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Abstract
Open vocabulary models (e.g. CLIP) have shown
strong performance on zero-shot classification
through their ability generate embeddings for each
class based on their (natural language) names.
Prior work has focused on improving the accuracy
of these models through prompt engineering or
by incorporating a small amount of labeled down-
stream data (via finetuning). However, there has
been little focus on improving the richness of the
class names themselves, which can pose issues
when class labels are coarsely-defined and are
uninformative. We propose Classification with
Hierarchical Label Sets (or CHiLS), an alterna-
tive strategy for zero-shot classification specifi-
cally designed for datasets with implicit seman-
tic hierarchies. CHiLS proceeds in three steps:
(i) for each class, produce a set of subclasses, us-
ing either existing label hierarchies or by query-
ing GPT-3; (ii) perform the standard zero-shot
CLIP procedure as though these subclasses were
the labels of interest; (iii) map the predicted sub-
class back to its parent to produce the final pre-
diction. Across numerous datasets with under-
lying hierarchical structure, CHiLS leads to im-
proved accuracy in situations both with and with-
out ground-truth hierarchical information. CHiLS
is simple to implement within existing zero-shot
pipelines and requires no additional training cost.
Code is available at: https://github.com/
acmi-lab/CHILS.

1. Introduction
There has been a recent growth of interest in the capabilities
of pretrained open vocabulary models (Radford et al., 2021;
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Wortsman et al., 2021; Jia et al., 2021; Gao et al., 2021;
Pham et al., 2021; Cho et al., 2022; Pratt et al., 2022). These
models, e.g., CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021), learn to map images and captions into shared
embedding spaces such that images are close in embedding
space to their corresponding captions but far from randomly
sampled captions. The resulting models can then be used
to assess the relative compatibility of a given image with
an arbitrary set of textual “prompts”. Radford et al. (2021)
observed that by inserting each class name directly within
a natural language prompt, one can then use CLIP embed-
dings to perform zero-shot image classification with high
success rates (Radford et al., 2021; Zhang et al., 2021b).

Despite the documented successes, the current interest in
open vocabulary models poses a new question: How should
we represent our classes for a given problem in natural
language? As class names are now part of the predictive
pipeline (as opposed to mostly an afterthought in traditional
scenarios) for models like CLIP in the zero-shot setting,
CLIP’s performance is now directly tied to the descriptive-
ness of the class “prompts” (Santurkar et al., 2022). While
there is a growing body of work on improving the quality of
the prompts into which class names are embedded (Radford
et al., 2021; Pratt et al., 2022; Zhou et al., 2022b;a; Huang
et al., 2022), surprisingly little attention has been paid to
improving the richness of the class names themselves. This
can be particularly crucial in cases where datasets may con-
tain a rich underlying structure but have uninformative class
labels. Consider, for an example, the class “large man-made
outdoor things” in the CIFAR20 dataset (Krizhevsky, 2009),
which includes “bridges” and “roads” but also “castles” and
“skyscrapers” (see Section 4 for a more in-depth analysis).

In this paper, we introduce a new method to tackle zero-
shot classification with CLIP models for classification tasks
with coarsely-defined class labels. We refer to our method
as Classification with Hierarchical Label Sets (CHiLS for
short). Our method utilizes a hierarchical map to convert
each class into a list of subclasses, performs standard CLIP
zero-shot prediction across the union set of all subclasses,
and finally uses the inverse mapping to convert the subclass
prediction to the requisite superclass. We additionally in-
clude a reweighting step wherein we leverage the raw super-
class probabilities in order to make our method robust to less-
confident predictions at the superclass and subclass level.

1

https://github.com/acmi-lab/CHILS
https://github.com/acmi-lab/CHILS


CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets

Figure 1: (Left) Standard CLIP Pipeline for Zero-Shot Classification. For inference, a standard CLIP takes in input a set of
classes and an image where we want to make a prediction and makes a prediction from that set of classes. (Right) Our
proposed method CHiLS for leveraging hierarchical class information into the zero-shot pipeline. We map each individual
class to a set of subclasses, perform inference in the subclass space (i.e., union set of all subclasses), and map the predicted
subclass back to its original superclass.

We evaluate CHiLS on a wide array of image classification
benchmarks with and without available hierarchical infor-
mation. These datasets share the property of having an un-
derlying semantic substructure that is not captured in the
initial set of class label names. In the former case, leverag-
ing preexisting hierarchies leads to strong accuracy gains
across all datasets. In the latter, we show that rather than
enumerating the hierarchy by hand, using GPT-3 to query
a list of possible subclasses for each class (whether or not
they are actually present in the dataset) still leads to consis-
tent improved accuracy over raw superclass prediction. We
summarize our main contributions below:

• We propose CHiLS, a new method for improving zero-
shot CLIP performance in scenarios with ill-defined
and/or overly coarse class structures (see Section 4),
which only requires the class names themselves and
is flexible to both existing and synthetically generated
hierarchies.

• We show that CHiLS consistently performs as well or
better than standard zero-shot practices in situations
with only synthetic hierarchies, and that CHiLS can
achieve up to 30% accuracy gains when ground truth
hierarchies are available.

2. Related Work
2.1. Few-Shot Learning with CLIP

While the focus of this paper is to improve CLIP models in
the zero-shot regime, there is a large body of work explor-
ing improvements to CLIP’s few-shot capabilities. In the
standard fine-tuning paradigm for CLIP models, practition-
ers discard the text encoder and only use the image embed-
dings as inputs for some additional training layers.

One particular line of work on improving the fine-tuned ca-
pabilities of CLIP models leverages model weight interpo-
lation. Wortsman et al. (2021) propose to linear interpolate
the weights of a fine-tuned and a zero-shot CLIP model to
improve the fine-tuned model under distribution shifts. This
idea is extended by Wortsman et al. (2022) into a general
purpose paradigm for ensembling models’ weights in order
to improve robustness. Ilharco et al. (2022) then build on
both these works and put forth a method to “patch” fine-
tuned and zero-shot CLIP weights together in order to avoid
the issue of catastrophic forgetting. Among all the works in
this section, our paper is perhaps most similar to this vein of
work (albeit in spirit), as CHiLS too seeks to combine two
different predictive methods. Ding et al. (2022) also tackle
catastrophic forgetting, though they propose an orthogonal
direction and fine-tune both the image encoder and the text
encoder, where the latter draws from a replay vocabulary of
text concepts from the original CLIP database.

There is another line of work that seeks to improve CLIP
models by injecting a small amount of learnable parame-
ters into the frozen CLIP backbone. This has been com-
monly achieved through the adapter framework (Houlsby
et al., 2019) from parameter-efficient learning; specifically,
in Gao et al. (2021) they fine-tune a small number of addi-
tional weights on top of the encoder blocks, which is then
connected with the original embeddings through residual
connections. Zhang et al. (2021a) build on this method by
removing the need for additional training and simply uses a
cached model. In contrast to these works, Jia et al. (2022)
forgo the adapter framework when using a Vision Trans-
former backbone for inserting learnable “prompt” vectors
into the transformer’s input layers, which shows superior
performance over the aforementioned methods.

Additionally, some have looked at circumventing the entire
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Label: wolf
 Standard Pred: fox

CHiLS Pred: wolf (chanco)

CHiLS+

Standard-

living17

Label: falafel
 Standard Pred: crab cakes

CHiLS Pred: falafel (chickpea falafel)

food-101

Label: salamander
 Standard Pred: salamander

CHiLS Pred: salamander (Fire salamander)

CHiLS+

Standard+

living17

Label: beef tartare
 Standard Pred: beef tartare

CHiLS Pred: beef tartare (veal tartare)

food-101

Label: snake
 Standard Pred: lizard

CHiLS Pred: lizard (skink)

CHiLS-

Standard-

living17

Label: baklava
 Standard Pred: panna cotta

CHiLS Pred: cannoli (dessert cannoli)

food-101

Label: monkey
 Standard Pred: monkey

CHiLS Pred: ape (baboon)

CHiLS-

Standard+

living17

Label: spaghetti bolognese
 Standard Pred: spaghetti bolognese
CHiLS Pred: lasagna (sauce lasagna)

food-101

Figure 2: Selected examples of behavior differences between the standard and CHiLS performance across two different
datasets. (Upper left): CHiLS is correct, standard prediction is not. (Lower left): Both correct. (Upper right): Both wrong.
(Lower Right): standard prediction is correct, CHiLS is not.

process of prompt engineering. Zhou et al. (2022a) and
Zhou et al. (2022b) tackle this by treating the tokens within
each prompt as learnable vectors, which are then optimized
within only a few images per class. Huang et al. (2022)
echo these works, but instead do not utilize any labeled data
and learns the prompt representations in an unsupervised
manner. Zhai et al. (2022) completely forgo the notion of
fine-tuning in the first place, instead proposing to reframe
the pre-training process as only training a language model
to match a pre-trained and frozen image model. In all the
above situations, some amount of data, whether labeled or
not, is used in order to improve the predictive accuracy of
the CLIP model.

2.2. Zero-Shot Prediction

The field of zero-shot learning has existed well before the
emergence of open vocabularly models, with its inception
traced to Larochelle et al. (2008). With regards to non-CLIP
related methods, the zero-shot learning paradigm has shown
success in improving multilingual question answering (Kuo
& Chen, 2022) with large language models, and also in
image classification tasks where wikipedia-like context is
used in order to perform the classification without access
to the training labels (Bujwid & Sullivan, 2021; Shen et al.,
2022).

With CLIP models, zero-shot learning success has been
found in a variety of tasks. Namely, Zhang et al. (2021b)
expand the CLIP 2D paradigm for 3D point clouds. Tewel
et al. (2021) show that CLIP models can be retrofitted to

perform the reverse task of image-to-text generation, and
Shen et al. (2021) likewise display CLIP’s ability to improve
performance on an array of Vision&Language tasks. Both
Yu et al. (2022) and Cho et al. (2022) expand CLIP’s zero-
shot abilities through techniques drawn from reinforcement
learning (RL), with the former using CLIP for the task of
audio captioning. Gadre et al. (2022) similarly work with
the RL literature and retrofit CLIP to improve the embodied
AI task of object navigation without any additional training.
Zeng et al. (2022) show the capabilities of composing CLIP-
like models and LLMs together to extend the zero-shot ca-
pabilities to tasks like assitive dialogue and open-ended rea-
soning. Unlike our work here, these prior directions mostly
focus on generative problems or, in the case of Bujwid &
Sullivan (2021) and Shen et al. (2022), require rich external
knowledge databases to employ their methods.

In the realm of improving CLIP’s zero-shot capabilities for
image classification, we particularly note the contemporary
work of Pratt et al. (2022). Here, authors explore using
GPT-3 to generate rich textual prompts for each class rather
than using preexisting prompt templates, and show improve-
ments in zero-shot accuracy across a variety of image clas-
sification baselines. In another work, Ren et al. (2022) pro-
pose leveraging preexisting captions in order to improve
performance, though this is restricted to querying the pre-
training set of captions. In contrast, our work explores a
complementary direction of leveraging hierarchy in class
names to improve zero-shot performance of CLIP with a
fixed set of preexisting prompt templates.
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2.3. Hierarchical Classification

Our work is related to Hierarchical Classification (Silla &
Freitas, 2010), i.e., classification tasks when the set of labels
can be arranged in a DAG-like class hierarchy. Methodolo-
gies from hierarchical classification have been extensively
used for multi-label classification (Dimitrovski et al. (2011);
Liu et al. (2021), and Chalkidis et al. (2020) to name a few),
and recent works have shown that this paradigm can aid in
zero-shot learning by attempting to uncover hierarchical re-
lations between classes (Chen et al., 2021; Mensink et al.,
2014) and/or leveraging existing hierarchical information
during training (Yi et al., 2022; Cao et al., 2020). While
our work is similar in spirit to prior work on hierarchical
classification, we note that there are two crucial distinctions:
(i) we are concerned only with the zero-shot training-free
regime (as we only require class names during inference)
while most previous work assumes some amount of train-
ing, and (ii) CHiLS only leverages the class hierarchy for
the flat task of superclass prediction without requiring any
supervision at the subclass level.

3. Proposed Method: CHiLS
In this paper, we are primarily concerned with the problem
of zero-shot image classification in CLIP models (see App.
B for an introduction to CLIP and relevant terminology).
For CLIP models, zero-shot classification involves using
both a pretrained image encoder and a pretrained text en-
coder (see the left part of Figure 1). To perform zero-shot
classification, we need a predefined set of classes written
in natural language. Let C = {c1, c2, . . . , ck} be such a set.
Given an image and set of classes, each class is embedded
within a natural language prompt (through some function
T(·)) to produce a “caption” for each class (e.g. one standard
prompt mentioned in Radford et al. (2021) is “A photo of a
{}.”). These prompts are then fed into the text encoder and
after passing the image through the image encoder, we cal-
culate the cosine similarity between the image embedding
and each class-prompt embedding. These similarity scores
form the output “logits” of the CLIP model, which can be
passed through a softmax to generate the class probabilities.

While prior works have focused on improving the T(·) for
each class label ci (refer to Section 2), we instead focus
on the complementary task of directly modifying the set of
classes C when C is ill-formed or overly general, keeping
T(·) fixed. Our method involves two main steps: (1) per-
forming zero-shot prediction over label subclasses and (2)
aligning subclass probabilities with the raw superclass out-
puts to reconcile both inference methods. Next, we describe
our proposed method.

3.1. Zero-Shot Prediction with Hierarchical Label Sets

Our method CHiLS slightly modifies the standard ap-
proach for zero-shot CLIP prediction. As each class la-
bel ci represents some concept in natural language (e.g.
the label “dog”), we acquire a subclass set Sci =
{sci,1, sci,2, . . . , sci,mi

} through some mapping function
G, where each sci,j is a linguistic hyponym, or subclass, of
ci (e.g. corgi for dogs) and mi is the size of the set Sci .

Given a label set Sci for each class, we proceed with the
standard process for zero-shot prediction, but now using the
union of all label sets as the set of classes. Through this,
CHiLS will output a distribution over all subclasses ŷsub.
We then leverage the inverse mapping function G−1 to map
the argmax subclass probability back into the correspond-
ing superclass G−1(argmax ŷsub). Our method is detailed
more formally in Algorithm 1.

In our work, we experiment with two scenarios: (i) when hi-
erarchy information is available and can be readily queried;
and (ii) when hierarchy information is not available and the
label set for each class must be generated, which we do so
by prompting GPT-3.

3.2. Reweighting Probabilities With Superclass
Confidence

While the above method is able to effectively utilize CLIP’s
ability to identify relatively fine-grained concepts, by pre-
dicting on only subclass labels we lose any positive benefits
of the superclass label, and performance may vary widely
based on the quality of the subclass labels. Given recent ev-
idence (Minderer et al., 2021; Kadavath et al., 2022) that
large language models (like the text encoder in CLIP) are
well-calibrated and generally assign higher probability to
correct predictions, we modify our initial algorithm to lever-
age this behavior and use both superclass and subclass in-
formation. We provide empirical evidence of this property
in Appendix A.

Specifically, we include an additional reweighting step
within our main algorithm (see lines 4-9 in Algorithm 1).
Here, we reweight each set of subclass probabilities by its
superclass probability. Heuristically, as the prediction is
now taken as the argmax over products of probabilities,
large disagreements between subclass and superclass proba-
bilities will be down-weighted (especially if one particular
superclass is confident) and subclass probabilities will be
more important in cases where the superclass probabilities
are roughly uniform. We show ablations on the choice of
the reweighting algorithm in Section 5.4.
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Algorithm 1 Classification with Hierarchical Label Sets (CHiLS)

input : data point x, class labels C, prompt function T, label set mapping G, CLIP model f
1: Set Csub ← ∪ci∈CG(ci) ▷ Union of subclasses for subclass prediction

2: ŷsub = σ(f(x,T(Csub))) ▷ Subclass probabilities

3: ŷsup = σ(f(x,T(C))) ▷ Superclass probabilities

4: for i = 1 to |C| do
5: Sci = G(ci)
6: for sci,j ∈ Sci do
7: ŷsub[sci,j ] = ŷsub[sci,j ] ∗ ŷsup[ci]

▷ Combining subclass and superclass prediction probability

8: end for
9: end for

output : G−1(argmax ŷsub)

4. A Motivating Example for CHiLS
Before validating the effectiveness of CHiLS across stan-
dard benchmarks, we provide a more nuanced investigation
on the ImageNet dataset at different hierarchy levels. Given
that ImageNet is arranged in a rich taxonomical structure,
we perform zero-shot classification at progressively finer
levels of the hierarchy, where CHiLS is given access to all
the leaf nodes in each class at the current level (unless the
classes are themselves leaf nodes).

In Table 1, we see that at lower depths (e.g. depth 1 or 2),
CHiLS significantly improves on top of standard zero-shot
performance. As the depth in the hierarchy increase, the gap
between CHiLS’s performance and the standard zero shot
decreases while the number of leaf nodes increases. This
behavior highlights a key fact about CHiLS’s potential use
cases: CHiLS can help for tasks where class labels resemble
intermediate nodes of the ImageNet hierarchy.

Table 1: Zero-Shot performance at different levels of Ima-
geNet hierarchy, where CHiLS has access to true ImageNet
leaf node classes. CHiLS shows clear performance gains
over the baseline at coarse-to-intermediate granularities.

ImageNet Depth Standard CHiLS % Leaf Classes

1 67.43 97.08 0.0
2 69.22 90.47 0.0
3 63.97 86.20 0.0
4 49.48 80.31 32.03
5 63.80 74.08 77.90
6 62.96 65.07 96.28

5. Experiments
5.1. Setup

Datasets. As we are primarily concerned with improving
zero-shot CLIP performance in situations with uninforma-

Table 2: Zero-shot accuracy performance across 16 image
benchmarks with superclass labels (baseline), CHiLS with
existing hierarchy (whenever available), and CHiLS with
GPT-3 generated hierarchy. CHiLS improves classification
accuracy in all situations with given label sets and all but 2
datasets with GPT-3 generated label sets.

Dataset Superclass CHiLS CHiLS
(True Map) (GPT-3 Map)

Nonliving26 79.8 90.7 (+10.9) 81.7 (+1.9)
Living17 91.1 93.8 (+2.7) 91.6 (+0.5)
Entity13 77.5 92.6 (+15.1) 78.1 (+0.7)
Entity30 70.3 88.9 (+18.5) 71.7 (+1.4)
CIFAR20 59.6 85.3 (+25.7) 65.0 (+5.4)
Food-101 93.9 N/A 93.8 (−0.1)
Fruits-360 58.8 59.2 (+0.5) 60.1 (+1.4)
Fashion1M 45.8 N/A 47.4 (+1.7)
Fashion- 68.5 N/A 70.8 (+2.2)MNIST
LSUN-Scene 88.1 N/A 88.8 (+0.7)
Office31 89.1 N/A 90.5 (+1.4)
OfficeHome 88.8 N/A 88.8 (−0.0)
ObjectNet 53.1 85.3 (+32.2) 53.5 (+0.4)
EuroSAT 62.1 N/A 62.4 (+0.3)
RESISC45 72.6 N/A 72.7 (+0.1)

tive and/or semantically coarse class labels as described in
Section 4, we test our method on the 16 following image
benchmarks: the four BREEDS imagenet subsets (Living17,
Nonliving26, Entity13, and Entity30) (Santurkar et al.,
2021), CIFAR20 (the coarse-label version of CIFAR100;
Krizhevsky (2009)), Food-101 (Bossard et al., 2014), Fruits-
360 (Mureşan & Oltean, 2018), Fashion1M (Xiao et al.,
2015), Fashion-MNIST (Xiao et al., 2017), LSUN-Scene
(Yu et al., 2015), Office31 (Saenko et al., 2010), Office-
Home (Venkateswara et al., 2017), ObjectNet (Barbu et al.,
2019), EuroSAT (Helber et al., 2019; 2018), and RESISC45
(Cheng et al., 2017). We use the validation sets for each
dataset (if present). These datasets constitute a wide range
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of different image domains and include datasets with and
without available hierarchy information. Additionally, the
chosen datasets vary widely in the semantic granularity of
their classes, from overly general cases (CIFAR20) to set-
tings with a mixture of general and specific classes (Food-
101, OfficeHome).

We also examine CHiLS’s robustness to distribution shift
within a dataset by averaging all results for the BREEDS
datasets, Office31, and OfficeHome across different shifts
(see Appendix H for more information). We additionally
modify the Fruits-360 and ObjectNet datasets to create ex-
isting taxonomies. More details for dataset preparation are
detailed in Appendix H.

Model Architecture. Unless otherwise specified, we use
the ViTL/14@336px backbone (Radford et al., 2021) for our
CLIP model, and used DaVinci-002 (with temperature fixed
at 0.7) for all ablations involving GPT-3. For the choice of
the prompt embedding function T(·), for each dataset we
experiment (where applicable) with two different functions:
(1) Using the average text embeddings of the 75 different
prompts for each label used for ImageNet in Radford et al.
(2021), where the prompts cover a wide array of captions
and (2) Following the procedure that Radford et al. (2021)
puts forth for more specialized datasets, we modify the
standard prompt to be of the form “A photo of a {}, a type
of [context].”, where [context] is dataset-dependent (e.g.
“food” in the case of food-101). In the case that a custom
prompt set exists for a dataset, as is the case with multiple
datasets that the present work shares with Radford et al.
(2021), we use the given prompt set for the latter option
rather than building it from scratch. For each dataset, we use
the prompt set that gives us the best baseline (i.e. superclass)
zero-shot performance. More details are in Appendix C.

Choice of Mapping Function G. In our experiments, we
primarily look at how the choice of the mapping function
G influences the performance of CHiLS. In Section 5.2,
we focus on the datasets with available hierarchy informa-
tion. Here, G and G−1 are simply table lookups to find the
list of subclasses and corresponding superclass respectively.
In Section 5.3, we explore situations in which the true set
of subclasses in each superclass is unknown. In these sce-
narios, we use GPT-3 to generate our mapping function G.
Specifically, given some label set size m, superclass name
class-name, and optional context (which we use when-
ever using the context-based prompt embedding), we query
GPT-3 with the prompt:

Generate a list of m types of the
following [context]: class-name

The resulting output list from GPT-3 thus defines our map-
ping G from superclass to subclass. Unless otherwise spec-

ified, we fix m = 10 for all datasets. Note here that m is
only fixed for GPT-generated sets, as the true label sets may
have variable sizes for each superclass in a given dataset.
Additionally, in Section 5.4 we explore situations in which
hierarchical information is present but noisy, i.e. the label
set for each superclass contains the true subclasses and er-
roneous subclasses that are not present in the dataset.

5.2. Leveraging Available Hierarchy Information

We first concern ourselves with the scenario where hierarchy
information is already available for a given dataset. In this
situation, the set of subclasses for each superclass is spec-
ified and correct (i.e. every image within each superclass
falls into one of the subclasses). We emphasize that here we
do not need information about which example belongs to
which subclass, we just need a mapping of superclass to sub-
class. For example, each class in the BREEDS dataset liv-
ing17 is made up of 4–8 ImageNet subclasses at finer gran-
ularity (e.g. ‘parrot’ includes ‘african grey’ and ‘macaw’).

Results. In Table 2, we can see that our method performs
better than using the baseline superclass labels alone across
all 7 of the datasets with available hierarchy information,
often leading to +15% improvements in accuracy.

5.3. CHiLS in Unknown Hierarchy Settings

Though we have seen considerable success in situations
with access to the true hierarchical structure, in some real-
world settings our dataset may not include any available in-
formation about the subclasses within each class. In this
scenario, we turn to using GPT-3 to approximate the hier-
archical map G (as specified in Section 5.1). It is impor-
tant to note that GPT-3 may sometimes output suboptimal
label sets, most notably in situations where GPT-3 chooses
the wrong wordsense or when GPT-3 only lists modifiers
on the original superclass (e.g. producing the list [red,
yellow, green] for types of apples). In order to ac-
count for these issues in an out-of-the-box fashion, we make
two adjustments: (i) append the superclass name (if not al-
ready present) to each generated subclass label, and (ii) in-
clude the superclass itself within the label set. For a con-
trolled analysis about the effect of including the superclass
itself in the label set, see Appendix D.

Results. In this setting, our method is still able to beat
the baseline performance in most datasets, albeit with lower
accuracy gains (see Table 2). Thus, while knowing the true
subclass hierarchy can lead to large accuracy gains, it is
enough to simply enumerate a list of possible subclasses
for each class with no prior information about the dataset
in order to improve the predictive accuracy. In Figure 2,
we show selected examples to highlight CHiLS’s behavior
across two datasets.
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Table 3: Average accuracy across datasets for superclass
prediction, CHiLS (ours), and CHiLS without the reweight-
ing step. While when given the true hierarchy omitting the
reweighting step can slightly boost performance beyond
CHiLS, in situations without the true hierarchy the reweight-
ing step is crucial to improving on the baseline accuracy.

Experiment Average Accuracy

Standard 73.28
CHiLS (True Map, No RW) 86.40
CHiLS (True Map, RW) 85.11
CHiLS (GPT Map, No RW) 71.61
CHiLS (GPT Map, RW) 74.49

Table 4: Average accuracy across datasets with GPT-
generated label sets for different reweighting algorithms.
Using aggregate subclass probabilities for reweighting per-
forms noticeably worse than our initial method and reweight-
ing in superclass space. CHiLS too only performs slightly
worse than the contrived best possible union of subclass and
superclass predictions.

Experiment Average Accuracy

Best Possible 78.69
Standard 73.28
CHiLS 74.49
CHiLS (RW subclass w/mean subclass) 72.79
CHiLS (RW mean subclass w/superclass) 74.45

5.4. Ablations

Is Reweighting Necessary? Though the reweighting step
in CHiLS is motivated by the evidence that CLIP generally
assigns higher probability to correct predictions rather than
incorrect ones (see Appendix A for empirical verification),
it is not immediately clear whether the reweighting step is
truly necessary. Averaged across all documented datasets,
in Table 3 we show that in the true hierarchy setting, not
reweighting the subclass probabilities can actually slightly
boost performance (as the label sets are adequately tuned to
the distribution of images). However, in situations where the
true hierarchy is not present, omitting the reweighting step
puts accuracy below the baseline performance. We attribute
this difference in behavior to the fact that reweighting multi-
plicatively combines the superclass and subclass predictions,
and thus if subclass performance is sufficient on its own (as
is the case when the true hierarchy is available) then com-
bining it with superclass predictions can cause the model to
more closely follow the behavior of the underperforming su-
perclass predictor. Thus, as the presence of a ground-truth
hierarchy is not guaranteed in the wild, the reweighting step
is necessary for CHiLS to improve zero-shot performance.

Table 5: CHiLS zero-shot accuracy when G includes all
subclasses in the ImageNet hierarchy descended from the
respective root node. Even in the presence of noise added to
the true label sets, CHiLS is provides large accuracy gains.

Dataset Standard CHiLS - CHiLS - True
True Map Map + Noise

nonliving26 79.8 90.7 (+10.9) 89.8 (+10.0)
living17 91.1 93.8 (+2.7) 93.2 (+2.1)
entity13 77.5 92.6 (+15.1) 90.7 (+13.2)
entity30 70.3 88.9 (+18.6) 86.7 (+16.4)

Different Reweighting Strategies. We also experimented
with different mechanisms for reweighting superclass and
subclass predictions. Namely, we investigated whether su-
perclass probabilities could be replaced by the sum over the
matching subclass probabilities, and whether we can ag-
gregate subclass probabilities and reweight them with the
matching superclass probabilities (i.e. performing the nor-
mal reweighting step but in the space of superclasses). In
Table 4 we show that replacing the superclass probabilities
in the reweighting step with aggregate subclass probabili-
ties removes any accuracy gains from CHiLS, but doing the
reweighting step in superclass space does maintain CHiLS
accuracy performance. This suggests that the beneficial be-
havior of CHiLS may be due to successfully combining
two different sets of class labels. We also display the upper
bound for combining superclass and subclass prediction (i.e.
the accuracy when a datum is correctly labeled if the super-
class or subclass predictions are correct), which we note is
impossible in practice, and observe that even the best possi-
ble performance is not much higher than the performance
of CHiLS.

Noisy Available Hierarchies While the situation de-
scribed in Section 5.3 is the most probable in practice, we
additionally investigate the situation in which the hierarchi-
cal information is present but overestimates the set of sub-
classes. For example, the scenario in which a dataset with
the class “dog” includes huskies and corgis, but CHiLS is
provided with huskies, corgis, and labradors as possible
subclasses, with the last being out-of-distribution. To do
this, we return to the BREEDS datasets presented in San-
turkar et al. (2021). As the BREEDS datasets were created
so that each class contains the same number of subclasses
(which are ImageNet classes), we modify G such that the la-
bel set for each superclass corresponds to all the ImageNet
classes descended from that node in the hierarchy (see Ap-
pendix G for more information). As we can see in Table 5,
CHiLS is able to improve upon the baseline performance
even in the presence of added noise in each label set.
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Label Set Size. In previous works investigating impor-
tance of prompts in CLIP’s performance, it has been doc-
umented that the number of prompts used can have a de-
cent effect on the overall performance (Pratt et al., 2022;
Santurkar et al., 2022). Along this line, we investigate how
the size of the subclass set generated for each class effects
the overall accuracy by re-running our main experiments
with varying values of m (namely, 1, 5, 10, 15, and 50).
In Figure 3 (bottom), there is little variation across label
set sizes that is consistent over all datasets, with the excep-
tion of the extreme label set sizes which have a few low-
performing outliers. We observe that the optimal label set
size is context-specific, and depends upon the total number
of classes present and the semantic granularity of the classes
themselves. Individual dataset results are available in Ap-
pendix E.

Model Size. To examine whether the performance of
CHiLS continues to hold with CLIP backbones other than
ViT-L/14@336, we measure the average relative change in
accuracy performance between CHiLS and the baseline su-
perclass predictions across all datasets for an array of dif-
ferent CLIP models. Namely, we investigate the RN50,
RN101, RN50x4, ViT-B/16, ViT-B/32, and ViT-L/14@336
CLIP backbones (see Radford et al. (2021) for more infor-
mation on the model specifications). In Figure 3 (top), we
show that across the 6 specified CLIP backbones, CHiLS
performance leads to relatively consistent relative accuracy
gains, with a slight (but not confidently significant) trend
showing improved performance for the ResNet backbones
over the ViT backbones, which is to be expected given their
worse base capabilities. Thus, CHiLS’s benefits do not seem
to be an artifact of model scaling.

Alternative Aggregating Methods. We experimented
with alternative aggregation methods for different parts of
the CHiLS pipeline, though we found that the proposed de-
sign (i.e. using a set-based mapping for aggregating sub-
classes together and linear averaging for aggregating prompt
templates) performed the best (see Appendix F for more).

6. Conclusion
In this work, we demonstrated that the zero-shot image clas-
sification capabilities of CLIP models can be improved by
leveraging hierarchical information for a given set of classes.
When hierarchical structure is available in a given dataset,
our method shows large improvements in zero-shot accu-
racy, and even when subclass information isn’t explicitly
present, we showed that we can leverage GPT-3 to generate
subclasses for each class and still improve upon the baseline
(superclass) accuracy.

We remark that CHiLS may be quite beneficial to practi-

RN50 RN101 RN50x4 ViTB16 ViTB32 ViTL14@336
CLIP Model Backbone
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Figure 3: (Top) Average relative change between CHiLS
and baseline for true mapping and GPT-3 generated map-
ping. Across changes in CLIP backbone size and structure,
the effectiveness of CHiLS at improving performance only
varies slightly. (Bottom) Average relative accuracy change
from the baseline to CHiLS (across all datasets), for varying
label set sizes. In all, there is not much difference in perfor-
mance across label set sizes.

tioners using CLIP as an out-of-the-box image classifier.
Namely, we show that in scenarios where the class labels
may be ill-formed or overly coarse, even without existing
hierarchical data accuracy can be improved with a fully au-
tomated pipeline (via querying GPT-3), yet CHiLS is flexi-
ble enough that any degree of hand-crafting label sets can
be worked into the zero-shot pipeline. Our method has the
added benefit of being both completely zero-shot (i.e. no
training or fine-tuning necessary) and is resource efficient.

Limitations and Future Work. As with usual zero-shot
learning, we don’t have a way to validate the performance
of our method. Additionally, we recognize that CHiLS is
suited for scenarios in which a semantic hierarchy likely ex-
ists, and thus may not be particularly useful in classification
tasks where the classes are already fine-grained. We believe
that this limitation will not hinder the applicability of our
method, as practitioners would know if their task contains
any latent semantic hierarchy and thus choose to use our
method or not a priori. Given CHiLS’s empirical successes,
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we hope to perform more investigation to develop an under-
standing of why CHiLS is able to improve zero-shot accu-
racy and whether there is a more principled way of reconcil-
ing superclass and subclass predictions.
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Appendix

A. Empirical Evidence of CLIP Confidence
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Figure 4: Distribution of argmax probabilities across ImageNet BREEDS datasets for correctly and incorrectly classified
data points, with the diamonds representing average probability for each class. Correctly classified probabilities are on
average higher than the misclassified probabilities.
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The motivation behind the reweighting step of CHiLS primarily comes from the heuristic that LLMs make correct predictions
with high estimated probabilities assigned to them (Kadavath et al., 2022), and that CLIP models themselves are well-
calibrated (Minderer et al., 2021). However, we also verify whether there is some evidence of this behavior in CLIP models.
Given that the output of a CLIP model is a probability distribution over the provided classes, we care specifically about
the probability of the argmax class (i.e. the predicted class) when the model is correct and when it is incorrect. Across the
BREEDS datasets for the standard ImageNet domain, in Figure 4 we show the distribution of the correct and incorrect
argmax probabilities for each class (i.e. for each class ci, we show the output probabilties for ci when it was correctly
classified and the output probabilities of the predicted classes when the true class is ci). Whenever CLIP is correct, the
associated probability is on average much higher than the probabilities associated with misclassification.
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B. CLIP Primer
Open Vocabulary models (as termed in Pham et al. (2021)) refer to models that are able to classify images by associating
them with natural language descriptions of each class. These models are “open” in the sense that they are to predict on an
arbitrary vocabulary of descriptions (as opposed to a fix set), thus allowing for arbitrary-way image classification. Popular
open vocabulary models include the model of focus CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) as examples.

Contrastive Language Image Pretraining (CLIP) is a family of open vocabulary models, and the focus of the present work.
CLIP, which is comprised of a text encoder and an image encoder that project into the same latent space, is trained in the
following way: Given a set of image-caption pairs (e.g. a photo of a dog with the caption “a photo of a dog.”), CLIP is
trained to predict which caption goes with which image as a contrastive learning objective by comparing the similarity
between each image embedding and each caption embedding.

At inference time (in the zero-shot setting), a naı̈ve method for image classification (which is the initial baseline tried in
Radford et al. (2021)) involves simply passing in the list of class names for a given dataset, and calculating the similarity
between a particular image embedding and each one of these class embeddings. However, Radford et al. (2021) found
that by taking a cue from the recent literature on prompt engineering for large language models (Gao et al., 2020), CLIP
can perform significantly better as a zero-shot predictor if each class name is included in a natural language prompt that
resembles some sort of image caption (as that is what CLIP was trained on). As an example, the standard baseline prompt
mentioned is “A photo of a {}.”. In our work, we define a prompt (or prompt template, which we use interchangeably) as
any caption-like phrase in natural language that a class name can be injected into.

C. Adding Context to Prompts and GPT-3 Queries

Table 6: Context tokens and prompt sets used for each dataset.

Dataset [context] Prompt Set Used

Nonliving26 N/A ImageNet
Living17 N/A ImageNet
Entity13 N/A ImageNet
Entity30 N/A ImageNet
CIFAR20 N/A ImageNet
Food-101 “food” Dataset-Specific
Fruits-360 “fruit” Dataset-Specific
Fashion1M “article of clothing” Dataset-Specific
Fashion-MNIST “article of clothing” ImageNet
LSUN-Scene N/A ImageNet
Office31 “office supply” Dataset-Specific
OfficeHome “office supply” ImageNet
ObjectNet N/A ImageNet
EuroSAT N/A Dataset-Specific
RESISC45 N/A Dataset-Specific

In order to disentangle the effect that well-formed prompt templates have on the success of CHiLS, for each dataset (besides
the BREEDS datasets and ObjectNet as they are already semantically similar to ImageNet) we compare the ImageNet 75
classes against a dataset-specific set of prompt templates. In the case of EuroSAT, RESISC45, CIFAR20 and Food-101,
we directly use the prompt template set from Radford et al. (2021). For LSUN-Scene, we use the prompt template set for
SUN397 (Xiao et al., 2010), as the two datasets are semantically similar. For the rest of the datasets not yet mentioned
(namely Fruits360, Fashion1M, Fashion-MNIST, Office31, and OfficeHome) we add the [context] marker into the standard
prompt template as mentioned in Section 5.1. The prompt sets themselves can be directly found in the code implementation
for this project.

For the GPT-3 Query with additional context, we add the respective [context] token to the query if the dataset-specific prompt
template is used. Note that we did not create [context] tokens for EuroSAT, LSUN-Scene, or RESISC45 despite testing
dataset-specific prompt templates, as there did not seem to be a concise semantic label to describe the classes in these datasets.
In Table 6, we list the dataset, the [context] token (if applicable), and the final prompt set used for all the experiments. Here,
we found that while dataset-specific prompts often improved baseline performance, they were not gauranteed to improve
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performance, as in both Fasion-MNIST and OfficeHome the general ImageNet prompt set performed better.

D. Including Superclass Labels in Label Sets

Table 7: Zero-Shot Accuracy Performance across benchmarks, controlling for the presence of the superclass label within
each respective label set. In the existing map case, adding the superclass labels removes some of the performance gains of
the raw existing map. In the GPT-3 Map case, adding the superclass is crucial to maintaining performance in most datasets

Dataset CHiLS Accuracy CHiLS Accuracy CHiLS Accuracy CHiLS Accuracy
(Existing Map) (Existing Map+) (GPT-3 Map) (GPT-3 Map+)

Nonliving26 90.68 (+10.85) 89.80 (+9.97) 81.46 (+1.63) 81.68 (+1.85)
Living17 93.81 (+2.72) 93.62 (+2.53) 91.30 (+0.21) 91.56 (+0.46)
Entity13 92.59 (+15.13) 92.06 (+14.60) 76.97 (-0.48) 78.10 (+0.65)
Entity30 88.87 (+18.55) 87.29 (+16.96) 71.79 (+1.47) 71.72 (+1.39)
CIFAR20 85.28 (+25.71) 81.45 (+21.88) 65.67 (+6.10) 65.05 (+5.48)
Food-101 N/A N/A 93.66 (-0.21) 93.82 (-0.05)
Fruits-360 59.22 (+0.48) 58.88 (+0.15) 60.53 (+1.79) 60.14 (+1.40)
Fashion1M N/A N/A 47.51 (+1.73) 47.44 (+1.66)
Fashion-MNIST N/A N/A 70.79 (+2.27) 70.81 (+2.29)
LSUN-Scene N/A N/A 88.80 (+0.67) 88.83 (+0.70)
Office31 N/A N/A 86.58 (−2.71) 90.55 (+1.42)
OfficeHome N/A N/A 87.88 (−0.97) 88.76 (−0.09)
ObjectNet 85.34 (+32.24) 81.30 (+28.20) 51.23 (−2.07) 53.53 (+0.41)
EuroSAT N/A N/A 62.21 (+0.10) 62.40 (+0.29)
RESISC45 N/A N/A 71.84 (-0.75) 72.71 (+0.12)

With CHiLS when the existing map is not available, we append the superclass name to each label set to account for possible
noise in the GPT-generated label set. In Table 7, we show the effect that this inclusion has in both the existing map and
GPT-map cases. Note that in the main paper, columns 1 and 4 correspond to the main results (i.e. no superclass labels in
existing maps and superclass labels in GPT-3 maps). In both cases, the presence of the superclass label more effectively
strikes a balance between subclass and superclass predictions. In the existing map case, this actually hurts performance, as
the subclass labels are optimal in the given dataset. In the GPT-3 map case, while there are some datasets where removing
the superclass label improves performance (namely Fruits360 and Entity30), in ever other case removing the superclass
label hurts performance, sometimes by multiple percentage points.

E. Label Set Ablation Accuracy
Table 8 displays the raw accuracy scores for CHiLS across different label set sizes.

F. Alternative Aggregation Methods (Cont.)
While CHiLS is based on a set-based mapping approach for subclasses and a linear averaging for prompt templates (based
on Radford et al. (2021)’s procedure), we experimented with two alternative ensembling methods for different parts of
the CHiLS pipeline: (1) Using a linear average of subclass embeddings rather than the set-based mapping (that is, every
superclass’s text embedding is the average across all subclass embeddings, each themselves averaged across every prompt
template) and (2) Using a set-based mapping for prompt templates rather than a linear average (i.e. instead of averaging
across prompt templates, predict across each prompt template separately at inference time and then use embedded class to
map back to the set of superclasses). Note in the latter case we only experiment with how this effects superclass prediction
(where each class maps to a set of the dataset’s chosen prompt embeddings), as using set-based ensembling for both
prompts and subclasses within CHiLS quickly becomes computationally expensive. In Table 9, we see that using our initial
aggregation methods (i.e. linear averaging for prompts and set mappings for subclasses) achieves greater accuracy.
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Table 8: Accuracy across different label set sizes generated by GPT-3, with best performing label set size in each row bolded.
In general, there is no consistent trend related to label set size and zero-shot performance across datasets.

Dataset CHiLS CHiLS CHiLS CHiLS CHiLS
(m = 1) (m = 5) (m = 10) (m = 15) (m = 50)

Nonliving26 79.71 (−0.12) 81.12 (+1.29) 81.68 (+1.85) 81.98 (+2.15) 80.03 (+0.20)
Living17 91.14 (+0.04) 92.68 (+1.58) 91.56 (+0.46) 91.73 (+0.63) 91.41 (+0.31)
Entity13 77.43 (−0.02) 78.14 (+0.69) 78.10 (+0.65) 78.37 (+0.92) 78.28 (+0.83)
Entity30 71.06 (+0.73) 71.48 (+1.15) 71.72 (+1.39) 73.03 (+2.70) 72.62 (+2.29)
CIFAR20 60.15 (+0.58) 64.93 (+5.36) 65.05 (+5.48) 63.71 (+4.14) 64.99 (+5.42)
Food-101 93.84 (−0.03) 93.90 (+0.03) 93.82 (−0.05) 93.81 (−0.06) 93.73 (−0.14)
Fruits360 58.70 (−0.04) 59.70 (+0.96) 60.14 (+1.40) 59.75 (+1.01) 59.66 (+0.92)
Fashion1M 43.46 (−2.32) 45.77 (−0.01) 47.44 (+1.66) 46.95 (+1.17) 43.61 (−2.17)
Fashion-MNIST 68.01 (−0.51) 71.00 (+2.48) 70.81 (+2.29) 69.07 (+0.55) 69.45 (+0.93)
LSUN-scene 88.43 (+0.30) 86.30 (−1.83) 88.83 (+0.70) 86.80 (−1.33) 85.97 (−2.16)
Office31 89.51 (+0.38) 88.15 (−0.98) 90.55 (+1.42) 89.43 (+0.30) 89.42 (+0.29)
OfficeHome 88.75 (−0.12) 89.11 (+0.24) 88.76 (−0.09) 89.16 (+0.29) 88.87 (+0.00)
ObjectNet 53.75 (+0.63) 53.27 (+0.15) 53.53 (+0.41) 57.70 (+4.58) 58.03 (+4.91)
EuroSAT 62.32 (+0.21) 62.21 (+0.10) 62.40 (+0.29) 62.72 (+0.61) 62.11 (0.00)
RESISC45 73.29 (+0.70) 73.05 (+0.46) 72.71 (+0.12) 72.67 (+0.08) 71.90 (−0.69)

Table 9: Average accuracy across datasets for varying aggregative methods on both the prompt and subclass steps of the
zero-shot pipeline. In general, linear averaging for subclasses performs worse than our proposed set-based method, while
linear averaging for prompts (for raw superclass prediction) performs better thant using a set-based mapping.

Experiment Accuracy

Superclass (linear average) 73.28
Superclass (set-based prompt mapping) 72.25
CHiLS (True Map, set-based mapping) 85.11
CHiLS (True Map, linear average) 81.61
CHiLS (GPT Map, set-based mapping) 74.43
CHiLS (GPT Map, linear average) 72.25

G. Noisy Available Hierarchy Details
The ImageNet (Deng et al., 2009) dataset itself includes a rich hierarchical taxonomy, where every class is a leaf node of the
hierarchy. In the original BREEDS (Santurkar et al., 2021) work, the authors modify the structure slightly in order to place
concepts at semantically-similar levels of granularity at the same depth, and additional restrict the number of subclasses
within each of the BREEDS datasets in order to balance the data. Thus, it is possible for each BREEDS dataset to use the
dataset with its superclasses and restricted set of subclasses but provide CHiLS with all the subclass labels present in the
ImageNet hierarchy for each superclass (i.e. all leaf nodes descended from each superclass node). In Table 11, we display a
subset of the living17 BREEDS dataset class structure with the original subclasses and the ImageNet subclasses. Observe
that in some cases, there are many subclass labels provided to CHiLS than is present in the data.

H. Dataset Details

Table 10: Domains used for BREEDS, Office31, and OfficeHome.

Dataset Domains

BREEDS ImageNet, ImageNet-Sketch, ImageNetv2, ImageNet-c
{Fog-1, Contrast-2, Snow-3, Gaussian Blur-4, Saturate-5}

Office31 Amazon, DSLR, webcam
OfficeHome Clipart, Art, Real World, Product
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Table 11: Subset of living17 class hierarchy, showing the difference between the original BREEDS subclasses and the
ImageNet subclasses used for the ablation in Section 5.4: Noisy Available Hierarchies.

Superclass Original BREEDS subclasses All ImageNet subclasses

salamander European fire salamander, common
newt, eft, spotted salamander

European fire salamander, common
newt, eft, spotted salamander, axolotl

turtle loggerhead, leatherback turtle, mud tur-
tle, terrapin

loggerhead, leatherback turtle, mud tur-
tle, terrapin, box turtle

lizard common iguana, American chameleon,
agama, frilled lizard

banded gecko, common iguana, Ameri-
can chameleon, whiptail, agama, frilled
lizard, alligator lizard, Gila monster,
green lizard, African chameleon, Ko-
modo dragon

snake thunder snake, ringneck snake, diamond-
back, sidewinder

thunder snake, ringneck snake, hognose
snake, green snake, king snake, garter
snake, water snake, vine snake, night
snake, boa constrictor, rock python, In-
dian cobra, green mamba, sea snake,
horned viper, diamondback, sidewinder

spider black and gold garden spider, barn spi-
der, garden spider, black widow

black and gold garden spider, barn spi-
der, garden spider, black widow, taran-
tula, wolf spider

grouse black grouse, ptarmigan, ruffed grouse,
prairie chicken

black grouse, ptarmigan, ruffed grouse,
prairie chicken

parrot African grey, macaw, sulphur-crested
cockatoo, lorikeet

African grey, macaw, sulphur-crested
cockatoo, lorikeet

crab Dungeness crab, rock crab, fiddler crab,
king crab

Dungeness crab, rock crab, fiddler crab,
king crab

CHiLS Across Domain Shifts For each of the BREEDS datasets (Santurkar et al., 2021), Office31 (Saenko et al., 2010),
and OfficeHome (Venkateswara et al., 2017), all results presented are the average over different domains. The specific
domains used are show in Table 10.

Fruits-360 For zero-shot classification with CLIP models, Fruits-360 (Mureşan & Oltean, 2018) in its raw form is
somewhat ill-formed from a class name perspective, as there are classes only differentiated by a numeric index (e.g. “Apple
Golden 1” and “Apple Golden 2”) and classes at mixed granularity (e.g. “forest nut” and “hazelnut” are separate classes
even though hazelnuts are a type of forest nut). We thus manually rename classes using the structure laid out in Table 13,
which results in a 59-way superclass classification problem, with 102 ground-truth subclasses.

H.1. ObjectNet: A Case Study

The ObjectNet dataset (Barbu et al., 2019) has partial overlap (113 classes) with the ImageNet (Deng et al., 2009) hierarchical
class structure. From this subset of ObjectNet, we use the BREEDS hierarchy (Santurkar et al., 2021) to generate a coarse-
grained version of ObjectNet that is shown in Table 12. In this 11-way classification task, the true subclasses are the original
ObjectNet classes. Additionally, here we show the GPT-generated subsets at m = 10.

In observing the ground truth vs. generated subsets for each class in ObjectNet, we can see that for the most part, GPT-3 fails
to accurately guess most of the true subclasses, even in the case when the true number of subclasses is quite small. This is
quite noticeable in classes such as “equipment” and “cooked food”, where GPT-3 gets none of the subclasses correct. Thus,
we posit that this behavior is the root cause for the relative poor performance of CHiLS when using GPT-generated subsets,
as here in ObjectNet (and more broadly) superclass names may not be great indicators for the true subclass distribution. In
ObjectNet in particular, the relative ambiguity of class names like “accessory,” “appliance,” and “equipment” most likely
contribute to the poor baseline performance, as well as ObjectNet’s inherent difficulty by design.
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Table 12: Class Structure for ObjectNet experiments.

Superclass Subclasses (Original ObjectNet) Subclasses (GPT-Generated)

garment Dress, Jeans, Skirt, Suit jacket, Sweater,
Swimming trunks, T-shirt

T-shirt, dress, skirt, blouse, pants, shorts,
leggings, jeans, overalls, jumpsuit

soft furnishings Bath towel, Desk lamp, Dishrag or
hand towel, Doormat, Lampshade, Pa-
per towel, Pillow

curtains, drapes, blinds, shades,
valances, swags, cornices, drapery hard-
ware, upholstery, slipcovers

accessory Backpack, Dress shoe (men), Helmet,
Necklace, Plastic bag, Running shoe,
Sandal, Sock, Sunglasses, Tie, Um-
brella, Winter glove

earrings, necklace, bracelet, ring,
brooch, belt, scarf, gloves, hat, glasses

appliance Coffee/French press, Fan, Hair dryer,
Iron (for clothes), Microwave, Portable
heater, Toaster, Vacuum cleaner

blender, coffee maker, toaster, mixer,
crock pot, rice cooker, dishwasher, dryer,
washer, oven

equipment Cellphone, Computer mouse, Keyboard,
Laptop (open), Monitor, Printer, Remote
control, Speaker, Still Camera, TV, Ten-
nis racket, Weight (exercise)

trowel, hoe, rake, shovel, bucket, wheel-
barrow, watering can, shears, gloves, hat

furniture Bench, Chair table, chair, dresser, bed, nightstand,
lamp, couch, loveseat, coffee table, end
table

toiletry Band Aid, Lipstick toothbrush, toothpaste, floss, mouth-
wash, soap, shampoo, conditioner, body
wash, lotion, deodorant

wheeled vehicle Basket, Bicycle car, bus, train, bike, skateboard,
rollerblades, wheelchair, tractor, dune
buggy, gokart

cooked food Bread loaf stir fry, spaghetti, soup, salad, roast, rice,
quinoa, pancakes, omelette, pasta

produce Banana, Lemon, Orange apple, banana, orange, grapefruit, lemon,
lime, watermelon, cantaloupe, honey-
dew, pineapple

beverage Drinking Cup coffee, tea, water, soda, milk, orange
juice, apple juice, grape juice, cranberry
juice, tomato juice

Table 13: Mapping from original class names to new subclass and superclasses for Fruits-360.

Original Class Cleaned Subclass Cleaned Superclass

Apple Braeburn braeburn apple apple
Apple Crimson Snow crimson snow apple apple

Apple Golden 1 golden apple apple
Apple Golden 2 golden apple apple
Apple Golden 3 golden apple apple

Apple Granny Smith granny smith apple apple
Apple Pink Lady pink lady apple apple

Apple Red 1 red apple apple
Apple Red 2 red apple apple
Apple Red 3 red apple apple

Apple Red Delicious red delicious apple apple
Apple Red Yellow 1 red yellow apple apple
Apple Red Yellow 2 red yellow apple apple

Apricot apricot apricot
Avocado avocado avocado

Avocado ripe avocado avocado
Banana banana banana

Banana Lady Finger lady finger banana banana
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Banana Red red banana banana
Beetroot beetroot beetroot

Blueberry blueberry blueberry
Cactus fruit cactus fruit cactus fruit

Cantaloupe 1 melon melon
Cantaloupe 2 melon melon
Carambula star fruit star fruit
Cauliflower cauliflower cauliflower

Cherry 1 cherry cherry
Cherry 2 cherry cherry

Cherry Rainier rainier cherry cherry
Cherry Wax Black black cherry cherry
Cherry Wax Red red cherry cherry

Cherry Wax Yellow yellow cherry cherry
Chestnut nut nut

Clementine orange orange
Cocos cocos cocos
Corn corn corn

Corn Husk corn husk corn husk
Cucumber Ripe cucumber cucumber

Cucumber Ripe 2 cucumber cucumber
Dates date date

Eggplant eggplant eggplant
Fig fig fig

Ginger Root ginger root ginger root
Granadilla granadilla passion fruit
Grape Blue blue grape grape
Grape Pink pink grape grape

Grape White white grape grape
Grape White 2 white grape grape
Grape White 3 white grape grape
Grape White 4 white grape grape
Grapefruit Pink pink grapefruit grapefruit

Grapefruit White white grapefruit grapefruit
Guava gauva gauva

Hazelnut nut nut
Huckleberry huckleberry huckleberry

Kaki kaki persimmon
Kiwi kiwi kiwi

Kohlrabi kohlrabi kohlrabi
Kumquats kumquat kumquat

Lemon lemon lemon
Lemon Meyer meyer lemon lemon

Limes lime lime
Lychee lychee lychee

Mandarine orange orange
Mango mango mango

Mango Red red mango mango
Mangostan mangostan mangostan
Maracuja maracuja passion fruit

Melon Piel de Sapo melon melon
Mulberry mulberry mulberry
Nectarine nectarine nectarine

Nectarine Flat flat nectarine nectarine
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Nut Forest forest nut nut
Nut Pecan pecan nut nut
Onion Red red onion onion

Onion Red Peeled red onion onion
Onion White white onion onion

Orange orange orange
Papaya papaya papaya

Passion Fruit passion fruit passion fruit
Peach peach peach

Peach 2 peach peach
Peach Flat flat peach peach

Pear pear pear
Pear 2 pear pear

Pear Abate abate pear pear
Pear Forelle forelle pear pear
Pear Kaiser kaiser pear pear

Pear Monster monster pear pear
Pear Red red pear pear

Pear Stone stone pear pear
Pear Williams williams pear pear

Pepino pepino pepino
Pepper Green green pepper pepper
Pepper Orange orange pepper pepper

Pepper Red red pepper pepper
Pepper Yellow yellow pepper pepper

Physalis groundcherry groundcherry
Physalis with Husk groundcherry groundcherry

Pineapple pineapple pineapple
Pineapple Mini mini pineapple pineapple
Pitahaya Red dragon fruit dragon fruit

Plum plum plum
Plum 2 plum plum
Plum 3 plum plum

Pomegranate pomegranate pomegranate
Pomelo Sweetie pomelo pomelo

Potato Red red potato potato
Potato Red Washed red potato potato

Potato Sweet sweet potato potato
Potato White white potato potato

Quince quince quince
Rambutan rambutan rambutan
Raspberry raspberry raspberry
Redcurrant redcurrant redcurrant

Salak salak snake fruit
Strawberry strawberry strawberry

Strawberry Wedge strawberry strawberry
Tamarillo tamarillo tamarillo
Tangelo tangelo tangelo

Tomato 1 tomato tomato
Tomato 2 tomato tomato
Tomato 3 tomato tomato
Tomato 4 tomato tomato

Tomato Cherry Red cherry tomato tomato
Tomato Heart heart tomato tomato
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Tomato Maroon maroon tomato tomato
Tomato Yellow yellow tomato tomato

Tomato not Ripened unripe tomato tomato
Walnut nut nut

Watermelon melon melon
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