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ABSTRACT

Supervised fine-tuning (SFT) has become an essential step in tailoring large lan-
guage models (LLMs) to align with human expectations and specific downstream
tasks. However, existing SFT methods typically treat each training instance as a
uniform sequence, giving equal importance to all tokens regardless of their rele-
vance. This overlooks the fact that only a subset of tokens often contains critical,
task-specific information. To address this limitation, we introduce Supervised
Fine-Tuning with Group Optimization (SFT-GO), a novel approach that treats
groups of tokens differently based on their importance. SFT-GO groups tokens
in each sample based on their importance values and optimizes the LLM using a
weighted combination of the worst-group loss and the standard cross-entropy loss.
This mechanism adaptively emphasizes the most challenging token groups and
guides the model to better handle different group distributions, thereby improving
overall learning dynamics. We provide a theoretical analysis of SFT-GO’s conver-
gence rate, demonstrating its efficiency. Empirically, we apply SFT-GO with three
different token grouping strategies and show that models trained with SFT-GO
consistently outperform baseline approaches across popular LLM benchmarks.
These improvements hold across various datasets and base models, demonstrating
the robustness and the effectiveness of our method.

1 INTRODUCTION

Supervised fine-tuning (SFT) plays a crucial role in post-training large language models (LLMs)
to better align them with human expectations. This process generally demands a large volume of
high-quality data and improves safety, reliability, and suitability for specialized tasks (Radford et al.,
2019;|Ouyang et al.,2022; Touvron et al.,2023)). A key aspect of SFT is to improve data quality and
diversity, often via community-driven data collection and synthetic generation (Lambert et al.,[2024;
Zhou et al., 2023a; |Wang et al.,[2024)). Recent studies (L1 et al., 2024} |Zhou et al., 2023a) highlight
that effective instruction fine-tuning can be achieved using relatively small but meticulously curated
datasets, emphasizing the importance of quality over quantity. LIMA (Zhou et al.| 2023al) shows that
fine-tuning with 1,030 carefully selected examples can produce high-performing instruction-tuned
models, emphasizing the importance of identifying key training signals.

When evaluating data quality, mainstream approaches often focus on individual samples at the in-
stance level, overlooking the fact that tokens within a sample do not contribute equally to task-
specific semantics. Many tokens primarily serve functional roles (e.g., conjunctions, articles), while
a smaller subset carries critical semantic content that directly impacts performance on downstream
tasks. While pretraining equips models with a solid foundation for handling function words, fine-
tuning may yield diminishing returns if equal emphasis is placed on all tokens rather than prioritizing
those that are semantically rich and task-relevant. Our findings, illustrated in Figure[l] indicate that
during supervised fine-tuning (SFT), LLMs exhibit slightly higher cross-entropy (CE) loss when
predicting semantically rich tokens, such as “neurons” or “glial cells” (average CE loss: 0.72),
compared to more common functional words like “is” or “and” (average CE loss: 0.59). These
semantically rich tokens are under-optimized when compared with the common functional tokens.

Translating this motivation into practice, we introduce Supervised Fine-Tuning with Group Opti-
mization (SFT-GO). In SFT-GO, tokens are categorized based on their contextual relevance through
a designated function, and the model is optimized using a weighted combination of the worst-group
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Figure 1: (a) Text highlighted by LLMLingua-2 based on importance, showing key information
from a passage about brain cell migration during development and in adults. (b) Average training
loss for models using standard auto-regressive loss. The ‘original’ line shows overall loss across
all tokens, while ‘important’ and ‘unimportant’ lines reflect losses for tokens ranked high or low by
LLMLingua-2’s token compression method.

loss and the standard cross-entropy loss. Inspired by group distributional robust optimization (Group
DRO (Sagawa* et al.,[2020)), this mechanism encourages the model to focus on the group of tokens
it currently finds the most difficult, enabling it to better handle diverse token distributions and im-
proving overall learning dynamics. We also prove two theoretical properties: (1) minimizing our
objective improves the accuracy of the model in all token groups compared to standard training, and
(2) a simple mini-batch procedure preserves the O(1/+/T) convergence rate and converges to the
global optimum.

A significant advantage of SFT-GO is its flexibility in defining token groups based on various no-
tions of importance. In this paper, we explore three representative strategies to demonstrate this
flexibility: (1) a statistics-based method using TF-IDF scores, where tokens with higher TF-IDF
values are considered more important due to their rarity and relevance within the corpus; (2) a
semantics-based method that leverages token-selection probabilities from an existing prompt com-
pression model, LLMLingua-2 (Pan et al.| [2024), thus incorporating contextual semantic informa-
tion into the grouping process; and (3) a task-specific approach based on an external reference model
as in Rho-1 (Lin et al.,2024a), which determines token importance through excess loss calculations
and which we demonstrate to be a special case of our proposed framework. These methods focus
on different aspects of token importance—statistical significance, contextual relevance, and task-
specific utility—highlighting the versatility of SFT-GO in accommodating diverse definitions of
token importance, each with its own advantages and limitations.

We evaluated SFT-GO on two widely used instruction-tuning datasets, LIMA (Zhou et al.| [2023al)
and Alpaca (Taori et al., 2023), using Llama 3.2-3B and Llama 3.1-8B. Our results show that
SFT-GO consistently outperforms standard fine-tuning baselines on seven widely recognized bench-
marks. Further analysis reveals that the lexical statistics-based grouping strategy, represented by TF-
IDF, and the semantic-based approach, represented by LLMLingua-2, yield greater improvements
in commonsense reasoning tasks. Our findings demonstrate the promise of token-level optimization
and highlight the importance of carefully tailored grouping strategies in instruction-tuning pipelines.
The contributions of this paper can be summarized as follows:

* We propose the SFT-GO framework, enabling supervised fine-tuning with group optimiza-
tion. We provide a mathematical proof for its theoretical convergence.

e We introduce two token grouping methods for SFT-GO, one based on TF-IDF and another
relying on compression-based token selection (LLMLingua-2), while reformulating an ex-
isting method (Rho-1) within the SFT-GO framework.

* Through empirical experiments, we demonstrate that SFT-GO outperforms baseline SFT
approaches.

2 RELATED WORK

Token-Importance In language models, not all tokens contribute equally; certain words or
phrases are more crucial to meaning and performance, and allow the models to focus on the most
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relevant information for language tasks (Vaswanil, 2017} Jain & Wallace] 2019} Wiegreffe & Pin-
ter, 2019). Recent prompt compression methods, such as LLMLingua (Jiang et al,, 2023) and
LLMLingua-2 (Pan et al.| 2024), have leveraged token importance for efficient inference (Jiang
et al.,|2024; Mu et al., 2024)), compressing less important tokens while preserving semantic integrity
during LLM generation. These findings highlight the inherent differences among tokens in terms
of their contributions to meaning and task performance. In this paper, we leverage these insights to
provide targeted group optimization for instruction fine-tuning, enabling the model to focus on the
group that it finds the most difficult to learn during training.

Leveraging Token-Importance Previous research in NLP has recognized the significance of in-
corporating token importance during training (Zaidan et al., [2007; |[Zhang et al., 2016} |Bao et al.,
2018). Recently, Gu et al.| (2020) assigned weights based on token frequency to improve the per-
formance of language models in machine translation. Similarly, [Luo et al.|(2023) leveraged token
reweighting to address the issue of data imbalance in Named Entity Recognition. The most closely
related work in this area is the Rho-1 method proposed by [Lin et al.|(2024b), which utilizes a refer-
ence model fine-tuned on a task-specific dataset to provide signals for token weighting in supervised
fine-tuning. In our paper, we propose group optimization as a general instruction fine-tuning frame-
work and establish its theoretical guarantees. We demonstrate that Rho-1 is a special case of our
group optimization objective, and we propose two other efficient grouping alternatives that achieve
similar performance gains without relying on task-specific fine-tuned reference models.

Group Optimization Group Distributionally Robust Optimization has been widely used to ad-
dress distribution shifts and to enhance model robustness and performance on tasks with different
underlying hidden distributions (Hu et al., 2018azbj; |Duchi et al.| 2019; Shafieezadeh Abadeh et al.,
2015f Duchi & Namkoong),2019). For example, optimizing for the worst-group loss,Sagawa* et al.
(2020) shows that the model becomes more fair to minority groups. This technique has also been
applied to language modeling for robust performance over different latent topics (Oren et al.|[2019).
Our paper leverages the theoretical foundation of Group DRO but defines groups in a different way.
Instead of treating each data input as a unit, we examine the tokens within each data sample and
consider groupings among these tokens. We establish theoretical guarantees under this new setting
and substantiate our performance gains through empirical evaluation.

3 METHOD

Question 1. Are all tokens equally important?

To address this question, we first need to define what we mean by important tokens. In this paper,
we consider important tokens to be a small subset within a sequence that captures the core semantic
meaning of the text. There are various empirical methods to evaluate token importance. Tradition-
ally, techniques such as TF-IDF (Term Frequency-Inverse Document Frequency) have been used to
identify significant features in text. More recently, prompt compression methods have been utilized
to remove redundant information and emphasize essential content (Li et al.| 2023).

Question 2. In the context of language modeling, how does the model treat important tokens and
unimportant tokens?

In standard supervised fine-tuning, all tokens are treated equally (Ouyang et al.,2022). The train-
ing loss is computed as the average cross-entropy loss for next-token prediction across all tokens.
Typically, evaluations focus on this overall average loss. However, when we examine the losses for
important and unimportant tokens separately, a significant performance gap emerges.

Figure illustrates this phenomenon by comparing the training losses for the important and unim-
portant token groups. Our observations reveal two key findings:
1. Inmitial Similarity: At the beginning of training, the losses for both groups are similar.

2. Divergence Over Time: As training progresses, the model maintains a substantial gap
between the losses of unimportant and important tokens, consistently achieving lower loss
on the unimportant group.
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This discrepancy suggests that models inherently focus on reducing the loss of less informative
tokens, possibly because they are easier to optimize. Meanwhile, the loss for more informative,
higher-value tokens remains relatively stable. This behavior is undesirable: overemphasizing unin-
formative words can lead to overfitting, while underfitting on important words hinders the model’s
ability to capture essential semantic content.

An analogous situation arises in classification tasks with label imbalance (Hu et al.| |2018b). Func-
tional words or stylistic elements, which form the basic structure of language, appear frequently and
are overrepresented in the training data. In contrast, important semantic tokens are rare and under-
represented. This imbalance in token distribution can negatively affect the model’s performance on
the minority class, in this case, the important tokens.

In the next section, we will introduce how we employ group optimization, a traditional optimization
framework, to address this imbalance in data distributions. By adjusting the training objective to
focus on the token group that the model handles worst at each step, we ensure that it improves on its
weakest subset while still capturing the semantic essence of the text and maintaining overall linguis-
tic coherence, leading to more balanced training dynamics, enhanced robustness against different
token distributions, and ultimately stronger generalization. The overview of SFT-GO framework is
illustrated in Appendix [A]

3.1 SUPERVISED FINE-TUNING WITH GROUP OPTIMIZATION

Consider a corpus of N sentences or documents, denoted as S = s 5@ s(N)_ Each sentence
s is a sequence of tokens:

s = [w(i’l), w®? 7w(i’L")],

where L; is the number of tokens in the i-th sentence.

We assume that the importance of each token within a document is evaluated by an grouping function
9(+), which assigns a binary label indicating whether a token is important (1) or unimportant (0):

g sD) e {1, 0}. (1)

The grouping function determines the importance value of token w(*7) within its sentence s(*),
considering its role in conveying the semantic meaning. The specific choice of ¢(-) depends on the
implementation details and will be discussed in Section[3.3]

Using this assignment, we naturally partition the data into two disjoint groups:

Gy = {wu,j) | g(w®), sy = 1} Gy = {ww‘) | g(w®), sy = 0}. 2
where each token occurrence within a sentence belongs exclusively to one of the two groups based
on the grouping function g(-).

To optimize the language model f(6), we define the group optimization loss function as:
‘CGO(w; 9) = (1 - )‘) ECE(“’; 9) + >“Cw0rst(u” 9, 9)7 3)

where:

* Lcg(w; @) is the standard average cross-entropy loss computed over all tokens w.

* Lyorst(w; g, 0) is the worst-group loss, defined as:
‘Cworst (’LU; 9, 9) = max(ﬁCE (wG1 3 9)7 £CE (wGo ) 9)) (4)

where Lcg(wg,;6) and Legp(weg,; 0) are the average cross entropy losses computed over
the important and unimportant token groups, respectively.

* )\ is a weighting parameter between 0 and 1 that controls the influence of the group opti-
mization term.

In this objective function, we minimize the standard autoregressive loss while also focusing on
reducing the maximum loss between the two groups. By penalizing the worse-performing group,
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we encourage the model to perform well across both important and unimportant tokens, ensuring
balanced learning.

During implementation, the coefficient A\ can be either a constant or a decaying function that places
more emphasis on group optimization during the early stages of training:

A= max()\max(l - t/T), /\min)7 (5)

where we decay the A value from Ay t0 Ay during the 7" training steps. This annealing schedule
allows the model to focus more on reducing the worst-group loss during the initial training phases
and gradually shift emphasis back to the standard loss as training progresses.

3.2 THEORETICAL ANALYSIS

We provide a theoretical analysis of SFT-GO and prove that optimizing the group objective Lco
(Eq. 3) yields better inter-group token balance relative to conventional training approaches. This
result is formally stated in the following proposition.

Proposition 1. Let 0 be the solution obtained by minimizing the group objective function (Eq. ,
and let 8,,4 be the solution obtained by minimizing the standard autoregressive objective function.
Then, the worst-group loss of the model trained with group optimization is no greater than that of
the model trained with the standard objective:

L:worst (é) S »Cworst (eavg)~ (6)

This proposition implies that the language model optimized with the group objective function
achieves better performance on the worst-performing group compared to the model trained with
the standard objective function. The detailed proof of Proposition|[T]is provided in Appendix

Next, we examine the convergence rate of the error in stochastic gradient descent towards the global
optimum. We define the excess error after 7" iterations as:

ep = Lgo(@ ) - ggg Lco(0), @)

where 6(1:T) represents the average of the parameters over steps 1 to 7". Building upon the founda-
tional work of [Sagawa* et al.|(2020) on convergence analysis in distributionally robust optimization,
we demonstrate that minimizing our proposed optimization function converges at the standard rate
of O(1/+/T). This result is formally presented in the following proposition.

Proposition 2. Suppose that the loss function Lco in Eq.|3|is convex and has Lipschitz continuous
subgradients, and that the parameter space © is convex, closed, and bounded such that |0 — 0’| <
By for some constant By for all 0, ' € ©. Then, the average parameter 85:T) obtained over T
iterations of SGD achieves an expected excess error bounded by:

Eler] < 0 (1VT), ®)
where the expectation is over the randomness introduced by the sampling in the algorithm.

The proof of Proposition [2] can be found in Appendix [B] This result indicates that our proposed
group optimization algorithm is efficient, achieving convergence at the same rate as standard SGD
in convex optimization settings.

3.3 DEFINING THE GROUPING FUNCTION

SFT-GO is a general framework for incorporating token importance into supervised fine-tuning. The
way importance is defined can vary depending on the context. In this section, we explore several
options in defining the grouping function g and discuss their pros and cons. Throughout this section,
we assume a single hyperparameter 7, which controls the percentage of input tokens that are labeled
as important.
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Statistics-Based Grouping This approach determines the importance of a token based on its sta-
tistical properties within the corpus. For instance, we can define the grouping function g based on
token frequency—tokens that are rarer are considered more important than those that appear more
often. Alternatively, we can define g based on unigram TF-IDF values: given an input sequence, we
group the tokens with the top n TF-IDF scores as important, leaving the rest as unimportant. TF-IDF
has proven to be a robust statistical measure for token importance. The benefits of this approach are
that it is non-parametric and requires no domain knowledge. However, TF-IDF assigns the same
score to all occurrences of the same token within the same input sequence, which does not account
for contextual information.

Semantics-Based Grouping Unlike statistics-based methods, this approach utilizes contextual se-
mantics to determine the importance of each token. Here, we consider using a prompt compression
method, LLMLingua-2 (Pan et al.,|2024)), to evaluate the importance of a token. LLMLingua-2 is a
BERT-based encoder-only Transformer model. For each token, it generates a probability indicating
whether we should keep or drop the token. We group the top 7 tokens as important and treat the
rest as unimportant. While this approach incorporates contextual information, a drawback is the
requirement of a pre-trained compression model. Fortunately, LLMLingua-2 performs well in gen-
eral English domains; however, this may not be the case for low-resource languages or specialized
domains.

Loss-Based Grouping This approach assigns token importance based on task-specific loss, such
as cross-entropy. Tokens with higher losses are considered more important. Rho-1 (Lin et al
2024a)), for example, uses excess loss—the difference between the losses from the current and a
fixed reference model:

BEw®) = Lep(w;0) — Lop(w; ), ©)

where ¢ is a reference model trained on a data from the same domain. Tokens with the highest excess
loss (top-n) are selected. When A = 1 in Eq. [3] Rho-1 aligns with our training objective)'| Compared
to the previous two approaches, although loss-based grouping methods are able to integrate the
downstream task performance for group selection, this method is often impractical due to the need
for a domain-specific reference model.

4 EXPERIMENTAL SETUP

Base Models and Datasets We consider two base LLMs for fine-tuning: Llama-3.2-3B and
Llama-3.1-8B (Dubey et al.,[2024). For datasets, we utilize two widely used instruction fine-tuning
datasets: LIMA (Zhou et al., 2023a)) and Alpaca (Taori et al., 2023)). LIMA contains 1,030 high-
quality, diverse human-written prompt-response pairs, with 750 pairs carefully selected from com-
munity forums and 250 pairs designed manually. In contrast, Alpaca comprises 51,760 synthetic
data generated via self-instruct techniques. The two distinct data help evaluate STF-GO’s robust-
ness across different data characteristics.

Grouping Methods As discussed in Section we consider three different types of grouping
strategies for SFT-GO: statistics-based grouping (TF-IDF), semantics-based grouping (LLMLingua-
2), and loss-based grouping (Rho-1). We compare these methods with direct supervised fine-tuning
(Base SFT).

Benchmarks We evaluate the trained models on seven standard benchmarks: MMLU (Hendrycks
et al., 2021), MathQA (Amini et al.,[2019), ARC-C (Clark et al., 2018)), and OpenBookQA (Mi-
haylov et al., |2018)), HellaSwag (Zellers et al.,[2019), TruthfulQA (Lin et al.} 2022), IFEval (Zhou
et al.l 2023b). Descriptions of each dataset are provided in Appendix [D]

'The grouping function g in Rho-1 relies on the training model to assess the importance of a token. If
g continues to change throughout training, the model may fail to converge due to constantly shifting groups.
Therefore, we assume that after a certain number of steps, the grouping function becomes deterministic as the
training model stabilizes. This phenomenon is observed in practice, as shown in SectionE}
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Table 1: The performance of various training methods on standard benchmarks. All methods are
fine-tuned on LIMA (Zhou et al| 2023a). The ‘Avg’ column shows the average across the eight
columns. In MMLU:X, X indicates the number of shots. For TruthfulQA, we average generation
scores and multiple-choice accuracies. For IFEval, we average instruction-level and prompt-level
accuracies. Full results for Truthful QA and IFEval are in Appendix [H

Method MMLU:0 MMLU:5 MathQA ARC-C OpenBookQA HellaSwag Truthful QA IFEval Avg.
Llama-3.2-3B

Baseline-SFT 5278 £0.16 52.80 £0.20 32.70 £0.32 41.724+0.56 2556 +£2.00 57.01 £0.17 3529+ 0.61 26.53£0.96 40.55+0.29

Rho-1 53.10+0.13 5331 +£0.16 33.68+0.66 44.08+0.43 26.56+1.63 57.77+0.09 34.08+132 27.05+148 41.20+0.25

TF-IDF 53554022 53.64+£0.17 3225+0.60 4539+£159 2584+149 59.11+£0.22 37.65+085 27.71+1.03 41.89+0.32

LLMLingua-2 53.05+0.18 53.17+0.15 3247 +0.50 45444+0.76 2736+1.76 59.22+028 3733+1.73 27.58+120 41.95+0.33
Llama-3.1-8B

Baseline-SFT ~ 62.05 £0.32 6347 +£0.15 39.84 £0.26 4775+ 1.11 29.60+0.92 57.11 £026 36.16+2.69 24.96+142 4512+0.23

Rho-1 6230+ 0.17 63.18£0.28 39.05+0.53 51.45+1.03 29.72+241 61.35+0.26 39.81+298 24.83+1.20 46.46+0.54

TF-IDF 62.05+0.39 6331 +£035 37.94+1.09 5324+1.04 2996+147 63.90+0.25 39.06+3.16 26.15+1.16 46.95=+0.70

LLMLingua-2 61.63 £0.38 62.68 +0.23 39.54 +1.05 53284+0.93 3088+ 1.15 64.03+034 39414204 27.16+1.18 47.334+0.52

Table 2: The performances of different training methods fine-tuned on the general instruction data,
Alpaca. The column ‘Avg’ represents the average performance over the eight columns per method.

Method MMLU:0 MMLU:5 MathQA ARC-C OpenBookQA  HellaSwag Truthful QA IFEval Avg.
Llama-3.2-3B

Baseline-SFT ~ 54.62 £0.17 5583 +£0.38 33.97 £0.17 46.60+1.82 2892+ 1.68 56.54+0.06 44.69+0.81 3047 +£035 43.96+0.53

Rho-1 55.10+0.12  56.70 £ 0.04 34.82+0.20 45.05+032 28.60+0.62 55.54+0.04 49.24+0.51 32.65+0.96 44.71+0.23

TF-IDF 55.04 £0.21 56.42+0.18 34.84+0.23 45.61+£037 2812+050 56.10+0.03 50.26+1.43 32.37+0.50 44.52+0.88

LLMLingua-2 5496 +0.04 56.55+£0.05 348540.19 45.19+027 27.60+0.80 56.0440.04 5148147 3247+049 44.89+0.21
Llama-3.1-8B

Baseline-SFT ~ 63.67 + 0.07 65.63 £0.06 40.66+0.12 56.79 +£1.32 29.16 £ 0.64 60.81 £0.02 43.96+226 39.51+1.05 50.02+0.29

Rho-1 6420+ 020 6573 £0.05 40254+0.11 56.40+021 3328+048 61.034+0.03 4923 +0.85 38.65+095 51.10+0.19

TF-IDF 64.18 £0.29 6572 +0.07 40.54+0.19 55924042 33.04+£0.67 61.12+0.06 5030+ 1.57 3832+091 51.14+0.31

LLMLingua-2 63.94+£0.18 65.65+0.09 4038+0.17 5577+0.13 33.04+0.84 61.01+£006 51.35+158 3858+128 51.21+0.18

Training Details For LIMA, we adopt the hyperparameters from the original paper Zhou et al.
(2023a): AdamW (Loshchilov & Hutter, 2019) with a learning rate of 1 x 1072, cosine decay, and
no warmup. For Alpaca, we search learning rates across methods (Appendix [E), training for 1 and
2 epochs on the 3B and 8B models, respectively, with cosine decay, 0.07 warmup, and 0.05 weight
decay. For both datasets and model sizes, we fix € = 1 X 108 and A = 0.9 (either decayed or
static). Results are averaged over five seeds, with full hyperparameter details in Appendix [E]

5 RESULTS

In this section, we demonstrate the effectiveness of our proposed SFT-GO framework by presenting
the following key findings:

* SFT-GO Models Outperform Baseline SFT on average: models trained using the proposed
SFT-GO objective outperform the baseline SFT models on both the LIMA and Alpaca
datasets under different base LLMs.

* Impact of Grouping Function g on Performance: The choice of grouping function signif-
icantly affects performance. In particular, when the grouping function is defined using
LLMLingua-2, the models achieve strong performance on general reasoning tasks.

» Ablation Study: We investigate the impact of the important group ratio n and the loss
weighting factor A\, demonstrating the robustness of SFT-GO in different settings.

5.1 SFT-GO MODELS OUTPERFORM BASELINE SFT

Performance Comparison on LIMA  Table[I|shows the results for the Llama-3.2-3B and Llama-
3.1-8B models fine-tuned on LIMA using different training methods. For both base pre-trained
models, all three models trained with SFT-GO (TF-IDF, Rho-1, and LLMLingua-2) outperform the
baseline SFT model in terms of average performance. This demonstrates the effectiveness of the
proposed group optimization method in SFT. Notably, the semantics-based LLMLingua-2 SFT-GO
model achieves scores of 41.95 and 47.33, respectively, significantly surpassing the baseline SFT
scores of 40.55 and 45.12.
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Table 3: The average scores over the subject-specific benchmarks (SS-B) and the general reasoning
benchmarks (GR-B). A indicates the performance improvement of each SFT-GO model over the
Baseline-SFT (e.g., A = LLMLingua-2 — Baseline-SFT).

LIMA Alpaca

[
Llama-3.2-3B  Llama-3.1-8B H Llama-3.2-3B  Llama-3.1-8B

Method SS-B GR-B SS-B GR-B || SS-B GR-B SS-B GR-B
BaseSFT 41.11  39.61 4854 4032 || 4399 4390 51.18 48.09
Rho-1 42.14 39.63 49.14 41.60 | 44.06 4581 5197 49.64
A +1.03 +0.02 +0.60 +1.28 || +0.07 +1.91 +0.79 +1.55
TF-IDF 42.13 4149 4930 4296 | 44.01 4624 51.88 4991
A +1.02  +1.88 +0.76 +2.64 || +0.02 +2.34 +0.70 +1.82
LLMLingua 4230 4138 49.60 43.24 | 43.83 46.66 51.75 50.31
A +1.19 +1.77 +1.06 +292 | -0.16 4276 +0.57 +2.22

Performance Comparison on Alpaca Table 2| shows the performance of the Llama-3.2-3B and
Llama-3.1-8B models after fine-tuning on the Alpaca instruction dataset. Across both base models,
all SFT-GO approaches (TF-IDF, Rho-1, and LLMLingua-2) demonstrate superior average perfor-
mance compared to the standard SFT baseline. LLMLingua-2, which incorporates semantic guid-
ance, achieves the highest scores of 44.89 and 51.21, respectively, outperforming the baseline values
of 43.96 and 50.02.

5.2 IMPACT OF GROUPING FUNCTION ON PERFORMANCE

SFT-GO w/ LLMLingua-2 and TF-IDF Enhance General Reasoning SFT-GO models using
LLMLingua-2 and TF-IDF show stronger performance on general reasoning benchmarks (Hel-
laSwag, TruthfulQA, IFEval) than on subject-specific tasks (MMLU, MathQA, ARC-C, Open-
BookQA).

This improvement for LLMLingua-2 stems from its BERT-based compression method, fine-tuned
on online meeting notes (Pan et al.| [2024), which better estimates token importance in long-form
reasoning than TF-IDF or Rho-1. Meanwhile, TF-IDF effectively highlights rare but informative
tokens that often align with key concepts, guiding the model towards answer-relevant cues, making
it a strong statistical baseline despite lacking semantic depth.

As shown in Table [3] LLMLingua-2 and TF-IDF with Llama-3.2-3B show the strongest gains on
general reasoning (+1.77/+2.76 for LLMLingua-2 and +1.88/42.34 for TF-IDF). A similar pattern
holds for Llama-3.1-8B (+2.92/+2.22 for LLMLingua-2 and +2.64/+1.82 for TF-IDF). This high-
lights the strength of semantics-based and frequency-based grouping methods in general reasoning
tasks.

In contrast, Rho-1 shows more modest improvements in general reasoning. This disparity likely
stems from Rho-1’s token selection strategy, which prioritizes high-loss tokens during training. Its
focus on high-loss tokens may help with knowledge-intensive tasks but is less effective for reasoning
tasks that require contextual salience beyond loss-based difficulty.

Learning Behavior of Different Grouping Methods We analyze different training methods by
examining Figure 2] which captures the average loss for all tokens (‘original’), and for important
and unimportant tokens as selected by the grouping function g.

Across grouping strategies, loss behaviors differ notably. In Rho-1 (Fig. 2(a)), the unimportant-
token loss (green) remains high because both current and reference models struggle, showing that
this reference-based method inadequately captures token importance. With TF-IDF (Fig. 2(b)),
the important-token loss ( ) falls quickly but then plateaus, while the unimportant-token loss
(green) soon tracks the overall loss (blue) and becomes almost identical; this reflects TF-IDF’s
reliance on lexical statistics, which ignore semantic relationships and cause optimization to revert
to standard training. By contrast, LLMLingua-2 (Fig. keeps , green, and blue curves
closely aligned, with the worst-group loss shifting dynamically; this indicates its semantics-aware
grouping more effectively identifies and balances important tokens during training.
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Figure 2: The progression of losses during model training using the proposed objective function
(i.e., group-optimization). The line labeled “original” represents the average loss over all tokens,
“important” represents the average loss over important tokens identified by each respective method,
and “unimportant” is the average loss over the remaining tokens.

5.3 ABLATION STUDY

Effect of threshold 1 In Section we dis- 50 Methods 50

cussed the threshold € (0,1) used to deter- W e O | .

mine whether a token is important within a doc- 461 mm Rho-1 (3B) RN = = e
ument for each grouping function g. A higher G R HEOR) ) g jE ﬁE %Q
1 value results in more tokens being classified T IPT A P Tl s 444
as unimportant, effectively serving as the parti- <i§ 4’ | g <:Z Qs s i R
tion threshold. Figure [3] illustrates the average ; % A - : [INE
performance across eight benchmarks for differ- L Al I el
ent partition thresholds. fine-tuned on LIMA. In P e P e

both plots, the bars attain the highest values when

the compression rate is between 90% and 55%. Figure 3: Average performance across bench-
Across this range, models trained with SFT-GO marks for Llama-3.2-3B and Llama-3.1-8B
consistently outperform the baseline-SFT, except trained on LIMA. At the 90th percentile, the
for Rho-1 in Llama-3.2-3B at the 90th percentile. bottom 90% of tokens (by g) are unimportant;
This highlights the robustness of SFT-GO. the top 10% are important.

SFT-GO Outperforms Baseline for Typle 4: Comparison of lambda settings for, LLMLin-
Static and Dynamic A In Section 3.1,  gya and TF-IDF, fine-tuned on LIMA and Alpaca. The

we introduced the weight A in Eq.[5} which  column B-SFT represents Baseline-SFT.
is a coefficient controlling the impact of
worst—group loss in our SFT-GO Objective Dataset  Model Group')ing || Static A Dynamic A B-SFT
function. By definition, X linearly decays — [IMA [imasass  TRIDE | 4189+ 05 4140048 4053 %02
within the range [Ains Amaz]- Notably, “Apaca Llama-32-38 LLMLingua || 4489 £ 021 4408 £0.17 4396+ 053
)\ remains StatiC if Amzn — Amaa:o For Alpaca  Llama-3.2-3B TF-IDF 44.52 £0.88 44.12£0.57 43.96 £0.53
the decaying case, in this ablation study,

we set Apge = 0.9 and A, = 0.05 to highlight the contrast between static and dynamic .
Table [4] shows that regardless of whether A is static or decaying, SFT-GO using LLMLingua-2
consistently outperforms the baseline-SFT by a large margin. Furthermore, SFT-GO using TF-IDF,
also outperforms the baseline-SFT. This flexibility allows A to be optimized as either a static or a
decaying value, and underlines the robustness of the SFT-GO framework.

6 CONCLUSION

This paper introduces Supervised Fine-Tuning with Group-Optimization (SFT-GO), a novel ap-
proach that enhances LLMs by focusing on different token groups via their importance to model
training. SFT-GO groups tokens based on their importance and optimizes the model using a
weighted combination of the standard cross-entropy and the worst-group loss. Our theoretical anal-
ysis demonstrates the effectiveness of the obtained model on different groups and the efficiency of
its convergence rate. Empirical evaluations across multiple token grouping strategies confirm its
effectiveness in outperforming the baseline SFT method on standard LLM benchmarks.
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ETHICS STATEMENT

Our work on improving supervised fine-tuning (SFT) methods for large language models has the
potential for significant positive societal impact. By enhancing the robustness and generalization
of SFT, our approach can make language models more effective across a wide range of applica-
tions. However, this method also poses potential risks. Like other LLM training methods, our
group-optimization approach may be influenced by biases in the input data, as this work does not
specifically address fairness or bias mitigation. One potential solution is to assess and address bias
in the data before training.

REPRODUCIBILITY STATEMENT

This paper presents both experimental and theoretical contributions and provides detailed informa-
tion to ensure reproducibility. The models used in the experiments are described in Section[d The
training dataset, evaluation benchmarks, and hyperparameters are provided in Appendices [E and [D]
All models and datasets used are open source. For the theoretical contribution, the complete proof
is included in Appendix[B] A thorough justification of the assumptions is discussed in Appendix [C]
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A  OVERVIEW DIAGRAM

Figure []provides an overview of the Supervised Fine-Tuning with Group Optimization (SFT-GO)
process.

Instruction Finetuning Data Training Batch with SFT-GO Training Objective
Token Partitions Worst Group Loss (Lyorse ) Cross Entropy Loss (£gg )
Sample | Sample | Sample |
Apply Token Grouping
—— D GO e s CEE
TF-DF =3 [ it | =3
(Statistics-Based)
Sample 3 Sample 3 Sample 3
Rho-1 | et I v NN . = 3 B3 =)
(Loss Based) =3 - =3

Figure 4: The diagram illustrates the Supervised Fine-Tuning with Group Optimization (SFT-
GO) process. Supervised fine-tuning data is processed through token grouping methods: TF-IDF
(Statistics-Based), LLMLingua-2 (Semantics-Based), and Rho-1 (Loss-Based). These groups are
fed into the SFT-GO objective, which combines standard cross-entropy loss with worst-group loss.

B PROOF

Proposition 1. Let 0 be the solution obtained by minimizing the group objective function (Eq. ,
and let 04,4 be the solution obtained by minimizing the standard autoregressive objective function.
Then, the worst-group loss of the model trained with group optimization is no greater than that of
the model trained with the standard objective:

»Cworst (é) S Eworst (9avg) . (10)

Proof. For simplicity, prove without the constant A in Eq. [3] Let 8,,, = argmin Lcg(6). By
definition of é, we obtain

Lco (w; é) = ECE(é) + Lorst (é) < Lck (eavg) + Lorst (aavg) =Lgo (eavg)- (11)
Suppose

Lyorst(0) > Luorst (Oavg)- (12)

To show
Lon(0) + Luorst(0) < Low(Bavg) + Luorst (Bavg), (13)
we need KCE(é) < Lcg(bavg). However, by deﬁr}ition of 04,4, no other ¢ can produce a smaller
loss than 6,4 on the loss Lcg. Therefore, Lyorsi (0) > Lyorst (Pavg) 1S n0t possible. O

Proposition 2. Suppose that the loss function Lao in Eq.|3|is convex and has Lipschitz continuous
subgradients, and that the parameter space © is convex, closed, and bounded such that ||6 — 6’| <
By for some constant By for all 0, ' € ©. Then, the average parameter 05:T) obtained over T
iterations of SGD achieves an expected excess error bounded by:

1
Eer] <0 —= ), (14)
<0 (75)

where the expectation is over the randomness introduced by the sampling in the algorithm.

Proof. Assume the followings

* O is convex, closed, and bounded with ||6 — §’|| < By for some constant By and for all
6,0 € ©.
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e The loss L¢o in Eq.[3]is convex in 6

* The loss Lo has Lipschitz subgradients (i.e., there exists G > 0 such as any subgradient
g € OF (0) satisfies ||g®|| < G.

Denote the subgradient of Lo at iteration ¢ by ¢ and the Euclidean projection onto © by [le-

The parameter update by the algorithm becomes 81 =[] [0®) — ng®)], where 1 is the learning
rate.

Denote the solution of L by 6* (i.e., 8 := arg min L;o(6)). Consider the excess error,
||0(t+1) . 0*H2 < ‘a(t) _ ng(t) _ 9*”2 (15)
=169 = 67[]* = 2ng"0(6) — 67) + 1|9V |- (16)

Rearrange to get:
109 — 0%[| — [|o“+") — 67|
2n

As g™ is a subgradient of the convex function L, Lao(0®)) — Lao(6*) < ¢g® (61 — 6*). Then
we obtain

g (O —6) < + g1 a7)

9 — g*|| — [|g¢+D) — g*||2
Lao(6?) ~ Leo(#") < ” 2'77 Iy g P (18)
Sum the inequality for T steps as:
T T T
(t) 6*) i (t) _ p*|) _ 11gt+1) _ p*((2 ﬂ 2
> Lco(0W) = Lao(d 2 > (116 =61 — |16 0| QZ DIZ. (19)
t=1 = =1
Using telescopic sum, derive
T
> (69 =07 = 100D = 0%[|2) = |09 — 0[] = [}97 ) — 6| (20)
t=1
<16 — o717 21)
< Bj. (22)
Using this, rewrite Eq. [T9]as:
T T
>~ [£eo(6®) = Leo(67)] < 2—9 gz 9P 23)
t=1 =1
Due to Lipschitz assumption, 23:1 llg||? < TG?. Therefore,
T
. Bj
> [Lao8) ~ Lao(8")] < 57 + 5TC* (24)

t=1
Choose learning rate n = D/ GV/T and plug it in Eq. Then we obtain
T

Z [£GO(9(t)) - ['GO(G*)} < ByGVT. (25)

t=1

For the average iterate #(1'7) = Zthl 0") /T, Jensen’s inequality gives

Lao @) < % XT: Lao(0Y). (26)
Subtract Lgo (0*) from Eq.[26|and combine with E;: then
T
Lao(@" ) = Lao(67) < %Z [£G0(9(t)) - 5G0(9*)] 27
t=1
< ByG/VT (28)
Thus, Eler] < O(l/\/T) O
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C JUSTIFICATION OF THEORETICAL ASSUMPTION

In this section, we explain why each assumption in Proof [Bl—Lipschitz subgradients, bounded do-
mains, and convexity—is not merely a technical convenience but is instead aligned with common
preprocessing practices in modern neural network training.

* Bounded-domain: In practice, one almost always enforces an effective norm bound on
network parameters via techniques such as weight-decay or clipping steps. This ensures
that ||@ — ¢’|| is bounded, exactly as our first assumption requires.

* Lipschitz continuous subgradients for Lgo: The cross-entropy term Lo g over a bounded
parameter region has bounded gradients, provided inputs and logits are bounded. In prac-
tice, inputs are bounded due to rescaling or standardization and logits are also bounded due
to techniques such as weight-decay or clipping. Taking a maximum of two such Lipschitz-
gradient functions preserve the property. Thus, if ||V Lcg|| < G, then any subgradient of
L¢o also satisfies ||0Lgo|| < G.

» Convexity: This is a widely accepted assumption in DRO (Ben-Tal et al., 2013} |Duchi et al.,
2021} Bertsimas et al., 2018} |Sagawa* et al.| 2020). Much of the fundamental theoretical
work (Sagawa* et al.l 2020) in distributionally robust optimization (DRO), including the
convergence guarantees used in our analysis, is based on classical results from convex op-
timization, such as online mirror descent and results from |[Nemirovski et al.| (2009). Addi-
tionally, the DRO methods have been successfully applied to deep neural networks in prior
empirical studies (Jiang et al.|, 2022; Mustapha et al., 2023)), suggesting that the theoreti-
cal insights from convex analysis can still offer useful guidance. Similarly, Proposition [2]
serves as a proof-of-concept that our algorithm operates within a stable and well-behaved
regime.

D DESCRIPTION OF THE BENCHMARKS

* MMLU (Hendrycks et al.,[2021)) (O-shot and 5-shot) is a comprehensive benchmark testing
model on broad knowledge and reasoning in 57 different subjects.

* MathQA (Amini et al., [2019) (0-shot) consists of math word problems that require the
extraction of key information from natural language narratives and the conversion of the
narratives into executable meaning representations.

* ARC-C (Clark et al., [2018) tests the multi-step reasoning of models via science questions
that cannot be solved with just retrieval.

* OpenBookQA (Clark et al., 2018)) evaluates a model’s ability to combine a fact with rea-
soning to answer science questions.

» HellaSwag (Zellers et al.l [2019) (0-shot) tests on broad knowledge and reasoning in 57
diverse subjects.

* Truthful QA (Lin et al.,|2022)) assesses a model’s ability to provide factually accurate an-
swers, even when questions are designed to elicit common misconceptions or falsehoods.

* IFEval (Zhou et al.| 2023b) evaluates a model’s natural language instruction following
ability.

E HYPER-PARAMETERS

E.1 LIMA

For experiments on LIMA (Zhou et al., [2023a)), we follow the hyperparameters recommended in the
original paper. For both Llama-3.2-3B and Llama-3.1-8B, we train for 15 epochs using the AdamW
optimizer (Loshchilov & Hutter, 2019) with a learning rate of le—>5, a weight decay of 0.1, an
epsilon value of 1e—8. We use a cosine annealing schedule without any warm-up steps, a batch size
of 64, and a maximum context window size of 4096.

For the implemented SFT-GO methods, we tuned the compression rate 7 and the coefficient A. The
selected hyperparameters are:

16



Under review as a conference paper at ICLR 2026

» For TF-IDF, we use an 7 value of the 90th percentile for Llama-3.2-3B and the 85th per-
centile for Llama-3.1-8B. For \, we use a static value of 0.9 for both models.

* For Rho-1, we use 7 values of 55th percentile and 70th percentile for Llama-3.2-3B and
Llama-3.1-8B, respectively. Rho-1 does not have a tunable \.

» For LLMLingua-2, we found the best 7 to be the 70th percentile for both models. For A,
we use either a decaying value from 0.9 to 0.07 for Llama-3.2-3B and a static value of 0.9
for Llama-3.1-8B.

E.2 ALPACA

For all experiments on Alpaca (Taori et al., [2023)), we train using the following protocol. For both
the Llama-3.2-3B and Llama-3.1-8B models, we use the AdamW optimizer (Loshchilov & Hutter,
2019) with an epsilon value of 1e—8 and cosine annealing schedule. We use a batch size of 32 and
a maximum context window of 4096.

For Llama-3.2-3B, we train for 1 epoch with a warm-up ratio of 0.07 and a weight decay of 0.05.
We search the optimal learning rate, 77, and A. The selected hyperparameters are:
* For the baseline-SFT, the learning rate of 6e—6 is used.

* For TF-IDF, we use an 7 value of the 70th percentile, static A of 0.9, and learning rate of
le—6.

» For Rho-1, we use an 7 value of the 70th percentile and a learning rate of 5e—7. Rho-1
does not use A by construction.

* For LLMLingua-2, we found the best 7 to be the 25th percentile. For A, we use a static
value of 0.9 and learning rate of 6e—7.

For Llama-3.1-8B, we train for 2 epochs with a warm-up ratio of 0.07 and a weight decay of 0.05.
The baseline model uses a best learning rate of 1e—7, and the SFT-GO models use a learning rate
of 6e—7. The learning rates for both the baseline and the SFT-GO models follow a cosine annealing
schedule. We tune the compression rate 7 and the coefficient A. The selected hyperparameters are:

 For TF-IDF, we use an ) value of the 60th percentile. For A, we use a static value of 0.9.

* For Rho-1, we use an 7 value of the 40th percentile. Rho-1 does not have a tunable .

» For LLMLingua-2, we found the best 7 to be the 25th percentile. For A\, we use a decaying
value from 0.9 to 0.05.

F DETAILED TRUTHFULQA & IFEVAL SCORES

Tables[5][6] [7] and[8]are the in-depth Truthful QA and IFEval scores for the different training methods
mentioned in Table[I]and Table[2]

Table 5: The performances of different training methods on the Truthful QA benchmarks. All meth-
ods are fine-tuned on the general instruction data, LIMA. The column ‘Avg’ represents the average
performance over the six sub-benchmarks in TruthfulQA.

Method Base BLEU ROUGEI1 ROUGE2 ROUGEL MCl1 MC2 Avg.

Baseline-SFT ~ Llama-3.2-3B 36.64 £ 0.65 36.79 + 1.50 29.86 £0.69 36.16+ 1.37 27.78 £0.65 44.524+0.76 35.29 £ 0.61
Rho-1 Llama-3.2-3B 3596 +£1.28 3523 +£245 28.64+196 34424222 2683+0.72 4342+048 3408+1.32
TF-IDF Llama-3.2-3B 4032 +£1.55 39.68 £0.98 33.46+2.05 37.94+0.76 2891+046 4557+0.33 37.65=+0.85

LLMLingua-2 Llama-3.2-3B  40.56 £2.13 39.14 £2.59 32394283 38704237 2842+0.66 4477+0.63 37.33+1.73
Baseline-SFT ~ Llama-3.1-8B  37.72 £3.31 41.67+£349 2130+5.79 40.22+3.12 2930+ 1.66 46.75+1.53 36.16 & 2.69

Rho-1 Llama-3.1-8B  41.62 +430 46.78 £8.80 30.26+4.71 4421+9.57 30.11+1.12 4589 +147 39.81£298
TF-IDF Llama-3.1-8B  40.61 £4.45 44.62+£642 2895+ 1.82 42.84+622 29.10+191 4534+3.14 39.06£3.16
LLMLingua-2 Llama-3.1-8B  42.03 £3.80 44.67 £3.78 31.51 £0.68 43.35+391 29.15+1.27 4575+1.06 39414204
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Table 6: The performances of different training methods on the IFEval benchmarks. All methods
are fine-tuned on the general instruction data, LIMA. The word ‘Inst’ refers to instruction, and the
word ‘Acc’ refers to accuracy. The column ‘Avg’ represents the average performance over the four
sub-benchmarks in IFEval.

Method Base Inst Level Loose Acc  Inst Level Strict Acc  Prompt Level Loose Acc  Prompt Level Strict Acc Avg.

Baseline-SFT  Llama-3.2-3B 34.00 £ 0.79 33.04 £0.82 20.04 £+ 1.26 19.04 +1.27 26.53 £+ 0.96
Rho-1 Llama-3.2-3B 34.17 £ 1.44 3345 +£1.27 20.67 + 1.80 19.93 £ 1.59 27.05 + 1.48
TF-IDF Llama-3.2-3B 3523 +0.84 34.15 £ 0.86 21.22 + 1.46 20.26 +1.21 27.71 £+ 1.03
LLMLingua-2 Llama-3.2-3B 34.96 + 1.73 34.10 £ 1.60 21.00 + 0.87 20.26 + 0.87 27.58 +£1.20
Baseline-SFT ~ Llama-3.1-8B 32.40 £2.53 31.39 £ 1.40 18.45 £ 1.66 17.60 + 1.41 24.96 + 1.42
Rho-1 Llama-3.1-8B 32.16 £1.26 30.98 + 1.25 18.56 + 1.20 17.64 £ 1.16 24.83 £1.20
TF-IDF Llama-3.1-8B 33.00 +1.29 3231 +1.32 19.55 £ 1.23 18.81 +1.14 26.15 £ 1.16
LLMLingua-2 Llama-3.1-8B 34.58 £+ 1.06 33.76 £ 1.07 20.55 + 1.48 19.74 £1.22 27.16 £ 1.18

Table 7: The performances of different training methods on the Truthful QA benchmarks. All meth-
ods are fine-tuned on the general instruction data, Alpaca. The column ‘Avg’ represents the average
performance over the six sub-benchmarks in TruthfulQA.

Method Base BLEU ROUGEI1 ROUGE2 ROUGEL MCl1 MC2 Avg.

Baseline-SFT ~ Llama-3.2-3B 47.03 £ 1.68 5293 +1.75 30.04 £0.67 52394+ 1.89 34.03+£045 51.764+0.11 44.69 £ 0.81
Rho-1 Llama-3.2-3B 5550 £ 1.18 59.41 £0.69 3344 +2.06 59.76+091 34.86+028 5249+0.24 49.24+£0.51
TF-IDF Llama-3.2-3B 5552+ 1.73 6242 +£2.29 3456+247 6247+2.69 3458+026 51.72+0.24 5026+143

LLMLingua-2 Llama-3.2-3B  57.21 £2.12 6472 +£2.61 32.73+1.69 66.17+434 3546+0.34 5258 +0.24 51484147
Baseline-SFT ~ Llama-3.1-8B  45.19 £3.39 47.03 £2.29 3598 +£5.66 44.95+2.14 3728 +0.28 53.31+0.24 43964226

Rho-1 Llama-3.1-8B  51.82+ 149 5792+1.79 33514103 5745+2.00 39.07+036 5562+0.14 49.23+0.85
TF-IDF Llama-3.1-8B 53.93 £2.51 59.14 £2.33 3528 £2.70 59414336 3883+020 55.19+0.29 5030+£1.57
LLMLingua-2 Llama-3.1-8B 5532 +242 60.17 £1.73 37.55+4.19 6147+281 3870+£0.34 5489+0.17 51.3541.58

Table 8: The performances of different training methods on the IFEval benchmarks. All methods
are fine-tuned on the general instruction data, Alpaca. The word ‘Inst’ refers to instruction, and the
word ‘Acc’ refers to accuracy. The column ‘Avg’ represents the average performance over the four
sub-benchmarks in IFEval.

Method Base Inst Level Loose Acc  Inst Level Strict Acc  Prompt Level Loose Acc  Prompt Level Strict Acc Avg.

Baseline-SFT ~ Llama-3.2-3B 37.58 £0.53 36.57 £ 0.67 24.44 4+ 0.27 23.29 +0.37 30.47 £ 0.35
Rho-1 Llama-3.2-3B 40.19 £0.82 38.95+0.77 26.32 + 1.31 25.14 £ 1.17 32.65 + 0.96
TF-IDF Llama-3.2-3B 38.87 + 0.46 37.94 + 0.55 26.84 + 0.63 25.84 + 0.66 32.37 £ 0.50
LLMLingua-2 Llama-3.2-3B 39.57 £ 0.56 38.61 £0.52 26.40 & 0.68 25.32 4047 32.47 £ 0.49
Baseline-SFT ~ Llama-3.1-8B 48.10 £ 1.24 44.53 + 0.86 3471+ 1.26 30.68 + 0.96 39.51 + 1.05
Rho-1 Llama-3.1-8B 46.59 £ 0.83 4546 £0.77 3179+ 1.13 30.76 = 1.15 38.65 = 0.95
TF-IDF Llama-3.1-8B 4592 £0.94 44.94 +0.90 31.61 +1.03 30.83 + 0.96 3832+ 091
LLMLingua-2 Llama-3.1-8B 46.06 + 1.43 4515+ 143 32,05+ 1.21 31.05+ 1.16 38.58 + 1.28

G TOKEN SPLITTING BASELINE

We examine the effectiveness of different grouping strategies against the random grouping baseline,
where the tokens are randomly split into two groups.

Table [J] reports the average performance Table 9: Ablation of grouping methods for Llama-
across methods. We observe that the ran- 3 2_3B fine-tuned on LIMA. The values report average

dom grouping strategy performs on par performance across eight evaluation benchmarks.
with Baseline-SFT. In contrast, all SFT-

GO Variants Outperform random grouping. Baseline-SFT ~ Random Group Rho-1 TF-IDF LLMLingua-2
We hypothesize that thlS iS because random Avg. 4055+£029 4097 £024  4120+£0.25 41894032 41.95+0.33
grouping does not introduce any bias to-

ward token importance.
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H ANALYSIS OF TOKEN IMPORTANCE ASSIGNMENT BY EACH GROUPING
FUNCTION

In this section, we analyze and compare three distinct methodologies — LLMLingua-2, TF-IDF,
and Rho-1—for estimating token importance in textual data. Each method is grounded in a different
underlying principle, leading to notable divergences in token selection criteria and interpretability.

LLMLingua-2 assigns token importance based on token probability, where words with lower pre-
dictive confidence are deemed more informative. This probabilistic approach inherently aligns with
syntactic structure and textual coherence, as uncertainty often arises at transitional points in a sen-
tence or phrase. Consequently, as shown in Figure[5] connective elements such as “but,” “although,”
and ““as long as” receive higher importance, suggesting that LLM Lingua emphasizes tokens that
mediate sentence flow and grammatical dependencies. This approach highlights words that govern
linguistic cohesion and sentence progression, ensuring that the model accurately predicts discourse-
level fluency rather than merely content-bearing terms.

In contrast, TF-IDF operates purely on statistical frequency, striking a balance between its frequency
within a given corpus and its rarity This methodology is entirely independent of semantic context or
model-based representations, leading to a prioritization scheme that is lexically, rather than seman-
tically or syntactically, driven. In Figure[f] tokens such as “human”, “stored” and “not intended” do
receive the highest weight, yet function words and syntactic markers such as “but” ,“and”, and “the”
comprise the majority. This underscores a fundamental limitation of TF-IDF: it overemphasizes
conjunction words regardless of their actual semantic contribution, potentially amplifying domain-
specific jargon while failing to distinguish between truly informative and merely infrequent terms.
While this property makes TF-IDF effective for retrieval-based tasks such as keyword extraction, its
lack of linguistic sensitivity renders it suboptimal for applications requiring semantic interpretation
or syntactic coherence.

Finally, the Rho-1 method assigns token importance based on excess loss, capturing tokens that ex-
hibit a disproportionately high contribution to model uncertainty. Unlike LLMLingua, which priori-
tizes syntactic fluency, and TF-IDF, which emphasizes rarity, Rho-1 systematically identifies tokens
that are inherently difficult for the model to predict. As a result as shown in Figure[7] it preferentially
assigns high importance to key domain-specific terms, such as “buns,” “heated,” and “temperature,”
while deprioritizing syntactic connectors and predictable function words. This distinction suggests
that Rho-1 operates as a semantically-aligned importance estimator, favoring words that directly
impact model learning and downstream task performance.
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Figure 5: Token importance visualization based on the LLMLingua. Importance is assigned based
on syntactic flow and function words. Dark blue indicates higher importance, while dark red repre-
sents lower importance.
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Figure 6: Token importance visualization based on the TF-IDF. This approach highlights rare terms
without considering context or syntactic structure.
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Figure 7: Token importance visualization based on Rho-1. This method assigns importance based
on training difficulty, emphasizing semantically challenging tokens.
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I  GENERATED OUTPUT BY DIFFERENT TRAINING METHODS AND ANALYSIS

This section presents example outputs from our models and analyzes their characteristics. The
examples below demonstrate how different training methods affect the style, content, and quality of
responses when models are given the same user query about planning a trip to Japan.

When comparing the outputs from different training methods, we observe distinct patterns in re-
sponse structure, content depth, and recommendation style:

* Baseline-SFT produces a moderately detailed response with conversational elements, but
includes some potentially inaccurate information (e.g., Kyoto Tower being in Tokyo).

» TF-IDF Evaluator generates the most comprehensive response with specific recommen-
dations for locations, activities, and even restaurants. The response includes more factual
details but may be overwhelming in its level of specificity.

* Rho-1 Evaluator offers the most concise response, focusing on high-level planning strat-
egy rather than specific attractions. It emphasizes experiencing both urban and rural Japan
but provides fewer concrete recommendations.

* LLMLingua-2 Evaluator delivers a well-structured, bullet-point itinerary with a balance
of specific attractions and broader cultural context. The response is organized by day and
includes diverse activities across multiple cities.

Llama-3.2-3B fine-tuned on LIMA via Baseline-SFT

User: I am planning a trip to Japan for three days, and I would like you to write an itinerary
for my journey.

Assistant: The diversity of Japan’s culture and geography means that the “’perfect” three-day
itinerary is likely to differ depending on the interests of the traveller. That said, there are a few
core experiences which typically figure highly in travellers’ lists of recommendations - so much
so, that they can often be found in competition with one another at certain locations (Tokyo’s
sushi vs Osaka’s ten-maki!). With no particular order other than ascending price-point, this is a
Tokyo-focused three-day plan which hits two of the country’s most-famous icons:

Day 1: * Start in Shinjuku and spend the morning floating around Kyoto Tower photoshoot HQ
before moving on to nearby Akihabara. * Finish off Day 1 in Ginza, either by transferring to
another part of your plan or to dinner with views of al fresco alconomers at Tokyo Station’s
Cucumber Market.

Day 2: * Head to the imperial capital for the day by switching railways at Niigata; options in-
cluding Uga Creek and Kawakita Bonodori-en include an evening destination. * Alternatively,
stay in Tokyo and focus on trying to beat your neighbour to ten-maki at one of three identi-
fied hubs - Roppongi, Shinjuku & New Tokyo, Akasfair & Ikebukuro - each featuring pros and
cons.

And finally,

Day 3: * Bus or train trips like the one to Niseko above are common, as is combining them
with a ski lesson. * Depending on timing, a Hiroshima/Tokayama trio may be missed; alterna-
tives and alternatives to Oita exist.
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Llama-3.2-3B fine-tuned on LIMA via TF-IDF Evaluator

User: I am planning a trip to Japan for three days, and I would like you to write an itinerary
for my journey.

Assistant: Here is a suggested three-day itinerary for your trip to Japan:

Day 1: Your starting point might be Tokyo, which is well-known as a modern metropolis with
a mix of traditional and innovative culture. You could consider visiting some famous land-
marks such as Tokyo Tower, the Sky Emporium in Roppongi, or the Tokyo City View obser-
vation deck located on the 52nd floor of the Almont Hotel. For those who want to experience
Japanese traditions and cultures, there are plenty options too! The Asakusa district features a
historic red-brick town hall dating back to the Meiji period (around the same time as our coun-
try’s first parliament building), and a beautiful Sensoji Temple surrounded by quaint shops sell-
ing local specialties like mochi and Kit-Kat milk chocolate buns designed exclusively for over-
seas visitors. Another popular spot among locals & tourists alike is Ueno Park -one of the most
cherished parks in Tokyo- where you’ll find over a hundred cherry trees blossoming beautifully
during May-June each year if you happen to visit at the right time! To cap off Day One, head
over to Shinjuku at dusk when all the lamps come alive; this bustling business hub also boasts
the world’s tallest free-standing structure — the Tokyo Metropolitan Government Building. On
its observatory floors, you can take in stunning panoramas of the city lights below. End your
day by treating yourself to sumptuous French cuisine at Gagome, a Michelin-starred restaurant
serving up delectable 10-course kaiseki meals prepared using locally-sourced ingredients.

Day 2: For Day Two, consider basing yourself in Kyoto instead of moving on from Tokyo.
Often referred-to as Japan’s cultural capital, Kyoto is home to more than 100 temples and
shrines that together make up half of the country’s World Heritage Site designation! Some
must-visit spots here include Kinkakuji (Golden Pavilion), Ritsurin Park, and the bamboo forest
at Arashiyama. In the evening, head out to Osaka for dinner and catch the nightly Hokkaido
Ramen Tour that departs from Nipponbashi Pier around Spm. This unique experience allows
you to savor authentic Hokkaido ramen while enjoying breathtaking views of illuminated Tokyo
towerlit against the night sky. Be sure to book in advance as slots are limited!

Day 3: On your final day, why not fly from Itami Airport in Osaka to Naha on the island of
Okinawa? This destination is often overlooked but is actually one of my favorite places in
Japan. It boasts gorgeous beaches, crystal-clear water for snorkeling and scuba diving, deli-
cious seafood cuisine (try the spicy tuna bowl at Menya Kodai!), hot springs (onsens) without
the crowds found elsewhere in Japan, and plenty of other unique attractions worth experiencing
before flying back home through Osaka or Kansai International Airports.
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Llama-3.2-3B fine-tuned on LIMA via Rho-1 Evaluator

User: I am planning a trip to Japan for three days, and I would like you to write an itinerary
for my journey.

Assistant: For three-day trips, my recommendation is to pick two regions in Japan that you
want to see and spend an equal amount of time on each. This way, you can experience the cul-
ture of Japan in its truest form, without rushing from place to place.

Example:

Day 1 & 2 - Tokyo

Day 1 - Osaka/Kyoto

Day 3 - Leave from a rail station in either Tokyo or Osaka and visit Hiroshima/Nagasaki

In this example, you will be able to experience Japanese life from start (cities) to finish (rural
areas). The rural area portion of your trip will help you to better understand why Japan has
been ranked #1 in tourism over the last several years. If there is a specific location you are
interested in seeing, feel free to adjust the plan accordingly!

Llama-3.2-3B fine-tuned on LIMA via LLMLingua-2 Evaluator

User: I am planning a trip to Japan for three days, and I would like you to write an itinerary
for my journey.

Assistant: Japan is a beautiful country that offers something unique to visitors from all over
the world. The country’s combination of modern and traditional cultures will leave any tourist
in awe. While in Tokyo, Kyoto, and Hiroshima, make sure to try out some authentic Japanese
cuisine, go on a shopping spree in search of high-quality souvenirs, and most importantly, expe-
rience first-hand how different Japanese culture really is.

Day 1: * Visit the Imperial Residence in East Tokyo to view the changing of the guard at
noon. * Take a stroll through Shinjuku’s bustling streets to see modern Japanese life. * Dine
at Ichigoyukata, one of the top restaurants in the world, for a memorable and luxurious meal.
Day 2: * Explore Akihabara, often referred to as the “Electric Appliance Town of Tochigi,” to
find some great gadgets and collectibles. * Spend your afternoon in Kyoto, widely considered
the seventh capital of Japan. * Travel to Nara during nightfall and into the evening to enjoy
this city’s stunning illuminated scenery.

Day 3: * Head to the National Museum of Emerging Sciences in Okazaki to learn about
cutting-edge technology. * Tour Huis Ten Bosch, a theme park inspired by European architec-
ture. * Spend some time exploring Hiroshima Peace Memorial Park and Atomic Bomb Dome
to reflect on the past.

As you can see, each day takes visitors to different parts of Japan - Tokyo, Kyoto, and Hi-
roshima - while also allowing them to experience the true essence of Japanese culture. This
way, they’ll get a better understanding of life in Japan as a whole. Try your best to visit Japan
sometime soon!
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