

A FANO-STYLE ACCURACY UPPER BOUND FOR LLM SINGLE-PASS REASONING IN MULTI-HOP QA

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Multi-Hop Question Answering (MHQA) requires integrating dispersed, interde-
 012 pending evidence through sequential reasoning under noise. This task is challeng-
 013 ing for LLMs as they have a finite per-pass output capacity, beyond which the inte-
 014 gration of task-relevant evidence proves unreliable. Consequently, the single-pass
 015 reasoning paradigm is inherently vulnerable to this capacity overflow. To formal-
 016 ize this bottleneck, our analysis establishes a Fano-style accuracy upper bound,
 017 defining a theoretical performance ceiling for single-pass LLMs. This bound re-
 018 veals that accuracy inevitably collapses once task complexity exceeds model ca-
 019 pacity, providing general principles for capacity-aware representation and struc-
 020 turing of MHQA in LLMs. Building on these principles, we introduce a proof-of-
 021 concept multi-call framework for MHQA, InfoQA. It ensures high per-step accu-
 022 racy by combining capacity-aware task decomposition with active pruning of prior
 023 reasoning traces, keeping the information load within the single-pass limit. It fur-
 024 ther achieves robustness by a dependency-explicit workflow that enables precise
 025 control over the reasoning path. We construct a stringent and noise-rich bench-
 026 mark to validate our theory and framework. Experimental results show that model
 027 behavior aligns with our predicted capacity curves while InfoQA achieves consis-
 028 tent performance improvements. We hope our work inspires more LLM multi-step
 029 reasoning methods: $\text{Q} \text{InfoQA}$.

1 INTRODUCTION

030 Multi-Hop Question Answering (MHQA) (Yang et al., 2018; Trivedi et al., 2022; Mavi et al., 2024)
 031 is an important NLP task with critical applications in real-world domains such as scientific liter-
 032 ature analysis and complex fact verification (Yin et al., 2023; Yu et al., 2021). The task requires
 033 integrating multiple, interdependent pieces of evidence that appear in different segments of a long
 034 provided context. As a result, solving MHQA demands compositional reasoning: the model must
 035 carry forward intermediate findings from one evidence source and use them to locate or interpret
 036 information in subsequent sources. This stepwise dependency structure forms a reasoning chain,
 037 where the accuracy of each intermediate inference directly determines the correctness of the final
 038 answer. Accordingly, task success hinges on accurately resolving each reasoning hop while main-
 039 taining a coherent chain that faithfully composes intermediate findings into the final conclusion.

040 MHQA remains challenging for Large Language Models (LLMs) (Achiam et al., 2023; Bai
 041 et al., 2023; Liu et al., 2024) despite recent advances in prompting strategies and reasoning tech-
 042 niques (Havrilla et al., 2024). As shown in Figure 1(a), intuitively, because an LLM generates only
 043 a finite number of tokens in a single pass and each token has limited representational capacity, the
 044 model is constrained by an upper bound on the total information it can carry forward. This output
 045 capacity bound limits the amount of dispersed evidence that the model can reliably integrate at once.
 046 When the reasoning chain spans multiple evidence sources or when the context contains substan-
 047 tial irrelevant content, the total information load often exceeds this bound. As a result, the model
 048 becomes prone to capacity overflow, where relevant signals are diluted or overshadowed by noise,
 049 leading to inaccurate intermediate inferences and, consequently, incorrect final answers.

050 To formalize this intuition, we first present an information-theoretic analysis that derives a Fano-
 051 style accuracy upper bound for LLM single-pass reasoning. This analysis reveals the *Accuracy*
 052 *Cliff*: when the task’s information demand surpasses the model’s output capacity, performance does

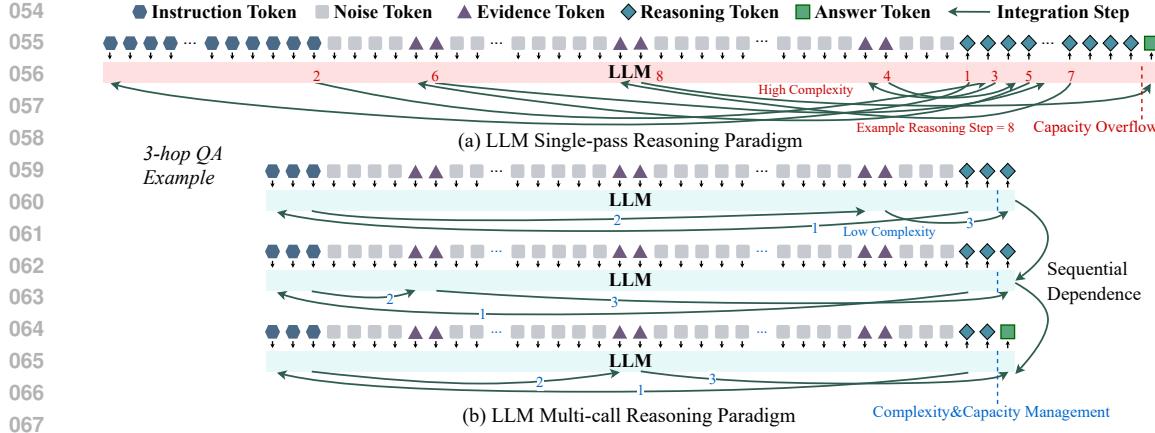


Figure 1: Comparison of single-pass and multi-call reasoning paradigms. Single-pass reasoning is constrained by the limited output capacity of LLMs, making it difficult to solve long-context and multi-hop problems. Multi-call reasoning mitigates this by decomposing tasks into sequentially dependent sub-steps, ensuring high per-step accuracy and a reliable reasoning chain.

not degrade gracefully but instead collapses sharply. We then examine why MHQA tasks are particularly prone to exceeding this cliff. By formalizing and dissecting the task structure, we identify two compounding challenges: Stepwise Capacity Overflow, driven by the super-linear growth of information demand with hop count and context length, and Cross-Step Error Accumulation, stemming from the amplification of even small per-step errors along the reasoning chain. Together, these analyses demonstrate that the single-pass paradigm is fundamentally inadequate for MHQA, motivating the design of a capacity-aware, multi-call paradigm as shown in Figure 1(b).

Building on the identified single-pass limitations and the structural demands of MHQA, we introduce InfoQA, a proof-of-concept multi-call framework for MHQA. InfoQA serves to concretely demonstrate how multi-call reasoning alleviates the dual crises of Stepwise Capacity Overflow and Cross-Step Error Accumulation. It does so by (i) capacity-aware task decomposition, which lowers the information demand and secures per-step accuracy, (ii) a dependency-explicit workflow, which enforces alignment across reasoning steps and prevents the chain from drifting off course, and (iii) iterative query contraction, which condenses the problem state and filters noise to keep information load manageable.

To precisely control hop count and context length, and thereby modulate the task-side information demand, we construct a dedicated dataset to test our theory. Experiments confirm that single-pass methods indeed exhibit an *Accuracy Cliff*, with results closely matching our theoretical curves. Moreover, as a proof-of-concept, InfoQA consistently outperforms single-pass baselines, further demonstrating the practical advantage of multi-call reasoning.

Our contributions can be summarized as follows:

1. We provide a rigorous information-theoretic analysis of LLM single-pass reasoning, deriving a Fano-style accuracy upper bound and revealing the *Accuracy Cliff* phenomenon (Section 2).
2. We dissect the structure of MHQA to explain why it is particularly prone to exceeding this limit, identifying two compounding challenges: Stepwise Capacity Overflow and Cross-Step Error Accumulation (Section 3).
3. We introduce InfoQA as a proof-of-concept in Section 4, and, in Section 5, we construct a controlled benchmark to validate our theory while demonstrating the practical advantage of multi-call reasoning paradigm.

2 THE INFORMATION BOTTLENECK IN LLM SINGLE-PASS REASONING

To analyze the inherent limits of single-pass LLM in complex reasoning, this section establishes a theoretical framework. We begin by formalizing the task and our analytical tools, then derive a

108 universal accuracy upper bound that reveals a fundamental relationship between task complexity
 109 and model capacity.
 110

111 **2.1 FORMALIZING MHQA AND ANALYTICAL BASIS**
 112

113 **Problem Formulation.** We study MHQA in a *closed-book* setting, where the model must answer
 114 solely from the provided context. Formally, the input consists of a User Query Q and a Context
 115 $C = (E, N)$, where $E = \{e_1, \dots, e_M\}$ are the necessary evidence snippets and N is irrelevant
 116 noise. The model generates an output Y , which includes its intermediate reasoning trace R and the
 117 final answer tokens. An extractor g then maps this output to the predicted answer $\hat{A} = g(Y)$.
 118

119 **Analytical Basis.** Our analysis rests upon two foundational principles from information theory. We
 120 use $H(\cdot)$ to denote Shannon entropy (Shannon, 1948) and $I(\cdot; \cdot)$ for mutual information.
 121

122 *1. Conditional Fano Inequality* (Fano & Hawkins, 1961). This principle establishes that to achieve a
 123 low error rate, the model’s output must sufficiently resolve the initial uncertainty about the answer. It
 124 connects the error probability, $P_e = \Pr(\hat{A} \neq A \mid Q, C)$, to the residual uncertainty $H(A \mid Q, C, Y)$:
 125

$$H(A \mid Q, C, Y) \leq h(P_e) + P_e \log(|\mathcal{A}| - 1). \quad (1)$$

126 *2. Output Entropy Bound* (Cover, 1999). This principle states that the amount of information an
 127 output Y can provide about the answer A is fundamentally capped by its own entropy. Formally, the
 128 mutual information is bounded as:
 129

$$I(A; Y \mid Q, C) \leq H(Y). \quad (2)$$

130 We provide a more detailed discussion in Appendix A.2.
 131

132 **2.2 A FANO-STYLE ACCURACY UPPER BOUND**

133 The performance of LLMs in single-pass reasoning is governed by a fundamental principle: the
 134 *information bottleneck*. Any single-pass output has a finite information-carrying capacity. When
 135 a task’s complexity exceeds this capacity, a theoretical *performance ceiling* emerges, making ideal
 136 accuracy unattainable. By combining the Fano inequality with the output entropy bound from Sec-
 137 tion 2.1, we derive our central theorem, which forms the cornerstone of our framework.
 138

139 **Theorem 1** (A Fano-Style Accuracy Upper Bound for Single-Pass Reasoning). *For any single-pass,
 140 closed-book policy, let $A \in \mathcal{A}$ be the ground-truth answer. Define the task’s **information demand**
 141 as $\beta \triangleq H(A \mid Q, C)$ and the model’s **output capacity** as $C \triangleq H(Y)$. The maximum achievable
 142 accuracy, $Acc = 1 - P_e$, is implicitly bounded by the following relationship:*

$$h(Acc) + (1 - Acc) \log(|\mathcal{A}| - 1) \geq \beta - C, \quad (3)$$

143 where $h(\cdot)$ denotes the binary entropy function and $h(Acc) = h(1 - P_e)$.
 144

145 This theorem dictates that whenever the information demand β of a task exceeds the output capacity
 146 C of a model, achieving perfect accuracy ($Acc = 1$) becomes mathematically impossible.
 147

148 **2.3 FROM THEORY TO INTUITION: COROLLARIES AND THE ACCURACY CLIFF**

149 While the exact bound in Theorem 1 is precise, its implications are more transparent through sim-
 150 plified corollaries. Together, they reveal a phenomenon we term the **Accuracy Cliff**.
 151

152 **Linear Accuracy Bound.** By applying simple relaxations to the main theorem, we obtain a practical
 153 linear upper bound on accuracy:
 154

$$Acc \leq \min \left\{ 1, 1 - \frac{\beta - C - 1}{\log |\mathcal{A}|} \right\}. \quad (4)$$

155 **Uniform-Distribution Case.** In the common scenario where the context makes all potential answers
 156 nearly equiprobable, the information demand simplifies to $\beta \approx \log |\mathcal{A}|$. In this case, the general
 157 bound from Theorem 1 yields a more elegant and insightful upper bound on accuracy:
 158

$$Acc \leq \min \left\{ 1, \frac{C + 1}{\beta} \right\}. \quad (5)$$

159 We provide detailed proof in Appendix A.3.
 160

162
 163 **Phase Transition and the Cliff Edge.** As shown in
 164 Figure 2 (taking $C = 200$ as an example), equation 5
 165 describes the Accuracy Cliff curve. It reveals a sharp,
 166 phase-transition-like behavior: (a) *Capacity-Sufficient*
 167 *Regime* ($\beta \leq C + 1$): Before the critical threshold, the
 168 accuracy is capped at 1, where performance is perfect
 169 and stable. (b) *Capacity-Overflow Regime* ($\beta > C + 1$):
 170 Immediately after this point, the performance ceiling
 171 collapses. The maximum achievable accuracy is no
 172 longer 1, but begins to decay hyperbolically according
 173 to the ratio $(C + 1)/\beta$. This transition from perfect ac-
 174 curacy to a rapid decay is the essence of the “Accuracy
 175 Cliff,” illustrating how performance does not degrade
 176 gracefully but instead falls off sharply when the task
 177 complexity overwhelms the model’s capacity.

178 This section establishes a universal performance bound
 179 that formalizes the fundamental limits of the single-
 180 pass reasoning paradigm. It proves eloquently that
 181 single-pass accuracy is ultimately constrained by an insurmountable barrier: the ratio of the task’s
 182 information demand β to the model’s output capacity C . This insight does more than just explain
 183 existing failures; it illuminates the path forward. If single-pass reasoning is inherently bounded, the
 184 only viable solution is to transcend it. This theoretical bottleneck compels us to ask the next critical
 185 questions: *In a real-world MHQA setting, what factors cause the information demand β to grow explosively? And how can we represent and structure the task to circumvent this single-pass limit?*

186

187

3 ANATOMY OF THE MULTI-HOP CHALLENGE

188

189

190 In this section, we provide a detailed dissection of the MHQA task, building on the Accuracy Cliff
 191 phenomenon from Section 2, to uncover the root causes of capacity overflow. The essence of MHQA
 192 is the navigation of a *latent reasoning chain*, represented as:

193
 194

$$Z_0 \xrightarrow{\phi_1} Z_1 \xrightarrow{\phi_2} \dots \xrightarrow{\phi_K} Z_K \xrightarrow{\phi_{K+1}} A.$$

195
 196
 197
 198
 199
 200

201 In this chain, Z_0 is the initial entity from the query, A is the final answer, and each intermediate Z_k
 202 is a crucial “bridge” entity. The transformation ϕ_k represents the reasoning process itself that uses
 203 the context C to advance from one entity to the next. This inherent chain structure is the source
 204 of a dual challenge: the risk of **Stepwise Capacity Overflow** within each individual step, and the
 205 systemic threat of **Cross-Step Error Accumulation** along the entire chain.

206
 207
 208
 209
 210
 211
 212

3.1 CHALLENGE 1: STEPWISE CAPACITY OVERFLOW

213
 214
 215

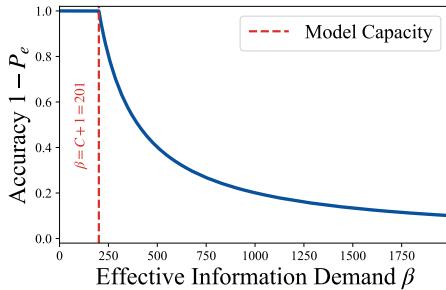
216 To predict when a model will be pushed off the Accuracy Cliff ($\beta > C$) established in Section 2, we
 217 now model the information demand β as a function of task properties in MHQA.

218 **Modeling Task-Side Demand.** To connect our theoretical bound with observable task properties,
 219 we model β as a function of hop count (h) and effective context length (L). Our model is based on
 220 three intuitive assumptions: (i) a *baseline complexity* β_0 , representing the irreducible overhead of
 221 parsing a query and locating evidence in any single step; (ii) a *context burden* that scales linearly
 222 with context length (L) to reflect the worsening signal-to-noise ratio; and (iii) a *hop amplification*
 223 factor γ^{h-1} ($\gamma \geq 1$) that captures the super-linear growth in complexity as uncertainty from prior
 224 steps propagates to subsequent ones. Combining these gives us the parametric form:

225
 226
 227

$$\beta(h, L) = \beta_0 + \alpha L \gamma^{h-1}. \quad (6)$$

228 This model shows that for $\gamma > 1$, β grows super-linearly with the number of reasoning hops. This
 229 exponential growth is the primary driver that pushes a model toward the “Accuracy Cliff.”



230 Figure 2: The Accuracy Cliff. The theoretical upper bound on accuracy is plotted
 231 against information demand β , using
 232 $C = 200$ as an illustrative example. Once
 233 $\beta > C + 1$, the accuracy declines sharply.

216 **Plug-in Accuracy Bound.** By substituting this demand model into equation 5, we get a concrete,
 217 testable prediction for how accuracy is limited by task characteristics:
 218

$$219 \quad Acc(h, L) \leq \min \left\{ 1, \frac{C + 1}{\beta_0 + \alpha L \gamma^{h-1}} \right\}. \quad (7)$$

221 This equation formalizes a Capacity Crisis: as the number of hops h or context length L increases,
 222 the information demand β escalates rapidly, heightening the likelihood of a capacity overflow $\beta > C$
 223 and a consequent collapse in accuracy.

224 3.2 CHALLENGE 2: CROSS-STEP ERROR ACCUMULATION

226 The second challenge, Cross-Step Error Accumulation, arises not from the informational depth of
 227 any single step, but from the sequential nature of the reasoning chain itself. Even if the per-step
 228 accuracy is high, the overall probability of success can still collapse due to the amplification of
 229 small, individual errors as they propagate through the chain. To formalize this phenomenon, we
 230 first define a *stepwise success event*, S_k , where the model’s prediction \hat{Z}_k must be both correct and
 231 consistent with the prior state:

$$232 \quad S_k \triangleq \{ \hat{Z}_k = Z_k \wedge \hat{Z}_k = \phi_k(\hat{Z}_{k-1}, Q, C) \}, \quad (k = 1, \dots, K),$$

$$234 \quad S_{K+1} \triangleq \{ \hat{A} = A \wedge \hat{A} = \phi_{K+1}(\hat{Z}_K, Q, C) \}.$$

235 Overall success, $Succ \triangleq \bigcap_{k=1}^{K+1} S_k$, therefore requires every step in the chain to succeed.

237 By the chain rule, $\Pr(Succ)$ is the product of the conditional success probabilities p_k at each step:
 238

$$239 \quad \Pr(Succ) = \prod_{k=1}^{K+1} \Pr(S_k \mid S_{<k}) = \prod_{k=1}^{K+1} p_k, \quad (8)$$

$$242 \quad p_k = \Pr(\hat{Z}_k = Z_k \wedge \hat{Z}_k = \phi_k(\hat{Z}_{k-1}, Q, C) \mid S_{<k}). \quad (9)$$

244 If we assume a uniform per-step success rate of at least
 245 $1 - \varepsilon$, the overall success probability is bounded by:

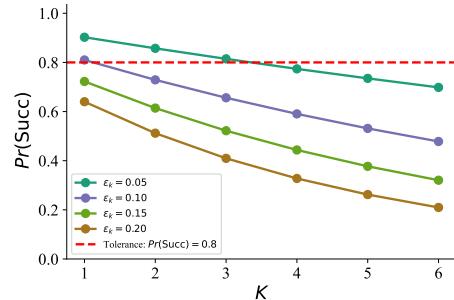
$$246 \quad \Pr(Succ) \geq (1 - \varepsilon)^{K+1} \approx 1 - (K+1)\varepsilon, \quad (10)$$

248 This linear decay, visualized in Figure 3, formalizes the
 249 *Compounding Crisis*. It shows how the chain structure
 250 acts as an error amplifier. While the Capacity Crisis is
 251 the “spark” that generates individual errors, Cross-Step
 252 Error Accumulation is the “powder keg” that makes even small sparks catastrophic, causing the
 253 entire reasoning process to fail.

254 **An Inescapable Dilemma.** Built upon the above two challenges, our deconstruction of the multi-
 255 hop challenge reveals a dual, interlocking crisis rooted in its latent chain structure. The single-pass
 256 reasoning paradigm is thus caught in a vise grip: it is simultaneously vulnerable to *Stepwise Capacity*
 257 *Overflow*, which generates inevitable per-step errors, and to *Cross-Step Error Accumulation*, which
 258 guarantees that these errors will be catastrophically amplified. This dual-front assault renders the
 259 conventional single-pass paradigm fundamentally untenable for complex reasoning. Therefore, **the**
 260 **core issue is the very single-pass paradigm we force it into.**

261 4 INFOQA: A MULTI-CALL REASONING PARADIGM FOR MHQA

263 Our theoretical analysis in Section 2 established a universal performance limit for single-pass reasoning:
 264 the *Accuracy Cliff*, which dictates that accuracy inevitably collapses when information de-
 265 mand (β) exceeds model capacity (C). Subsequently, our deconstruction of the MHQA task in
 266 Section 3 revealed exactly why this limit is so perilous in practice. We found that MHQA’s struc-
 267 ture not only causes β to *escalate exponentially*, making capacity overflow almost certain, but also
 268 *catastrophically amplifies* the resulting errors along its reasoning chain. This dual diagnosis dictates
 269 the principles for an effective solution: a successful methodology must be both *capacity-aware* to
 manage per-step information load, and *robust* to maintain the integrity of the chain.



264 Figure 3: Error Accumulation. Even a
 265 small per-step error rate (ε) causes a rapid
 266 decay in overall success probability as the
 267 number of hops (K) increases.

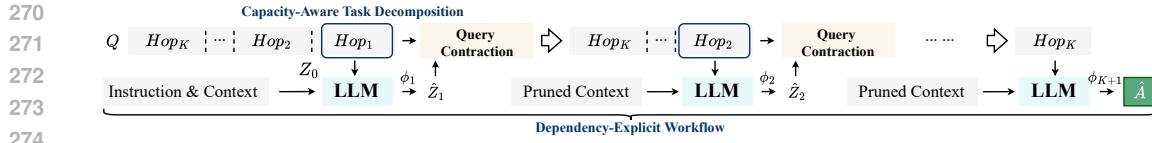


Figure 4: The InfoQA framework integrates three key components: (1) *Capacity-Aware Task Decomposition*, which reduces the information demand by generating single-hop sub-questions; (2) *Dependency-Explicit Workflow*, where the evolving contracted query carries the reasoning state across steps; and (3) *Iterative Query Contraction*, which prunes reasoning traces and rewrites the query with \hat{Z}_k . Each LLM call approximates ϕ_k and produces \hat{Z}_k .

4.1 THE INFOQA FRAMEWORK

InfoQA is a multi-call reasoning framework designed from the ground up to navigate the dual crises of multi-hop reasoning. It operationalizes the principle of decomposition by breaking down a single, high-demand query into a sequence of capacity-aligned sub-tasks, each with a manageable information load. This is achieved through three synergistic components, as depicted in Figure 4.

Capacity-Aware Task Decomposition. The first step in InfoQA is to transform a high-level multi-hop question into a simpler, single-hop sub-question. This decomposition is critical for reducing the initial information demand $\beta = H(A | Q, C)$ to a more manageable per-step demand, $\beta_1 = H(Z_1 | Q, C)$. For a question such as: *“What is the birth date of the lead actor in the movie directed by the person who wrote ‘Dune’?”*, the initial sub-question is generated as: *“Based on the provided context, who wrote ‘Dune’?”* By focusing the LLM on this narrow task, we ensure the reasoning step remains well within its single-pass capacity C , thereby directly counteracting the *Capacity Crisis*.

Dependency-Explicit Workflow. Once the problem is decomposed, a critical challenge is to reliably link sequential steps, countering the *Compounding Crisis* described in equation 10. InfoQA achieves this with a *Dependency-Explicit Workflow*. Instead of relying on a model’s internal memory, the workflow’s state is explicitly maintained and passed as the *current, contracted query itself*. After finding \hat{Z}_k , the query Q_k is updated to Q_{k+1} by embedding this finding. For example: Q_k : “..., directed by the person who wrote ‘Dune’?” \rightarrow Finding: “Frank Herbert” $\rightarrow Q_{k+1}$: “..., directed by Frank Herbert?”. This makes the reasoning chain transparent, controllable, and robust against error propagation.

Iterative Query Contraction. This mechanism is the engine that ensures the information load remains low throughout the entire reasoning process. After each step, InfoQA contracts the problem state via two actions: *Pruning*, where the extensive reasoning trace is discarded to prevent noise accumulation, and *Contraction*, where the query is rewritten with the latest finding \hat{Z}_k . By iteratively pruning thoughts and contracting the query, we ensure the prompt for every step represents the most concise form of the *remaining* problem. This prevents prompt length from growing with reasoning depth, acting as the crucial enabler that protects the entire chain from *Stepwise Capacity Overflow*.

5 EXPERIMENTS

We conducted experiments to validate the two central claims of this work. Our evaluation is twofold:

1. Theory Validation: We first tested whether the empirical performance of LLMs aligns with our theoretical *Fano-style accuracy upper bound*, confirming that the Accuracy Cliff is a real and predictable phenomenon. **2. Framework Validation:** We then evaluated whether InfoQA framework can effectively transcend this theoretical limit, alleviating the capacity bottleneck to yield substantial performance gains.

5.1 EXPERIMENTAL SETUP

Benchmark Construction. Existing MHQA benchmarks are unsuitable for our study as they lack fine-grained control over task difficulty and are often compromised by data artifacts, preventing a rigorous test of our theory. We therefore constructed a new, stringent, and noise-rich synthetic benchmark guided by three core principles: (i) *systematic control* over information demand (β) by

324 varying hop count and distractor scale; (ii) *high semantic similarity* between evidence and distractors
 325 to prevent shortcut learning; and (iii) *a path maximization strategy* for evidence placement to enforce
 326 genuine, non-trivial reasoning chains. This process yielded a suite of datasets with systematically
 327 varied hop counts and context lengths, allowing for a precise evaluation of model performance
 328 against our theoretical bounds. We provide the key statistics of our benchmark in Table 1 and
 329 detailed construction consideration and algorithm in Appendix A.4.

330 **Models and Baselines.** We
 331 conducted our experiments on
 332 the Qwen3-8B and -14B (Yang
 333 et al., 2025). We chose this
 334 publicly available model fam-
 335 ily to minimize architectural and
 336 training biases, allowing for a
 337 fair evaluation of the reasoning
 338 *paradigms* themselves. All re-
 339 sults were obtained via official API calls. For all methods, we set temperature to 0.2 and a max-
 340 imum generation length of 4096 tokens. Other parameters were default. We compared InfoQA
 341 against a comprehensive suite of strong single-pass baselines, including: (i) Direct Prompting, (ii)
 342 Chain-of-Thought (CoT) (Wei et al., 2022), (iii) Self-Consistency (SC)¹ (Wang et al., 2023b), (iv)
 343 Self-Refine² (Madaan et al., 2023), (v) ReAct (Yao et al., 2023), (vi) Plan-and-Solve (Wang et al.,
 344 2023a), and (vii) Self-Ask (Press et al., 2023). All baseline prompts were implemented as zero-shot,
 345 single-pass methods, carefully designed to follow the principles laid out in their respective original
 346 papers. All LLM calls within the InfoQA framework used the same backbone model and inference
 347 settings as the baselines. We used F1 as the evaluation metric.

348 5.2 EMPIRICAL VALIDATION OF THE ACCURACY CLIFF

350 The results of Qwen3-14B and Qwen3-8B showed the same phenomenon; we analyze Qwen3-14B
 351 and present Qwen3-8B in Appendix A.7. Table 2 summarizes the average F1 scores across different
 352 context lengths and hop counts of Qwen3-14B. Our first experimental goal is to validate our core
 353 theoretical claim: the performance of single-pass models in MHQA is governed by an *accuracy cliff*.
 354 Concretely, we tested whether the empirical performance of strong prompting baselines conforms
 355 to the Fano-style accuracy upper bound derived in Section 2.

356 **Parameter Estimation Protocol.** To connect theory with data, we fit the parameters $\theta =$
 357 $(\beta_0, \alpha, \gamma, C)$ of our plug-in accuracy bound (Eq. 7) to empirical F1 scores, using F1 as a proxy
 358 for accuracy, $\widehat{\text{Acc}}(h, L) = \text{F1}(h, L)$. We minimized the mean absolute deviation between the ob-
 359 servations and the bound:

$$360 \min_{\theta} \sum_{(h, L)} \left| \widehat{\text{Acc}}(h, L) - \min \left\{ 1, \frac{C+1}{\beta_0 + \alpha L \gamma^{h-1}} \right\} \right|. \quad (11)$$

363 For each baseline we conducted a fine-grained grid search over $(\alpha, \gamma, \beta_0, C)$ and select the mini-
 364 mizer with respect to MAE. The fitted curves were then overlaid with empirical points (F1) as a
 365 function of the fitted effective demand $\beta(h, L)$. We present the fitted plots in Figure 5, with detailed
 366 fitting statistics in Appendix A.6 and fitting algorithm in Appendix A.5.

367 **Alignment with Predicted Curves.** Three consistent patterns emerged. (i) *Accuracy cliff*: as the
 368 effective demand β grows with hop count and context length, empirical points adhere closely to the
 369 theoretical bound and then collapse once $\beta \gtrsim C+1$, consistent with the predicted cliff. (ii) *Capacity*
 370 and *hop inflation*: CoT substantially increases the effective single-pass capacity C and reduces hop
 371 inflation γ relative to Direct, thereby delaying the onset of the cliff; S-C exhibits a similar trend.
 372 (iii) *Method-specific overheads*: certain methods introduce additional demand. For example, S-A
 373 shows a large β_0 (higher base demand), which offsets the benefit of a larger C . Overall, the fitted
 374 overlays corroborate these findings: empirical markers align tightly with the theoretical envelope at
 375 low β and diverge only when the bound becomes active.

376 ¹Our implementation of Self-Consistency involves generating five reasoning paths by querying the model
 377 with varying temperatures: $\{0.1, 0.3, 0.5, 0.7, 0.9\}$. The final answer is determined by a majority vote.

378 ²For Self-Refine, we report the final answer after one iteration of feedback and refinement.

Table 1: Statistics of our synthetic multi-hop QA benchmark.

	1-hop	2-hop	3-hop	4-hop
Context Length L	[0.5k, 1k, 2k, 4k, 8k, 10k]			
Samples per L	300	300	300	300
Total Samples	1,800	1,800	1,800	1,800
Evidence Order	$[e_1]$	$[e_2, e_1]$	$[e_2, e_3, e_1]$	$[e_2, e_4, e_3, e_1]$
Evidence Position	$[1/2]$	$[1/3, 2/3]$	$[1/4, 2/4, 3/4]$	$[1/5, 2/5, 3/5, 4/5]$
Grand Total	7,200			

378 Table 2: Average F1 scores of Qwen3-14B across different reasoning depths and context lengths.
379 We compare InfoQA with single-pass baselines: Chain-of-Thought (CoT), Self-Refine (S-R), Self-
380 Consistency (S-C), ReAct, Plan-and-Solve (P&S), Self-Ask (S-A), and InfoQA with ablation: w/o
381 Capacity-Aware Task Decomposition (D.) and w/o Pruning Past Reasoning Trace (P.).

Hops	Context Length	Average F1 Score								w/o D.	w/o P.
		Direct	CoT	S-R	S-C	ReAct	P&S	S-A	InfoQA		
1	0.5k	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.87	1.00
	1k	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	0.78	1.00
	2k	0.99	1.00	0.99	1.00	0.99	1.00	0.99	1.00	0.79	1.00
	4k	0.97	0.99	0.98	1.00	0.97	0.98	0.97	0.99	0.63	1.00
	8k	0.93	0.98	0.82	1.00	0.72	0.89	0.93	0.98	0.31	0.96
	10k	0.91	0.96	0.79	0.98	0.59	0.84	0.85	0.96	0.28	0.90
2	0.5k	0.78	1.00	1.00	1.00	1.00	1.00	0.84	1.00	0.85	1.00
	1k	0.74	1.00	0.98	1.00	1.00	1.00	0.75	1.00	0.84	1.00
	2k	0.66	1.00	0.94	1.00	0.99	0.98	0.69	1.00	0.83	1.00
	4k	0.54	0.99	0.77	0.99	0.96	0.85	0.68	1.00	0.84	0.98
	8k	0.23	0.79	0.39	0.83	0.53	0.54	0.63	0.96	0.52	0.88
	10k	0.18	0.76	0.44	0.81	0.55	0.60	0.63	0.89	0.39	0.83
3	0.5k	0.70	0.97	0.95	0.98	0.98	0.98	0.85	0.98	0.93	0.98
	1k	0.55	0.97	0.83	0.98	0.96	0.92	0.75	0.98	0.80	0.96
	2k	0.41	0.94	0.66	0.97	0.84	0.83	0.74	0.96	0.67	0.94
	4k	0.31	0.72	0.30	0.77	0.59	0.61	0.64	0.84	0.60	0.79
	8k	0.06	0.32	0.12	0.35	0.24	0.19	0.52	0.64	0.43	0.44
	10k	0.04	0.27	0.10	0.26	0.20	0.15	0.39	0.42	0.29	0.39
4	0.5k	0.26	0.98	0.90	0.99	0.96	0.96	0.94	0.96	0.92	0.95
	1k	0.13	0.95	0.79	0.98	0.87	0.93	0.84	0.96	0.84	0.92
	2k	0.09	0.77	0.46	0.80	0.64	0.66	0.76	0.95	0.75	0.83
	4k	0.02	0.49	0.34	0.54	0.41	0.38	0.55	0.93	0.56	0.69
	8k	0.00	0.17	0.13	0.21	0.13	0.16	0.36	0.69	0.32	0.36
	10k	0.00	0.09	0.09	0.12	0.06	0.06	0.21	0.30	0.23	0.18
Overall Average (2-4 hop)		0.32	0.73	0.57	0.75	0.66	0.66	0.65	0.86	0.65	0.78
1 hop Average		0.97	0.98	0.93	0.99	0.88	0.95	0.96	0.99	0.61	0.98
2 hop Average		0.52	0.92	0.75	0.94	0.84	0.83	0.70	0.97	0.71	0.95
3 hop Average		0.34	0.70	0.49	0.72	0.63	0.61	0.65	0.80	0.62	0.75
4 hop Average		0.09	0.57	0.45	0.61	0.51	0.53	0.61	0.80	0.60	0.65
Context Average (2-4 hop)											
5	0.5k	0.58	0.98	0.95	0.99	0.98	0.98	0.88	0.98	0.90	0.98
	1k	0.48	0.97	0.87	0.99	0.94	0.95	0.78	0.98	0.83	0.96
	2k	0.38	0.90	0.69	0.92	0.83	0.83	0.73	0.96	0.75	0.92
	4k	0.29	0.73	0.47	0.77	0.65	0.61	0.62	0.92	0.67	0.82
	8k	0.10	0.43	0.21	0.46	0.30	0.30	0.50	0.76	0.42	0.56
	10k	0.07	0.37	0.21	0.40	0.27	0.27	0.41	0.54	0.30	0.47

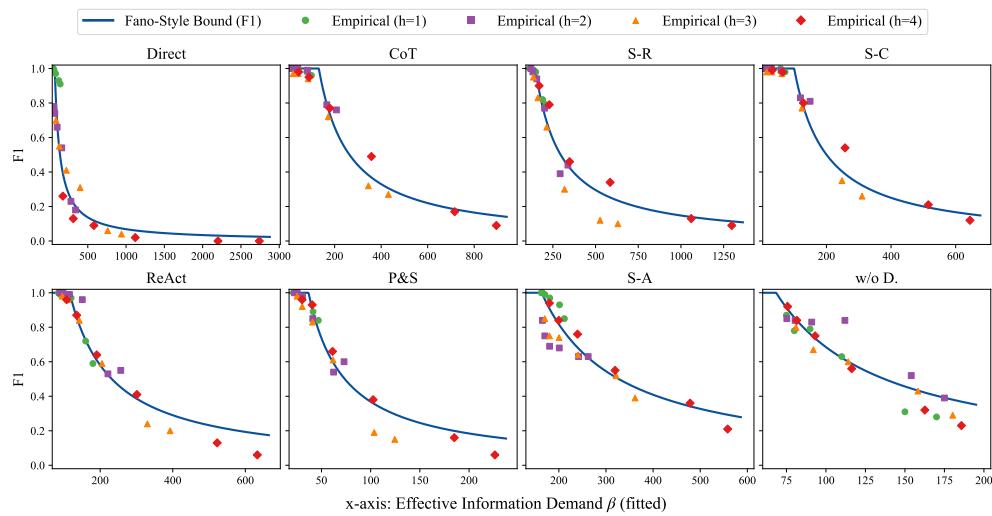


Figure 5: Qwen3-14B F1 vs. theoretical curves across single-pass methods. The x-axis shows the estimated effective information demand (β), fitted per method, and the y-axis shows the F1 score.

432 5.3 PERFORMANCE OF INFOQA
433

434 **Overall performance.** As shown in Table 2, InfoQA achieves the best results across most settings,
435 with an overall average of 0.86 on 2–4 hop tasks, substantially outperforming strong single-pass
436 baselines such as S-C (0.75) and CoT (0.73). The key strength of InfoQA lies in its robustness along
437 two axes. First, in terms of *depth robustness*, InfoQA sustains high accuracy even as the hop count
438 increases, whereas single-pass baselines suffer sharp degradation beyond 2 hops due to compounded
439 informational demand and error accumulation. Second, in terms of *length robustness*, InfoQA re-
440 mains reliable under long contexts (8k–10k tokens), while methods like Direct and ReAct collapse
441 to near-zero. This stability comes from explicitly pruning past traces and contracting queries, which
442 prevents context inflation and keeps the effective demand β within the model’s per-pass capacity C .
443

444 **Ablation study.** We further examined the contribution of InfoQA’s two key design choices: (i) *w/o*
445 *Decomposition (w/o D.)*, which executed the full reasoning chain in a single-pass prompt without
446 capacity control, and (ii) *w/o Pruning (w/o P.)*, which preserved all past reasoning traces with-
447 out contraction. As shown in Table 2, w/o D. quickly saturated at longer contexts and higher hops
448 (overall average 0.65), confirming the single-pass bottleneck predicted by the Accuracy Cliff. Mean-
449 while, w/o P. performed better but still trailed InfoQA (0.78 vs. 0.86), as unpruned traces inflated
450 context length and exacerbated cross-step errors. These results highlighted that both *capacity-aware*
451 *decomposition* and *iterative pruning* were indispensable: decomposition ensured per-step demand
452 remained within capacity, while pruning prevented error amplification across the reasoning chain.
453

454 **Error Analysis of InfoQA.** Compared with single-pass baselines, InfoQA exhibits a distinct er-
455 rror profile. Since its multi-call design try to prevent capacity overflow, most residual failures are
456 not caused by information bottlenecks but by *semantic drift* during iterative query contraction. In
457 particular, the contracted query may sometimes omit subtle constraints (e.g., temporal qualifiers or
458 entity disambiguation), causing the reasoning chain to pursue a plausible but incorrect path. An-
459 other source of failure lies in the *intrinsic model capacity*: even when the task is decomposed into
460 single-hop sub-questions, extremely long contexts can exceed the model’s base comprehension abil-
461 ity. Combined with multi-hop error accumulation, this results in degraded performance for InfoQA
462 on long-context, high-hop scenarios. These errors suggest that future work should focus on bet-
463 ter decomposition to minimize the sub-task demand, improving contraction fidelity, and improving
464 model’s base capacity.

465 6 RELATED WORKS
466

467 **LLM Single-pass Prompting Methods.** Single-pass prompting methods ask the model to complete
468 the entire reasoning process in one forward generation, without external decomposition or iterative
469 calls. Classic examples (Kojima et al., 2022; Chen et al., 2025; Wong et al., 2023) include Direct
470 prompting, Chain-of-Thought (CoT) (Wei et al., 2022). More structured variants such as ReAct (Yao
471 et al., 2023), Plan-and-Solve (Wang et al., 2023a), and Self-Ask (Press et al., 2023) guide the model
472 with explicit prompting templates to elicit stepwise reasoning. Despite these design differences, all
473 of them operate within a single forward pass, meaning that the reasoning chain must fit entirely
474 within the model’s per-pass information capacity. As a result, their performance inevitably degrades
475 when task complexity exceeds this capacity. Our work formalizes and quantifies this single-pass
476 capacity limit, showing that it gives rise to the “accuracy cliff” observed in MHQA task.
477

478 **Multi-call Methods.** In contrast to single-pass prompting, multi-call methods decompose reasoning
479 into multiple model invocations, with each call addressing a sub-task. A representative line of work
480 is Self-Refine (Madaan et al., 2023), which iteratively generates feedback and refines the answer.
481 Other approaches adopt recursive or pipeline-style reasoning, such as multi-step decomposition for
482 question answering (Li et al., 2024), programming (Qian et al., 2024; Kim et al., 2024), fact check-
483 ing (Xie et al., 2025) and writing (Shao et al., 2024; Wan et al., 2025). The success of these methods
484 has empirically validated the effectiveness of distributing the reasoning load across multiple calls.
485 Building on this paradigm, our work provides a theoretical foundation from an information capacity
486 perspective to explain why such an approach is beneficial. We show that single-pass methods
487 face an inherent capacity bottleneck and that multi-call reasoning can provably keep the per-step
488 information demand below the model’s capacity.

486 **Information-Theoretic Perspectives on MHQA.** Information theory is useful to analyze the challenges and bottlenecks of MHQA tasks. Xu et al. (2025) focused on retrieval-based systems, using pointwise conditional V-information to quantify the contribution of documents and optimize the retriever’s selection process. Chen (2025) addressed the parameter storage capacity, establishing a theoretical lower bound on the number of parameters necessary to reliably store multi-hop reasoning chains within the model weights. Complementary to these retrieval and storage perspectives, our work targets the closed-book setting to formalize the single-pass output channel capacity bottleneck, identifying the Accuracy Cliff where performance collapses due to limited generation bandwidth rather than insufficient knowledge storage.

495

496 7 CONCLUSION AND FUTURE WORK

497

498 In this work, we began by providing an information-theoretic analysis of MHQA with LLMs. By
 499 deriving a Fano-style accuracy upper bound, we formalized the fundamental capacity bottleneck of
 500 single-pass reasoning and revealed the Accuracy Cliff, where accuracy collapses once information
 501 demand exceeds model capacity. Building on this insight, we dissected MHQA to identify the dual
 502 challenges of stepwise capacity overflow and cross-step error accumulation, showing why single-
 503 pass reasoning is inherently fragile. To validate our theoretical analysis, we introduced InfoQA, a
 504 capacity-aware multi-call proof-of-concept that decomposes complex queries into manageable steps,
 505 prunes noisy traces, and explicitly controls dependency flow. Our experiments results align with the
 506 predicted capacity curves and InfoQA achieves consistent gains.

507 Looking ahead, we believe this work opens several promising directions: First, extending our analysis
 508 to multi-call settings could clarify how information accumulates across calls and what new limits
 509 emerge. Second, adaptive decomposition strategies would let systems dynamically decide how to
 510 split queries based on complexity and improving model’s base information capacity. Third, applying
 511 the capacity-bound perspective to domains such as science or law would test its robustness under
 512 real-world noise and reasoning demands.

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 ETHICS STATEMENT
541

542 As part of our experimental design, we generated a synthetic dataset in which all personal names and
543 company names are entirely fictitious. These synthetic entities do not correspond to real individuals
544 or organizations. The use of fabricated identifiers was intentional, in order to avoid potential privacy,
545 legal, or ethical concerns that could arise from using real-world data. No personally identifiable
546 information (PII) or sensitive data were collected or used in this work. Therefore, we believe that
547 our research does not pose risks to individuals, groups, or organizations.

548
549 REPRODUCIBILITY STATEMENT
550

551 To ensure the reproducibility of our work, we provide an anonymous GitHub repository containing:
552 (1) the synthetic dataset used in our experiments, (2) the code for constructing the dataset, (3) the
553 implementation of all baselines as well as our proposed model, (4) the code used to fit empirical
554 results to our theoretical curves, and (5) detailed README guidelines to facilitate reproduction of
555 our results. All experiments can be reproduced directly using the provided resources. In addition,
556 we have uploaded a compressed archive containing all these files as part of our paper submission, so
557 that reviewers can access and reproduce our results even without relying on the external repository.

558
559 REFERENCES
560

561 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
562 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
563 report. *arXiv preprint arXiv:2303.08774*, 2023.

564 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
565 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

566 Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
567 Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
568 thought for reasoning large language models. *arXiv preprint arXiv:2503.09567*, 2025.

569 Thomas Y Chen. How many parameters for multi-hop? an information-theoretic capacity law for
570 knowledge retrieval in large language models. In *Knowledgeable Foundation Models at ACL*
571 2025, 2025.

572 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.

573 Robert M Fano and David Hawkins. Transmission of information: A statistical theory of communi-
574 cations. *American Journal of Physics*, 29(11):793–794, 1961.

575 Alexander Havrilla, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
576 Maksym Zhuravinskyi, Eric Hambro, and Roberta Raileanu. Glore: When, where, and how to
577 improve llm reasoning via global and local refinements. In *International Conference on Machine*
578 *Learning*, pp. 17719–17733. PMLR, 2024.

579 Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W Mahoney, Kurt Keutzer, and
580 Amir Gholami. An llm compiler for parallel function calling. In *International Conference on*
581 *Machine Learning*, pp. 24370–24391. PMLR, 2024.

582 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
583 language models are zero-shot reasoners. *Advances in neural information processing systems*,
584 35:22199–22213, 2022.

585 Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
586 workflow, infrastructure, and challenges. *Vicinagearth*, 1(1):9, 2024.

587 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
588 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
589 *arXiv:2412.19437*, 2024.

594 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 595 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 596 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.
 597

598 Vaibhav Mavi, Anubhav Jangra, Adam Jatowt, et al. Multi-hop question answering. *Foundations
 599 and Trends® in Information Retrieval*, 17(5):457–586, 2024.

600 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
 601 and narrowing the compositionality gap in language models. In *Findings of the Association for
 602 Computational Linguistics: EMNLP 2023*, pp. 5687–5711, 2023.
 603

604 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
 605 Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In *Pro-
 606 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 607 1: Long Papers)*, pp. 15174–15186, 2024.

608

609 Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*,
 610 27(3):379–423, 1948.

611 Yijia Shao, Yucheng Jiang, Theodore Kanell, Peter Xu, Omar Khattab, and Monica Lam. Assisting
 612 in writing wikipedia-like articles from scratch with large language models. In *Proceedings
 613 of the 2024 Conference of the North American Chapter of the Association for Computational
 614 Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 6252–6278, 2024.
 615

616 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
 617 questions via single-hop question composition. *Transactions of the Association for Computational
 618 Linguistics*, 10:539–554, 2022.

619

620 Kaiyang Wan, Honglin Mu, Rui Hao, Haoran Luo, Tianle Gu, and Xiuying Chen. A cognitive
 621 writing perspective for constrained long-form text generation. *arXiv preprint arXiv:2502.12568*,
 622 2025.

623 Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
 624 Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
 625 models. In *Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
 626 guistics (Volume 1: Long Papers)*, pp. 2609–2634, 2023a.

627

628 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 629 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 630 models. In *The Eleventh International Conference on Learning Representations*, 2023b.

631

632 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 633 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 634 neural information processing systems*, 35:24824–24837, 2022.

635

636 Richmond Y Wong, Bjoern Hartmann, and Qian Yang. Why johnny can't prompt: how non-ai
 637 experts try (and fail) to design llm prompts. In *Proceedings of the 2023 CHI conference on
 638 human factors in computing systems*, pp. 1–21, 2023.

639

640 Zhuohan Xie, Rui Xing, Yuxia Wang, Jiahui Geng, Hasan Iqbal, Dhruv Sahnan, Iryna Gurevych,
 641 and Preslav Nakov. Fire: Fact-checking with iterative retrieval and verification. In *Findings of
 642 the Association for Computational Linguistics: NAACL 2025*, pp. 2901–2914, 2025.

643

644 Hao Xu, Yunxiao Zhao, Jiayang Zhang, Zhiqiang Wang, and Ru Li. Log: A local-to-global opti-
 645 mization approach for retrieval-based explainable multi-hop question answering. In *Proceedings
 646 of the 31st International Conference on Computational Linguistics*, pp. 9085–9095, 2025.

647

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 arXiv:2505.09388*, 2025.

648 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 649 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 650 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language
 651 Processing*, pp. 2369–2380, 2018.

652 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 653 React: Synergizing reasoning and acting in language models. In *International Conference on
 654 Learning Representations (ICLR)*, 2023.

655 Fan Yin, Jesse Vig, Philippe Laban, Shafiq Joty, Caiming Xiong, and Chien-Sheng Wu. Did you
 656 read the instructions? rethinking the effectiveness of task definitions in instruction learning. In
 657 *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
 658 1: Long Papers)*, pp. 3063–3079, 2023.

660 Jianxing Yu, Qinliang Su, Xiaojun Quan, and Jian Yin. Multi-hop reasoning question generation and
 661 its application. *IEEE Transactions on Knowledge and Data Engineering*, 35(1):725–740, 2021.

663 A APPENDIX

664 A.1 LLM USAGE

665 We used LLMs as auxiliary tools during the preparation of this work. Specifically, LLMs were
 666 employed in three ways: (1) for proofreading and identifying minor typographical errors in the
 667 manuscript, (2) for generating a synthetic dataset that was used as part of our experiments, and (3)
 668 for automatic code completion during the development of our implementation. All research ideas,
 669 experimental design, and final manuscript writing remain the responsibility of the authors.

673 A.2 INFORMATION-THEORETIC PRELIMINARIES: FULL PROOFS AND DISCUSSION

674 This appendix expands upon the information-theoretic preliminaries introduced in Section 2. We
 675 provide complete proofs of the conditional Fano inequality and the output entropy bound, together
 676 with intuitive interpretations and implications for multi-hop reasoning.

677 A.2.1 PROOF OF THE CONDITIONAL FANO INEQUALITY

678 **Setup.** Let A be the ground-truth answer, $\hat{A} = g(Y, Q, C)$ the prediction derived from the model
 679 output Y (allowing the estimator to depend on (Q, C)), and (Q, C) denote the query and context.
 680 Define the error event $E = \{\hat{A} \neq A\}$ with probability $P_e \triangleq \Pr(E = 1 \mid Q, C)$.

681 **Step 1: Decomposition of conditional entropy.** We begin from the chain rule of entropy:

$$682 H(A \mid Q, C, Y) = H(A, E \mid Q, C, Y) - H(E \mid A, Q, C, Y). \quad (12)$$

683 Since E is a deterministic function of (A, Y, Q, C) , the last term vanishes, yielding

$$684 H(A \mid Q, C, Y) = H(E \mid Q, C, Y) + H(A \mid E, Q, C, Y). \quad (13)$$

685 **Step 2: Bounding each term.** By the fact that conditioning reduces entropy,

$$686 H(E \mid Q, C, Y) \leq H(E \mid Q, C) = h(P_e),$$

687 where $h(\cdot)$ is the binary entropy function. For the second term, conditioned on $E = 1$ (error), the
 688 uncertainty about A is at most $\log(|\mathcal{A}| - 1)$, since all but the predicted answer remain possible. Thus

$$689 H(A \mid E, Q, C, Y) \leq P_e \log(|\mathcal{A}| - 1).$$

690 **Step 3: Combine.** Together, we obtain the bound:

$$691 H(A \mid Q, C, Y) \leq h(P_e) + P_e \log(|\mathcal{A}| - 1). \quad (14)$$

692 **Step 4: Mutual information form.** Rearranging yields the equivalent lower bound on mutual
 693 information:

$$694 I(A; Y \mid Q, C) \geq H(A \mid Q, C) - [h(P_e) + P_e \log(|\mathcal{A}| - 1)]. \quad (15)$$

702
703
704
705
706

□

This bound states that unless the predictor extracts at least $\beta = H(A \mid Q, C)$ bits of information about A , a nontrivial error rate is unavoidable. In other words, *information demand implies error floor*.

707
708

A.2.2 PROOF OF THE OUTPUT ENTROPY BOUND

709
710

Setup. The output Y is a sequence of tokens from vocabulary V . We distinguish two modeling choices for the length constraint.

711
712
713
714

Step 1: Mutual information bounded by entropy. By definition and because conditioning reduces entropy,

$$I(A; Y \mid Q, C) \leq H(Y \mid Q, C) \leq H(Y).$$

715

Step 2: Upper bounds on output entropy (two cases).

716
717
718

- **Fixed length m (or padded-to- m with a special token).** Then $Y \in V^m$ and

$$H(Y) \leq \log |V|^m = m \log |V|. \quad (16)$$

719
720
721

- **Variable length, at most m tokens (no padding).** Then $Y \in \bigcup_{k=0}^m V^k$ with cardinality

$$\sum_{k=0}^m |V|^k = \frac{|V|^{m+1} - 1}{|V| - 1}, \text{ hence}$$

722
723

$$H(Y) \leq \log \left(\frac{|V|^{m+1} - 1}{|V| - 1} \right). \quad (17)$$

724
725
726

Either equation 16 or equation 17 provides a valid capacity upper bound, depending on the modeling choice.

727
728

A.2.3 IMPLICATIONS FOR MULTI-HOP REASONING

729
730

The two inequalities together establish an **information bottleneck** for single-pass reasoning:

731
732
733
734
735
736

- **Demand side ($\beta = H(A \mid Q, C)$).** Multi-hop QA inherently requires integrating dispersed and noisy evidence, which inflates the conditional entropy of the answer.
- **Supply side ($C = H(Y)$).** The single-pass output has a finite entropy budget, given by equation 16 or equation 17, scaling with output length and vocabulary.
- **Error floor (P_e).** Whenever $\beta > C$, Fano’s inequality dictates that the error probability cannot vanish, regardless of model size or training.

737
738
739

This formalizes the intuitive statement: “*No matter how smart the model is, if the task demands more information than the output can encode, an error plateau is inevitable.*”

740
741

A.3 PROOF OF THE FANO-STYLE ACCURACY UPPER BOUND AND ITS COROLLARIES

742
743
744
745
746
747

Notation and setup. Throughout, all logarithms are base 2, so entropies and mutual information are measured in bits. We consider a *closed-book, single-pass* setting with a discrete answer space \mathcal{A} , $|\mathcal{A}| \geq 2$. The query Q and context C are given (conditioning variables). Let $A \in \mathcal{A}$ be the gold answer, Y be the model’s single-pass output (a random variable taking values in a finite or countable set of token sequences), and $\hat{A} = g(Y)$ be the predicted answer obtained by a *deterministic* extractor g . Define the error probability

$$P_e = \Pr(\hat{A} \neq A \mid Q, C), \text{ and } \text{Acc} = 1 - P_e.$$

748
749
750
751
752

We also define the task *information demand* $\beta \triangleq H(A \mid Q, C)$ and the model’s *output capacity* $C \triangleq H(Y \mid Q, C)$. When needed, one may upper-bound C by modeling constraints on Y : if Y has fixed length m (or is padded to m with a special token) then

$$H(Y \mid Q, C) \leq m \log |V|;$$

753
754
755

if Y has variable length at most m without padding, then

$$H(Y \mid Q, C) \leq \log \left(\frac{|V|^{m+1} - 1}{|V| - 1} \right).$$

756 **Two ingredients.** We rely on two standard facts (made conditional on (Q, C)):
 757

758 1. **Conditional Fano inequality** (e.g. Fano & Hawkins 1961, conditionalized on (Q, C)). For
 759 any estimator \hat{A} of A ,

760
$$H(A | Q, C, \hat{A}) \leq h(P_e) + P_e \log(|\mathcal{A}| - 1), \quad (18)$$

761 where $h(\cdot)$ is the binary entropy function.

762 2. **Output-entropy (capacity) bound** (e.g. Cover 1999): for any (A, Y) ,

763
$$I(A; Y | Q, C) \leq H(Y | Q, C) = C. \quad (19)$$

764 **A useful comparison between Y and $\hat{A} = g(Y)$.** Because \hat{A} is a deterministic function of Y ,
 765 conditioning on the *richer* variable Y cannot increase uncertainty relative to conditioning on \hat{A} :

766
$$H(A | Q, C, Y) \leq H(A | Q, C, \hat{A}). \quad (20)$$

767 Combining equation 20 with equation 18 yields

768
$$H(A | Q, C, Y) \leq h(P_e) + P_e \log(|\mathcal{A}| - 1). \quad (21)$$

769 **Proof of Theorem 1.** Start from the chain rule for conditional mutual information:

770
$$I(A; Y | Q, C) = H(A | Q, C) - H(A | Q, C, Y) = \beta - H(A | Q, C, Y).$$

771 Apply equation 21 to upper-bound the second term:

772
$$I(A; Y | Q, C) \geq \beta - [h(P_e) + P_e \log(|\mathcal{A}| - 1)].$$

773 Together with the capacity bound equation 19, we obtain

774
$$\beta - [h(P_e) + P_e \log(|\mathcal{A}| - 1)] \leq I(A; Y | Q, C) \leq C.$$

775 Rearranging gives

776
$$h(P_e) + P_e \log(|\mathcal{A}| - 1) \geq \beta - C.$$

777 Finally, substitute $P_e = 1 - Acc$ and note that $h(P_e) = h(1 - Acc) = h(Acc)$ to obtain

778
$$h(Acc) + (1 - Acc) \log(|\mathcal{A}| - 1) \geq \beta - C, \quad (22)$$

779 which is Theorem 1. □

780 **Derivation of the Linear Accuracy Bound (Eq. 4).** Starting from Theorem 1,

781
$$h(Acc) + (1 - Acc) \log(|\mathcal{A}| - 1) \geq \beta - C.$$

782 Use the elementary relaxations $h(Acc) \leq 1$ (binary entropy is at most 1) and $\log(|\mathcal{A}| - 1) \leq \log |\mathcal{A}|$
 783 (for $|\mathcal{A}| \geq 2$) to obtain

784
$$1 + (1 - Acc) \log |\mathcal{A}| \geq \beta - C.$$

785 Rearrange:

786
$$1 - Acc \geq \frac{\beta - C - 1}{\log |\mathcal{A}|} \implies Acc \leq 1 - \frac{\beta - C - 1}{\log |\mathcal{A}|}.$$

787 Because accuracy is trivially at most 1, we write the bound with a cap:

788
$$Acc \leq \min \left\{ 1, 1 - \frac{\beta - C - 1}{\log |\mathcal{A}|} \right\},$$

789 which is Eq. 4. (When the right-hand side exceeds 1, the $\min\{\cdot, 1\}$ keeps the bound meaningful.)

810 **Derivation for the Uniform-Distribution Case (Eq. 5).** In the common case where the context
 811 does not provide strong cues to distinguish among candidates, the posterior distribution $p(a | Q, C)$
 812 over answers $a \in \mathcal{A}$ is close to uniform. Intuitively, this corresponds to situations where many
 813 distractor entities of the correct type (e.g., names, dates, or organizations) appear in the context, so
 814 that each candidate remains nearly equally plausible given (Q, C) . Formally, this means that the
 815 entropy of the answer distribution approaches its maximum, i.e.,

$$\beta = H(A | Q, C) \approx \log |\mathcal{A}|,$$

816 since $\log |\mathcal{A}|$ is the entropy of a uniform distribution over \mathcal{A} . Equivalently, the KL divergence
 817 between $p(a | Q, C)$ and the uniform distribution $U(a)$ is small, i.e.,
 818

$$D_{\text{KL}}(p(\cdot | Q, C) \| U(\cdot)) \approx 0,$$

819 so that the uncertainty is essentially governed by the candidate set size $|\mathcal{A}|$ itself. Since in this
 820 regime $\beta \approx \log |\mathcal{A}| \geq \log(|\mathcal{A}| - 1)$, replacing $\log(|\mathcal{A}| - 1)$ by β enlarges the left-hand side of the
 821 inequality, hence yields a weaker but still valid bound.
 822

823 Plugging this approximation into Theorem 1 and again relaxing $h(\text{Acc}) \leq 1$ gives
 824

$$1 + (1 - \text{Acc})\beta \geq \beta - C.$$

825 Rearranging to isolate Acc :
 826

$$(1 - \text{Acc})\beta \geq \beta - C - 1 \implies 1 - \text{Acc} \geq 1 - \frac{C + 1}{\beta} \implies \text{Acc} \leq \frac{C + 1}{\beta}.$$

827 Capping at 1 yields
 828

$$\text{Acc} \leq \min\left\{1, \frac{C + 1}{\beta}\right\},$$

829 which is Eq. 5. This form emphasizes the *capacity–demand ratio* $(C+1)/\beta$ and makes the “accuracy
 830 cliff” explicit: the bound equals 1 whenever $\beta \leq C + 1$, and decays hyperbolically once $\beta > C + 1$.
 831

832 Remarks.

- 833 • The proof only uses that \hat{A} is a (deterministic) function of Y ; if \hat{A} were randomized
 834 given Y , equation 20 would still hold by the data-processing inequality (conditioning on
 835 (Q, C, Y) is at least as informative as conditioning on (Q, C, \hat{A})).
- 836 • The capacity constant C is taken as the *effective* single-pass capacity $H(Y | Q, C)$ realized
 837 by the decoding policy, but it can be upper-bounded by modeling constraints on Y (e.g.,
 838 maximum length and vocabulary size).
- 839 • Equality conditions in the Fano-style bound are generally not attained in practical settings;
 840 the utility of the bound is in predicting the regime change at $\beta \approx C + 1$ and explaining
 841 aggregate trends (the “accuracy cliff”).
 842

843 A.4 DETAILED BENCHMARK CONSTRUCTION

844 This appendix provides a detailed account of the design principles and generation pipeline for our
 845 synthetic, noise-rich Multi-Hop Question Answering (MHQA) benchmark.
 846

847 A.4.1 MOTIVATION AND DESIGN PRINCIPLES

848 As stated in the main text, our primary motivation was to overcome the limitations of existing
 849 MHQA datasets, which often lack the fine-grained control over difficulty and the data hygiene nec-
 850 essary for a rigorous evaluation of information-theoretic limits. To this end, our benchmark was
 851 designed around three core principles:
 852

- 853 1. **Systematic Control over Information Demand (β):** The benchmark must allow for the
 854 precise and independent control of factors known to influence β , primarily the reasoning
 855 hop count (h) and the context length (L). This enables a systematic study of how perfor-
 856 mance degrades as information demand scales, allowing for a direct comparison with our
 857 theoretical Accuracy Cliff curves.
 858

864

865 2. **Resistance to Heuristics and Shortcuts:** The benchmark must be designed to test gen-
866 uine reasoning rather than retrieval or pattern matching. This is achieved by ensuring all
867 evidence is previously unseen by the model and is embedded within a large number of
868 semantically similar distractors. The high similarity forces the model to perform careful
869 entity disambiguation and information extraction, rather than relying on shallow heuristics.
870

871 3. **Maximization of Reasoning Path:** The placement of evidence within the context must
872 enforce a non-trivial reasoning path. A model should not be able to answer a multi-hop
873 question by simply reading the context linearly. Our design forces the model to traverse
874 back and forth across large sections of distractor text, maximizing the cognitive load and
875 testing the model’s ability to maintain a coherent reasoning state.

876 **A.4.2 DATA GENERATION PIPELINE**

877 Our generation pipeline is a programmatic, four-step process designed to instantiate challenging
878 MHQA problems that adhere to the principles above.

879 **Step 1: Reasoning Chain Instantiation.** We begin by defining a set of abstract semantic
880 templates (e.g., ‘(Person A, wrote, Book B)’, ‘(Book B, was adapted into, Movie C)'). For a k -hop
881 question, we sample k such templates and populate them with distinct entities drawn from a curated
882 knowledge base. This forms the gold evidence chain, $\{e_1, e_2, \dots, e_k\}$. A question is then program-
883 matically generated to connect the initial entity in e_1 to the final entity in e_k , with the final entity
884 serving as the ground-truth answer. For example, a 2-hop chain might be ‘(Frank Herbert, wrote,
885 Dune)’ and ‘(Dune, was adapted into, Dune (2021 film))’, leading to the question “What film was
886 adapted from the book written by Frank Herbert?”.
887

888 **Step 2: Semantically Rich Distractor Generation.** For each piece of gold evidence e_i , we gen-
889 erate a set of N_d distractor statements. This is done by taking the semantic template of e_i and
890 substituting its entities with other entities of the same type (e.g., other authors, other books). For in-
891 stance, for ‘(Frank Herbert, wrote, Dune)’, distractors could be ‘(Isaac Asimov, wrote, Foundation)’
892 or ‘(Frank Herbert, wrote, Dune Messiah)’. This process creates a large pool of plausible but factu-
893 ally incorrect statements that are highly similar to the gold evidence, making the task a stringent test
894 of precision.
895

896 **Step 3: Context Assembly and Path Maximization.** This step realizes our third design principle.
897 The gold evidence snippets are deliberately placed out of their logical reasoning order within the
898 context. For instance, for a 3-hop task with logical order $e_1 \rightarrow e_2 \rightarrow e_3$, we might place them in the
899 document in the physical order $e_2 \rightarrow e_3 \rightarrow e_1$. The snippets are inserted at regular intervals within
900 the document (e.g., at 1/4, 2/4, and 3/4 of the context length). The generated distractor statements
901 are then randomly shuffled and used to fill the space between the evidence snippets. This strategy
902 forces the model to first find e_2 in the middle, use its information to find e_3 further down, and then
903 use that result to jump back to near the beginning to find e_1 .
904

905 **Step 4: Noise Padding and Finalization.** Finally, to control the overall context length (L), we pad
906 the assembled context with generic, irrelevant noise text (e.g., paragraphs generated by LLMs). This
907 padding is added to the beginning, end, and between existing statements until the target token count
908 (from 500 to 10,000) is reached. This ensures the model must not only handle targeted, similar
909 distractors but also vast amounts of truly irrelevant information, faithfully simulating real-world,
910 noisy long-context scenarios.
911

912 This pipeline produces a suite of challenging and controllable datasets, whose key statistics are
913 summarized in Table 1 in the main text. By systematically varying h and L , we can precisely map
914 out the performance landscape and validate our theoretical predictions.
915

916
917

918
919
920 **Algorithm 1** Multi-hop Reasoning Dataset Construction
921 1: **Input:** $N = 300, L = \{500, 1000, \dots, 10000\}$
922 2: **Output:** Multi-hop datasets for each target length L
923
924 3: **Phase 1: Initialize**
925 4: Define entity dictionary \mathcal{E} with categories (personnel, organizations, etc.)
926 5: Define templates \mathcal{T} ; each $t \in \mathcal{T}$ includes entity sequence E_t , chain templates C_t , questions Q_t
927
928 6: **Phase 2: Generate Base Chains**
929 7: **for** $i = 1$ to N **do**
930 8: $t \leftarrow \mathcal{T}[i \bmod |\mathcal{T}|]$
931 9: $chain_i \leftarrow \text{GENERATECHAIN}(t)$
932 10: **end for**
933 11: **function** $\text{GENERATECHAIN}(t)$
934 12: Sample entities for E_t from \mathcal{E}
935 13: Format C_t with entities to get $chain_texts$
936 14: **return** $(t, chain_texts, entity_values)$
937 15: **end function**
938
939 16: **Phase 3: Generate Distractors**
940 17: **function** $\text{GENERATEDISTRACTORS}(chain, n_{dist}, n_{var}, n_{noise})$
941 18: Apply distractor templates to create similar and noisy sentences
942 19: **return** $(similar, noise)$
943 20: **end function**
944
945 21: **Phase 4: Build Multi-length Dataset**
946 22: **for** $L_i \in L$ **do**
947 23: Compute n_{dist}, n_{noise} from L_i
948 24: **for** each $chain_i$ **do**
949 25: **for** $h = 1$ to 4 **do**
950 26: Scale distractors: $n_{dist}^{(h)} \leftarrow \lfloor n_{dist} \cdot (1 + 0.6(h - 1)) \rfloor$
951 27: $distractors \leftarrow \text{GENERATEDISTRACTORS}(chain_i, n_{dist}^{(h)}, 5, n_{noise})$
952 28: $sample \leftarrow \text{BUILDSAMPLE}(h, chain_i, distractors)$
953 29: **end for**
954 30: **end for**
955 31: **end for**
956 32: **function** $\text{BUILDSAMPLE}(h, chain, D)$
957 33: $q \leftarrow Q_{chain.template}[h-1]; a \leftarrow chain.entities[h]$
958 34: $S \leftarrow$ first h sentences from $chain.chain_texts$
959 35: $ctx \leftarrow \text{CREATECONTEXT}(S, D)$
960 36: **return** (q, a, S, D, ctx)
961 37: **end function**
962
963 38: **Phase 5: Assemble Context**
964 39: **function** $\text{CREATECONTEXT}(S, D)$
965 40: Interleave $D.similar$ and $D.noise$
966 41: Insert S at fixed positions based on h (e.g. for $h = 3$: positions $[1/4, 2/4, 3/4]$)
967 42: Pad if needed to target token length
968 43: **return** context
969 44: **end function**
970
971 45: **Phase 6: Save Output**
972 46: **for** $h \in \{1, 2, 3, 4\}, L_i \in L$ **do**
973 47: Write all (q, a, ctx) triples to $\$h_hop/multi_hop_chain_\$Lk.json$
974 48: **end for**
975 49: Save dataset statistics

972 A.5 FITTING ALGORITHM
973

974 This section details the procedure used to fit the relationship between *effective information demand*
975 and task performance (F1). We formalize the parametric model, the loss function, the search strat-
976 egy, numerical safeguards, and the computational complexity, and we provide pseudocode for re-
977 producibility.

978
979 **Model Assumption (Beta–Bound Structure)** For a given *reasoning depth* $h \in \{1, 2, 3, 4\}$ and
980 *context length* L (in tokens), we posit that the effective information demand is

$$981 \beta(h, L) = \alpha L \gamma^{h-1} + \beta_0, \\ 982$$

983 with parameters $\alpha > 0$, $\gamma > 1$, and $\beta_0 \geq 0$. The attainable F1 is upper-bounded by an inverse
984 dependence on β :

$$985 \widehat{F1}(h, L) = \min\left(1, \frac{C+1}{\beta(h, L)}\right), \\ 986$$

987 where $C \geq 0$ captures a constant-information offset and induces a kink at $\widehat{F1} = 1$.
988

989 **Objective** Given empirical observations $F1_{\text{emp}}(h, L)$, we estimate $(\alpha, \gamma, \beta_0, C)$ by minimizing the
990 mean absolute error (MAE):
991

$$992 \mathcal{L}(\alpha, \gamma, \beta_0, C) = \frac{1}{N} \sum_{(h, L)} |\widehat{F1}(h, L) - F1_{\text{emp}}(h, L)|, \\ 993$$

994 where N is the number of (h, L) pairs (here $N = 4 \times 6 = 24$).
995

996 **Search Strategy: Fine-Grained Grid Search** To avoid local minima introduced by the non-
997 smooth kink at $\widehat{F1} = 1$, we employ a *fine-grained grid search* over
998

$$999 \alpha \in \mathcal{A}, \quad \gamma \in \mathcal{G}, \quad \beta_0 \in \mathcal{B}, \quad C \in \mathcal{C}. \\ 1000$$

1001 Unless otherwise stated, we use

$$1002 \mathcal{A} = \text{logspace}(10^{-4}, 10^{-2}, 15), \quad \mathcal{G} = \text{linspace}(1.05, 3.00, 20), \\ 1003$$

$$1004 \mathcal{B} = \text{linspace}(0, 200, 21), \quad \mathcal{C} = \text{linspace}(20, 400, 25).$$

1005 Each method (Direct, CoT, S-R, S-C, ReAct, P&S, S-A) is fitted independently, yielding its own
1006 $(\alpha, \gamma, \beta_0, C)$.
1007

1008 **Implementation Details and Numerical Stability**
1009

- 1010 • **Vectorization.** For each (α, γ) pair, we first compute the base term $\alpha L \gamma^{h-1}$ for all (h, L) ,
1011 and then sweep over β_0 and C . This reduces redundant computation and improves through-
1012 put.
- 1013 • **Stability at small β .** We enforce $\beta(h, L) \leftarrow \max\{\beta(h, L), 10^{-9}\}$ to avoid division by
1014 zero.
- 1015 • **Upper-bound consistency.** The cap $\min(1, \cdot)$ ensures fidelity in the high-resource regime
1016 where $\widehat{F1} \rightarrow 1$.
- 1017 • **Optional weighting.** If desired, a weight $w(h, L)$ can be introduced in \mathcal{L} to emphasize
1018 specific depths or lengths (default: uniform).

1019
1020 **Computational Complexity** Let $|\mathcal{A}|$, $|\mathcal{G}|$, $|\mathcal{B}|$, and $|\mathcal{C}|$ denote the grid sizes and N the number of
1021 samples. The complexity per method is
1022

$$1023 \mathcal{O}(|\mathcal{A}| |\mathcal{G}| |\mathcal{B}| |\mathcal{C}| N).$$

1024 Since $N = 24$ is small, the overall runtime remains practical under vectorized implementations.
1025 Faster variants can be obtained via coarse-to-fine (multistage) search or by shrinking grid ranges.

1026 **Algorithm 2** Fine-Grained Grid Fitting for One Method

1027 **Require:** Data $\{(h_i, L_i, F1_i)\}_{i=1}^N$; grids $\mathcal{A}, \mathcal{G}, \mathcal{B}, \mathcal{C}$

1028 1: $\text{best_loss} \leftarrow +\infty$, $\text{best} \leftarrow \emptyset$

1029 2: **for** $\alpha \in \mathcal{A}$ **do**

1030 3: **for** $\gamma \in \mathcal{G}$ **do**

1031 4: $\text{base}_i \leftarrow \alpha L_i \gamma^{h_i-1} \forall i$

1032 5: **for** $\beta_0 \in \mathcal{B}$ **do**

1033 6: $\beta_i \leftarrow \max(\text{base}_i + \beta_0, 10^{-9})$

1034 7: **for** $C \in \mathcal{C}$ **do**

1035 8: $\widehat{F1}_i \leftarrow \min(1, (C + 1)/\beta_i)$

1036 9: $\text{loss} \leftarrow \frac{1}{N} \sum_i |\widehat{F1}_i - F1_i|$

1037 10: **if** $\text{loss} < \text{best_loss}$ **then**

1038 11: $\text{best_loss} \leftarrow \text{loss}$; $\text{best} \leftarrow (\alpha, \gamma, \beta_0, C)$

1039 12: **end if**

1040 13: **end for**

1041 14: **end for**

1042 15: **end for**

1043 16: **end for**

1044 17: **return** best , best_loss

1045

1046

1047 **Reproducibility** All methods share the same (h, L) grid with $h \in \{1, 2, 3, 4\}$ and $L \in \{0.5k, 1k, 2k, 4k, 8k, 10k\}$. We expand this grid with `meshgrid(indexing='ij')` and flatten to length $N = 24$ vectors for fitting. The default metric is MAE; alternative choices (e.g., MAPE or weighted MAE) produce qualitatively similar trends. Parameter uncertainty can be assessed via bootstrap resampling over (h, L) pairs.

1048

1049

1050

1051

A.6 QWEN3-14B FITTING PARAMETERS

1052 As shown in Figure 3, the plug-in bound provides an excellent global fit, as reflected in the low MAE

1053 across all methods, and it captures method-level differences through the parameters (γ, C, β_0) . CoT

1054 and S-C expand the usable regime by increasing C and reducing γ , thereby mitigating the cliff. S-A

1055 incurs a large base-demand penalty (β_0), which counteracts the benefit of a higher C . Removing

1056 distractors nearly eliminates hop inflation ($\gamma \approx 1$), indicating that compounding arises primarily

1057 from noise rather than depth. Taken together, these results empirically substantiate the *accuracy*

1058 *cliff* predicted by our theory.

1059

1060

1061

1062 Table 3: Fitted parameters of the plug-in accuracy bound (MAE minimization) of Qwen3-14B.

1063 Larger C indicates higher effective single-pass capacity; smaller γ indicates weaker hop inflation.

Method	α	γ	β_0	C	MAE
Direct	0.0100	3.000	40	67.5	0.0963
CoT	0.0100	2.076	0	131	0.0320
S-C	0.00720	2.076	0	99.2	0.0273
S-R	0.0100	2.282	110	147	0.0531
ReAct	0.0100	1.768	80	115	0.0429
P&S	0.00268	1.974	20	35.8	0.0444
S-A	0.00518	1.974	160	162	0.0747
w/o D.	0.0100	1.050	70	67.5	0.0589

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

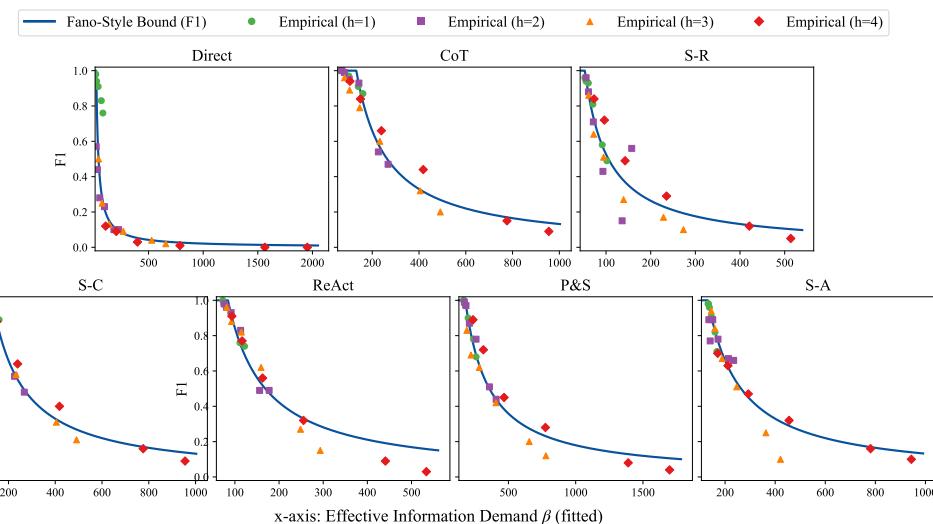
1080
 1081 Table 4: Fitted parameters of the plug-in accuracy bound (MAE minimization) of Qwen3-8B. Larger
 1082 C indicates higher effective single-pass capacity; smaller γ indicates weaker hop inflation.

Method	α	γ	β_0	C	MAE
Direct	0.00720	3.000	10	20	0.1061
CoT	0.0100	2.076	60	131	0.0426
S-C	0.0100	2.076	60	131	0.0343
S-R	0.00518	2.076	50	51.7	0.0747
ReAct	0.00518	2.076	70	83.3	0.0465
P&S	0.0100	2.487	160	178	0.0480
S-A	0.00373	2.795	130	131	0.0475

A.7 EXPERIMENTAL RESULTS OF QWEN3-8B

1094 **Theory fit for single-pass methods.** The plug-in accuracy bound in Eq. 7 fits Qwen3-8B’s single-
 1095 pass baselines well (Table 3, Figure 6). *Direct* exhibits a small effective per-pass capacity ($C \approx 20$)
 1096 and strong hop inflation ($\gamma = 3.0$), hence an early accuracy cliff. *CoT* and *S-C* attain a much larger
 1097 capacity ($C \approx 131$) with moderate hop inflation ($\gamma \approx 2.08$) and the lowest MAE (0.0426/0.0343),
 1098 so their empirical points hug the theoretical envelope longer. *P&S* shows the largest C (≈ 178) but
 1099 also a large base demand ($\beta_0 = 160$) and higher γ (≈ 2.49), which offsets its capacity at greater
 1100 depth/length. *ReAct* and *S-R* have mid-range capacities ($C \approx 83.3$ and 51.7) and degrade earlier.
 1101 *S-A* has sizable β_0 (130) and high γ (≈ 2.80), reflecting method-specific overheads that accelerate
 1102 the cliff despite a decent C . Overall, the fitted overlays confirm the accuracy-cliff picture: empirical
 1103 F1 follows the bound and collapses once the fitted demand β crosses $C+1$.

1104 **Performance of InfoQA.** 1. *Depth robustness.* On 2–4 hops, InfoQA overall average is **0.74**
 1105 vs. **0.66** for *S-C* and **0.65** for *CoT*. By hop: at 2-hop, **0.89** (InfoQA) vs. 0.82 (*S-C*); at 3-hop,
 1106 **0.64** vs. 0.63 (*S-C*/ReAct); at 4-hop, **0.68** vs. 0.52 (*S-C*). Gains grow with depth: at 4-hop and
 1107 long contexts (e.g., 8k), InfoQA reaches **0.67**, while the best single-pass baseline tops out around
 1108 **0.16**. This matches the theory: capacity-aware decomposition keeps each step’s demand $\beta_k \leq C$. 2.
 1109 *Length robustness.* InfoQA maintains strong performance as context length increases. For 2-hop at
 1110 8k tokens, it achieves **0.74** (vs. 0.67 for *S-A* and 0.57 for *S-C*); for 3-hop at 10k tokens, it reaches
 1111 **0.28**, exceeding the best single-pass alternative (0.21 for *S-C*). Even at 1-hop, where all methods
 1112 are strong, InfoQA remains competitive (average **0.93**) without relying on a single long reasoning
 1113 trace.



1131 Figure 6: Qwen3-8B’s Empirical F1 vs. theoretical curves across single-pass methods. The x-axis
 1132 shows the estimated effective information demand (β), fitted per method, and the y-axis shows the
 1133 F1 score.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146

1147 Table 5: Qwen3-8B’s Average F1 scores across different reasoning depths and context lengths.
 1148 We compare InfoQA with single-pass baselines: Chain-of-Thought (CoT), Self-Refine (S-R), Self-
 1149 Consistency (S-C), ReAct, Plan-and-Solve (P&S), Self-Ask (S-A).

		Average F1 Score							
Hops	Context Length	Direct	CoT	S-R	S-C	ReAct	P&S	S-A	InfoQA
1	0.5k	0.98	1.00	0.96	1.00	1.00	1.00	0.98	1.00
	1k	0.98	1.00	0.94	1.00	0.98	1.00	0.98	1.00
	2k	0.94	0.99	0.93	0.99	0.96	0.97	0.96	1.00
	4k	0.91	0.97	0.81	0.97	0.93	0.90	0.91	0.97
	8k	<u>0.83</u>	0.91	0.58	0.91	0.76	0.78	0.82	0.82
	10k	0.76	0.87	0.49	0.89	0.74	0.68	0.71	0.78
2	0.5k	0.57	1.00	0.96	1.00	0.98	0.99	0.89	1.00
	1k	0.44	0.99	0.88	0.99	0.96	0.97	0.77	0.96
	2k	0.28	<u>0.95</u>	0.71	0.94	0.93	0.87	0.89	0.98
	4k	0.23	0.93	0.43	<u>0.95</u>	0.49	0.78	0.78	0.96
	8k	0.10	0.54	0.15	0.57	0.49	0.51	<u>0.67</u>	0.74
	10k	0.10	0.47	0.56	0.48	0.44	0.42	<u>0.66</u>	0.72
3	0.5k	0.50	<u>0.96</u>	0.86	0.97	<u>0.96</u>	0.83	0.94	0.92
	1k	0.25	0.89	0.64	<u>0.91</u>	0.88	0.69	0.84	0.93
	2k	0.13	0.79	0.51	0.81	<u>0.82</u>	0.62	0.67	0.83
	4k	0.09	0.60	0.27	0.58	0.62	0.42	0.51	<u>0.61</u>
	8k	0.04	0.32	0.17	<u>0.31</u>	0.27	0.20	0.25	0.28
	10k	0.02	0.20	0.10	<u>0.21</u>	0.15	0.12	0.10	0.28
4	0.5k	0.12	0.94	0.84	0.97	0.91	0.89	0.70	1.00
	1k	0.09	0.84	0.72	<u>0.88</u>	0.77	0.72	0.63	0.96
	2k	0.03	<u>0.66</u>	0.49	0.64	0.56	0.45	0.47	0.70
	4k	0.01	<u>0.44</u>	0.29	0.40	0.32	0.28	0.32	0.63
	8k	0.00	0.15	0.12	<u>0.16</u>	0.09	0.08	<u>0.16</u>	0.67
	10k	0.00	0.09	0.05	0.09	0.03	0.04	<u>0.10</u>	0.12
Overall Average (2-4 hop)		0.17	0.65	0.49	<u>0.66</u>	0.59	0.55	0.58	0.74
1 hop Average		0.90	<u>0.96</u>	0.79	0.96	0.90	0.89	0.89	0.93
2 hop Average		0.29	0.81	0.62	<u>0.82</u>	0.72	0.76	0.78	0.89
3 hop Average		0.17	0.63	0.42	<u>0.63</u>	0.62	0.48	0.55	0.64
4 hop Average		0.04	0.52	0.42	<u>0.52</u>	0.45	0.41	0.40	0.68
Context Average (2-4 hop)									
	0.5k	0.40	0.97	0.89	0.98	0.95	0.90	0.84	<u>0.97</u>
	1k	0.26	0.91	0.75	<u>0.93</u>	0.87	0.79	0.75	0.95
	2k	0.15	<u>0.80</u>	0.57	0.80	0.77	0.65	0.68	0.84
	4k	0.11	<u>0.66</u>	0.33	0.64	0.48	0.49	0.54	0.73
	8k	0.05	0.34	0.15	0.35	0.28	0.26	<u>0.36</u>	0.56
	10k	0.04	0.25	0.24	0.26	0.21	0.19	<u>0.29</u>	0.37

1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187