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ABSTRACT

Federated Learning (FL) has been a popular approach to enable collaborative
learning on multiple parties without exchanging raw data. However, the model
performance of FLL. may degrade a lot due to non-IID data. While many FL
algorithms focus on non-IID labels, FL on non-IID features has largely been
overlooked. Different from typical FL approaches, the paper proposes a new
learning concept called ADCOL (Adversarial Collaborative Learning) for non-I1ID
features. Instead of adopting the widely used model-averaging scheme, ADCOL
conducts training in an adversarial way: the server aims to train a discriminator to
distinguish the representations of the parties, while the parties aim to generate a
common representation distribution. Our experiments show that ADCOL achieves
better performance than state-of-the-art FL algorithms on non-IID features.

1 INTRODUCTION

Deep learning is data hungry. While data are always dispersed in multiple parties (e.g., mobile
devices, hospitals) in reality, data are not allowed to transfer to a central server for training due to
privacy concerns and data regulations. Collaborative learning among multiple parties without the
exchange of raw data has been an important research topic.

Federated learning (FL) (McMahan et al. 2016} Kairouz et al.l 2019; [Li et al.l 2019bja)) has been
a popular form of collaborative learning without exchanging raw data. A basic FL framework is
FedAvg (McMahan et al.,|2016), which uses a model-averaging scheme. In each round, the parties
update their local models and send them to the server. The server averages all local models to update
the global model, which is sent back to the parties as the new local model in the next round. FedAvg
has been widely used due to its effectiveness and simpleness. Most existing FL approaches are
designed based on FedAvg.

However, as shown in many existing studies (Hsu et al.,2019; |Li et al., [2020; [20214), the performance
of FedAvg and its alike algorithms may be significantly degraded in non-IID data among parties.
While many studies try to improve FedAvg on non-IID data, most of them (Li et al.,[2020; Wang et al.|
2020b; |[Karimireddy et al., [2020; |Acar et al., 2021} [Li et al., 2021b}; [Wang et al., [2020a) focus on the
label imbalance setting, where the parties have different label distributions. In their experiments, they
usually simulate the federated setting by unbalanced partitioning the dataset into multiple subsets
according to labels.

As summarized in [Hsieh et al.| (2020); [Kairouz et al.| (2019), besides the label distribution skew,
feature imbalance is also an important case of non-IID data. In the feature imbalance setting, the
feature distribution P;(x) varies across parties. This setting widely exists in reality, e.g., people have
different stroke width and slant when writing the same word. Another example in practice is that
images collected by different cameras have different intensity and contrast. However, compared with
non-1ID labels, FL on non-IID features has been less explored. Most existing studies on non-IID data
are still based on the model-averaging scheme (Li et al., [2020; (Collins et al., 2021} |Li et al., [2021bj
Fallah et al.,2020), which implicitly assumes that the local knowledge P;(y|x) is common across
parties and is not applicable in the non-IID feature setting. For example, FedRep (Collins et al.,
2021)) learns a common base encoder among parties, which will output very different representation
distributions across parties in the non-IID feature case even though for the data from the same
class. Such a model-sharing design fails to achieve good model accuracy for application scenarios
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with non-IID features. Therefore, we need a fundamentally new approach to address the technical
challenges of non-IID features.

In this paper, we think out of the model-averaging scheme used in FL, and propose a novel learning
concept called adversarial collaborative learning. While the feature distribution of each party is
different, we aim to extract the common representation distribution that is sufficient for the prediction
task. Instead of averaging the local models, we apply adversarial learning to match the representation
distributions of different parties. Specifically, the server aims to train a discriminator to distinguish
the local representations by the party IDs, while the parties train the base encoders such that the
generated representations cannot be distinguished by the discriminator. Besides the base encoders,
each party trains a predictor for local personalization and ensures that the generated representation is
meaningful for the prediction task. Our experiments show that ADCOL outperforms state-of-the-art
FL algorithms on three real-world tasks. More importantly, ADCOL points out a promising research
direction on collaborative learning. For example, it is interesting to generalize ADCOL to other
settings besides feature skew in a communication-efficient way.

2 BACKGROUND AND RELATED WORK

2.1 NoON-IID DATA

We use P;(x,y) to denote the data distribution of party i, where x is the features and y is the label.
According to existing studies (Kairouz et al.2019; Hsieh et al., 2020), we can categorize non-1ID
data in FL into the following four classes: (1) non-IID labels: the marginal distribution P;(y) varies
across parties. (2) non-IID features: the marginal distribution P;(x) varies across parties. (3) concept
drift: The conditional distributions P;(y|x) or P;(x|y) varies across parties. (4) quantity skew: the
amount of data varies across parties. In this paper, we focus on non-IID features, which widely exist
in reality. For example, the distributions of images collected by different camera devices may vary
due to the different equipment and environments.

2.2 FEDERATED LEARNING ON NON-IID LABELS

Non-IID data is a key challenge in FL. There have been many studies trying to improve the perfor-
mance of FL under non-IID data. However, most existing approaches (L1 et al.,|2020; Wang et al.,
2020a; Hsu et al. [2019; |L1 et al., [2021b; |Acar et al., 2021} | Karimireddy et al.,|2020; [Wang et al.,
2021§ Luo et al., 2021; Mendieta et al., 2022) simulate the federated setting with heterogeneous label
distributions in the experiments, which does not pay attention to the non-IID feature challenge. For
example, FedProx (Li et al., 2020) introduces a proximal term in the objective of local training, which
limits the update of the local model by the distance between the local model and the global model.
While it is challenging to achieve a good global model for every party, personalized FL (Fallah et al.|
2020; |IDinh et al., [2020; [Hanzely et al.,2020; Zhang et al., [2021b; |Huang et al., |2021} |Collins et al.,
2021) is a very promising direction, which aims to learn a personalized local model for each party.
For example, FedRep (Collins et al., 2021) only adopts federated averaging for the base encoder,
while each party locally trains a classifier head for personalization. Per-FedAvg (Fallah et al., [2020)
applies the idea of model-agnostic meta-learning (Finn et al., 2017), which finds a shared model
that can be easily adapted to the local datasets with a few steps of gradient descent. However, the
above approaches are all based on the model-averaging scheme, which is not suitable for the non-IID
feature setting as we will show in Section[3.2] They have severe performance degradation on parties
with non-IID features.

2.3 FEDERATED LEARNING ON NON-IID FEATURES

Only several studies investigate FL on non-IID feature setting. Observing that averaging batch
normalization parameters may decrease the accuracy a lot, FedBN (Li et al.| 2021c)) updates all the
batch normalization (BN) parameters locally and does not synchronize them with the global model.
The operations for non-BN parameters are the same as FedAvg. Considering each party as a domain,
cross-domain FL (Sun et al., 2021)) is also applicable in the non-IID feature setting. Besides BN
parameters, PartialFed (Sun et al.,|2021)) updates selective model parameters locally and does not
initialize them as the global model. While both studies try to address the feature skew problem by
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partially averaging the local models, we propose a fundamentally new training framework based on
adversarial learning that does not average the models at all.

2.4 ADVERSARIAL LEARNING FOR DISTRIBUTION MATCHING

Adversarial learning has been successful for distribution matching (e.g., domain adaptation (Tzeng
et al.,2017), GANs (Goodfellow et al.,|2014)). The basic idea is to train a discriminator to encourage
indistinguishable distributions, which is smart and sweet. Peng et al.|(2019b) proposes FADA to apply
adversarial learning in federated setting to study the federated domain adaption problem, which has a
different setting and goal from our paper. For more discussion on the relation and difference between
our approach and FADA, please refer to Appendix [C| More recently, a study (Zhang et al.,|2021a)
proposed FedUFO, where each party trains a discriminator to apply feature and objective consistency
constrains to address the non-IID data issue. However, during the local training stage, FedUFO needs
to transfer each local model to all the other parties, which causes massive communication overhead.
Moreover, FedUFO focuses on the non-1ID label setting in their experiments.

3 THE PROPOSED METHOD

3.1 PROBLEM STATEMENT

Suppose there are N parties, where party 4 has a local dataset D* = {x, y}. The feature distributions
P(x) are different among parties while the label distributions P(y) are same/similar among parties.
The parties conduct collaborative learning over D £ Uie[ N D' with the help of a central server
without exchanging the raw data. Like typical personalized FL, the goal of each party is to train a
machine learning model which has good accuracy on its local test dataset.

3.2 MOTIVATION

Problem of Model-Averaging on non-IID Features Most existing studies (Li et al.||2020; |Karim
ireddy et al.,|2020; [Li et al., [2021b; [Dinh et al.| |2020; |Collins et al., [2021) are still based on FedAvg
to address the non-IID data. However, they are not suitable in our setting. In the model-averaging
scheme, the server averages the local models as a global model, which essentially tries to learn a
common P(y|x). In their experiments, they usually partition a dataset to different parties horizontally
to simulate the federated setting, where parties indeed follow the same P(y|x) (with different P;(y))
so that the global model is helpful. However, in our setting, for party ¢ and j, since P;(x) # P;(x)
and P;(y) = P;(y), P;(y|x) and P;(y|x) are different. Averaging the local models does not directly
help the learning of local knowledge P;(y|x).

Instead of averaging and learning a global model, we propose to learning a common representation
distribution to address the non-IID features. Although the feature distributions P;(x) are different
among parties, they have the same task y. Thus, we aim to extract the underlying task-specific
representation z for the task y from multiple parties. Specifically, we decompose local objective
P;(y|x) into two parts: P;(z|x) and P;(y|z). The first part is to learn the oracle representation for
the task and the second part is to predict the label by the representations. The second part can be
easily achieved by training a predictor head with the representations as inputs. For the first part, we
assume that there exists an oracle optimal representation distribution P*(z) for the prediction of y.
Then, the ideal objective of party ¢ can be formulated as

min Exp, (i ((Fi(x) Fi(z[x:6,)) || P*(2)), M

i

where (g, is the KL divergence loss and 6; is the base encoder to generate the representation. In
practice, P*(z) is unknown. However, it has the following two features: (1) P*(z) is same for each
party; (2) P*(z) is able to predict y. Thus, we approximate the objective by two aspects: (1) To
ensure that the representation absorbs the knowledge of multiple parties, the parties aim to map their
local data into a common representation distribution P(z); (2) We ensure that the generated P(z)
contains necessary information for the prediction of y by training a predictor on the representation.
We introduce the details about the training procedure in Section [3.4]



Under review as a conference paper at ICLR 2023

3.3 MODEL ARCHITECTURE

There are two kinds of models in ADCOL: the local models trained in the parties and the discriminator
trained in the server. As ADCOL works from the perspective of representation, the architecture of the
local model is similar as existing studies (Chen et al.,|2020;|Chen & He,|[2021) on self-supervised
representation learning. The local model has three components: a base encoder, a projection head,
and a predictor. The base encoder (e.g., ResNet-50) extracts representation vectors from inputs.
Like SimCLR (Chen et al.,|2020) and SimSam (Chen & Hel, |[2021), an additional projection head is
introduced to map the representation to a space with a fixed dimension. The final predictor is used to
output probabilities for each class. For ease of presentation, we use F'(-) to denote the whole model
and G(+) to denote the model before the predictor (i.e., G(x) is the mapped representation vector of
input x). For the discriminator, we simply use a MLP.

3.4 THE OVERALL FRAMEWORK

The overall framework is shown in Figure[I]and Algorithm[I} There are four steps in each round: (1)
The server sends the discriminator to the parties. (2) The parties update their local models. (3) The
parties send representations to the server. (4) The server updates the discriminator.

Step 1 In the first step, the server sends the discriminator to parties (line 4 of Algorithm ).

Step 2 In the second step, the parties update their models using their local datasets (lines 10-17 of
Algorithm|[I). In addition to the objective which aims to minimize the cross-entropy loss (i.e., {c )
on the local dataset, ADCOL introduces an additional regularization term which aims to maximize
the probability that the discriminator cannot distinguish the local representations. For each input
x, ADCOL feeds the representation G(x) to the discriminator. ADCOL expects the discriminator
to output probability vector [%}N (i.e., the probability of each class is %) such that it cannot
distinguish which party that the representation comes from. Thus, ADCOL uses Kullback—Leibler
(KL) divergence loss to measure the difference between the output of the discriminator D(G(x)) and

the target [-]". The final loss of an input (x, y) is computed as

1
(= Lop(F(x),y) + plrr (5] || D(G())) )
where p is a hyper-parameter to control the weight of KL divergence loss, ¢ g is the cross-
entropy loss, and /g, is the KL divergence loss. Each party minimizes its local empirical risk
E(x,y)~p,£(X,y; D) to update its local model, where /() is presented in Equation

Step 3 After local training, the parties feed their data into the local models and transfer the
representations to the server (line 5 of Algorithm [I).

Step 4 The server updates the discriminator using the received representations (lines 6-9 of Algo-
rithm . Specifically, the server builds a training set Dr = {R, I'}, where the feature values are
the representations and the labels are the party IDs that the representations come from. The server
minimizes the empirical risk E(g 1y~p,fce (R, I) on the training set to update the discriminator.

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE OF ADCOL

As shown in Equation [2] the local loss has two parts: the cross-entropy loss part to update the whole
network F' and the KL divergence loss part to update the representation generator GG. Ideally, to
achieve minimum of ¢, each part should achieve minimum. Since the cross-entropy loss part is
same as FedAvg, we focus on the effect of the KL divergence loss. For simplicity, we ignore the
cross-entropy loss and study the KL divergence loss in our theoretical analysig’'} The local objective

"Note that G is a part of F and the two losses are not independent of each other. For simplicity, we only
analyze the KL divergence loss to study its effect.
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Figure 1: The ADCOL framework

Algorithm 1: The ADCOL algorithm

Input: number of communication rounds 7', number of parties [V, number of local epochs E,
learning rate 7, hyper-parameter p
Output: The local models F; (i € [N])

1 Server executes: 10 PartyLocalTraining(, D):
2 fort=1,2,....,7 do u forepoche =1,2,..., E do
3 | fori=1,2,..., N in parallel do 12 | for each batchb = {x,y} of D’ do
4 L send the discriminator D to party i 13 Lop + CrossEntropyLoss(F;(x),y)
5 R, < PartyLocalTraining(i, D) 14 R + G;(x)
o | R {(Rii)}Y, is k1 + KLDiv([§]"[|D(R))
7 | foreachbatchb = {R;,i} of R do 16 U Llop + plir
8 L ¢+ CrossEntropyLoss(D(R;),i) 1 F; « F, —nV{
9 D <+ D —nV{ - .
L 18 return G, (x") to server

of party 1 is:
. 1.n
min B, L (1Y 11 DIGH))): 3)
The objective of the discriminator is
N
max > Exp, log(Di(Gs(x))), “4)

=1

where D;(-) is the i-th output of the prediction vector D(-) (i.e., the probability of class ¢). Here we
analyze the convergence property of the training process like existing studies on GANs
let al} 2014} Tran et al} [2019). In Theoremf.T] we derive the optimal discriminator given the objective
Equation Equation 4} Then, in Theorem we derive the optimal solution for the distributions
of local representations to minimize the local objective Equation Equation [3] given the optimal
discriminator from Theorem 1] Last, in Theorem [£.3] we show that the distribution of local
representations can converge to optimal solution given in Theorem[£.2] All the proofs are available in

Appendix [A]
Theorem 4.1. We use P, to denote the distribution of the representations generated in party i and
Pg, (z) is the probability of representation z in distribution Pg,. Then, the optimal discriminator D*
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of EquationH|is
_ PGk (Z)
3L Pa(2)

Theorem 4.2. Given the optimal discriminator D* from Equation[3] the global minimum of Equa-
tion[3)is achieved if and only if

Di(z) 5)

PG1:PG2:”':PGN (6)

Theorem [.1] and Theorem [4.2] show that to achieve the minimum of the objectives of the local
parties and the discriminator, the parties will generate the same representation distribution, which
matches the goal of ADCOL. In Theorem 4.2} we assume that D can reach D* like existing GAN
studies (Goodfellow et al., |2014; [Tran et al., |2019). For detailed analysis on it, please refer to

Appendix [Al
Theorem 4.3. Suppose P, is the optimal solution shown in TheoremWd.2| If G; (Vi € [1, N]) and D

have enough capacity, and Pg, is updated to minimize the local objective (i.e., Equation[3), given the
optimal discriminator D* from Equation@ then Pg, converges to Pf,.

The above theorem provides insights on the convergence of the training. In practice, we optimize
the parameter 6 of the local networks rather than P, itself, which is reasonable due to the excellent
performance as claimed in \Goodfellow et al.| (2014)). Note that there are collapsing solutions for
Equation [3]and Equation[d The representations of each party can simply be constant vectors, which
can achieve global minimum of Equation [3] Thus, the cross-entropy loss is necessary in Equation 2}
which ensures that the generated representations are meaningful.

4.2 COMMUNICATION SIZE

For simplicity, our analysis assumes all parties participate in learning in each round, and it is
straightforward to extend this assumption by considering party sampling techniques. We use Sy, to
denote the size of the local model. Then, the communication size per round of FedAvg is 2NV Sy,
including the server sends the model to all parties and the parties send their local models to the server.

We use n to denote the total number of examples (i.e., n = Zf\il \Di ), d to denote the dimension of
the representations, and Sp to denote the size of the discriminator. Suppose each float value costs
four bytes to store. In each round, the communication size of ADCOL is (4nd + N Sp), including

the parties send the representations to the server and the server sends the discriminator to the parties.

Although the communication costs of ADCOL and FedAvg depend on the specific settings, we find
that ADCOL is usually more communication-efficient than FedAvg in the experimental setting of
existing studies. For example, in the experimental setting of FedAvg [5], a simple MLP (199,210
parameters) is used for classification on MNIST with 100 parties. For FedAvg, the communication size
per round is 159.4M B. For ADCOL, considering the dimension of representation d = 128, and the
discriminator as a 2-layer MLP with 128 hidden units (Sy; = 68, 628 B). Then, the communication
size per round of ADCOL is 37.6M B. There may exist extreme cases that ADCOL has more
communication size per round than FedAvg when the number of parties is small, the number of
samples is large, and the size of model is small. However, in such cases, it is usually impractical to
conduct FL as local training may already achieve satisfactory performance.

Like party sampling in FedAvg, we propose representation sampling to further reduce the com-
munication size. In each round, each party randomly samples a subset of the representations and
sends them to the server. As we will show in Appendix [B.T1] representation sampling can effectively
reduce the communication size with tolerable accuracy loss.

4.3 PRIVACY

While sharing representation is used in ADCOL and other collaborative learning studies (He et al.,
2020; |Peng et al.| [2019b; [Vepakomma et al., |2018)), one possible concern is that representations
may leak more information than models. There are many existing studies (Shokri et al., 2017} [Nasr
et al.,[2019) that infer sensitive information from exchanged gradients/models. Also, there are studies
(Salem et al., 2020) on reconstruction attacks on the output of a model. While existing studies
have shown that the mutual information between the input data and the final representation is small
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(Shwartz-Ziv & Tishby, |2017), it is still not clear that whether sharing models is more private than
sharing representations to the best of our knowledge, which can be an interesting future direction.

To enhance the privacy guarantee, Differential Privacy (DP) (Dwork et al.l [2014)) can be applied
to protect the transferred messages including the representation. For more details, please refer to

Appendix

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines We compare ADCOL with seven baselines including SOLO (i.e., each party trains the
model individually without collaborative learning), FedAvg (McMahan et al.,[2016), FedBN (L1 et al.,
2021c)), PartialFed (Sun et al.l 2021), FedProx (Li et al.| 2020), Per-FedAvg (Fallah et al.,|2020)), and
FedRep (Collins et al.| 2021). Here FedBN is the state-of-the-art FL. approach on non-IID features.
PartialFed is a personalized FL approach on the cross-domain setting which is also applicable to the
non-1ID feature setting. FedProx is a popular FL approach for non-IID data. Per-FedAvg and FedRep
are two state-of-the-art personalized FL approaches. FedUFO is not open-sourced and requires
all-to-all communication of local models among any two parties during local training, which leads to
prohibitively high communication cost. For example, in our experimental setting with Digits task,
FedUFO has 77 times higher communication cost than ours. Thus, we omit the experiments with
FedUFO here. Like FedAvg (McMahan et al.,[2016), we use weighted average according to the data
volume of each party for all baselines. By default, we do not apply representation sampling and
differential privacy in ADCOL.

Models All approaches use the same local model architecture for a fair comparison. The architecture
of the local model is similar as SimSam (Chen & He}|2021)), which has the following three components:
(1) Base encoder: ResNet-50 (He et al., [2016). (2) Projection head: a 3-layer MLP with BN applied
to each fully-connected layer. The input dimension is 4096. The dimension of the hidden layer and
the output layer is 2048. (3) Predictor: a 2-layer MLP with BN applied to its hidden layer. The input
dimension is 2048. The dimension of its hidden layer is 512. The discriminator is a 3-layer MLP.
The input dimension is 2048. The dimension of the hidden layers is 512. The output dimension is
equal to the number of parties.

Datasets We use the same tasks as in the study of FedBN. There are three tasks in our experiments:
(1) Digits: The Digits task has the following five digit data sources from different domains: MNIST
(LeCun et al.l {1998), SVHN (Netzer et al., 2011), USPS (Hull, [1994), SynthDigits (Ganin &
Lempitsky, [2015), and MNIST-M (Ganin & Lempitsky, 2015)). (2) Office-Caltech-10 (Gong et al.,
2012): The dataset has four data sources acquired using different camera devices or in different real
environments with various backgrounds: Amazon, Caltech, DSLR, and WebCam. (3) DomainNet
(Peng et al.,[2019a): The dataset contains natural images coming from six different data sources
with different image styles: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. Here the
first task is a synthetic task by combining different digit datasets. The second and third tasks are
real-world datasets that naturally generated in a federated setting. For each task, different datasets
have heterogeneous features but share the same label distribution, which naturally forms the non-IID
feature setting (Li et al.,|2021a). Due to the page limit, we only present some experimental results on
Digits in the main paper. For more experimental results and details, please refer to Appendix [B]

Setup By default, the number of parties is equal to the number of data sources, where each party
has data from one of the data sources. For each dataset, we randomly split 1/5 of the original dataset
as the test dataset, while the remained dataset is used as the training dataset. The number of local
epochs is set to 10 by default for all FL approaches. The number of epochs is set to 300 for SOLO.
For ADCOL and FedProx, we tune € {10,1,0.1,0.01,0.001} and report the best results. For
FedRep, we tune 3 (i.e., step size for the second batch training) from {0.001, 0.01} and report the best
results. We use the prediction layers as the shared representation in FedRep. We use PyTorch (Paszke
et al.| 2019) to implement all approaches. We use the SGD optimizer for training with a learning
rate of 0.01. The SGD weight decay is set to 10~5 and the SGD momentum is set to 0.9. The batch
size is set to 64, 32, and 32 for Digits, Office-Caltech-10, and DomainNet, respectively. We run the
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Table 1: The comparison of top-1 test accuracy among different approaches on Digits. We run FL.
approaches for 100 rounds (all approaches have converged). We run three trials and report the mean
and standard derivation. Besides the test accuracy on each party, we also report the mean accuracy of

all parties denoted as “AVG”.

Digits MNIST SVHN USPS SynthDigit MNIST_M AVG
SOLO 87.9%+0.4% | 34.8%+0.8% | 94.8%+0.1% | 63.0%+£0.4% | 67.2%+0.4% | 69.5%+0.3%
FedAvg 94.4%%0.5% | 59.4%+£0.9% | 94.3%+0.2% | 74.4%=+0.5% | 70.3%+1.2% | 78.6%=+0.6%
FedBN 94.1%+0.8% | 59.9%+0.7% | 94.1%+0.1% | 73.9%+0.6% | 71.3%+1.1% | 78.7%=+0.6%
PartialFed | 94.7%40.4% | 59.4%+0.6% | 94.2%=+0.1% | 75.2%+0.4% | 69.7%+0.6% | 78.6%+0.4%
FedProx 94.1%+0.4% | 59.8%+0.6% | 94.3%+0.1% | 73.4%+0.3% | 71.6%+0.9% | 78.6%+0.4%
Per-FedAvg | 88.9%=+0.7% | 36.6%=+1.3% | 89.5%+0.2% | 58.3%+0.7% | 54.5%+1.3% | 65.6%+0.8%
FedRep 92.6%+0.2% | 42.0%=£1.0% | 93.1%+0.1% | 61.1%+0.5% | 50.8%+1.4% | 67.9%=+0.8%
ADCOL 94.7%+0.6% | 58.2%+1.0% | 95.4%+0.2% | 76.0%+0.3% | 76.7%+0.8% | 80.2%=+0.5%

experiments on a server with 8 ¥ NVIDIA GeForce RTX 3090, a server with 4 * NVIDIA A100, and
a cluster with 45 * NVIDIA GeForce RTX 2080 Ti.

5.2 OVERALL COMPARISON

Table [I] reports the test accuracy of different approaches on three tasks. We have the following
observations. First, ADCOL is more effective than the other approaches. It can achieve the best test
accuracy on most datasets. Moreover, ADCOL can outperform the other approaches by more than
2% accuracy on average. Second, while the parties may not benefit from FL approaches in some
cases (e.g., Caltech-10), ADCOL always achieves better accuracy than SOLO, which demonstrates
the robustness of ADCOL. Last, the personalized FL approaches (i.e., Per-FedAvg and FedRep) have
a poor performance on the non-1ID feature setting, which are even worse than SOLO. For the results
of other tasks, please refer to Appendix [B.2]

5.3 COMMUNICATION EFFICIENCY

To show the communication efficiency of ADCOL, like existing studies (Karimireddy et al.,2020;
Lin et al.}2020), we compare the number of communication rounds and communication size of each
approach to achieve the same target performance. The results on Digits are shown in Table[2] We
can observe that no approach consistently outperforms the other approaches in terms of the number
of communication rounds. However, the communication size of ADCOL is always much smaller
than the other approaches. ADCOL can save at least 10 times the communication costs to achieve the
same accuracy as FedAvg. The speedup can even be up to 34 x on Digits. The results demonstrate
that ADCOL is much more communication-efficient than the other FL approaches. For the results of
other tasks, please refer to Appendix [B.2}

5.4 SENSITIVITY STUDIES

Scalability and Heterogeneity We adopt the same approach as|Li et al.[(2021c) to study the effect
of number of parties and heterogeneity. We divide each dataset into ten parts randomly and equally
and allocate each part into one party. The parties from the same dataset are treated as IID and the
parties from different datasets are treated as non-IID. We add two parties from each dataset each
time, which results in the number of parties N € {10, 20, 30,40,50}. Moreover, the degree of
heterogeneity decreases as the number of parties increases since the number of IID parties increases.
The test accuracies are reported in Figure[2a] We can observe that the accuracy of all approaches can
be slightly improved when increasing the number of parties due to the reduced heterogeneity and
increased total amount of data. Given a different number of parties, ADCOL consistently outperforms
the other baselines. Although the number of classes to distinguish increases for the discriminator
when increasing [V, ADCOL still shows a good and stable performance.

Effect of Local Dataset Size We vary the percentage of the original local dataset used in each
party from 20% to 100%. The results are shown in Figure [2b] The improvement of ADCOL is more
significant when the size of the local dataset is small. If the size of the local dataset is large, each
party can already achieve satisfactory accuracy by SOLO. The accuracy of all approaches is close
when the percentage is 100%. It is not necessary to conduct collaborative learning in such a case.
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Table 2: The communication round and size of each approach to achieve the same target performance
as the minimum converged accuracy among FedAvg, FedBN, PartialFed, FedProx, and ADCOL as
shown in Table 1 (i.e., 94.1% in MNIST). We use the slash cell to indicate that the approach (i.e.,
Per-FedAvg and FedRep) cannot reach the target performance in 100 rounds/30 GB. The speedup is
computed by dividing the communication size of FedAvg by the communication size of ADCOL.

Digits MNIST | SVHN | USPS | SynthDigit | MNIST_M AVG
FedAvg 11 54 5 11 7 28
FedBN 11 73 5 68 7 22
4 cati PartialFed 9 23 6 14 8 14
communceation =—geprox 64 V) g 2 10 31
round
Per-FedAvg ~ ~ ~ ~ ~ ~
FedRep ~ ~ ~ ~ ~. ~
ADCOL 19 86 6 19 9 21
FedAvg 3.12 15.34 1.42 3.12 1.99 7.95
FedBN 3.12 20.73 1.42 19.31 1.99 6.25
cati PartialFed 2.56 6.53 1.70 3.98 2.27 3.98
commumeation g iProx 1818 | 1193 | 227 341 2.84 8.80
size (GB)
Per-FedAvg ~ ~ ~ ~ ~ ~
FedRep ~ ~ ~ ~ ~ ~
ADCOL 0.21 0.95 0.07 0.21 0.10 0.23
Speedup 14.95x | 16.21x | 21.52x 14.95x 20.08x 34.42x
95
= S0LO = FedProx 100
ol e 2 oot 1 1 0] LY DO
;\; g5 == PartialFe . ADCOL § | :
LB
BOLLLIE
il * o EIEE M z:z:::wﬂl “ ¢
. FedBN FedRep
ol W PartialFed . ADCOL jl | |

30
10 20 30 40 50 20 40 60 80 100 MNIST  SVHN  USPS SynthDigitMNIST-M
number of parties percentage (%) Datasets

(a) Scalability (b) Dataset size (c) Hyperparameter p

Figure 2: Effect of different factors. We run three trials and report the mean accuracy across parties
and its standard derivation.

Effect of 4 We vary o € {0,0.1,1,10} and report the accuracy of ADCOL as shown in Figure
We can observe that ADCOL can achieve the best accuracy when p = 1. If y is too small, the
KL divergence loss of Equation [2] has little effect on the local training. Then, the goal of learning
a common representation distribution may not achieve. If u is too large, the cross-entropy loss
of Equation [2| has little effect on the local training, and the representations may not be useful for
classification at all (e.g., all representations are a constant vector). ADCOL with ¢ = 10 may even
be worse than SOLO (i.e., & = 0). Thus, an appropriate p is important in ADCOL. Through our
experimental studies, we find that setting ;+ = 1 is a good default choice.

6 CONCLUSION

In this paper, we propose ADCOL, a novel collaborative learning approach for non-IID features.
Unlike most previous studies performing model averaging, ADCOL trains the models in an adversarial
way between the parties and the server from the perspective of representation distributions. The
parties aim to learn a common representation distribution, while the server aims to distinguish the
representations by party IDs. Our experiments on three real-world tasks show that ADCOL achieves
higher accuracy than the other state-of-the-art federated learning approaches on non-IID features.

ADCOL shows that it is possible to incorporate global knowledge into parties in an adversarial way
instead of model averaging. This is a fundamentally new and potentially powerful way for federated
learning. We are interested in future studies on extending ADCOL to more federated settings and
advanced techniques for efficient and privacy-preserving representation sharing.
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Reproducibility Statement We have provided the experimental details in Section|5.1{and Appendix
[B.T]for reproducibility. Moreover, we will make the code publicly available.
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A THEORETICAL ANALYSIS

Theorem 4.1. We use Pg, to denote the distribution of the representations generated in party i and
P, () is the probability of representation z in distribution Pg,. Then, the optimal discriminator D*
of Equationd| of the main paper is
o PGk (Z)
e
>iz1 Pay(2)

Proof. From the view of the distribution of representations z, we can reformulate Equation ] and the
objective is to maximize:

Dy (2) M

N
Z / Pg, (z)1og(D;(z))dz ®)

Let V(D) = Zf\; P, (z)log(D;(z)). To maximize Equationwith respect to D, it is equivalent
to maximize V(D) with respect to D given any z. Note that sz\; D;(z) = 1. Let F(D) =
V(D) + A1 - Zil D;(z)). We have

OF(D) Pg,(z)

oD;(z) D;(z) —A ©)

Let 220 —  for i € [1, N], we have

0D;(z) —

Pa,(z) _ Po,(2) Pay(z)
(2) _ Pe,(z) _ — 10
Di(#)  Dals) Dy (s) o

Thus, V(D) can achieve maximum when
Pg, (z
Die) = oy el?_ (1)
>im1 Fa.(2)

O

Note that the discriminator uses SGD to update its model with cross-entropy loss as shown in Lines
6-9 of Algorithm [T} If the discriminator is a linear function, then it can converge to the global
optima since the loss function is convex. If the discriminator is a neural network with non-linear
activations, whether SGD finds a global minimum or not is a traditional optimization problem, which
is orthogonal to our study. Given the evidence of the power of deep learning with SGD from existing
studies (Du et al.| [2019} Zhou et al.,|2019; Zou et al.| 2018;|Choromanska et al.,|2015} Dauphin et al.|
2014), we assume that D can reach D* like existing GAN studies (Goodfellow et al.,[2014;|Tran et al.,
2019). We also empirically show that the discriminator can converge to optima in Appendix [B.15]

Theorem 4.2. Given the optimal discriminator D* from Equation[7] the global minimum of Equa-
tion 3| of the main paper is achieved if and only if

Pg, = FPg, == Pgy (12)

Proof. From Equation [3|of the main paper, the local objective of party & is to minimize

N
W(Gk) = ~Exwp, 1 3 loa(N - Di(Gi(x)))

i=1

N - Pg,(G(x))

| X
= *Ex~DkN Zlog(

13
i=1 Zjvzl P, (Gy(x)) ) (13)
Ly Pg, (Gy(x))
= —Exupy 7 log N + 1o
Dre N ;( g N + g(zj‘v:1 Pe. (Gk(x))))
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Pei(@x)) _y  Note that

SN, Pa, (G (%)

Zil\il % = 1. Similar to the proof in Theorem Equationcan achieve minimum
1= J

To minimize Equation we need to maximize log(

when
Poi(Gr(x)  _ Pe(Ge(¥) _ _ Pex(Gk() L
o Fa,(Gr(®) X5 Po, (Gi(x) ¥ e, (Gr(x) N
For Vk € [1, N] and Vi € [1, N], we have Pg, (G (x)) = w Given a representation
z, we have Z{V P ()
PG1 (Z) = PG2 (z) — .= PGN (Z) — ]ZlN i (15)
Thus, PG1 :PG2 :"':PGN- O

Theorem 4.3. Suppose P(, is the optimal solution shown in Theorem IfG; (Vi € [1,N]) and
D have enough capacity, and Pg, is updated to minimize the local objective (i.e., Equationof the
main paper), given the optimal discriminator D* from EquationEl then Pg, converges to Pf,.

Proof. In Equation|[13] consider W (G},) = U(Pg,) as a function of Pg;,. Then

oU(Pe,) Lizi P (16)
(“)Pgi NPGi (PGi + Zk;ﬁi ng) ’
We have )
0°U(Pg,) 1 1 >0 (17

opPg> Pfél  (Pe, + 2 i Pe)?

Thus, U(Pg, ) is convex in Pg,. Therefore, with sufficiently small updates of Pg,, P, converges to
P¢, concluding the proof. O

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL EXPERIMENTAL DETAILS

In each experiment, like FedBN 2021¢), to remove the effect of quantity skew, we truncate
the size of all datasets to their smallest number with random sampling. For Digits, we resize all
images to 28 x 28 x 3 and normalize them with mean 0.5 and standard derivation 0.5 for each channel.
For Office-Caltech-10, we resize all images to 64 x 64 x 3 with random horizontal flip and random
rotation. For DomainNet, we resize all images to 64 x 64 x 3 with random horizontal flip and random
rotation. Like FedBN, we take Digits as the benchmark task for most studies.

The statistics of all the datasets are shown in Table[3] To quantitatively demonstrate the feature
imbalance, we use FID (Heusel et al[2017) to measure the difference between feature distributions of
different parties. Specifically, it measures the Frechet distance between the representation distributions
of different datasets, where the representation is generated by a Inception v3 model pretrained on
ImageNet dataset. FID is O when two datasets are the same. For each task, we compute the FID
between each subset and the whole dataset by merging all subsets. With FID values for each subset,
we report the mean value and the standard deviation. From Table[3} we can observe that there indeed
exists feature imbalance for each task. We also show the label distributions in Figure[3] The portion
of samples with each class is close to 0.1. The label distribution is balanced among the parties. We
train a ResNet-50 on all datasets (i.e., parties) from a task and extract the feature distributions of each
dataset. Then, we use t-SNE to visualize the representation as shown in Figure[d] We can observe
that the feature distribution of each party is different.

There are two major differences between our experimental setup and the setup in FedBN. (1) The
model architecture is different. Our paper adopts ResNet-50 for all datasets, while FedBN uses a
simple CNN for Digit and AlexNet for Office and DomainNet. We adopt ResNet since we need to
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Table 3: The statistics of all studied datasets.

#training samples | #testing samples FID
MNIST 56,000 14,000
SVHN 79,431 19,858
Digits USPS 7,438 1,860 140.97430.61
SynthDigit 402,200 97,791
MNIST_M 56,000 14,000
Amazon 766 192
Caltech 898 225
Caltech-10 DSLR 75 3 78.12+43.11
WebCam 236 59
Clipart 2,103 526
Infograph 2,626 657
. Painting 2,472 619
DomainNet Quickdraw 4,000 1,000 144.81435.40
Real 4,864 1,217
Sketch 2,213 554
= 011013 0.08 010 010 0.07 011 0.10 0.08 011 [l - 1020 009 010 0,10 0,10 0,10 0.10 020 020 020 M- 017 012 %10 011 0.08 0.10 011 012 0.09 0.08 0.09 I_U 175
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Figure 3: The label distributions of each task. The value in each cell of row ¢ and column j represents
the percentage of samples with class j in Party 1.

extract the representations for the input data, and ResNet-50 is commonly used as a base encoder
to extract the representations in representation learning studies (Chen et al.l 2020}, [Grill et al | 2020
Chen & He| [202T)). (2) The image size is different. FedBN resizes all images of Office and Domain
to 256x256x3, while our paper resizes them to 64x64x3 for computation efficiency.

B.2 CALTECH-10 AND DOMAINNET

Table @] and 5] show the test accuracy of different approaches on Caltech-10 and DomainNet, respec-
tively. We can observe that ADCOL still outperforms the other approaches in most cases.

We show the communication efficiency of ADCOL on Caltech-10 and DomainNet in Table[6]and Table
[7l We can observe that ADCOL is much more communication-efficient than the other approaches.
The speedup can be even up to 300 times.

B.3 EXPLANATION OF THE EXPERIMENTAL RESULTS BY FID

We observe that there is a correlation between FID and the performance gain of ADCOL compared
with local training. Generally, with a higher FID (i.e., more imbalanced feature distribution), the
party can gain more from our approach. The relative improvement on the accuracy of ADCOL
against local training is 15.4%, 6.8%, and 17.2% on Digits, Caltech-10, and DomainNet, respectively.
The improvement is positively related to the FID of each task. If FID is small, the representation
distribution of the local dataset is close to the global dataset, then local training may already learn a
good representation and the improvement of ADCOL is limited.
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(a) Digits

(b) Caltech-10

(c) DomainNet

Figure 4: The feature distributions of each task.

Table 4: The comparison of top-1 test accuracy among different approaches on Caltech-10.

Caltech-10 Amazon Caltech DSLR WebCam AVG
SOLO 52.8%+0.9% | 36.0%+09% | 71.9%+0.5% | 74.6%+0.5% | 58.8%+0.6%
FedAvg 24.0%+1.7% | 36.9%+1.4% | 81.3%+0.4% | 82.7%+0.4% | 56.2%=+1.0%
FedBN 33.3%+1.5% | 33.8%+1.8% | 81.3%+0.5% | 80.0%+0.6% | 57.1%=+1.0%

PartialFed 17.4%+2.2% | 24.2%+1.6% | 70.3%+3.4% | 77.1%+£3.6% | 47.2%+2.4%
FedProx 43.2%+1.6% | 33.1%+0.8% | 82.6%+0.4% | 83.1%+0.7% | 60.5%+0.7%

Per-FedAvg | 33.9%+1.6% | 32.4%=+1.5% | 62.5%+0.8% | 74.6%+0.8% | 50.8%=+1.3%
FedRep 16.1%+t1.9% | 22.7%+1.7% | 56.3%+1.0% | 57.6%+1.1% | 38.2%+1.4%
ADCOL 54.2%+1.1% | 38.2%4+1.3% 75%+0.6% 83.1%+0.5% | 62.6%+0.9%

B.4 TRAINING CURVES

The training curves of different approaches on Digit are shown in Figure[5] We can observe that
ADCOL is much more communication-efficient than the other approaches. ADCOL can convergence
with a much smaller communication size than the other approaches.

B.5 PARTY SAMPLING

Party sampling is a technique usually used in the cross-device setting, where a fraction of parties is
sampled to participate in federated learning in each round. Here we set the sample fraction to 0.4
in Digit and choose FedAvg and FedBN as the baselines. The training curves are shown in Figure
[6l We can observe that all approaches have an unstable accuracy during training due to sampling.
Moreover, FedAvg and FedBN have a very poor accuracy, which shows that existing federated
learning approaches cannot well support party sampling on non-IID features. ADCOL significantly
outperforms the other approaches.

We increase the number of parties to 100 (i.e., divide each dataset to 20 subsets) and vary the
sampling rate from {0.1,0.2,0.5, 1}. We run all approaches for 200 rounds. The results are shown in
Table[8] We can observe that when the sampling rate decreases, the performance of all approaches
decreases. Moreover, the training is more unstable if the sampling rate is smaller. However, ADCOL
still significantly outperforms FedAvg and FedBN. It is still a challenging task to develop effective
algorithm on the cross-device setting with a low sampling rate.

B.6 STUDY ON THE DISCRIMINATOR

One natural question is how to increase the information contained in the discriminator to improve the
performance of ADCOL. We have tried two approaches.

Changing Model Architecture One approach is to increase the capacity of the discriminator. We
change the model architecture to ResNet-50. The results are shown in Table[0] The performance of
ADCOL cannot be improved by increasing the capacity of the discriminator.
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Figure 5: The training curves of different approaches on Digit.
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Table 5: The comparison of top-1 test accuracy among different approaches on DomainNet.

DomainNet Clipart Infograph Painting Quickdraw Real Sketch AVG
SOLO 31.7%4+0.9% | 20.2%+1.2% | 30.9%+0.9% | 48.2%+1.1% | 36.5%+0.8% | 20.8%+1.5% | 31.4%=+0.9%
FedAvg 33.5%+1.2% | 20.4%+0.7% | 29.2%+0.8% | 56.2%+1.2% | 40.5%+0.8% | 22.6%+1.1% | 33.7%+0.9%
FedBN 36.3%+1.3% | 20.4%+0.8% | 27.8%+1.4% | 61.3%+09% | 41.9%+1.3% | 23.6%+1.2% | 35.2%+1.1%

PartialFed | 35.0%+0.2% | 20.5%+0.2% | 30.4%=+0.2% | 61.4%+0.7% | 38.3%+2.1% | 27.1%+0.5% | 35.4%+0.3%
FedProx 37.8%+1.0% | 21.6%+0.8% | 28.1%+1.0% | 23.6%+0.7% | 43.6%+1.2% | 22.4%+1.0% | 29.5%+1.0%

Per-FedAvg | 38.2%+0.7% | 20.2%+0.6% | 27%+1.2% | 42.4%+0.8% | 40.3%+0.7% | 22.6%+1.2% | 31.8%+1.3%
FedRep 27.9%+12% | 19%+0.9% | 24.1%+1.2% | 17.9%+1.1% | 31.1%+1.4% | 16.8%+1.1% | 22.8%+1.4%
ADCOL 39.9%+1.0% | 21.9%+0.9% | 33.9%+1.2% | 61.7%+0.8% | 39.3%+1.5% | 23.9%+1.2% | 36.8%+1.0%

Table 6: The communication round and communication cost of each approach to achieve the same
target performance on Caltech-10.

Caltech-10 Amazon | Caltech | DSLR | WebCam | AVG
FedAvg 7 22 12 14 14
FedBN 3 21 12 19 19
PartialFed ~ ~ ~ ~ ~
#round FedProx 14 29 15 29 22
Per-FedAvg 23 ~ ~ ~ ~
FedRep ~ ~ ~ ~ ~
ADCOL 3 18 31 12 20
FedAvg 1.99 6.25 3.41 3.98 3.98
FedBN 0.85 5.96 341 5.40 5.40
PartialFed ~ ~ ~ ~ ~
cost (GB) FedProx 3.98 8.24 4.26 8.24 6.25
Per-FedAvg 6.53 ~ ~ ~ ~
FedRep ~ ~ ~ ~ ~
ADCOL 0.02 0.10 0.17 0.07 0.11
Speedup 120.48 63.11 19.99 60.24 36.15

Increasing the Number of Discriminators The other one approach is to increase the number of
discriminators. Suppose the number of discriminators is Vg and the current round is ¢. Then, we use
discriminators from round max(1,¢ — Ng) to round (¢ — 1) in the local training. The KL divergence
loss is computed as
1 1
(=—> Yli([=1V || DG , 18

Nd; k(" I DG ) (18)
where D' is the discriminator trained in round max(1,¢ — 4). The results are shown in Table
ADCOL cannot benefit from more discriminators. When the number of discriminators is larger, the

accuracy of ADCOL is even worse. It is a future work to investigate how to integrate more useful
information into the discriminator.

B.7 DIMENSION OF REPRESENTATIONS

Same as SimSam (Chen & He} 2021), we set the dimension of representations (i.e., the output
dimension of the projection head, the input dimension of the discriminator) to 2048 by default. As
shown in Table [T} we report the performance of ADCOL varying the representation dimension.
ADCOL can benefit from a larger representation dimension, where the representations are more
informative. The mean accuracy can be improved by about 5% by increasing the dimension from 512
to 2048.

B.8 NON-IID LABELS

We test the performance of ADCOL on non-IID label settings. Specifically, we sample p; ~
Dirn(0.5) and allocate a py, ; proportion of the instances of class k to party j, where Dir(0.5) is
the Dirichlet distribution with a concentration parameter 0.5. The results are shown in Table [T2]
ADCOL cannot achieve a better performance than FedAvg and FedBN. Intuitively, the task-specific
representations of images from different classes should be very different. If the label distribution
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Table 7: The communication round and communication cost of each approach to achieve the same
target performance on DomainNet.

DomainNet Clipart | Infograph | Painting | Quickdraw | Real | Sketch | AVG
FedAvg 22 5 9 38 23 17 47
FedBN 14 7 5 54 29 18 41
PartialFed 15 4 28 36 15 13 20
#round FedProx 13 8 16 ~ 32 12 ~
Per-FedAvg 31 19 34 ~ 64 57 ~
FedRep ~ ~ ~ ~ ~ ~ ~
ADCOL 11 4 9 6 44 19 26
FedAvg 6.25 1.42 2.56 10.79 6.53 4.83 13.35
FedBN 3.98 1.99 1.42 15.34 8.24 5.11 11.64
PartialFed 4.26 1.14 7.96 10.23 2.46 3.69 5.69
cost (GB) FedProx 3.69 2.27 4.54 ~ 9.09 341 ~
Per-FedAvg 8.80 5.40 9.66 ~ 18.18 | 16.19 ~
FedRep ~ ~ ~ ~ ~ ~ ~
ADCOL 0.06 0.02 0.05 0.04 0.26 0.11 0.15
Speedup 96.9 60.6 48.5 306.9 25.3 43.4 87.6
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—— FedAvg

— =+ FedBN
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Figure 6: The training curves with party sampling (sample fraction = 0.4). We report the mean test
accuracy across all parties.

varies across parties, the representation distribution naturally also varies a lot. The intuition of
ADCOL, which aims to learn a common representation distribution, is not appropriate on non-I1ID
label settings.

B.9 COMPUTATION OVERHEAD

As shown in Table [I3] the training time of ADCOL is larger than the other approaches. ADCOL
requires the training of a discriminator in the server side, while the other approaches only need to
average the models in the server side. However, in practice, the server usually has much power-

Table 8: The performance of different approaches varying the sampling rate. We run all approaches
for 200 rounds and report the final mean accuracy and standard deviation with three runs.

Sampling Rate FedAvg FedBN ADCOL
0.1 12.1%+9.2% | 25.3%+8.1% | 34.1%+6.5%
0.2 15.3%=+7.6% | 31.9%+7.4% | 46.7%+4.2%
0.5 60.2%=+5.4% | 62.2%+4.9% | 67.3%+2.4%
1 77.6%+1.4% | 77.7%+1.2% | 79.1%+0.9%
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Discriminator MNIST

SVHN

Table 9: ADCOL with different discriminator architectures.
USPS SynthDigit

MNIST-M

AVG

ResNet-50 95.1% £ 0.5%

55.6% £ 0.8%

96.0% £ 0.3%

73.6% £ 0.5%

76.5% £ 0.5%

79.4% £ 0.4%

MLP 94.7% + 0.6%

58.2% £+ 1.0%

95.4% + 0.2%

76.0% + 0.3%

76.7% + 0.8%

80.2% £ 0.5%

Table 10: ADCOL with different number of discriminators.
1 2 10

Number of discriminators 20
MNIST 94.7% £+ 0.6% | 95.1% £0.6% | 91.0 % £ 0.3% | 88.6% + 0.8%
SVHN 582% +£1.0% | 454% £1.1% | 52.4% +=1.2% | 46.5% + 1.4%
USPS 954% £ 0.2% | 95.2% £0.1% | 95.3% +0.2% | 90.1% + 0.4%
SynthDigit 76.0% £03% | 73.4% £0.4% | 67.2% +0.8% | 73.4% + 0.5%
MNIST-M 76.7% £ 0.8% | 76.4% £0.7% | 72.1% +=0.9% | 57.0% + 1.2%
AVG 80.2% +0.5% | 77.1% = 0.6% | 75.6% +=0.8% | 71.1% £+ 1.0%

ful computation resources than the parties. Thus, the computation overhead in the server side is
affordable.

B.10 SHARING THE PREDICTOR LAYERS

The parties only send the representations to the server in ADCOL. While ADCOL aims to learn a
common representation distribution z, an interesting extension is to share the predictor layers between
the parties and the server, which ideally helps in regularizing p(y|z). The results are shown in Table
[T4] We can observe that ADCOL without sharing the predictor layers is generally more effective
than sharing the predictor layers. In practice, the distribution p(y|x;) is not exactly the same across
parties. Thus, it is not necessary to regularize p(y|z) among the parties. Leaving the parties to fine
tune their own predictor layer is more capable to learn the personalized local distribution.

B.11 REPRESENTATION SAMPLING

Here we apply the representation sampling technique and change the sampling rate from
{20%, 60%, 80%, 100%}. The final accuracy and the communication efficiency are shown in Table
[I5] We can observe that the communication cost of ADCOL can be significantly reduced with
representation sampling. Moreover, there is little accuracy loss when the sampling rate is large than
60%.

B.12 DIFFERENTIAL PRIVACY

We consider two popular threat models in existing FL studies: 1) The server is trusted and the parties
are honest-but-curious (Geyer et al.}|[2017)). We need to protect the messages that are sent from the
server to the parties. 2) The server and the parties are honest-but-curious and we need to protect all
the transferred messages (Wei et al.| [2020; |Truex et al.| [2020).

Trusted Server In this setting, we do not need to protect the representations sent from parties to
the server. We need to protect the classification model sent from the server to the parties. Thus,
when training the classification model on the server-side, we apply DP-SGD (Abadi et al.| [2016)

Table 11: The test accuracy of ADCOL with different representation dimensions.

Dimension 512 1024 2048
MNIST 93.2% £ 0.6% | 949% +0.5% | 94.7% + 0.6%
SVHN 48.9% £ 1.2% | 50.5% +1.4% | 58.2% + 1.0%
USPS 94.8% +0.2% | 95.5% £ 0.3% | 95.4% £+ 0.2%

SynthDigit | 72.9% + 0.8% | 79.4% £ 0.7% | 76.0% + 0.3%

MNIST-M | 68.9% £0.9% | 73.1% +0.7% | 76.7% + 0.8%

AVG 75.7% £ 0.7% | 78.7% +0.7% | 80.2% + 0.5%
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Table 12: The test accuracy of different approaches on non-1ID label settings.
SOLO FedAvg FedBN ADCOL
CIFAR-10 | 59.3% £8.0% | 89.0% £2.4% | 90.7% +2.1% | 79.2% + 4.7%
CIFAR-100 | 33.5% +2.1% | 57% £2.8% | 55.6% +=3.0% | 36.1% +2.8%

Table 13: The total training time of running all approaches for 100 rounds.
FedAvg | FedBN | PartialFed | ADCOL | FedProx | Per-FedAvg | FedRep
Training time (hour) 6.5 7 7 11 8 7 8.5

to add Gaussian noises to the gradients during training to satisfy (e, §)-DP with the same default
parameters. We keep ¢ fixed and ensure that § < 10~2 to compare the accuracy of DP-ADCOL with
the non-private version as shown in Table[I6] We can observe that DP-ADCOL can achieve a very
close accuracy to the non-private version with a budget 5. There are two reasons that DP works well
in ADCOL: 1) DP-SGD works well with the discriminator as it is a shallow model
[2021]), which is a simple 2-layer MLP. If we increase the number of layers for the discriminators, the
accuracy of DP-ADCOLL will decrease as shown in the last row of Table[T§] 2) The discriminator
needs a small number of steps to update and the accumulated privacy loss is small. For FedAvg, it
is not easy to apply record-level DP. Existing studies (Geyer et al.| 2017} [McMahan et al| 2017)
clip the local model updates to provide party-level DP which is more strict than the record-level DP.
We conduct simple experiments and find that the accuracy of DP-FedBN is low with party-level DP,
which is about 66.3% accuracy given the budget 5.

Honest-but-curious Server In this setting, the messages sent from parties to the server should
also be protected. We apply local differential privacy with sampling in ADCOL to provide rigorous
privacy guarantees. Specifically, in each round, we sample and normalize the representations and
add noises from Gau(0, 1/¢) before sending them to the server, where Lap(0, 1/¢) is the Laplace
distribution with mean 0 and scale 1/¢. Then, in each round, the transferred representations satisfy
e-differential privacy [2020). Due to the parallel composition, the privacy loss is not
accumulated among rounds. To achieve the same level of privacy guarantee with DP-ADCOL for
FedBN, we implement DP-FedBN by clipping and adding Laplace noises to the communicated model
updates (Kairouz et al] [2019). For DP-FedBN, we try two methods: 1) without party sampling: the
privacy loss is accumulated among different rounds. 2) party sampling without replacement: we
set the sampling fraction per round to 0.2 and the privacy loss is not accumulated among every five
rounds. The results are shown in Table[T7] We can observe that the accuracy of ADCOL is very close
to the non-private version with a modest privacy budget (i.e., 10). Moreover, DP-ADCOL achieves a

Table 14: The comparison between sharing the predictor layers and not sharing the predictor layers.

w/ sharing | w/o sharing
MNIST 95.4% 94.7%
SVHN 48.8% 58.2%
USPS 95.2% 95.4%
SynthDigit 75.9% 76.0%
MNIST_M 73.4% 76.7%
AVG 77.7% 80.2%

Table 15: ADCOL with different representation sampling rates. We present the final converged mean
accuracy and the number of communication rounds and communication costs to achieve the target
accuracy 78% on Digit.

Sampling ratio | accuracy || #rounds | size (GB)
20% 78.4% 32 0.07
40% 78.5% 32 0.14
60% 79.1% 26 0.17
80% 79.8% 23 0.20
100% 80.2% 21 0.23
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Table 16: The privacy-accuracy tradeoff of DP-ADCOL in the trusted server setting.

MNIST | SVHN | USPS | SynthDigit | MNIST-M | AVG

non-private 94.7% | 58.2% | 95.4% 76.0% 76.7% 80.2%
e=2 90.2% | 52.4% | 90.1% 67.4% 69.7% 74.0%

€= 93.9% | 57.6% | 94.1% 72.4% 73.8% 78.4%
e=10 942% | 57.8% | 94.5% 74.1% 74.8% 79.1%

e =5 (5layers) | 91.1% | 53.8% | 91.8% 69.9% 72.2% 75.8%
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Figure 7: Effect of number of local epochs.

higher accuracy than DP-FedBN in the same privacy level. It is promising to apply DP in ADCOL
thanks to the representation-sharing scheme.

Table 17: Comparison between DP-ADCOL and DP-FedBN under the same privacy level.

€ approaches MNIST | SVHN | USPS | SynthDigit | MNIST M | AVG
DP-ADCOL 89.1% | 50.4% | 88.2% 64.1% 66.8% 71.7%

2 DP-FedBN (w sampling) 69.9% | 192% | 82.3% 15.5% 17.1% 40.8%
DP-FedBN (w/o sampling) | 76.1% | 21.2% | 78.2% 10.2% 10.9% 39.3%
DP-ADCOL 9277% | 56.7% | 93.0% 69.4% 71.9% 76.7%

5 DP-FedBN (w sampling) 73.5% | 233% | 85.8% 28.6% 26.2% 47.5%
DP-FedBN (w/o sampling) | 78.7% | 24.4% | 82.5% 13.2% 13.7% 42.5%
DP-ADCOL 93.1% | 56.9% | 93.1% 73.2% 74.3% 78.1%

10 DP-FedBN (w sampling) 90.5% | 34.3% | 91.2% 52.8% 58.7% 65.5%
DP-FedBN (w/o sampling) | 84.9% | 21.5% | 88.7% 15.6% 25.8% 47.3%
non-private ADCOL 947% | 58.2% | 95.4% 76.0% 76.7% 80.2%
P FedBN 94.1% | 59.9% | 94.1% 73.9% T1.3% 78.7%

B.13 NUMBER OF LOCAL EPOCHS

We vary the number of local epochs E € {1,2,5,10,20} and report the results in Figure (7| We run
all approaches for 100 rounds. If the number of local epochs is too small, the local update is small
in each round and the convergence speed is slow. Thus, the accuracy of all approaches is relatively
low after running for 100 rounds with a small number of local epochs. ADCOL still consistently
outperforms the other approaches with a different number of epochs.

B.14 PARTY SAMPLING WITH A FIXED NUMBER OF SELECTED PARTIES

One practical concern is that the output dimension of the discriminator is fixed to be the number
of participating parties, which may not handle the case when the number of parties is extremely
large or the number of parties is changing over time. To address the concern, we propose to apply
party sampling with a fixed number of selected parties each round. The output dimension of the
discriminator is same as the number of participated parties each round. The selected parties first
update their models locally without the regularization term we introduced. Next, the parties send
their representations to the server, which updates the discriminator and sends back the discriminator
to the parties. Then, the same parties update their models again with the regularization term using
the discriminator. After that, we can move into next round and sample new parties again. We
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Table 18: The mean test accuracy and standard derivation across parties when applying party sampling
with a fixed number of selected parties each round. The output dimension of the discriminator in
ADCOL is set to the number of selected parties each round.

FedAvg FedBN ADCOL
Accuracy | 13.4+-3.8% | 13.7+-3.5% | 69.2+-20.6%
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Figure 8: The training curves of different discriminators.

have conducted experiments on Digits with 50 parties. In each round, we randomly drop 5 parties
tentatively for one round to simulate the scenario where the number of parties change over time
(i.e., the selected 5 parties leave FL for current round and join FL again in the next round). After
dropping 5 parties, we randomly select 5 parties to participate in FL in the current round. The output
dimension of the discriminator is set to 5. We run ADCOL, FedAvg, and FedBN for 100 rounds and
the results are shown in Table [T8] We can observe that FedAvg and FedBN have a poor accuracy in
such a scenario. ADCOL significantly outperforms these two approaches.

B.15 CONVERGENCE OF THE DISCRIMINATOR

We empirically study whether the discriminator converge to optima or not. Besides using a MLP as
the discriminator in our experiments, to compare convex and non-convex loss function, we also try
a linear function as the discriminator by removing the non-linear activation in MLP. The training
curves are shown in Figure[§and the accuracy of using a linear function is shown in Table[I9] We
can observe both MLP and linear function can achieve optima (i.e., zero training loss) with SGD.
Moreover, ADCOL with a linear function as the discriminator can still achieve a better performance
than the other baselines from Table 1 of the main paper.

B.16 STUDY ON THE LOCAL MODEL ARCHITECTURE

Instead of using ResNet-50, we try a different local model to investigate the robustness of our
approach. We use the same model as the experiments in FedBN for Digit task, which is a six-
layer convolutional neural network. We use the input before the last fully-connected layer as the
representation. The results are shown in Table @ From the table, we can observe that ADCOL
outperforms FedBN, which further verifies the effectiveness of ADCOL.

Table 19: ADCOL with MLP or linear function as the discriminator.
Discriminator | MNIST | SVHN | USPS | SynthDigit | MNIST-M | AVG

Linear Function | 94.9% | 48.4% | 95.7% 81.9% 75.9% 79.3%
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Table 20: Comparison between ADCOL and FedBN using a CNN as local model.
MNIST | SVHN | USPS | SynthDigit | MNIST-M | AVG
ADCOL | 96.6% | 73.0% | 97.3% 88.3% 85.0% 88.1%
FedBN | 96.3% | 74.8% | 96.8% 85.4% 81.8% 87.0%

Table 21: The comparison between SOLO, ADCOL, and FADA on Digits.

MNIST | SVHN | USPS | SynthDigit | MNIST_M | AVG

SOLO 871.9% | 34.8% | 94.8% 63.0% 67.2% 69.5%
ADCOL | 94.7% | 58.2% | 95.4% 76.0% 76.7% 80.2%
FADA 85.6% | 40.1% | 89.6% 68.8% 60.5% 68.9%

C DISCUSSION

We can consider each party as a domain and studies on multi-domain are also potentially applicable.
We have compared ADCOL with the most related FL study on the multi-domain setting (i.e.,
PartialFed |Sun et al.| (2021)). Besides PartialFed, we also discuss the relation between ADCOL and
the studies on domain adaptation and domain generalization below.

Relation to Domain Adaptation Domain adaptation aims to train a model on a source domain
(or multi-source domain), which has a good accuracy on a target domain. A classic and popular
approach in domain adaptation is to perform adversarial training, i.e., training a discriminator to
encourage domain-invariant features (Ganin et al., 2016; [Peng et al., 2019b)). [Peng et al.| (2019b)
proposed FADA, which extends domain adaptation in a federated setting. One connection between
our approach and domain adaptation is that each party can be viewed as a source domain, and the
target domain is the unknown oracle optimal (like domain generalization introduced in Section
3.2 of the main paper). Then, our approach is to extract domain-invariant features from multiple
source domain, which is used to regularize the training. To highlight the differences between our
approach and the domain adaptation techniques, we compare our approach with the federated domain
adaptation study (Peng et al., 2019b) (FADA) and show the main differences: (1) Setting: FADA
aims to train a model on multiple source domain, which has a good accuracy on a target domain.
Our study aims to train a personalized model for each party, which has good accuracy on its local
data. (2) Discriminator: FADA uses multiple discriminators, where each discriminator is used for
binary classification for one source-target domain pair. Our study uses a single discriminator for the
multi-classification among all parties. Moreover, we have provided the theoretical analysis on the
convergence properties. (3) Framework: FADA uses adversarial training to generate domain-invariant
and domain-specific features. Our study uses adversarial training to regularize the local training in
federated learning.

Intuitively, we cannot directly compare ADCOL and FADA in the experiments since the settings are
different. In our experiments, there is no a single target domain for testing in FADA. One method is
to treat each party as a target domain and applying FADA N times, where IV is the number of parties.
However, the computation and communication overhead is significantly large. Moreover, such an
approach does not utilize the labels of the target dataset. We have compared ADCOL and FADA
using the above method and the results are shown in Table 2T} ADCOL significantly outperforms
FADA. Moreover, the test accuracy of FADA is even smaller than local training in many cases since
it does not exploit the labels of the target dataset.

Relation to Domain Generalization While the motivation of ADCOL is intuitive, it can also
be explained from the perspective of domain generalization (Muandet et al.| 2013). In domain
generalization, the goal is to extract knowledge from multiple source domains to apply it to an unseen
target domain. Considering each party as a source domain and the target domain as the oracle optimal
representation space, we aim to extract the domain invariant representation distribution and use it to
regularize the local training. Existing domain generalization techniques are designed in a centralized
setting, which usually require the access to the raw data of multiple source domains (Li et al., 2018azbj
Liu et al.|l |2018). There is one work (Liu et al.l 2021) that studies domain generalization in the
federated setting. It is designed for medical image segmentation by episodic learning in the frequency
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space. In this paper, we aim to design a general collaborative learning framework based on adversarial
learning.

Limitations ADCOL is a collaborative learning method for non-IID features. As shown in Ap-
pendix [B.§] the performance of ADCOL is poor compared with federated learning approaches on
non-IID label setting. Note that ADCOL aims to learn a common representation distribution. Intu-
itively, the task-specific representations of images from different classes should be very different,
which can be easily classified by a small MLP. Thus, if the label distribution varies across parties, the
representation distribution naturally also varies a lot across parties. The current objective of ADCOL
does not fit into the non-IID label setting.

As shown in Section 3.5 of the main paper, the communication size of ADCOL is related to the
number of examples. If the number of examples is very large and the size of the model is small, the
communication cost of ADCOL will be larger than other federated learning approaches. However,
local training can usually achieve satisfactory performance if the dataset size is very large. In such
cases, besides ADCOL, existing federated learning approaches may also not help.

Insights and Future Work The key insights from ADCOL are (1) a GAN-style training scheme
and (2) regularization from a view of representation distribution. While ADCOL does not have a
requirement on the vanilla local training algorithm, it can also be extended to self-supervised federated
learning, where the cross-entropy loss is replaced by the loss used in self-supervised learning (e.g.,
contrastive loss (Chen et al., 2020; [Chen & Hel [2021))). Moreover, while ADCOL only works on
non-IID feature settings currently, the adversarial collaborative training scheme can potentially be
applied to address other data settings by modifying the objectives of local training and server training.
There are many research opportunities based on the findings of this paper.
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