25 54.22 ± 0.14
AUE-PC 82.18 ± 2.01 91.75 ± 0.17 87.34 ± 0.08 91.07 ± 0.09 85.16 ± 0.04 79.70 ± 0.24 54.15 ± 0.10
Window 81.92 ± 0.88 92.40 ± 0.11 87.86 ± 0.08 91.35 ± 0.43 85.33 ± 0.10 78.88 ± 0.62 58.79 ± 0.14
Window-2 80.35 ± 2.02 91.73 ± 0.49 87.45 ± 0.34 91.47 ± 0.47 85.24 ± 0.15 80.06 ± 0.61 59.44 ± 0.23
Weighted-Linear 67.20 ± 1.43 88.67 ± 0.64 86.77 ± 0.02 88.56 ± 0.12 85.16 ± 0.11 81.38 ± 0.04 58.05 ± 0.17
Weighted-Exp 76.80 ± 0.88 91.30 ± 0.26 87.34 ± 0.16 91.05 ± 0.18 85.19 ± 0.06 80.96 ± 0.07 58.49 ± 0.09
Adaptive-FedAvg 73.82 ± 10.75 85.60 ± 0.00 86.55 ± 0.35 91.31 ± 0.05 85.01 ± 0.21 79.45 ± 0.06 52.76 ± 0.23
CFL 54.41 ± 4.33 87.08 ± 0.31 86.10 ± 0.30 86.00 ± 0.38 85.00 ± 0.25 80.45 ± 0.64 57.92 ± 0.32
CFL-W 86.83 ± 0.55 93.72 ± 0.93 87.36 ± 0.42 89.47 ± 0.74 85.25 ± 0.17 77.35 ± 0.81 58.70 ± 0.13
IFCA(T) 88.77 ± 0.02 90.06 ± 4.62 86.22 ± 0.22 86.36 ± 0.14 85.12 ± 0.09 81.53 ± 0.05 47.76 ± 1.98
IFCA 88.78 ± 0.02 90.49 ± 4.73 86.21 ± 0.28 86.56 ± 0.21 85.06 ± 0.04 81.51 ± 0.03 48.17 ± 1.30
IFCA-W 88.80 ± 0.12 92.84 ± 1.19 87.84 ± 0.14 90.81 ± 0.67 85.52 ± 0.50 79.17 ± 0.39 49.40 ± 0.76

FedDrift-Eager 88.76 ± 0.01 95.51 ± 0.18 87.86 ± 0.33 94.09 ± 0.05 86.64 ± 0.18 83.58 ± 0.79 61.62 ± 0.45
FedDrift 88.77 ± 0.02 95.54 ± 0.15 88.13 ± 0.39 94.03 ± 0.02 86.68 ± 0.20 85.72 ± 0.07 64.91 ± 0.31
FedDrift-C 88.82 ± 0.09 95.12 ± 0.50 87.78 ± 0.44 93.97 ± 0.05 86.21 ± 0.40 85.62 ± 0.47 61.86 ± 0.30
FedDrift-Eager-W 88.82 ± 0.12 95.05 ± 0.67 87.87 ± 0.23 92.04 ± 0.03 86.44 ± 0.20 82.15 ± 0.32 61.94 ± 0.38
FedDrift-W 88.88 ± 0.15 95.35 ± 0.08 87.95 ± 0.15 91.93 ± 0.03 86.46 ± 0.31 83.29 ± 0.06 64.22 ± 0.60

Oracle 88.77 ± 0.01 95.25 ± 0.52 87.99 ± 0.20 94.11 ± 0.02 86.89 ± 0.17 86.10 ± 0.03 -
Oracle-W 88.77 ± 0.03 95.51 ± 0.10 88.15 ± 0.14 92.03 ± 0.01 86.83 ± 0.06 83.58 ± 0.03 -

Test Accuracy Results. Table 3 (extending Table 1 in §5) shows the test accuracy of all algorithms,
averaged across all clients and time steps, but omitting the times of drifts. As noted in §5, we omit
the times of drift when all algorithms suffer from the performance loss. For completeness, the test
accuracy averaged over all time steps including drifts is shown in Table 4. In this latter table, note
that Oracle and Oracle-W suffer a performance loss too at the time of drift. Under the test-then-train
evaluation, Oracle has access to the concept ID of the data at training time but not at test time,
where at each client, the model used for inference corresponds to the observed concept in the most
recently arrived training data. Note that for the real-world gradual drifts in FMoW, the ground-truth
is unknown, so we omit results for Oracle. Furthermore, because drifts occur gradually and there is
no oracle knowledge of their timing, we report identical test accuracy results on FMoW in Tables 3
and 4, averaging across all clients and time steps.

Based on these tables, we make the following observations on the additional algorithms. The AUE-PC
variant of AUE extends the model weights in the ensemble method to be individualized per-client,

16



0 0 0 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1

0 0 0 0 2 2 2 2 2 2

0 0 0 0 2 2 2 2 2 2

0 0 0 0 2 2 2 2 2 2

0 0 0 0 0 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

time
cl
ie
n
ts

Figure 8: Clustering learned by CFL-W on
SINE-2. Each cell indicates the model ID at
each client and time step, and the background
color indicates the ground-truth concept.

0 0 1 0 1 1 1 3 3 0

0 0 1 0 1 1 0 3 0 0

0 0 0 0 0 1 1 1 3 3

0 0 1 1 0 2 2 3 3 3

0 0 1 1 1 1 2 2 3 3

0 0 0 1 1 0 0 0 2 2

0 0 0 0 1 1 0 3 3 1

0 0 0 0 2 2 2 1 1 1

0 0 0 0 0 0 0 2 2 1

0 0 0 0 0 0 3 3 3 3

time

cl
ie
n
ts

Figure 9: Clustering learned by FedDrift-Eager
on MNIST-4. Each cell indicates the model ID
at each client and time step, and the background
color indicates the ground-truth concept.

based on the performance of each model over each client’s local data (as opposed to weights chosen
based on the aggregate performance at the server). This additional flexibility leads to only a marginal
accuracy improvement over AUE across all datasets. While it is generally valuable for clients at
different stages of a staggered drift to use different models for inference, the more fundamental
obstacle is that each global model trained by AUE-PC is updated by all clients. In the course of the
2-concept staggered drift, all of the models in the ensemble are trained either over a mixture of data
from both concepts or solely from the first concept, and there is no accurate model available that is a
good fit for the second concept.

The Window-2 algorithm and the weighted sampling algorithms Weighted-Linear and Weighted-Exp
are techniques for forgetting older data, but less abruptly compared to Window-1, and in general they
all perform similarly. On the sharp drift of SINE-2, the fastest forgetting algorithm Window performs
the best of these. On the other hand, on the 4-concept drift of MNIST-4 in which the time axis does
not well separate different concepts, the slowest forgetting algorithm Weighted-Linear performs best.
Meanwhile, the performance of all four algorithms are close on the SEA datasets, which have greater
overlap between the concepts.

The clustering algorithms CFL and CFL-W start with each client in one cluster, and recursively split
clusters over rounds and over time based on the intra-cluster similarity of their local updates. We
observe that the CFL-W variant is the better-performing of the two on each dataset except MNIST-4
(which is also the only dataset where Oblivious outperforms Window), and is a consequence of the
passive drift adaptation of its sliding window which forgets older data. The performance of CFL-W is
relatively high on SINE-2 and CIRCLE-2. As an example, the clustering learned on SINE-2 is shown
in Figure 8. We observe that, for the first 6 time steps, it correctly distinguishes the two concepts by
using distinct models. The disadvantage of the clustering of CFL-W is that it creates excess models
for the same concept and does not take full advantage of collaborative training. At time 5, it is limited
to splitting its cluster for model 0 when the green concept occurs, but cannot merge the drifted clients
to the existing cluster created for the green concept at the previous time step. This limitation of only
being able to subdivide existing clusters, but not merge clusters or re-assign clients to existing clusters
results in poor performance on more complex drifts.

For IFCA, IFCA-W, and IFCA(T), the clustering is pre-initialized with a random model for each
concept that can occur over time for each dataset. In general, we observe that this is not a reliable
method for reacting to drift. All the IFCA variants perform well under the sharp label-swap drift
of SINE-2. When the new concept occurs, the drifted clients cluster to the second model, and the
learned clustering matches the ground-truth. On CIRCLE-2, we found that IFCA and IFCA(T) learned
the correct clustering in 2 out of 5 trials, and otherwise used only a single model in the other 3 trials.
IFCA-W learned the correct clustering in 1 out of 5 trials. (Note the high standard deviation in Table
3.) Across the SEA and MNIST datasets, none of the three algorithms ever used more than a single
model (with one exception—on SEA-4, in 1 out of 5 trials, IFCA-W used a distinct model for the
yellow concept). For the SEA and MNIST datasets, we observe that the IFCA and IFCA(T) degrade to
the Oblivious algorithm, and that IFCA-W degrades to the Window algorithm. On the FMoW dataset,
we observe again that random initialization can sometimes address drift, but unreliably: in 1 out
of 5 trials each for all IFCA variants, a separate model is used for the Africa region at later time
steps. (However, the IFCA variants are among the worst performing in our evaluation because their
random initialization precludes the pre-trained ImageNet initialization we use for other algorithms.)

17



The authors of the original paper on IFCA note that the accuracy of the clustering is sensitive to the
initialization of the models, and propose random restarts to address this issue, but restarts do not
translate well to the time-varying setting we study. In our work, FedDrift-Eager and FedDrift address
the initialization problem by using drift detection to deal with new concepts as they occur and to
cultivate new clusters.

For FedDrift-Eager-W and FedDrift-W, restricting to a window has minimal impact on the accuracy
for the SEA dataset. There is a significant loss of accuracy for the MNIST dataset relative to the
non-windowed versions, but note that the same significant loss occurs when going from Oracle to
Oracle-W, so this loss is a result of windowing, not specific to our algorithm. Indeed, the accuracy of
FedDrift-W is quite close to Oracle-W.

The communication-efficient FedDrift-C. As noted in §4, one of the drawbacks of FedDrift is that
it can create more models M compared to FedDrift-Eager, adding to the communication cost of
sending O(MP ) models. The goal is to only use a number of global models close or equal to the
number of distinct concepts, and while FedDrift can hierarchically merge created models of the same
concept, FedDrift can observe temporary spikes in the number of global models. To mitigate this cost,
we evaluate FedDrift-C, which differs from FedDrift in that, at each time after drift occurs, only one
random client that drifted contributes its local model as a global model. In the case that multiple new
concepts occur at a time, only one of the new concepts will be learned immediately, but clients that
are still at an unlearned concept are eligible to detect drift again at the following time step and get
another chance to contribute its local model. Meanwhile, while a concept goes unlearned globally,
drifted clients do not contribute to any of the global models.

For the 4 concepts in MNIST-4, we observed that FedDrift learned a total of 7 global models (later
merged down to 4) as shown in Figure 6 in §5. FedDrift-C more efficiently maintained a maximum of
4 global models across all time, at a penalty of 0.87% accuracy due to the delayed learning of one of
the two simultaneously arising concepts. Meanwhile, FedDrift-Eager suffers a larger 4.88% penalty
after it incorrectly merged the two simultaneous concepts, as shown in Figure 9—model 1 is initially
trained over the green and yellow concepts, and while the clients at the green concept later abandon
model 1 and eventually learn a separate model 2, the green concept training data still poison both
model 0 and model 1.

We quantify this accuracy-communication trade-off in Figure 10 where we show the average test
accuracy and total number of models sent by FedDrift-Eager, FedDrift, and FedDrift-C under various
selections of the drift detection threshold δ. Increasing the value of δ restricts cluster splitting
(increases false negative detections) and promotes cluster merging, which reduces the number of
models and concepts learned (at δ = 1, each algorithm is identical to Oblivious). Empirically, we
confirm that choosing larger settings of δ can trade-off accuracy for efficiency. (Choosing δ too small
for FedDrift can also negatively affect accuracy due to increased false positive detections, but to a
lesser degree because the hierarchical clustering of FedDrift can correct some false positives—see
below on Impact of False Positives.) We observe that, generally, using FedDrift-C over FedDrift
preserves most of the accuracy improvement over Oblivious while saving communication—with
one exception at the largest δ = 0.20 where both algorithms are susceptible to false merging, but
FedDrift has more total models added to make the mistake of merging two concepts that FedDrift-C
avoids. We also observe that the Pareto front is mostly configurations of FedDrift and FedDrift-C over
FedDrift-Eager. Finally, we observe that all variants of FedDrift are more efficient than ensemble
algorithms—relative to Oblivious, FedDrift variants send 2–3x models compared to AUE which
sends 5x—because for ensembles, clients contribute to every model at each communication round,
compared to FedDrift where clients contribute only to the clusters they belong to (the broadcast of all
models for clustering in FedDrift is only once per time step).

Random Drift Patterns. Throughout this paper, we have considered the 4-concept drift pattern in
Figure 3 in §3 as a specific concrete example in order to depict the challenges in distributed concept
drift, motivate the design of FedDrift, and discuss the experimental performance by comparing the
learned clustering matrix to the ground-truth. To examine the performance more generally, we
consider a family of datasets MNIST-R with random concept changes. Using the same four concepts
as in MNIST-4, MNIST-R is generated with all clients at the first concept to start, and then each
client independently randomly observes one of the four concepts every two time steps (as opposed to
every time step which is not possible to adapt to). Across 5 random seeds, the average accuracy is

18



1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Models sent (normalized to Oblivious)

0.84

0.86

0.88

0.90

0.92

0.94

Te
st

 a
cc

ur
ac

y

MNIST-4
FedDrift
FedDrift-Eager
FedDrift-C
Oblivious

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 10: The accuracy-communication trade-off on MNIST-4 for FedDrift-Eager, FedDrift, and
FedDrift-C. Each algorithm is evaluated under various selections of the splitting/merging threshold δ
between 0.02 and 0.20, indicated by color. The vertical axis is the average test accuracy across clients
and time, omitting drifts. (1 trial)

Table 5: Average accuracy (%), omitting drifts

MNIST-R

Oblivious 85.12 ± 1.37
DriftSurf 85.03 ± 1.36
KUE 81.56 ± 1.90
AUE 83.87 ± 1.64
AUE-PC 83.67 ± 1.66
Window 82.37 ± 1.94
Window-2 83.65 ± 1.83
Weighted-Linear 84.87 ± 1.34
Weighted-Exp 84.60 ± 1.44
Adaptive-FedAvg 83.17 ± 1.51
CFL 84.20 ± 1.54
CFL-W 82.24 ± 1.77
IFCA(T) 84.50 ± 1.21
IFCA 84.39 ± 1.45
IFCA-W 85.93 ± 3.35

FedDrift-Eager 89.85 ± 1.49
FedDrift 94.06 ± 0.38
FedDrift-C 92.76 ± 0.56
FedDrift-Eager-W 86.60 ± 2.27
FedDrift-W 90.83 ± 0.17

Oracle 95.03 ± 0.15
Oracle-W 91.66 ± 0.31

Table 6: Average accuracy (%), including drifts

MNIST-R

Oblivious 83.92 ± 1.23
DriftSurf 83.83 ± 1.21
KUE 79.77 ± 2.03
AUE 81.96 ± 1.03
AUE-PC 81.52 ± 1.43
Window 80.11 ± 1.45
Window-2 81.30 ± 1.58
Weighted-Linear 83.64 ± 1.21
Weighted-Exp 83.39 ± 1.29
Adaptive-FedAvg 81.41 ± 1.24
CFL 83.05 ± 1.37
CFL-W 80.58 ± 1.94
IFCA(T) 83.31 ± 1.11
IFCA 83.29 ± 1.29
IFCA-W 81.65 ± 0.67

FedDrift-Eager 85.26 ± 0.81
FedDrift 86.77 ± 0.76
FedDrift-C 86.65 ± 0.94
FedDrift-Eager-W 81.74 ± 1.60
FedDrift-W 83.70 ± 0.80

Oracle 87.32 ± 0.86
Oracle-W 84.29 ± 0.89

shown in Table 5 (and in Table 6 for all time including drifts). We generally observe the same relative
performances of each algorithm as on the previously specified MNIST-4 drift. The performance of
FedDrift is close to that of Oracle, FedDrift-C is close behind, FedDrift-Eager is lower given that it
is likely to have multiple new concepts occurring simultaneously in MNIST-R, and then all prior
baselines follow.

Impact of False Positives. To demonstrate the application of the hierarchical clustering in FedDrift,
in §5 we discussed the example of the learned clustering for MNIST-4 in Figure 6. Here in Figure
11 we present another example on SINE-2 at a small δ = 0.01 (corresponding to more aggressive
detection) to demonstrate an example of how hierarchical clustering can be beneficial even in the case
of a 2-concept drift in mitigating false positives. At time 3, in both FedDrift-Eager and FedDrift there
are three false positives, where in FedDrift-Eager, the new model 1 is retained but its underlying data
forgotten, while in FedDrift, although initially 3 redundant models are created, they are all merged
back with model 0 within 2 time steps, averaging their parameters and reincorporating their clustered
data. The advantage of hierarchical clustering is also evident at time 4 when 2 false positives and
2 true positives occur together. In FedDrift-Eager, one new model is created for all the clients, but
this new model is “poisoned” by contributions from the blue concept and does not work well at time
5, resulting in another drift detection to create model 3 (and forgetting about the data associated

19



0 0 0 2 2 3 3 3 4 4

0 0 0 2 3 3 3 3 4 4

0 0 0 1 3 3 3 3 3 3

0 0 0 2 3 3 3 3 3 3

0 0 0 0 3 3 3 4 3 3

0 0 1 1 0 2 3 3 3 3

0 0 1 0 0 1 3 3 3 4

0 0 0 1 0 1 4 3 3 3

0 0 1 1 0 1 1 0 3 4

0 0 0 2 0 0 1 0 3 3

time
cl
ie
n
ts

(a) FedDrift-Eager

0 0 0 4 4 4 4 4 4 4

0 0 0 6 4 9 8 4 4 4

0 0 0 0 4 4 8 4 4 4

0 0 0 0 4 4 8 4 4 4

0 0 0 5 4 8 4 4 4 4

0 0 3 0 0 4 4 4 4 4

0 0 0 1 0 0 4 4 4 4

0 0 2 1 5 0 8 4 4 4

0 0 1 0 5 5 0 0 4 4

0 0 0 7 0 5 0 0 4 4

time

cl
ie

n
ts

0←[0, 2] 
1←[1, 3]

0←[0, 1] 
4←[4, 6]

5←[5, 7] 0←[0, 5] 
4←[4, 9]

4←[4, 8]

(b) FedDrift

Figure 11: Clustering learned on SINE-2 when δ = 0.01. Each cell indicates the model ID at each
client and time step, and the background color indicates the ground-truth concept.

with model 2). FedDrift, on the other hand, creates models solely trained over either the blue and
green concepts, and eventually merges all models of an identical concept, recovering all of the data.
While the false positive mitigation demonstrated in this example is not a significant contributor to the
observed higher accuracy of FedDrift in our evaluation because we use higher δ values as noted in
Appendix D, it is relevant when there is greater uncertainty in selecting the threshold hyperparameter.

Test Accuracy Over Time. Finally, in Figure 12, we include plots omitted for space from the
body of the paper on the accuracy over time for FedDrift-Eager, FedDrift, and selected baselines
representing drift detection, ensembles, and clustered FL, supplementing Figure 5 in §5. (Note the
varying scales of the y-axes.) Similarly, here we observe the same general trends: (i) the centralized
drift adaptation algorithms suffer in performance, particularly during the transition period when
no one model works well across all clients; (ii) CFL can react to the drift early on SINE-2 as with
CIRCLE-2 before, but its performance degrades with excessive further splits; (iii) for the 4-concept
drift in SEA-4 and MNIST-4 centralized baselines and CFL never recover in performance with
multiple concepts present; and (iv) on SEA-4 and MNIST-4, FedDrift is close to Oracle except for a
gap at time 3 when it uses local models prior to merging, while FedDrift-Eager lags behind FedDrift
when it creates a single model for the 2 simultaneously arising concepts but can slowly recover with
further detections.

20



0.4

0.5

0.6

0.7

0.8

0.9

1

Te
st

 A
cc

u
ra

cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift Oracle

(a) SINE-2

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Te
st

 A
cc

u
ra

cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift Oracle

(b) SEA-2

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Te
st

 A
cc

u
ra

cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift Oracle

(c) MNIST-2

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91
Te

st
 A

cc
u

ra
cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift Oracle

(d) SEA-4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Te
st

 A
cc

u
ra

cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift Oracle

(e) MNIST-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

u
ra

cy

Time
DriftSurf KUE CFL FedDrift-Eager FedDrift

(f) FMoW

Figure 12: Test accuracy of selected algorithms at each time on SINE-2, SEA-2, MNIST-2, SEA-4,
MNIST-4, and FMoW. Vertical lines represent standard deviations.

21


	Introduction
	Problem Setup
	Motivation
	Clustering Algorithms
	Special Case: One New Concept at a Time
	General Case

	Experimental Results
	Related Work
	Multiple-Model Training in FL
	Detailed Description of FedDrift
	Datasets and Experimental Parameters
	Additional Experimental Results

