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Abstract

We introduce Why It Failed, a benchmark for evaluating
whether interpretability methods can explain model failures.
We test last token logistic probes on Gemma-2 2B across
four basic reasoning tasks and find they fail to predict model
failures, achieving near-chance performance across all tasks.
Our benchmark provides a standardized framework to evalu-
ate whether interpretability methods can explain model fail-
ures. Lastly, we motivate the AI community to move beyond
reporting quantitative metrics and seek explanations of when
and why models fail.

Code —
https://github.com/anthonytang/LLM-Detection-Testing

1 Introduction
Large language models achieve impressive performance on
diverse benchmarks, yet they still fail in puzzling and un-
predictable ways. A model might score 80% on a common-
sense reasoning task, but this aggregate metric obscures cru-
cial questions: When does the model fail? Why does it fail?
Are failures random noise, or do they follow systematic pat-
terns? Current evaluation practices report quantitative met-
rics without explaining the underlying failure modes, leav-
ing practitioners uncertain about when and where models
can be safely deployed.

The interpretability community has made significant
progress in understanding what models know—identifying
circuits that implement specific algorithms (Wang et al.
2022), discovering human interpretable concepts in models’
activations (Bricken et al. 2023). However, interpretabil-
ity methods are typically validated on their ability to de-
tect unwanted behaviors and monitor models in deploy-
ment (McKenzie et al. 2025), rather than on their ability to
systematically explain common failure cases of models on
standard benchmarks.

This gap has important consequences. Without system-
atic explanations of failures, we cannot make informed de-
ployment decisions. Explanations enable us to distinguish
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model-specific quirks from dataset artifacts, and to under-
stand whether failure patterns generalize across model fam-
ilies or emerge from particular architectures. Most funda-
mentally, explaining failures allows us to move beyond sim-
ply reporting benchmark scores toward building scientific
theories of model limitations.

We propose Why It Failed, a benchmark for evaluating
whether interpretability methods can explain model failures.
Our contributions are twofold.

1. We introduce a benchmark framework that shifts focus
from explaining what models know to explaining what
they don’t know.

2. We show that standard last-token probing is insufficient
for predicting failures.

We invite the interpretability community to test their
methods against this benchmark and push toward explana-
tions that illuminate model limitations.

The rest of the paper is organized as follows, Section
2 reviews related work in benchmarking explanations, in-
terpretability methods and generating explanations using
SAEs. Section 3 describes our benchmark framework and
how we generated our benchmark examples. Section 4 de-
scribes our probing experiment methodology and discusses
our results. In Section 5, we discusses limitations of our
work and provides questions for future work.

2 Related Work
Benchmarking Interpretability Methods
Mills et al. (2025) propose ALMANACS, a benchmark to
test how well explanations can predict model behaviour on
new inputs. They focus on behaviour related to AI safety
such as ethical reasoning, self preservation or harmful re-
quests. The authors construct such safety scenarios to invoke
specific model behaviour. They primarily generate explana-
tions by blackbox methods or through attribution methods.

Our approach on the other hand focuses on explaining
model failures in standard benchmarks. We select estab-
lished reasoning benchmarks that measure basic model ca-
pabilities. We then establish our baseline via probing models
internal activations, which has seen great success in recog-
nizing diverse model behaviours and steering models (Bea-
glehole et al. 2025; McKenzie et al. 2025).



Chandrasekaran et al. (2018) study a failure prediction
task for a visual question answering (VQA) model. Humans
are asked to predict whether the VQA model will get a ques-
tion right or wrong. They find humans are able to predict
model failures above chance. However, explainable meth-
ods do not improve human performance. We on the other
hand focus on pure language model and first ask what is the
best predictive performance we can get for predicting model
failures.

Interpretability Methods for Language Models
Recent interpretability research has focused on key three
factors: understanding model traces (CoT-Interpretability),
understanding the internal representations of language mod-
els (Sparse Autoencoders) and training probes on internal
representations of models. These methods vary in their ap-
proach regarding what aspect of the model they study but are
focused on primarily monitoring and steering models.

Chain-Of-Thought (CoT) Interpretability analyzes
reasoning traces that the language model produces before
the final response. Baker et al. (2025) were able to detect
models reward hacking by monitoring its reasoning traces.
Korbak et al. (2025) argues CoT interpretability is a promis-
ing research direction however CoTs can easily succumb to
optimization pressures of directly training CoT and loose
their usefulness for monitoring. Kirchner et al. (2024) pro-
poses a scheme to make models reasoning more legible by
posing the task as a prover-verifier game where the model
(as a prover) has to provide legible explanations for its an-
swer that allows a verifier to predict whether the model got
the answer right or wrong.

Probing methods train auxiliary classifiers on a base
model hidden states to detect concepts that the base model
was not explicitly trained for (Chen et al. 2020). Subsequent
work has shown linear probing can detect unsafe behaviour
and steer the model towards a desirable behaviour (Beagle-
hole et al. 2025; McKenzie et al. 2025).

Sparse Autoencoders learn overcomplete, sparse decom-
positions of neural activations, hypothesizing that individual
SAE features correspond to monosemantic concepts (Cun-
ningham et al. 2023; Bricken et al. 2023). Jiang et al.
(2025) uses SAEs to generate explanations for difference
in datasets. For GSM8K, Jiang et al. (2025) demonstrated
”Math word problems involving time, distance, and speed”
had lower accuracy.

Our benchmark evaluates whether these interpretability
methods can be repurposed to identify systematic patterns
that distinguish successes from failures.

3 Why It Failed Benchmark
Benchmark Overview
Core Question: Can current interpretability methods ex-
plain why models fail? When a model makes errors on a
benchmark, we want to know whether interpretability tech-
niques can surface explanations that genuinely capture the
underlying causes of these failures.

What constitutes a good failure explanation? We argue
that a good explanation must satisfy three criteria:

1. Faithful: Given the explanation, we should be able to
predict whether the model will fail on unseen inputs or
when deployed in new settings.

2. Causal: We should be able to manipulate model perfor-
mance based on the explanation, either by generating ad-
versarial inputs that exploit the identified weakness or by
improving the model performance (by identifying train-
ing dataset or methodlogy issues) based on the explana-
tion.

3. Human-interpretable: A human examining the expla-
nation should be able to predict whether the model will
fail on new inputs, without needing to run the model or
inspect its internals.

In this work, we focus on faithfulness as a mea-
surable, necessary (though not sufficient) condition for
good explanations. While causal interventions and human-
interpretability are important criteria, we leave their system-
atic evaluation to future work.

Evaluation Pipeline: For each task, we construct a bal-
anced dataset of k success cases and k failure cases. An
Explainer (e.g., linear probe, chain-of-thought interpreter,
SAEs) processes these 2k training instances to generate ex-
planations. A Predictor then uses these explanations to clas-
sify whether the model will succeed or fail on new, unseen
test instances. We measure the Predictor’s performance us-
ing AUC on the held-out test set.

Task & Model Selection
Tasks: Our benchmark is constructed from four diverse rea-
soning tasks from standard LLM evaluation suites: PIQA
(physical commonsense reasoning), BoolQ (yes/no reading
comprehension), WinoGrande (common-sense coreference
resolution), and Social IQa (social commonsense reason-
ing). These tasks span a variety of cognitive capabilities:
• PIQA (Bisk et al. 2020): Given a goal and two potential

solutions, the model must select which action would suc-
cessfully achieve the goal. For example: “How do I ready
a guinea pig cage for its new occupants?” with options
involving paper strips vs. jeans material as bedding. This
tests physical commonsense about everyday object inter-
actions.

• BoolQ (Clark et al. 2019): Given a passage and a yes/no
question, the model must determine the correct boolean
answer. For example: “Does ethanol take more energy to
make than it produces?” paired with a technical passage.
This tests reading comprehension and factual reasoning.

• WinoGrande (ai2 2019): Fill-in-the-blank coreference
resolution where the model must determine which noun
a pronoun refers to. For example: “John moved the couch
from the garage to the backyard to create space. The is
small.” (options: garage, backyard). This tests common-
sense reasoning about spatial and physical constraints.

• Social IQa (Sap et al. 2019): Questions about people’s
actions, intentions, and social implications. For exam-
ple: “Sydney walked past a homeless woman asking for
change but did not have any money. Sydney felt bad af-
terwards. How would you describe Sydney?” This tests
social and emotional reasoning.



Figure 1: Last token probes fail to predict model failures. They consistently fail for all layers except on BoolQ where latter
layer slightly outperform random chance. For each task, we plot the test ROC AUC score for a probe trained on the output of a
layer. The error bars refer to 99.9% confidence intervals. The dotted red-line depicts random chance performance.

Why these tasks? These tasks represent fundamental ca-
pabilities required for real-world language understanding:
physical intuition, reading comprehension, linguistic rea-
soning, and social awareness. Critically, despite being sim-
ple multiple-choice or boolean questions, models can fail on
them for complex, non-obvious reasons. A model might fail
on PIQA not due to lacking physical commonsense reason-
ing due to vocabulary gaps or on specific cultural contexts
unrelated to physical commonsense reasoning. The tasks
span a diverse range of contexts and are widely-used bench-
marks in the LLM community as a way to measure LLM
capability and decide whether to deploy LLMs.

Model: We use Gemma-2 2B (Gemma Team et al.
2024), a 2-billion parameter transformer model developed
by Google. We chose Gemma-2 2B because: (1) it is small
enough to run efficiently on consumer hardware, enabling
rapid iteration and making our benchmark accessible to re-
searchers without extensive computational resources; (2) it
is a practical, industry-grade model designed for real-world
deployment rather than a synthetic research model, ensuring
our findings generalize to models used in practice.

Data Collection: We construct our benchmark by collect-
ing model responses on these four tasks and categorizing
them into correct and incorrect predictions. For each task,
we randomly sample from the evaluation set until we col-
lect exactly k correct predictions and k incorrect predictions,
creating a balanced dataset. All examples retain their stan-
dard multiple-choice or boolean format from the original
tasks.

4 Probes fail to predict model failures
Experimental Setup
Transformer Architecture and Residual Stream Con-
sider a transformer model with L layers. For each layer
l ∈ {1, 2, ..., L} and token position t, we define the layer
computation as:
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where:

• x
(l,t)
pre ∈ Rd is the input to layer l at position t (the pre-

residual stream), where d is the transformer model di-
mension

• x
(l,t)
mid ∈ Rd is the mid-residual stream (after attention)

• x
(l,t)
post ∈ Rd is the output of layer l (post-residual stream)

• attn(l,h) denotes the h-th attention head in layer l

• MLP(l) denotes the feedforward network in layer l

Probe Training We train linear probes on the post-
residual stream x

(l,t)
post at the final token position of each

prompt. Given a prompt from task T with tokens t1, . . . , tn,
we extract activations x(l,n)

post at layers l ∈ {5, 10, 15, 20, 25}
for Gemma-2 2B. These layers are evenly spaced to capture
representation learning throughout the model’s depth.



For each layer l and task T , we train a binary logistic
regression classifier:

ŷ = σ(w(l) · x(l,n)
post + b) (3)

where w(l) ∈ Rd is the probe direction, b ∈ R is a bias term,
and σ is the sigmoid function. The probe is trained to predict
whether the model will succeed (y = 1) or fail (y = 0) on
the given prompt. We use scikit-learn’s logistic regression
implementation with default hyperparameters.

Data Splits For each task, we partition our 4,000 examples
(2,000 successes and 2,000 failures) into:

• Training set: 2,000 examples (1,000 successes, 1,000
failures)

• Validation set: 1,000 examples (500 successes, 500 fail-
ures)

• Test set: 1,000 examples (500 successes, 500 failures)

We report test set performance using Area Under the ROC
Curve (AUC) as our primary metric. An AUC of 0.5 indi-
cates chance-level performance, while 1.0 indicates perfect
classification.

Results
Figure 1 shows the test set AUC for linear probes trained
at different layers across all four tasks. The results reveal a
striking failure: linear probes do not outperform random
chance at predicting model failures.

Across all tasks and layers, probe performance clusters
near the random baseline (AUC = 0.5, shown as a red dashed
line). The best-performing configuration achieves only mod-
est improvement: BoolQ at higher layers achieves perfor-
mance slightly above chance.

We observe several consistent patterns:

1. No layer captures failure modes: Performance remains
near chance across all chosen layers, suggesting that the
distinction between success and failure is not linearly en-
coded at any single layer’s residual stream.

2. Task variation is minimal: All tasks exhibit fundamen-
tally the same pattern of near-chance performance bar-
ring probes trained on latter layers on BoolQ. This sug-
gests the limitation is not task-specific but reflects a
broader issue with using linear probes as explainers.

These results demonstrate that linear probes, despite their
success in identifying semantically meaningful directions in
prior work, fail as explainers in our benchmark. The model’s
internal representations do not contain linearly accessible in-
formation sufficient to predict when the model will fail.

5 Discussion & Conclusion
We introduce Why It Failed, a benchmark for evaluating
whether interpretability methods can explain model fail-
ures. Our framework operationalizes faithful explanations
through predictive power: good explanations should enable
prediction of failures on unseen inputs. While we focus on
faithfulness in this work, our framework naturally extends to
causal manipulation and human-interpretability criteria.

We showed simple last token probing fail to explain
model failures. It remains unclear why probes slightly out-
performed random chance on BoolQ. Our work can easily
be extended to include:

• Richer probing methods: Mean-token probing across
sequences, attention-probes (McKenzie et al. 2025)

• Sparse representation methods: Sparse autoencoders
(SAEs) can identify clusters and offer explanations of
why models fails (Jiang et al. 2025)

• Chain-of-thought interpretability: Analyzing reason-
ing traces in models that produce intermediate steps. For
these tasks, we did not generate reasoning traces from
Gemma-2 2B. Future works would need to first generate
examples of success / failure with reasoning traces.

Furthermore, we currently measure only faithfulness
through predictive power. Future work should incorporate:
• Causal metrics: Can explanations generate adversarial

examples that flip model predictions? Can they guide in-
terventions that improve performance?

• Human-interpretability scoring: Auto-interpretability
methods (Paulo et al. 2025) can generate explanation
for SAE features. (Kantamneni et al. 2025) proposes
a similar framework could be used to explain logistic
probes. However, it remains an open question whether
these methods provide faithful human interpretable ex-
planations.

Conclusion
Why It Failed benchmark asks what models don’t know and
why. Our key message is simple: we should aim to explain
benchmark failures, not just report accuracy numbers.
This benchmark provides a concrete framework for eval-
uating whether interpretability methods achieve this goal.
While linear probes fall short, they represent just the begin-
ning. We invite the community to test their methods against
this benchmark and push toward explanations that truly illu-
minate model limitations.
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