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ABSTRACT

Based on the theory of homogeneous spaces we derive geometrically optimal edge
attributes to be used within the flexible message-passing framework. We formal-
ize the notion of weight sharing in convolutional networks as the sharing of mes-
sage functions over point-pairs that should be treated equally. We define equiva-
lence classes of point-pairs that are identical up to a transformation in the group
and derive attributes that uniquely identify these classes. Weight sharing is then
obtained by conditioning message functions on these attributes. As an application
of the theory, we develop an efficient equivariant group convolutional network for
processing 3D point clouds. The theory of homogeneous spaces tells us how to do
group convolutions with feature maps over the homogeneous space of positions
R3, position and orientations R3×S2, and the group SE(3) itself. Among these,
R3×S2 is an optimal choice due to the ability to represent directional information,
which R3 methods cannot, and it significantly enhances computational efficiency
compared to indexing features on the full SE(3) group. We support this claim with
state-of-the-art results –in accuracy and speed– on five different benchmarks in 2D
and 3D, including interatomic potential energy prediction, trajectory forecasting
in N-body systems, and generating molecules via equivariant diffusion models.

1 INTRODUCTION

Inspired by the foundational role of convolution operators in deep learning and the ’convolution is
all you need’ theorem (Cohen et al. (2019, Thm 3.1); Bekkers (2019, Thm 1)) -which asserts that
any layer that is linear and equivariant must be a group convolution, we propose an efficient and
expressive group convolutional approach for constructing neural networks equivariant to SE(n):
the group of n-dimensional translations and rotations. While this theorem is a theoretical result,
several studies provide empirical truth to the statement as well. For example, ConvNeXt (Liu et al.,
2022b) challenges the need for Transformers (Vaswani et al., 2017) in vision tasks, and Romero et al.
(2021); Poli et al. (2023) show that convolutions are sufficient to model long context in sequences,
e.g., language, without the need for transformers or recurrent networks.

In our work, we revisit the influential inductive bias of weight sharing in convolutions (LeCun et al.,
1998), classically defined as the sharing of a convolution kernel (linear transformation) over all the
neighborhoods in an image. In the discrete image setting, the kernel is given as a set of weights and it
is appropriate to refer to the convolution kernel as the weights. However, in the continuous case, and
more general processing frameworks such as in message passing networks (MPNs) (Gilmer et al.,
2017a), this terminology no longer literally applies. Therefore, we formalize the notion of weight
sharing to gain insights into how to use this inductive bias in a more general setting.

Traditionally, weight sharing refers to the idea of using the same linear transformation matrix over
neighborhoods identical up to translation. We generalize this notion by the construction of equiva-
lence classes of neighboring point-pairs, in which we say neighbor pairs are equivalent if they are
identical up to a transformation in a group G. Weight sharing then becomes the notion of sharing
message functions in MPNs over the equivalence classes, which is achieved by conditioning the
functions on attributes that act as identifiers for the equivalence classes. In Sec. 3.1 we formalize
this construction and present all the attributes one needs for SE(n) equivariant weight sharing.
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Figure 1: Separable group convolutions on position orientation space R3 × S2. Efficiency is ob-
tained due to parallelizing the most expensive step, step 1 (message passing), over orientations and
channels. Steps 2 and 3 are efficient as well as spherical convolutions are batched over positions and
channels, and channel mixing is batched over positions and orientations.

As an application of the theory, we construct expressive and efficient SE(n) equivariant group con-
volutional networks for the processing of 3D point clouds. Our simple, fully convolutional archi-
tecture achieves state-of-the-art results on three different benchmarks: interatomic potential energy
prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant dif-
fusion models. The contributions of this paper are summarized as follows:

• We formalize the notion of weight sharing in Sec. 3.1.
• We derive optimal attributes (Thm. 1) for weight sharing over equivalence classes of point pairs

and show that these are all you need to build equivariant universal approximators (Cor. 1.1).
• We present a fast, expressive equivariant architecture based purely on convolutions (Fig. 1).

Our method reaches state-of-the-art performance on three equivariant benchmarks.

2 BACKGROUND

2.1 MATHEMATICAL PREREQUISITES

Groups and homogeneous spaces. A group is an algebraic construction defined by a set G and
a binary operator · : G × G → G, known as the group product. This structure must satisfy the
following axioms: closure, where ∀h,g∈G : h g ∈ G; the existence of both an identity e and an
inverse g−1 element such that g−1 · g=e; and associativity, where ∀g,h,i∈G : (g · h) · i=g · (h · i).
We denote the group product between two elements g, g′ ∈ G by juxtaposition, i.e., as g g′.

It is useful to think of the elements of G as transformations. The group product then tells how
a transformation g′ followed by another transformation g can be represented by a single transfor-
mation g g′. We focus on the Special Euclidean motion group SE(n) consisting of distance and
orientation-preserving transformations. Elements g=(x,R) ∈ SE(n) are parameterized by trans-
lation vectors x ∈ Rn and rotation matrices R ∈ SO(n). Here, SO(n) denotes the set of n×n
matrices with determinant 1, which forms a group in itself with matrix multiplication as a group
product. The SE(n) group product between two roto-translations g=(x,R) and g′=(x′,R′) is
given by (x,R) (x′,R′)=(Rx′ + x,RR′), and its identity element is given by e=(0, I).

A group can act on spaces other than itself via a group action T : G × X → X , where X is the
space on which G acts. For simplicity, we denote the action of g ∈ G on x ∈ X as g x. Such a
transformation is called a group action if it is homomorphic to G and its group product. That is, it
follows the group structure: (g g′)x=g (g′ x) ∀g, g′ ∈ G, x ∈ X , and e x=x. For example, consider
the space of 3D positions X = R3, e.g., atomic coordinates, acted upon by the group G=SE(3). A
position p ∈ R3 is roto-translated by the action of an element (x,R) ∈ SE(3) as (x,R)p=Rp+x.

A group action is termed transitive if every element x ∈ X can be reached from an arbitrary origin
x0 ∈ X through the action of some g ∈ G, i.e., x=gx0. A space X equipped with a transitive action
of G is called a homogeneous space of G. Finally, the orbit Gx := {g x | g ∈ G} of an element
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x under the action of a group G represents the set of all possible transformations of x by G. For
homogeneous spaces, X=Gx0 for any arbitrary origin x0 ∈ X .

Quotient spaces. The aforementioned space of 3D positions X=R3 serves as a homogeneous space
of G = SE(3), as every element p can be reached by a roto-translation from 0, i.e., for every p there
exists a (x,R) such that p=(x,R)0=R0 + x=x. Note that there are several elements in SE(3)
that transport the origin 0 to p, as any action with a translation vector x=p suffices regardless of
the rotation R. This is because any rotation R′ ∈ SO(3) leaves the origin unaltered.

We denote the set of all elements in G that leave an origin x0 ∈ X unaltered the stabilizer subgroup
StabG(x0). In subsequent analyses, we use the symbol H to denote the stabilizer subgroup of a
chosen origin x0 in a homogeneous space, i.e., H=StabG(x0). We further denote the left coset of
H in G as g H := {g h | h ∈ H}. In the example of positions p ∈ X=R3 we concluded that we
can associate a point p with many group elements g ∈ SE(3) that satisfy p=g 0. In general, letting
gx be any group element s.t. x=gx x0, then any group element in the left set gx H is also identified
with the point p. Hence, any x ∈ X can be identified with a left coset gxH and vice versa.

Left cosets g H then establish an equivalence relation ∼ among transformations in G. We say that
two elements g, g′ ∈ G are equivalent, i.e., g ∼ g′, if and only if g x0=g′ x0. That is, if they belong
to the same coset g H . The space of left cosets is commonly referred to as the quotient space G/H .

We consider feature maps f : X → RC as multi-channel signals over homogeneous spaces X .
Such maps are of interest as they often form the hidden representations in various deep learning
tasks. In this work, we treat point clouds as sparse feature maps, e.g., sampled only at atomic
positions. In the general continuous setting, we denote the space of feature maps over X with X .
Such feature maps undergo group transformations through regular group representations ρX (g) :
X → X parameterized by g, and which transform functions f ∈ X via [ρX (g)f ](x)=f(g−1x) .

2.2 MOTIVATION 1: GROUP CONVOLUTION IS ALL YOU NEED

In deep learning, we often employ learnable operators Φ : X → Y , such as self-attention or convo-
lution layers, to iteratively transform feature maps. Such an operator is termed G-equivariant if it
commutes with group representations on the input and output feature maps: ρY(g) ◦Φ=Φ ◦ ρX (g).
Group equivariance ensures that operators preserve the geometric structure of the data, meaning that
derived features follow the same transformation laws as the input.

An important result in the field of equivariant deep learning and signal processing is that if we want
Φ to be linear and group equivariant, then it must be a group convolution:

[Φf ](y) =

∫
X

k(g−1
y x)f(x)dx . (1)

Essentially, the group convolution performs template matching of a kernel k against patterns in f
by taking L2-inner products of the shifted kernel k(g−1

y ·) and f . Recall that gy denotes any group
element such that y=gy y0, and any other group element in the set gy H is also valid. This implies
that Eq. 1 is only valid if the kernel is invariant to left actions of H , i.e. if ∀h∈H : k(h−1x)=k(x).
These findings are summarized in various seminal equivariant deep learning works (Cohen et al.,
2019, Thm. 3.1 convolution is all you need), (Bekkers, 2019, Thm 1), (Kondor & Trivedi, 2018).

In light of the “convolution is all you need” claim and the pivotal role of convolutions in areas like
computer vision and signal processing, one might question the need for anything more complex than
convolutions. We therefore explore the potential of a straightforward, yet theoretically grounded,
fully convolutional approach to equivariant deep learning.

2.3 MOTIVATION 2: EFFICIENCY AND EXPRESSIVITY –THE HOMOGENEOUS SPACE R3 × S2

It is worth noting that the domain of the output signal Y in Eq. 1 does not have to match the domain
of the input signal X . The aforementioned theorems show that SE(3) equivariant convolutions on
feature maps with domain R3≡SE(3)/SO(3) require isotropic, rotation invariant kernels, as seen
in SchNet (Schütt et al., 2023). However, maximal expressivity is gained when the kernel has no
constraints. This is achieved when the domain Y is the group itself, i.e., SE(3) as H={e} is then the
trivial group. Generating higher-dimensional feature maps, from X=R3 to Y=SE(3), is typically
referred to as lifting. It is done by performing template matching (Eq. 1) over both translations and
rotations, as opposed to just translations. Despite enhanced expressivity, however, subsequent layers
must compute integrals over the whole SE(3) space, which can be computationally restrictive.
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In this work, we opt for a middle ground and define feature maps on the homogeneous space of posi-
tions and orientations X=R3×S2≡SE(3)/SO(2). We denote elements in R3×S2 as tuples (p,o)
of positions p ∈ R3 and orientations o ∈ S2. We set the origin as x0=(0, ez), where ez=(0, 0, 1)⊺.
Every orientation can be obtained from a rotation Ro ∈ SO(3) that maps the unit vector ez to o.
Hence, S2 is a homogeneous space of SO(3) with stabilizer subgroup H=StabSO(3)(ez)≡SO(2):
the group of rotations around the z-axis. Therefore, each position-orientation tuple corresponds to an
equivalence class of transformations in SE(3), formalized as (p,o) ≡ (p,Ro)H in SE(3)/SO(2).

While methods based on R3 positions are computationally efficient, intermediate feature maps may
fail to capture directional information due to kernel constraints. On the other hand, full SE(3) group
convolutions are computationally demanding but excel at capturing directional features. Compared
to the latter, our method offers a significant improvement in computational efficiency without com-
promising the capability to represent directional features. This claim is proven in (Gasteiger et al.,
2021, Thm. 3) by relying on the fact that equivariant predictions can be obtained by combining
an equivariant basis with coefficients obtained from an invariant network (Villar et al., 2021). In
DimeNet and GemNet (Gasteiger et al., 2019; 2021), the basis is determined by the direction of
edges in an atomic point cloud, and coefficients are derived through invariant message passing.
Rather than assigning a sparse basis of reference directions in S2 to each point position, our method
employs a dense basis and assign a spherical signal to each point in R3, see Fig. 1.

2.4 MOTIVATION 3: CONDITIONAL MESSAGE PASSING AS GENERALIZED CONVOLUTION

Message passing. Our primary focus lies in the processing of point clouds on homogeneous spaces.
Point cloud methods are conventionally discussed within the broader context of message passing
(Gilmer et al., 2017a). We intentionally adopt this framework as it serves as a familiar and versatile
paradigm suitable for the description of various deep learning layers, including convolutions.

We model point-clouds as graphs G=(V, E), with nodes i ∈ V and edges (i, j) ∈ E . Each node i has
an associated coordinate xi ∈ X in a homogeneous space X . We consider features over such graphs
as sparse discretizations of dense feature maps f : X → RC with node features (xi, fi) ⇔ f(xi).
Considering optional pair-wise edge attributes aij , message passing layers update feature nodes as:

1. compute the message mij from node j to i: mij = ϕm (fi, fj , aij) , (2)

2. Perform a permutation invariant message aggregation: mi =
∑

j∈N (i)
mij , (3)

3. Update the node features: fout
i = ϕf (fi,mi) . (4)

Here, N (i)={j | (i, j) ∈ E} denotes the set of neighbors of the node i.

Convolutional message passing. Convolutions can be described in the message passing framework
as approximations over a sparse set of points on which continuous signals are sampled:∫

X

k(g−1
x x′)f(x′)dx′ ≈

∑
j∈N (i)

k(g−1
xi

xj)fj . (5)

Here, we can recognize the message passing form, in which ϕm(fj , g
−1
xi

xj) = k(g−1
xj

xi)fj is a lin-
ear transformation performed by matrix-vector multiplication with the kernel k(g−1

xj
xi) ∈ RCout×C

that depends on g−1
xj

xi. Following Brandstetter et al. (2021), we interpret this as using a message
function that is conditioned on the attribute aij , denoted as ϕm(fi, fj ; aij) to emphasize this de-
pendency. We could directly consider the use of the invariant attribute aij=g−1

xj
xi in conditional

message passing as an extension of convolution. However, it’s crucial to recognize that, despite its
invariance under global group actions, the value of this attribute depends on the selected representa-
tive gxi . Specifically, any gxi h, where h belongs to the stabilizing group H , can result in a different
aij=h−1g−1

xi
xj . In essence, any aij ∈ H gxi

xj within the orbit of H should be treated equivalently.

3 FAST, EXPRESSIVE SE(n) EQUIVARIANT NEURAL NETWORKS

3.1 WEIGHT-SHARING AND OPTIMAL INVARIANT ATTRIBUTES

Problem statement. Our objective is to find an invariant attribute aij that can be associated with
two points (xi, xj) in a homogeneous space X of a group G, such that it satisfies these criteria:
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(i) Invariance to the global action of G. Any pair in the equivalence class [xi, xj ] := {g xi, g xj |
g ∈ G} must be mapped to same attribute aij .

(ii) Uniqueness. Each attribute aij should be unique for the given equivalence class.

This problem boils down to finding a bijective map [xi, xj ] 7→ aij . Note that invariance alone is
insufficient to build an expressive network. For example, a mapping [xi, xj ] 7→ 0 is invariant but
trivial, and thus not useful. Bijectivity ensures that each attribute is unique and it fully characterizes
the space of all possible equivalence classes of point pairs. In essence, a bijective attribute mapping
is all you need to enable weight-sharing over equivalent point pairs and obtain full expressiveness.
The notion of weight sharing is formalized by the following three definitions:

Definition 3.1 (Equivalent point pairs). Two point pairs (xi, xj), (x
′
i, x

′
j) ∈ X×X in a homoge-

neous space X of a group G are called equivalent iff they can be transformed into each other through
left multiplication by an element g ∈ G. We define this equivalence relation as:

(xi, xj) ∼ (x′
i, x

′
j) ⇐⇒ ∃g∈G : (x′

i, x
′
j) = (g xi, g xj) .

Definition 3.2 (Equivalence class of point pairs). The equivalence relation ∼ of definition 3.1 de-
fines an equivalence class of point pairs, denoted as:

[xi, xj ] = {(x′
i, x

′
j) ∈ X ×X | (x′

i, x
′
j) ∼ (xi, xj)} .

Here, [xi, xj ] represents a set of point pairs that should be treated as equivalent, with (xi, xj) serving
as its representative. The space of equivalence classes of point pairs is denoted as X×X/ ∼.

Definition 3.3 (Weight-sharing in message passing). A message passing layer (Eq. 2-4) is said to
share weights over equivalent point pairs if it processes equivalent point pairs in the same way. That
is, if its message function ϕm(fi, fj ; [xi, xj ]) is conditioned on the equivalence class [xi, xj ].

See (Koishekenov & Bekkers, 2023) for options for conditioning message functions. Our goal now
is to parameterize the space of equivalence classes X×X/ ∼ with concrete attributes that condition
message functions. To that end, we reduce the problem of identifying equivalence classes of point
pairs to the task of identifying orbits of single points X , akin to LieConv (Finzi et al., 2020a). We
show that equivalence classes [xi, xj ] correspond to orbits in H\X using the following lemma:

Lemma 1 (Equivalence class correspond to H-orbits in X). For any chosen representatives gi ∈ G
of xi ∈ X ≡ G/H such that xi=gi x0, and any xj ∈ X , the following mapping from the space of
equivalence classes of point pairs X×X/ ∼ to the space H\X of orbits of H in X is a bijection:

[xi, xj ] 7→ Hg−1
i xj , [xi, xj ] ∈ X ×X/ ∼, g−1

i xj ∈ H\X. (6)

Proof. See the appendix, section B.1.

The subsequent theorem characterizes bijective mappings from equivalence classes [xi, xj ] to con-
crete attributes aij that we can compute for homogeneous spaces of SE(n). Since these mappings
are bijective, the attributes serve as unique identifiers of the equivalence classes. Therefore, they are
sufficient for the construction of expressive yet efficient equivariant message passing networks.

Theorem 1 (Bijective attributes for homogeneous spaces of SE(n)). Consider three pairs of
homogeneous spaces X≡SE(n)/H and stabilizer subgroups H: (i) position space: X=Rn,
H=SO(n); (ii) position-orientation space: X=Rd × Sn−1, H=SO(n−1); and (iii) the whole
group: X=SE(n), H={e}. For n=2, 3, the following mappings from equivalence classes [xi, xj ] ∈
X×X/ ∼, as defined in definitions 3.1 and 3.2, to explicit attributes are bijective:

R2 and R3 : [pi,pj ] 7→ aij = ∥pj − pi∥ , (7)

R2 × S1 and SE(2) : [(pi,oi), (pj ,oj)] 7→ aij = (R−1
oi

(pj − pi), arccoso
⊺
i oj) , (8)

R3 × S2 : [(pi,oi), (pj ,oj)] 7→ aij =

(
o⊺
i (pj − pi)

∥(pj − pi)− o⊺
i (pj − pi)oi∥

arccoso⊺
i oj

)
, (9)

SE(3) : [(pi,Ri), (pj ,Rj)] 7→ aij = (R−1
i (pj − pi),R

−1
i Rj) . (10)

Proof. A proof is provided in the appendix, section B.2.

The three components of aij in Eqs. 8, 9 share the same interpretation: the first two decompose
displacement pj−pi into shifts parallel and orthogonal to oi, the third represents the angle between
oi and oj . As for any coordinate system, these mappings are not unique: we can rewrite Eq. 9
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in polar coordinates as aij = (∥pj−pi∥, arccoso⊺
i (pj−pi), arccoso

⊺
i oj)

⊺: the invariants used in
DimeNet (Gasteiger et al., 2019). Eqs. 8-10 implement g−1

i gj . The following is proven in Appx. B.4

Corollary 1.1. Message passing networks in geometric graphs over Rn × Sn−1 and SE(n), with
message functions conditioned on the attributes of Thm. 1, are equivariant universal approximators.

3.2 SEPARABLE GROUP CONVOLUTION IN POSITION-ORIENTATION SPACE

Based on the bijective equivalence class embedding from Sec. 3.1, we define a group convolution as

fout(p,o) =

∫
R3

∫
S2

k([(p,o), (p′,o′)])f(p′,o′)dp′do′. (11)

Here, f : R3×S2 → RCin represents the input feature map with Cin channels. the kernel
k([(p,o), (p′,o′)]) ∈ RCout×Cin returns a linear transformation matrix for each equivalence class
of point pairs, resulting in an output signal fout : R3×S2 → RCout with Cout channels.

We use the fact that the third component of the invariant attribute in Eq. 9 only depends on orienta-
tions to separate the R3×S2 convolution into three parts: spatial convolution, spherical convolution,
and channel mixing, as illustrated in figure 1. This approach combines the efficiency strategies of
Knigge et al. (2022); Chollet (2017), to separate group convolutions over different group parts, and
channel interactions from spatial interactions –generally homogeneous space interactions–, respec-
tively. Following this strategy, we factorize the convolution kernel into three parts:

k([(p,o), (p′,o′)]) = K(3) k(2)(o⊺o′) k(1)(o⊺(p′ − p), ∥o ⊥ (p′ − p)∥) , (12)

with k(1) : R×R≥0 → RCin the channel-wise spatial mixing kernel, k(2) : [0, π] → RCin the
channel-wise orientation mixing kernel, and K(3) ∈ RCout×Cin the channel mixing kernel. Substi-
tuting the factorized kernel in Eq. 11 allows us to decompose it into three distinct modules:

f −→ SpatialGConv −→ SphericalGConv −→ Linear −→ fout, (13)

with Linear the usual linear layer –implementing K(3)– and

SpatialGConv : f
(1)
i,o =

∑
j∈N (i)

k(1)(o⊺
o(p

′
j − pi), ∥oo ⊥ (pj − pi)∥)⊙ fj,o (14)

SphericalGConv : f
(2)
i,o =

N−1∑
o′=0

k(2)(o⊺
oo

′
o)⊙ f

(1)
i,o′ . (15)

Here ⊙ denotes element-wise multiplication and we turned the integrals of Eq. 11 into discrete
sums via Eq. 5. In the discrete implementations, the position-orientation space feature maps f are of
dimension [P,N,C], with P the number of points in the point cloud, N the number of orientations
on a precomputed spherical grid that is shared over all positions, and with C the number of channels.
We use fj,o to denote the feature vector at position pj and orientation oo. Unlike traditional point-
cloud methods, we introduce an additional axis to index features over different orientations.

Each of the operations in Eq. 13 is highly efficient. The most expensive module is SpatialGConv,
as it requires aggregating over spatial neighborhoods. We minimize the computation cost of this
operation by avoiding channel mixing in this step, essentially performing a depth-wise separable
convolution (Chollet, 2017). SphericalGConv is efficient as it can be batched over positions and
channels. Moreover, since the spherical grids are shared over all positions, the kernel k(2) can be
precomputed, resulting in a kernel of shape [N,N ′, C]. Eq. 15 is then implemented as an einsum
over the N ′ axis of the kernel and input with shape [P,N ′, C].

While the feature maps in Eq. 14, 15 are discretized, the convolution kernels are still continuous.
We parameterize these using Multilayer Perceptrons (MLPs) that take attributes as input. Follow-
ing standard practices, we first embed the attributes, which we choose to do using a Polynomial
Embedding (PE) (cf. Appx. C). That is, we sample the kernel via a → PE → MLP → k .

3.3 THE PΘNITA ARCHITECTURE

We use the separable R3×S2 group convolution in a ConvNeXt (Liu et al., 2022b) layer structure:

f →
↓

SpatialGConv → SphericalGConv → LayerNorm → Linear → Activation → Linear →
↑
fout
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and use it to construct a simple fully convolutional neural network given by:

f → NodeEmbed → ConvNeXt× L → Readout → fout . (16)

We call this position-orientation space network based on invariant attributes PΘNITA . Since
PΘNITA uses position-orientation space feature maps, we require a method to embed inputs onto
spherical signals, and readout outputs from it. We do so via the following node-wise modules for
embedding and predicting scalar fields s : V → R and vector fields v : V → R3:

SphereToScalar : si =

N−1∑
o=0

fi,o, ScalarToSphere : fi,o = si,

SphereToVec : vi =

N−1∑
o=0

fi,o oo, VecToSphere : fi,o = v⊺
i oo .

The VecToSphere module is essentially a spherical harmonic embedding of frequency one, fol-
lowed by an inverse spherical Fourier transform: fi(o)=F−1

S2 [Y
(l=1)(v)](o). This perspective of-

fers a generalized approach for embedding higher-order tensors onto the sphere by using them as
coefficients in an inverse Fourier transform, e.g., using the e3nn library (Geiger & Smidt, 2022).

4 RELATED WORK

The theoretical part of our work is inspired by other works on the construction of equivariant neural
networks on homogeneous spaces, such as (Cohen et al., 2019; Kondor & Trivedi, 2018; Bekkers,
2019). Each of these papers contains a version of the ’convolution is all you need’ theorem, which
we take as a motivating starting point in this paper (cf. section 2.2). For a comprehensive unifying
coverage of equivariant methods, we recommend (Weiler et al., 2023).

Group convolutions are typically defined in regular or steerable / tensor field form. The regular
group convolution viewpoint -which we adopt in this paper- naturally extends convolution as tem-
plate matching of a kernel over an underlying signal, but now matching all transformation in a group
G instead of translation only (Cohen & Welling, 2016; Bekkers, 2019). On gridded data, such as im-
ages, regular group convolutions either achieve exact equivariance by considering symmetry groups
of the grid (Cohen & Welling, 2016; Worrall & Brostow, 2018), or numerically approximate equiv-
ariance by relying on interpolation (Bekkers et al., 2018; Kuipers & Bekkers, 2023), basis functions
(Weiler et al., 2018; Sosnovik et al., 2019), or continuous MLP-based kernels (Finzi et al., 2020a;
Knigge et al., 2022). The steerable approach bypasses the need for discretizations by working fields
of vectors that transform under (irreducible) representations of the SO(n) group Weiler et al. (2021).
Under the ’convolution is all you need’ paradigm, regular and steerable methods are equivalent and
they relate to each other via SO(n) Fourier transforms (Kondor et al., 2018; Cesa et al., 2021). In
Appx. A we make precise how to interpret PΘNITA in either the steerable or regular form.

In the field of deep learning-based molecular modeling, in which physical modeling based on Spher-
ical Harmonics, Clebsch-Gordan tensor products, and representation theory of SO(n) is more com-
mon, there is a tendency to rely on the tensor field paradigm. Influential contributions in this field
are Tensor Field Network (Thomas et al., 2018) and Cormorant (Anderson et al., 2019). Limitations
of such methods are the high computational overhead due to the specialized Clebsch-Gordan ten-
sor products and the need for a solid understanding of representation theory. An advantage of the
tensor field approach is that one obtains exact equivariance, whereas the regular group convolution
approach requires discretizations of the group, which leads to equivariance only up to the discretiza-
tion resolution. In this work, however, we show that these numerical errors are not detrimental to
performance and opt for simplicity and familiarity with the standard convolutional paradigm.

Another class of equivariant methods is based on message passing with invariant geometric at-
tributes, such as DimeNet (Gasteiger et al., 2019), GemNet (Gasteiger et al., 2021), and SphereNet
(Liu et al., 2022a). These are closest to the regular group convolution paradigm and could be framed
as non-linear group convolutions (Brandstetter et al., 2021) over the homogeneous space of positions
and orientations. Our method is different in that it is based on the standard convolution paradigm
instead of intricate wiring of interaction modules, and we use dense grids over the sphere instead of
sparse equivariant grids defined by edge directions. A notable result from (Gasteiger et al., 2021) is
that networks over position-orientation space are universal equivariant approximators and thus as
expressive as equivariant methods that use feature representations over the full group SE(n).
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Our method connects to a line of papers on theory and algorithms for the processing of functions over
position-orientation space via orientation scores. See e.g., (Duits & Franken, 2010a;b) and (Janssen
et al., 2018) for respectively 2D and 3D applications (Duits et al., 2021). Noteworthy, Portegies
et al. (2015) derive invariant attributes for position-orientation pairs derived via the logarithmic map
on SE(3). In particular, these works address the processing of Diffusion-weighted MRI data -which
are signals over R3 × S2, for which our work provides a simple equivariant learning recipe.

5 EXPERIMENTS

In this section, we evaluate our approach. Comprehensive implementation details, including archi-
tecture specifications and optimization techniques, can be found in Appx. C and D.

Benchmark 1: Predicting interatomic potential energy and forces on rMD17. rMD17 (Chris-
tensen & Von Lilienfeld, 2020) is a dataset comprising molecular dynamics trajectories of ten small
molecules. Each molecule is represented as an atomic point cloud consisting of 3D atom posi-
tions and atomic numbers. The objective is to predict the energy-conserving force field for each
molecule. The regression targets are the total energy of each molecule and the force on each atom.
Following common practice and the laws of physics, we predict the energy with an invariant model
and compute the forces at each atom as the gradients of the predicted energy with respect to the
positions of atoms. We utilize the PΘNITA model as given in Eq . 16, with a linear embedding
layer that takes one-hot encodings of the atom numbers as input and maps them onto the sphere
via the ScalarToSphere module. Following MACE (Batatia et al., 2022b), DimeNet and GemNet
(Gasteiger et al., 2019; 2021), we predict a node-wise energy El

io after every layer l using a linear
readout layer and obtain the total energy as the sum of all predicted energies E=

∑
i,o,l E

l
io.

Our results are reported in Tab. 1. As a baseline, we construct the same architecture as PΘNITA ,
except that internal feature maps live solely in position space R3. We label it PNITA . In this case,
the pairwise attribute is simply the distance (Eq. 7), which makes PNITA similar to SchNet (Schütt
et al., 2023). The inability of such models to learn direction-sensitive representations explains the
large performance gap relative to PΘNITA and other methods that capture directional information.

Tab. 1 also shows that PΘNITA either matches or outperforms the state-of-the-art on several
molecules while being remarkably faster. PΘNITA is about 3.5 times faster than the established
NequIP method (Batzner et al., 2022): a type of steerable tensor field network (Thomas et al., 2018).
We benchmarked their optimized codebase within our training framework and recorded a training
time per epoch of 20.7, compared to 5.7 seconds for PNITA and 6.1 for PΘNITA . Additionally,
PΘNITA stands out for its simplicity. It is a general purpose convolutional network, whose design
does not require in-depth knowledge of representation theory and molecular modeling like UNiTE
(Qiao et al., 2022), MACE (Batatia et al., 2022b), NequIP (Batzner et al., 2022), Allegro (Musaelian
et al., 2023) and BOTNet (Batatia et al., 2022a), nor does it involve an intricate wiring of interaction
layers as in GemNet (Gasteiger et al., 2021) and ViSNet (Wang et al., 2022).

Benchmark 2: Generating molecules with equivariant diffusion models trained on QM9. Dif-
fusion models have proven to be very effective for the generation of data such as images (Song et al.,
2021) and molecules (Hoogeboom et al., 2022). Prior work Gebauer et al. (2019); Simonovsky &
Komodakis (2018); Simm et al. (2021) has demonstrated the importance of leveraging molecular
symmetries for generalization. Through weight-sharing, PΘNITA is designed to represent such sym-
metries, making it a promising candidate for this application. Recently advancements like EDMs
(Hoogeboom et al., 2022), and MiDi (Vignac et al., 2023) have employed denoising diffusion for
molecular data generation. These models utilize EGNN (Satorras et al., 2021) as an equivariant
denoising diffusion model, which operates on both atomic positions and types.

We extend EDMs by building a similar architecture for molecular generation, incorporating a joint
diffusion process for both continuous coordinates and discrete features. However, we substitute the
EGNN backbone with our proposed method PΘNITA . For the readout layer in Eq. 16, we use the
Sphere2Vec module to predict denoising displacement vectors. We train on the QM9 dataset (Ra-
makrishnan R., 2014), a standard dataset containing molecular properties, one-hot representations
of atom types (H,C,N,O,F) and 3D coordinates for 130K molecules with up to 9 heavy atoms.

Tab. 2 reveals that PΘNITA outperforms several baselines in terms of atom stability –determined by
atoms with the right valency–, and molecule stability –determined by the proportion of molecules
for which all atoms are stable–. We attribute this significant improvement to PΘNITA ’s ability to
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Table 1: Mean absolute errors (MAE) of energy (E) (kcal/mol) and force (F) (kcal/mol/Å) for 10
small organic molecules on rMD17 compared with the state-of-the-art.

Molecule UNiTE GemNet NequIP BOTNet Allegro MACE ViSNet PNITA PΘNITA
(20.7 sec/epoch) (5.7 sec/epoch) (6.1 sec/epoch)

Aspirin E 2.4 - 2.3 2.3 2.3 2.2 1.9 4.7 1.7±0.03

F 7.6 9.5 8.2 8.5 7.3 6.6 6.6 16.3 5.8±0.18

Azobenzene E 1.1 - 0.7 0.7 1.2 1.2 0.7 3.2 0.7±0.01

F 4.2 - 2.9 3.3 2.6 3.0 2.5 12.2 2.3±0.11

Benzene E 0.07 - 0.04 0.03 0.3 0.4 0.03 0.2 0.17±0.01

F 0.73 0.5 0.3 0.3 0.2 0.3 0.2 0.4 0.3±0.00

Ethanol E 0.62 - 0.4 0.4 0.4 0.4 0.3 0.7 0.4±0.02

F 3.7 3.6 2.8 3.2 2.1 2.1 2.3 4.1 2.5±0.09

Malonaldehyde E 1.1 - 0.8 0.8 0.6 0.8 0.6 0.9 0.6±0.05

F 6.6 6.6 5.1 5.8 3.6 4.1 3.9 5.1 4.0±0.20

Naphthalene E 0.46 - 0.2 0.2 0.2 0.4 0.2 1.1 0.3±0.00

F 2.6 1.9 1.3 1.8 0.9 1.6 1.3 5.6 1.3±0.00

Paracetamol E 1.9 - 1.4 1.3 1.5 1.3 1.1 2.8 1.1±0.03

F 7.1 - 5.9 5.8 4.9 4.8 4.5 11.4 4.3±0.22

Salicylic acid E 0.73 - 0.7 0.8 0.9 0.9 0.7 1.7 0.7±0.00

F 3.8 5.3 4.0 4.3 2.9 3.1 3.4 8.6 3.3±0.07

Toluene E 0.45 - 0.3 0.3 0.4 0.5 0.3 0.6 0.3±0.01

F 2.5 2.2 1.6 1.9 1.8 1.5 1.1 3.4 1.3±0.07

Uracil E 0.58 - 0.4 0.4 0.6 0.5 0.3 0.9 0.4±0.04

F 3.8 3.8 3.1 3.2 1.8 2.1 2.1 5.6 2.4±0.09

Table 2: Molecule generation via denoising diffusion
models trained on QM9. Negative Log Likelihood (NLL),
atom, and molecule stability.

Models NLL Atom stability Mol stability

E-NF* -59.7 85.0 4.9
G-Schnet* N.A. 95.7 68.1
GDM* -94.7 97.0 63.2
GDM-aug* -92.5 97.6 71.6
EDM* −110.7±1.5 98.7±0.1 82.0±0.4

PΘNITA −137.4 98.9 87.8

Table 3: Mean squared error on N -
body trajectory prediction.

Method MSE sec/epoch

SE(3)-Tr. .0244
TFN .0155
NMP .0107
Radial Field .0104
EGNN .0070±.00022

SEGNN G+P .0043±.00015 1.59
CGENN .0039±.0001

PΘNITA .0043±.0001 0.66

learn orientation-sensitive representations: a feature absent in other equivariant diffusion models
such as G-Schnet (Gebauer et al., 2019), E-NF (Garcia Satorras et al., 2021) and therein introduced
non-equivariant baseline Graph Diffusion models (GDM) trained with and without augmentation.

Benchmark 3: Predicting trajectories in N-body systems. Finally, we benchmark PΘNITA on
the charged N-body particle system experiment proposed in Kipf et al. (2018). It involves five parti-
cles that carry either a positive or negative charge, each having initial position and velocity in a 3D
space. The objective is to predict all particle positions after a fixed number of time steps. We adapt
the experimental setup from (Satorras et al., 2021; Brandstetter et al., 2021) and use PΘNITA for tra-
jectory prediction. Following the baseline methods, PΘNITA takes two scalars: velocity magnitude
and charge, and two vectors: initial velocity and direction to the center of the system, as input, and
outputs a displacement vector. We measure the performance in Mean Squared Error (MSE) and com-
pare against SE(3)-Transformers (Fuchs et al., 2020), Tensor Field Networks (Thomas et al., 2018),
Neural Massage Passing (Gilmer et al., 2017b), Radial Field (Köhler et al., 2020), EGNN (Satorras
et al., 2021), SEGNN (Brandstetter et al., 2021) and CGENN (Ruhe et al., 2023). Tab. 3 shows the
results and the reproduced train-time/epoch for SEGNN, showing that PΘNITA is ±2.5 times faster.
Once again, our versatile equivariant architecture, PΘNITA , delivers outstanding performance.

Benchmark 4: Superpixel MNIST and Benchmark 5: QM9 regression. In App. E.1 and E.2 we
further show the potency of PΘNITA with state-of-the-art results on benchmarks in 2D and 3D and
further compare an edge-index-induced R3×S2 point cloud vs a grid-based (fiber bundle) approach.

6 CONCLUSION

In summary, our method simplifies the construction of equivariant neural networks by following the
paradigm of weight-sharing, achieving state-of-the-art results in various benchmarks. In Thm. 1, we
derived geometric attributes that fully characterize the space of equivalence classes of point-pairs
in a homogeneous space of SE(n). As such, these attributes are all you need to facilitate SE(n)
equivariant weight-sharing. As an application of the theory, we propose PΘNITA : an efficient
convolutional architecture for equivariant processing of 3D point clouds. We show that our general-
purpose equivariant approach serves as a compelling alternative to prevailing tensor field methods.
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A THE FIBER BUNDLE VS POINT CLOUD VIEWPOINT

A.1 REGULAR VS STEERABLE GROUP CONVOLUTIONS

In the field of group equivariant deep learning, one often adopts a steerable or regular convolutional
viewpoint on equivariant neural networks (Weiler & Cesa, 2019). Let us consider the case of SE(n)
equivariance, and note that the group SE(n) is a semi-direct product between the translation group
and the rotation group SO(n). We then consider functions (feature fields) over domains X that are
homogeneous spaces of SE(n), namely the case X = Rn, X = Rn×Sn−1, and X = SE(n). The
difference between steerable and regular group convolutions then lies in the type of feature fields
that are considered.

With regular group convolutions one considers multi-channel scalar fields f : X → Rc of the
homogeneous space X . And convolutions are of the form

fout(y) =

∫
X

k(g−1
y x)f in(x)dx , (A1)

with gy a representative of the point y such that y = gy x0 with x0 some arbitrary origin in X .
Regular feature fields, and convolution kernels, transform via the regular representation of SE(n)
via

(ρL(g)k)(x) := k(g−1x) .

Given this, regular group convolutions can be simply considered as template matching between
a roto-translated convolution kernel (by transforming it with the regular representation) and the
underlying signal, where similarity is measured by the L2 inner product. When X ≡ SE(n)/H
with H a non-trivial group, such as H = SO(3) when X = Rn or H = SO(2) when X = R3×S2,
then the kernel k should satisfy a kernel constraint ∀h∈H : k(x) = k(hx), see (Bekkers, 2019). As
discussed in the main body of this paper, this constraint is automatically satisfied if we parametrize
the kernel by the invariant attributes aij of Theorem 1. The advantage of regular group convolutions
is that the codomain of the feature fields are just scalars and one can use any point-wise activation
function without breaking equivariance. A drawback of such methods though is that one needs to
discretize the domain X , including the fibers Sn−1 or SO(n), which leads to numerical inexactness
of the equivariance property1.

With steerable group convolutions one considers feature fields f : Rn → Vρ over a base space Rn

with a codomain which is a vector space Vρ on which a representation ρ of SO(n) can act. Such
feature fields transform via the so-called induced representation of SE(n), defined as

([Ind
SE(n)
SO(n) ρ](g)f)(x) = ρ(R) f(g−1x) .

I.e., the induced representation [Ind
SE(n)
SO(n) ρ] does not only transform the feature map’s domain but

also its codomain via the representation ρ. For example, if one roto-translates a vector field v :
R3 → R3, the vectors v(x) in the field at location x should be moved to the new locations g−1x,
but also their values should be rotated via Rv(g−1x). The steerable convolutions are then simply
given by

fout(y) =

∫
Rn

k(x− y)f in(x)dx . (A2)

Now, however, the kernel needs to satisfy the kernel constraint
k(Rx) = ρout(R)k(x)ρin(R

−1) ,

with ρin and ρout the representations that define the vectors spaces of the codomains of the input and
output feature fields respectively, see e.g. (Weiler & Cesa, 2019; Cesa et al., 2021). An advantage of
the steerable approach is that one can obtain exact equivariance by choosing to let the vector spaces
Vρ transform via representations ρ = ⊕lρl that are given as a direct sum of irreducible representa-
tions. Such irreducible representations do not require a grid and rotations can be computed exactly.
A drawback of such an approach is, however, that one can no longer apply arbitrary point-wise
activation functions but one needs specialized operations on Vρ in order not to break equivariance.
This limits expressivity (Weiler & Cesa, 2019). Another drawback, arguably, is that this approach
requires considerable understanding of representation theory for proper use in practice.

1Our experiments, however, show that this approximate equivariance is not detrimental to performance
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A.2 REGULAR GROUP CONVOLUTIONS IMPLEMENTED AS STEERABLE GROUP
CONVOLUTIONS

It is important to note that in the regular group convolution case for SE(n) equivariance, one rec-
ognizes a semi-direct product structure of the group SE(n) = (Rn,+)⋊ SO(n), with (Rn,+) the
translation group, which as a space can be identified with position space Rn. When one then consid-
ers regular group convolutions over X = Rn × Sn−1 or X = Rn × SO(n), one could think of the
feature fields f : Rn×Y → Rc as assigning to every position x ∈ Rn a function fx := f(x, ·) over
the space Y , with here Y = Sn−1 or Y = SO(n). These functions fx are to be considered vectors
in the infinite-dimensional vector space of square-integrable functions L2(Y ). For this vector space
we know the left-regular representations ρLL2(Y ), which are simply given as

(ρLL2(Sn−1)(R)fx)(o) = fx(R
To) , and (ρLL2(SO(n))(R)fx)(R

′) = fx(R
TR′) .

Thus, one can think of regular group convolutions as working with feature fields f : Rn → VρL
L2(Y )

.

Further, note that any SO(n) representation can be decomposed into a direct sum of irreducible
representations via a change of basis. I.e., there is a linear change of basis such that VρL

L2(Y )
≡ Vρ

for some ρ = ⊕lρl, with ρl an irreducible representation. This change of basis is given by the
Fourier transform on Y . Namely, a function fx ∈ VρL

L2(Y )
can be transformed to a vector of Fourier

coefficients via f̂x = FY [fx] ∈ Vρ, and back via the inverse Fourier transform fx = F−1
Y [f̂x].

Regular group convolutions can thus either be implemented as steerable convolutions with fields of
signals over Y , i.e., f : Rn → VρL

L2(Y )
, or via fields of irreducible representations f : Rn → Vρ

that can be thought of as fields of Fourier coefficients. In this latter case, the kernel constraint is
satisfied by parametrizing k using the Clebsch-Gordan tensor product (Cesa et al., 2021; Brand-
stetter et al., 2021). This approach is in fact how group equivariant neural networks are of-
ten implemented (Weiler & Cesa, 2019; Thomas et al., 2018), however, it has the drawback
that one either has to use specialized activation functions or use activation functions of the form
InverseFourier → ActivationFunction → FourierTransform, which leads to
computational overhead and leads to discretization artifacts that break exact equivariance. In this
paper, we present a fully regular group convolution viewpoint that does not require Fourier trans-
forms or specialized activation functions.

A.3 FIBER BUNDLE VIEWPOINT FOR PΘNITA

From a fiber bundle-theoretic viewpoint, the feature fields f : Rn → Vρ can be regarded as sections
of vector bundles associated with the principal fiber bundle Rn×SO(n) → Rn (Weiler et al., 2023;
Aronsson, 2023). As such, without going into further technical details behind this theory, we merely
use this connection to refer to the vector spaces Vρ as fibers. The PΘNITA model processes feature
fields f : Rn → VρL

L2(Sn−1)
with vector spaces of spherical signals VρL

L2(Sn−1)
as fibers. Instead of

describing these signals in a basis of irreducible representations (the Fourier approach), we sample
them on a grid S ⊂ Sn−1 of orientations. See Figure 1 in which the grid is depicted as a set of
yellow dots, and the actual spherical signal is depicted as a gray-scale density. Our model makes
efficient use of the fiber bundle structure by separating convolutional operations over the field into a
spatial interaction part (convolving over Rn) followed by a within-fiber orientation interaction part
(convolving over Sn−1).

A.4 A POINT CLOUD VIEWPOINT FOR PΘNITA

The efficient implementation of PΘNITA is made possible by the fact that each node shares the same
grid (fiber) of orientations S. Let us denote with Sx ⊂ Sn−1 the grid of orientations available at
position x. If we share the same grid over all positions, i.e., Sx = S, we can decide to spatially
convolve per orientation in the grid as follows

fout(x,o) =

∫
Rn

k([(x,o), (x′,o)])f in(x′,o)dx′ ,

which is the continuous formulation of the discretized spatial convolution of Eq. (14). This purely
spatial convolution is made possible by the fact that at each position x′ we can sample the same
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orientation o ∈ S. However, if we do not share the same grid S over all positions we can no longer
separate the convolution. In this case, we adopt a point-cloud viewpoint.

There are natural instances in which one has to compute with point clouds in position-orientation
space. Examples include triangulated shape meshes, which can be represented by the centroids of the
triangles p and their normal vectors o. See e.g. (De Haan et al., 2020). In contrast to (De Haan et al.,
2020) our method would take the curvature of the surface mesh into account (via the invariant oT

i oj),
as well as out off plane distance, however, the method by De Haan et al. (2020) takes anisotropic
features within the plane into account whereas the second invariant in Eq. (9)) restricts the kernel to
be isotropic within the tangent plane.

Another instance of a position-orientation space point cloud would be in a message passing over
the edges in an atomic point cloud, as in DimeNet/GemNet (Gasteiger et al., 2019; 2021). In those
works, a grid is assigned to each atom location xi based on the direction towards neighboring atom
locations xj that are connected by covalent bonds. I.e., each atom obtains a grid Sxi

= { xj−xi

∥xj−xi∥ |
j ∈ N (i)}, with N (i) the set of neighbor indices of node i.

Convolutions in these case can no longer be separable and include spatial and orientation interactions
simultaneously:

fout(xi,oi) =
∑

j∈N (i)

∑
o∈Sxj

k([(xi,oi), (xj ,o)])f
in(xj ,o) .

This is the discretized version of the full continuous convolution of Eq. (11).

A.5 IMPLEMENTATION

Both versions of position-orientation space convolutions –the fiber bundle approach
as well as the point cloud approach– are made available in the public repository
https://github.com/ebekkers/ponita .

B PROOFS

B.1 PROOF OF LEMMA 1

Lemma 1 shows that equivalence classes of point pairs [xi, xj ] = {(g xi, g xj) | g ∈ G)} correspond
to orbits H g−1

i xj , for any chosen gi such that xi = gi x0, with xi, xj , x0 ∈ X . In the following
proof, one might recognize that the space of equivalence classes X × X/ ∼ can also be identified
with the space (H,H)-double cosets in G. That is X ×X/ ∼ ≡ H\G/H ≡ H\X . The proof of
Lemma 1 is as follows:

Proof. To prove the bijection given by equation 6 we rewrite the equivalence class into the form of
a double coset as follows. For any representatives (gi, gj) we have

[xi, xj ] = {(g xi, g xj) | g ∈ G}
∀h∈H :hx0=x0

= {(g gi hi m0, g gj hj m0) | g ∈ G, hi, hj ∈ H}
g→g h−1

i g−1
i= {(h−1

i g−1
i ���HHHg−1g gj hj m0, g m0) | g ∈ G, hi, hj ∈ H}

g−1g=e
= {(h−1

i g−1
i gj hj m0, Gm0) | hi, hj ∈ H}

xj=gj m0, hj x0=m0
= {(h−1

i g−1
i xj , Gm0) | hi, hj ∈ H}

Gm0=M⇔ {hi g
−1
i xj | hi ∈ H}

= H g−1
i xj ,

where in the second to last step we note that the second item in the tuple, Gx0) is constant (it
represents the entire homogeneous space X = Gm0), and thus we can represent the tuple simply
with the first element H g−1

i xj . Thus any equivalence class [xi, xj ] can be represented by the orbit
Hg−1

i xj , with gi any such that xi = gi x0.
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B.2 PROOF OF THEOREM 1

Theorem 1 lists four cases of equivalence classes and provides a bijective map for each of them:
R2 and R3 : [pi,pj ] 7→ aij = ∥pj − pi∥ , (A3)

R2 × S1 and SE(2) : [(pi,oi), (pj ,oj)] 7→ aij = (R−1
oi

(pj − pi), arccoso
⊺
i oj) , (A4)

R3 × S2 : [(pi,oi), (pj ,oj)] 7→ aij =

(
o⊺
i (pj − pi)

∥(pj − pi)− o⊺
i (pj − pi)oi∥

arccoso⊺
i oj

)
, (A5)

SE(3) : [(pi,Ri), (pj ,Rj)] 7→ aij = (R−1
i (pj − pi),R

−1
i Rj) . (A6)

We provide a constructive proof for each of these cases by providing an inverse mapping aij 7→
[pi,pj ]. This boils down to defining representative xij of the orbit of H g−1

i xj for a given aij . The
proofs are as follows.

Proof. For the Rn case the orbit representative can be given given by
xij = aij ez , (A7)

with ez =
(

0
0
1

)
. The equivalence class is represented by the orbit H g−1

i xj = HR−1
i (pj − pi) =

H pij , with pij = pj − pi. Thus pij is a valid representative. Since H does not alter the norm of
pij and it acts transitively on spheres of a given radius, we can say that xij lies in the orbit since
∥xij∥ = ∥aijez∥ = ∥pij∥. This proofs that the mapping in (A3) is bijective, with (A7) as inverse
mapping.

To prove the R2 × S1, SE(2), and SE(3) cases we first remark that R2 × S1 is equivalent to the
SE(2). We can uniquely identify any (p,o) ∈ R2 × S1 with a roto-translation (p,Ro) ∈ SO(2)
via (p,o) = (p,Ro) (0, ex) with ex = ( 10 ), noting that the stabilizer group StabSO(2)(0, ex) =
{(0, I)} is trivial. Thus the spaces are equivalent. Since in these three cases the stabilizer group
H = {e} is trivial, there is only one unique group element associated with each point xi ≡ gi and
xj ≡ gj , with gi, gj such that xi = gi x0 and xj = gj x0. And thus the orbit that represents the
equivalence class [xi, xj ] ≡ H g−1

i xi = {g−1
i gj} consist of a single element. We can write its

representative

xij = g−1
i gj , (A8)

which is precisely the relative group action for SE(2) in (A4) and for SE(3) in (A6). This proofs
that (A4) and A6) are bijective with (A8) as inverse mapping.

The representative for the R3 × S2 case is given by

xij = (
(

b
0
a

)
,
(

sin c
0

cos c

)
) , (A9)

with a, b, c the components of the attribute where aij = (a, b, c)T .

Note that the orbits are given by H (R−1
oi

pij ,R
−1
oi

oj). Further note that rotations in H around
the ez axis act on three independent subspaces of R3 × S1. The spatial part of which is given by
Va = span{ez}, and Vb = span{ex, ey}, with ex =

(
1
0
0

)
and ey =

(
0
1
0

)
. We project the chosen

representative onto this basis, such that R−1
oi

pij = x ex + y ey + z ez. First compute z as

z = (R−1
oi

pij)
Tez = pT

ijR
T
oi

= pT
ijoi = a .

The vector aez is invariant to the action of H . The z component of the unit vector in S2 is also
invariant, and thus uniquely determined as

(R−1
oi

)nj)
Tez = nT

j ni = cos c,

and thus c = arccosnT
i nj . Since both quantities a and c are obtained independent of a chosen

rotation in H , we can pick any b as long as the vector
(

b
0
a

)
lies in the orbit HR−1

oi
pij . Since H

is norm preserving, we only have to check that for the chosen b the norm ∥(b, 0)T ∥ = b coincides
with the norm of the Vb vector component of R−1

oi
pij . The component of R−1

oi
pij in Vb is given by
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(R−1
oi

pij)− (pT
ijoi)ez , and its norm by

∥(R−1
oi

pij)− (pT
ijoi)ez∥ = ∥(Roi

R−1
oi

pij)− (pT
ijoi)Roi

ez∥ = ∥(pij)− (pT
ijoi)oi∥ = b ,

where in the second step we used that the norm is invariant under any rotation in SO(3), and thus
we are free to multiply the vector in the norm with Roi

. In conclusion, the components a and c
were uniquely determined the relative group action (R−1

oi
pij ,R

−1
oi

oj) and b had to be chosen to
correspond to the radius of the orbit in the xy plane. This proves that (A5) is bijective, with (??) as
inverse mapping.

For all cases, we have now provided valid representatives, and thus for each provided a mapping
from attribute to orbit. And thus the provided equivalence class to attribute mappings [xi, xj ] 7→ aij
are bijective.

B.3 PROOF OF COROLLARY 1.1

Corollary 1 implies that the PΘNITA architectures are equivariant universal approximators. In order
to prove this we first show that each of the steps in the architecture is indeed equivariant, and then
make use of the results in Dym & Maron (2020); Villar et al. (2021); Gasteiger et al. (2021) to prove
universality.

B.3.1 EQUIVARIANCE OF MESSAGE PASSING LAYERS WITH INVARIANT ATTRIBUTES

First, we make precise the notion of equivariance in the point cloud setting (see Sec. A for the
bundle vs point cloud viewpoint). Let us consider a point cloud in a space X which we denote with
G = (V, E ,X ,F), in which X ⊂ X = {xi | i ∈ V} denotes the set of points associated with the
nodes i, and F = {fi ∈ V | i ∈ V} denotes the set node features that live in a vector space Vρ, with
ρ the representation of SO(n) that acts on Vρ. Let the action of g = (x,R) ∈ SE(n) on the graph
be denoted with

g G = (V, E , gX , gF) ,

with
gX = {g xi | i ∈ V↓} ,
gF = {ρ(R) fi | i ∈ V} .

Then a graph message passing layer MPN is said to be equivariant to the group SE(n) if
MPN(g G) = gMPN(G) .

Proposition 1.1. Message passing layers as described by Eqs 2-4 as conditioned on the attributes
in Theorem 1 are SE(n) equivariant.

Proof. The layers perform a regular group convolution (cf Sec. A) in which case the feature spaces
are considered to be vectors of scalars in Rc on which rotations act trivially, i.e., ρ(R)fi = fi.
Since the positions of the point clouds are un-altered in the message passing steps the output point
cloud X ′ equals the input point cloud X, and since the attributes [g xi, g xj ] 7→ aij are invariant for
all g ∈ SE(n), all steps in the message passing scheme are invariant to the group actions. Let us
denote the input and output graphs as Gin = (V, E ,X ,F in) and Gout = (V, E ,X ,Fout). Then we
specifically have that

g Gin 7→ g Gout ⇔ (V, E , gX ,F in) 7→ (V, E , gX ,Fout) .

So, the node features are invariant and the graph itself (point cloud) is not updated by the message
passing layer and thus is trivially equivariant.

B.3.2 EQUIVARIANCE OF LIFTING THE GRAPH FROM Rn TO Rn × Sn−1

Now consider a lifting transform that assigns an (approximately) uniform grid of elements in Sn−1

to each based point in a point cloud in X = Rn. Let such a grid be denoted with S ⊂ Sn−1. For
now let us consider the availability of an infinite dimensional grid S = Sn−1, as in the fiber bundle
viewpoint of Sec. A, and that we are thus able to assign to every point p ∈ X and every o ∈ Sn−1

a feature vector through the point-wise spherical signals fx : Sn−1.
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We then consider lifting of a graph G = (V, E ,X ,F) with X ⊂ Rn to a graph G↑ = (V, E ,X ↑,F↑)
via the ScalarToSphere and VecToSphere modules. The lifted graph G↑ can either be seen
as a point cloud in X↑ ⊂ Rn × Sn−1 with scalar features fi ∈ Rc, or as a (steerable) feature field
over the positions in X ⊂ Rn and with spherical signals fi ∈ VρL

L2(Sn−1)
as node features. We

denote the latter with Gρ = (V, E ,X ,Fρ).

We adopt the bundle viewpoint and consider lifting to the graph Gρ. Scalar features si at node i ∈ V
will be lifted via

fi(o) = ScalarToSphere[si](o) = si ,

i.e., it generates constant signals over Sn−1 with value si. Vector features vi at node i are lifted to
a spherical signal via

fi(o) = VecToSphere[vi](o) = vT
i o .

Proposition 1.2. Lifting a graph G to a graph Gρ via the VecToSphere and ScalarToSphere
operations, is equivariant via

(V, E ,X ,F) 7→ (V, E ,X ,Fρ) ⇒
(V, E , gX , gF) 7→ (V, E , gX , gFρ) .

That is, the nodes in the lifted graph are equally transformed by the action of g ∈ SE(n) and the
spherical signals fi ∈ L2(S

n−1) are permuted via the left-regular representation ρ via gFρ =
{ρ(g)fi | i ∈ V}.

Proof. For the ScalarToSphere operation we have that the spherical signals fi(o) = si are
invariant since the scalars in the original graph are unaffected by the group action. For the
VecToSphere operation we have that

Rvi 7→ VecToSphere[Rvi](o) = vT
i R

To = (ρLL2(Sn−1)(R)VecToSphere[vi])(o) ,

and thus a rotation of the input vectors leads to a permutation by ρLL2(Sn−1)(R) of the spherical
signals.

B.3.3 EQUIVARIANCE OF PREDICTING SCALARS AND VECTORS

From the lifted graph Gρ we can predict at each position xi ∈ X a scalar or a vector using the
SphereToScalar and SphereToVec modules. In their continuous forms they are given by

si = SphereToScalar[fi] =

∫
Sn−1

fi(o) , (A10)

vi = SphereToVec[fi] =

∫
Sn−1

fi(o)odo . (A11)

Proposition 1.3. The process of predicting scalars via Eq. (A10) is invariant and predicting vectors
via Eq. (A11) is SE(n) equivariant via

SphereToVec[ρ(R)fi] = RSphereToVec[fi] .

Proof. Since the scalars are invariant to rotations, the SphereToScalar module is trivially in-
variant. For the SphereToVec module we have that if the input spherical signals were to be
transformed via ρ(R), than we have

ρ(R)fi 7→ SphereToVec[ρ(R)fi] =

∫
Sn−1

ρ(R)fi(o)odo

=

∫
Sn−1

fi(R
To)odo

∗
=

∫
Sn−1

fi(o)Ro do

= R

∫
Sn−1

fi(o)odo

= RSphereToVec[fi] ,

where in the step ∗
= we used the change of variables o → Ro.
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B.4 PROOF OF COROLLARY 1.1

Corollary 1.1 states the following: Message passing networks in geometric graphs over Rn × Sn−1

and SE(n), with message functions conditioned on the attributes of Thm. 1, are equivariant univer-
sal approximators. The proof is as follows.

Proof. In the above, we have shown that all the steps in the PΘNITA architecture are equivariant,
and it allows us to predict scalar or vector fields. As discussed in Sec. A, the PΘNITA architecture
and its layers fit the steerable tensor-field network class of equivariant graph neural networks. Dym
& Maron (2020) have proven such types of equivariant graph neural networks to be equivariant
universal approximators. As such, (Dym & Maron, 2020, Theorem 2) proves that the bundle im-
plementation of PΘNITA , as described in the main body of this paper, is indeed an equivariant
universal approximator. In the case of the point cloud approach (Sec. A.4), universality is given by
(Gasteiger et al., 2021, Theorem 3), which is based on the results in (Villar et al., 2021).

C IMPLEMENTATION

C.1 USED LIBRARY

Our implementations are done in Pytorch (Paszke et al., 2019), using Pytorch-Geometric’s message
passing and graph operations modules (Fey & Lenssen, 2019), and made use of WandB (Biewald,
2020) for logging. Our code is available at https://github.com/ebekkers/ponita .

C.2 SPHERICAL GRIDS

Uniform grids on S2. As described in the main body, we assign a spherical grid to each node in
the graph. The grid consists of N points which cover the sphere as uniformly as possible. Note that
an exact uniform grid can only be achieved in five cases, corresponding to the five platonic solids
with N = 4, 6, 8, 12, 20. To achieve an (approximate) uniform grid for any possible N , and thus
have full flexibility in specifying angular resolution, we generate grids via a repulsion method. This
method randomly initializes points on the sphere and then via gradient descent iteratively pushes
them away from each other until convergence. We used the repulsion model code of Kuipers &
Bekkers (2023), which was used in their work to generate uniform grids on SO(3).

Random grids. To minimize a potential bias to particular directions in the grid, we randomly
perturb the grids with a random rotation matrix in each forward pass of the method. Herein we follow
the approach of Knigge et al. (2022) for achieving equivariance to continuous groups, sampled on
discrete grids. Every graph in the batch obtains its own randomly rotated spherical grid. This is akin
to rotational data augmentation.

Grid resolution We found that a grid resolution of N = 12 was generally sufficient for all tasks.
However, we got slightly better results with N = 20, and thus ran all results with this setting.
Increasing beyond N = 20 did not seem to improve results.

C.2.1 ATTRIBUTE EMBEDDING

The continuous kernels used in PΘNITA can be considered as Neural Fields. For Neural Fields, it
is common to first embed/vectorize the input coordinates. A common approach for this is the Ran-
dom Fourier Feature embedding, which samples random Fourier basis functions on the provided
input coordinates (Tancik et al., 2020). We experimented with this approach as well but found that
a simple Polynomial Embedding worked slightly better and was less sensitive to chosen hyperpa-
rameters (polynomial degree). The polynomial embedding modules take as input a vector of values
(x, y, z, . . . ) and generate polynomial combinations of the inputs up to a maximum degree. I.e.
PolynomialEmbed(x, y, z) = (x, y, z, xy, xz, yz, xxy, xxz, . . . ) .

In all experiments, the kernel used a shared basis which was computed at the start of the forward
pass

aij → PE → Linear → ActFn → Linear → ActFn → bij ,
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and each group convolution layer then obtains its layer-specific kernel from this shared basis via

bij → Linear → klij .

In all layers, we used the Gaussian Error Linear Unit (GeLU) as an activation function. In all
experiments, we used a 256-dimensional basis.

D EXPERIMENTAL DETAILS

In this section, we provide the hyperparameters used for training the models and provide additional
information regarding the benchmarks and the results.

D.1 MD17 EXPERIMENTS

Training settings. The rMD17 results were obtained with PΘNITA and PNITA with L = 5 layers,
C = 128 hidden features. The polynomial degree was set to 3. The models were trained for 5000
epochs, with a batch size of 5. We used the Adam optimizerKingma & Ba (2014), with a learning
rate of 5e−4, and with a CosineAnealing learning rate schedule with a warmup period of 50 epochs.
We used N = 20 grid points on the sphere. The networks optimized the following loss

L = λE ||Ê − E||2 + λF
1

3M

M∑
i=1

3∑
α=1

|| − ∂Ê

∂pi,α
− Fi,α||2 (A12)

with pi ∈ R3. The loss is a weighted sum of energy and force loss terms. Here M is the number
of atoms in the system, Ê is the predicted potential energy and λE and λF are the energy- and
force-weightings, respectively. We set λF = 500. The embedding layer is a linear embedding of the
one-hot encoded atom numbers, followed by the ScalareToSphere module. As explained in
the main body, the readout layer was applied after every ConvNeXt block and consisted of a single
Linear layer.

D.2 DENOISING DIFFUSION MODELS

D.2.1 SUMMARY OF THE DENOISING DIFFUSION PROBLEM

In diffusion processes, distributions are learned through a reverse diffusion process, i.e. a denoising
process. Consider point clouds x = (x1, . . . ,xM ) ∈ RM×3 with corresponding features h =
(h1, . . . ,hM ) ∈ RM×nf , the diffusion process that adds noise zt for time t = 0, . . . T is given by a
multivariate normal distribution:

q (zt | x) = N
(
zt | αtxt, σ

2
t I
)
,

where αt ∈ R+ controls signal retention and σt controls noise added. Sohl-Dickstein et al. (2015);
Ho et al. (2020) shows a special case of variance-preserving noising process where αt =

√
1− σ2

t .

Kingma et al. (2021); Hoogeboom et al. (2022) define signal to noise ratio as SNR(t) =
α2

t

σ2
t

. Taking
into account that the diffusion process is Markov, the entire noising process is then written as:

q (z0, z1, . . . ,zT | x) = q (z0 | x)
T∏

t=1

q (zt | zt−1) .

The generative process in a diffusion model is defined with respect to the true denoising process, and
the variable x is approximated using a neural network. Following the findings of Ho et al. (2020);
Kingma et al. (2021), the variational lower bound on the log-likelihood term of x is given by

Lt = Eϵ∼N (0,I)

[
1

2
(1− SNR(t− 1)/ SNR(t))∥ϵ− ϵ̂∥2

]
where we predict a gaussian noise and use the parameterization zt = αtx + σtϵ, then the neural
network ϕ outputs ϵ̂ = ϕ (zt, t).
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Köhler et al. (2020) showed that invariant distributions composed with an equivariant invertible
function result in an invariant distribution. Additionally, Xu et al. (2022) proved that for x ∼ p(x)
that is invariant to a group G, and the transition probabilities of a Markov chain defined as y ∼
p(y | x) are equivariant, then the marginal distribution of y at any time step is invariant to group
transformations. In the case of the denoising diffusion model, we need an invariant distribution and
the neural network parameterizing the denoising diffusing process to be equivariant. This results in
the marginal distribution of the denoising model to be an invariant distribution. For detailed proof,
we refer to Xu et al. (2022).

In order to define the diffusion process, we take αt =
√

1− σ2
t as per Sohl-Dickstein et al. (2015)

and let αt = (1−2s).f(t)+s where f(t) = (1− (t/T )2), such that values decrease monotonically,
starting α0 ≈ 1 and αT ≈ 0, similar to EDMs for a fair comparison. To avoid numerical instabilities,
during sampling, we follow a clipping procedure similar to Dhariwal & Nichol (2021) and compute
αt|t−1 = αt/αt−1, where α−1 = 1 and values of α2

t|t−1 are clipped from below by .001 similar to
Hoogeboom et al. (2022).

D.2.2 EXPERIMENTAL DETAILS

Training settings. All hyperparameters were set the same as in the original EDM implementation
Hoogeboom et al. (2022). That is, we used L = 9 layers, C = 256 hidden features. The models
were trained for 1000 epochs (deviationg from the 3000 as the EDM baseline does), with batch size
of 64. The polynomial degree of the basis was set to 3. We used the Adam optimizerKingma & Ba
(2014), with a learning rate of 5e − 4, and without any learning rate scheduler. We used N = 20
grid points on the sphere.

The embedding layer is a linear embedding of the one-hot encoded atom numbers, followed by the
ScalareToSphere module. The readout was a single linear layer, applied to the output of the
last ConvNext block, and produced a single channel velocity signal on the sphere. This signal was
converted to a vector via the SphereToVec module.

D.3 N-BODY EXPERIMENT

Training settings. We trained PΘNITA with L = 5 layers, C = 128 hidden features. The poly-
nomial degree was set to 3. The models were trained for 10, 000 epochs, with batch size of 100.
We used the Adam optimizerKingma & Ba (2014), with a learning rate of 5e − 4, and with a
CosineAnealing learning rate schedule with a warmup period of 100 epochs. We used N = 20 grid
points on the sphere.

The embedding layer took two vector features as inputs initial velocity and a direction vector point-
ing from the particle position to the average position of all particles. These two vectors were em-
bedded as two scalar fields over the sphere via the VecToSphere module. The embedding also
took two scalar features as input: charge (-1 or +1) and the norm of the initial velocity. Both were
embedded on the sphere via the ScalarToSphere module. The 4 features were mapped to a
vector of size C (the hidden dimension size). The readout layer was applied after every ConvNext
block, and conisted of a Linear layer followed by the SphereToVec module. The final predicted
velocity was the average of the velocity predictions after each layer.

In addition to the invariant geometric attributes, the basis functions also took the product the charges
of the sending and receiving node as input.

E ADDITIONAL EXPERIMENTS

E.1 SUPER-PIXEL MNIST

To verify the impact of lifting point clouds to position orientation space in 2D, we benchmark
PΘNITA on superpixel mnist. Superpixel mnist is a dataset of 2D point clouds of MNIST digits, in
which each of the original images is segmented into 75 superpixels (clusters of similar pixels). We
use the data loader as provided by the library torch-geometric Fey & Lenssen (2019). We utilize the
exact same architecture as in all the other experiments presented so far, except that now we utilize
the three 2D invariants as given in (8).
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We used the following hyper parameters. We trained for 50 epochs with a batch size of 96, a cosine
learning rate decay, and initial learning rate of 5e− 4. For PΘNITA we used N = 10 grid points to
sample the circle.

We compare our results with PNITA and PΘNITA in Table 4 against the recent state-of-the-
art method of Finzi et al. (2020b) called Probabilistic Numeric Convolutional Neural Networks
(PNCNN), as well as classic graph NN approaches MONET (Monti et al., 2017), SplineCNN (Fey
et al., 2018), GCCP (Walker & Glocker, 2019), and GAT (Avelar et al., 2020). Our results are aver-
aged over 3 runs with different seeds and are reported with the standard deviation in test error over
these runs.

Apart from showing that with PΘNITA state-of-the-art results are obtained with the simple group
convolutional architecture PΘNITA , the results in Table 4 also show the significant benifit of uti-
lizing group convolutions (PΘNITA ) over planar convolutions with isotropic kernels (PNITA ). The
results further show that a simple fully convolutional architecture is sufficient to obtain outstanding
results.

Table 4: Classification Error on the
75-SuperPixel MNIST problem.

Method Error rate

MONET 8.89
SplineCNN 4.78
GCGP 4.2
GAT 3.81
PNCNN 1.24±.12

PNITA 3.04±.09

PΘNITA 1.17±.11

Table 5: QM9 regression results.

Target Unit DimeNet++ PNITA PΘNITA (point cloud) PΘNITA (fiber bundle)

µ D 0.0286 0.0207 0.0115 0.0121
α a30 0.0469 0.0602 0.0446 0.0375
ϵHOMO meV 27.8 26.1 18.6 16.0
ϵLUMO meV 19.7 21.9 15.3 14.5
∆ϵ meV 34.8 43.4 33.5 30.4
⟨R2⟩ a20 0.331 0.149 0.227 0.235
ZPVE meV 1.29 1.53 1.29 1.29
U0 meV 8.02 10.71 9.20 8.31
U meV 7.89 10.63 9.00 8.67
H meV 8.11 11.00 8.54 8.04
G meV 0.0249 0.0112 0.0095 0.00863
cv

cal
molK 0.0249 0.0307 0.0250 0.0242

E.2 QM9 REGRESSION

To further demonstrate the potency of PΘNITA on 3D point cloud tasks we validate it on the QM9
benchmark (Ramakrishnan R., 2014) on the task of predicting molecular properties from input
atomic point clouds and their covalent bonds.

Since QM9 provides a connectivity derived from the covalent bonds, we have an option to treat the
molecules as point clouds in position-orientation space. Namely, we can treat every edge, which
connects neighboring point xj to central node xi, as a point in position-orientation space R3 × S2

by treating taking the starting point of the edge as position and the normalized direction vector as
orientation. That is, for every edge e = (j, i) ∈ E we have identify a point xe = (pi,

pj−pi

∥pj−pi∥ ) ∈
R3 × S2. The covalent bonds thus naturally generate a point-cloud in position-orientation space.
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Since this point cloud no-longer has a fiber bundle structure (see App. A) we can no longer separate
the convolution over positions and orientations separately and so we do the ”domain-mixing” in one
single convolution, followed by a channel mixing linear layer. So now the convolution is separated
over 2 steps, instead of 3 as for the other experiments, as described in Section 3.2. Otherwise, the
PΘNITA architecture is held exactly the same. In this experiment we compare convolutions using
either the atomic point cloud as input (PNITA ) versus using the covalent-bond cloud (edges) as
input (PΘNITA ). The latter is close to the approach of DimeNet and GemNet (Gasteiger et al.,
2019; 2021) which also perform message passing operations between edges. We therefore compare
our approach against DimeNet++ (Gasteiger et al., 2020).

We did a hyperparmeter search for C and L for PNITA and PΘNITA separately and found that for
PNITA best results were obtained with C = 128 and L = 5 and for PΘNITA with C = 256 and
L = 9. We further trained for 1000 epochs with a batch size of 96, with a cosine learning rate decay
scheduler and initial learning rate of 5e − 4. For all atoms we constructed a fully connected graph.
For reference, we also trained a fiber bundle PΘNITA with C = 256, L = 9, and N = 16.

The results are presented in Table 5.
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