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Abstract

From altruism to antagonism, fairness plays a central role in social interactions.
But can we truly understand how fair someone is, especially without explicit
knowledge of their preferences? We cast this challenge as a multi-agent inverse
reinforcement learning problem, explicitly structuring rewards to reflect how agents
value the welfare of others. We introduce novel Bayesian strategies, reasoning
about the optimality of demonstrations and characterisation of equilibria in general-
sum Markov games. Our experiments, spanning randomised environments and a
collaborative cooking task, reveal that coherent notions of fairness can be reliably
inferred from demonstrations. Furthermore, when isolating fairness components,
we obtain a disentangled understanding of agents preferences. Crucially, we unveil
that by placing agents in different groups, we can force them to exhibit new facets
of their reward structures, cutting through ambiguity to answer the central question:
who is being fair?

1 Introduction

Fairness plays a pivotal role in decision-making in social interactions, influencing how individuals
balance their own interests with the welfare of others [35, 15, 39]. A simple yet illustrative example
is a parent playing chess with their child: rather than playing optimally, the parent might intentionally
make suboptimal moves to allow the child to experience the joy of winning or the satisfaction of
learning. Psychologically, this decision reflects a value system where utility is derived not only from
winning but also from nurturing the child’s growth and happiness.

From a game-theoretic perspective, individuals in social interactions can be viewed as rational agents
aiming to maximise their rewards through strategic decision-making [44]. In the realm of multi-agent
Reinforcement Learning (RL), reward functions are central to optimising agent policies, quantifying
the utility of actions given the presence and actions of other agents, and steering agents towards
specific behaviours [14].

Within a given environment, an agent can act in a selfish, adversarial, or altruistic manner. Without
knowledge of the agent’s reward function, our goal is to infer their motivation by placing them in
situations where they must interact with other agents. We assume that each agent acts not only to
maximise its intrinsic reward, but may wish to minimise or maximise rewards of other agents to some
extent. Then the problem we need to solve is two-fold: Firstly, inferring each agent’s intrinsic reward
function, and secondly how they value their own reward vis-a-vis those of the other agents.

We choose to tackle this novel challenge through the lens of Multi-Agent Inverse Reinforcement
Learning (MAIRL) [31], a promising tool for interpreting social interactions [9].
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Contributions. We propose practical algorithms for inferring the fairness of agents with unknown
intrinsic rewards in a multi-agent system. Framing the task as a MAIRL problem, we model agent
utilities as a linear combination of their intrinsic rewards and those of other agents. Although
simultaneously identifying rewards and fairness might be hard, we show that by placing agents within
diverse groups, we can obtain good estimates of the agents’ fairness attitudes. We enumerate our
main contributions below:

1. We formalise the fairness inference problem as an MAIRL problem, structuring rewards to reflect
how an agent values the welfare of others (Section 4).

2. We investigate reward identifiability in MAIRL (Section 5), arguing that additional assumptions
on the reward structure as well as entropy-regularisation are key elements for inference.

3. In Section 6, we present two Bayesian methods: one assumes that agents are Boltzmann-rational,
while the other makes no assumptions on the policy structure [12].

4. In Section 7, we assess these methods on fairness and reward identification. We first use randomised
Markov Games (MGs) as a general benchmark, before further experimenting on a collaborative
cooking task [7]. Our experiments show that we can learn accurate fairness and intrinsic rewards
with sufficient demonstrations and proper optimality modelling. We also show that collecting data
from multiple agent groupings improves sample efficiency and reduces any remaining ambiguities
about the agent’s preferences.

2 Related Work

Multi-Agent Inverse Reinforcement Learning. Inverse RL (IRL) and MAIRL aim to infer reward
functions that explain observed behaviours, assuming these are near-optimal [32, 31]. Defining
optimality in multi-agent settings is significantly more complex than in single-agent scenarios.
Although multi-agent problems can be decomposed into separate single-agent tasks [27, 17], many
studies emphasise the importance of equilibrium concepts [27], such as Nash equilibria, for effective
reward inference [38]. In entropy-regularised settings, equilibria are unique [46, 23, 29, 3, 30, 16, 20].

In our work, agents are assumed to have varying, hidden levels of fairness, rendering any prob-
lem general-sum. While MAIRL has been successfully applied in fully cooperative and zero-sum
settings [23, 17, 29, 20, 46], its application to general-sum games is less straightforward. Nonethe-
less, effective reward recovery has been demonstrated under structural assumptions on the reward
functions [38, 27, 16], including on real-world traffic data [30]. Despite this, MAIRL still faces
challenges in identifying true rewards in general-sum environments, even with entropy regulari-
sation [16]. One can mitigate this issue by varying the environment in which demonstrations are
provided [6, 25, 40, 4, 33]. Similarly, changing an agent’s policy in a multi-player game, can reveal
new aspects of the other agents rewards [5]. Our approach takes inspiration from this, but instead of
controlling agent policies, we deploy diverse agent combinations to disambiguate reward functions.

Bayesian IRL is a framework for inferring rewards through probabilistic reasoning [36]. Despite its
success in single-agent scenarios [10, 41, 12], its application to MAIRL remains underexplored [28,
29]. Common drawbacks to existing MAIRL methods are strong assumption about behaviours,
such as strict rationality or a specific amount of entropy regularisation [46, 27]. We propose a
Bayesian modelling approach that only assumes ϵ-optimality of the policy, which we show performs
significantly better than approaches which do make behavioural assumptions.

Fairness in MARL. Fairness is a natural concern in economics [24] and multi-agent systems [11,
21], and is typically enforced by encouraging agents to share welfare equitably or by applying
constraints [34, 1, 2, 42].

The topic of inferring fairness has been studied in behavioural economics. [8] showed that subjects
are concerned with increasing payoffs for everybody, based on a linear utility model, while [18, 19]
proposed utility-based fairness concepts such as envy, altruism and inequity aversion, as well as
behavioural concepts such as reciprocity. However, this work is generally limited to surveys and
stylised games (cf.[19]). In MAIRL, some work considered the related topic of a theory of mind
about other agents [45, 9]. However, the specific setting and techniques presented here are novel to
this paper and to the best of our knowledge, this is the first work to use MAIRL methods to infer the
fairness ideals of agents in a dynamic multi-agent game.
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3 Preliminaries

A discounted n-player Rewardless Markov Game (RMG) can be formalised as a tuple G = G(·) =
(S,A, T, γ, ω, ·), where S is a set of states, A = A1 × · · · × An is a set of discrete actions for each
player, T : S ×A → ∆S is a transition function, γ ∈ [0, 1[ is a discount factor, and ω an initial state
distribution. Throughout we suppose that, without a loss of generality, the n players have a common
action space: A = Am. We also assume that permuting player indices at the start of games does not
affect outcomes. Details on that last aspect are provided in the experiments section.

A policy π : S → ∆A is a probability distribution over a single agent’s actions. A joint policy is given
by π = (π1, . . . , πn) = (πi,π−i), where π−i refers to the joint policy of all policies except policy i.
We say we deploy a joint policy π on a game G when each player i follows policy πi. We denote
the set of policies by Π. Furthermore, we assume actions are independent, so that the probability of
taking the joint action a ∈ Am at state s under the joint policy π is π(a | s) =

∏
i πi(ai | s).

The reward function of an agent i, Ri : S ×A → R, outputs a bounded real value given a state and a
joint action. We write the joint reward function as R = (Ri)i. Plugging an arbitrary joint reward
function R to an RMG G forms a general-sum Markov Game (MG) G(R). When deploying a joint
policy π on a game G(R), we can define the Q-function of the i-th agent as:

Qπ
G(R),i(s,a) := Eπ

G(R)[

∞∑
t=0

γtRi(st,at) | s0 = s, a0 = a],

Furthermore, we can also define the value function as:

V π
G(R),i(s) :=

∑
a

π(a | s)Qπ
G(R),i(s,a), V̄ π

G(R),i := Es∼qπ [V
π
G(R),i(s)],

where qπ is the state distribution induced by π. Throughout, we will simply state we are on some
game G(R) and use the notations Qπ

i and V π
i for brevity. In an entropy-regularised n-player MG,

each agent i is regularised with some strictly positive constant βi. The entropy-regularised value
function of the i-th agent is defined as:

Ṽ π
i (s) := Eπ

G(R)[

∞∑
t=0

γtRi(s,at)− βi log πi(ai | s)].

The entropy-regularised Q̃-function is then defined analogously to Q, using Ṽ . For simplicity, we
consider regularisation parameters equal for all agents, for any regularised MGs.

Optimality in MGs. There are multiple ways to define optimality in MGs, with the Nash equilib-
rium being the most common. A joint policy π∗ is a Nash equilibrium if no agent can unilaterally
improve their own expected return by deviating from their policy, assuming the policies of the other
agents remain fixed. Formally, π∗ is a Nash equilibrium of the game G(R) if, for any agent i and any
state s,

V π∗

i (s) ≥ V
{πi}∪π∗

−i

i (s), ∀πi ∈ Π.

4 Problem formulation

We consider the problem of inferring both fairness and intrinsic rewards for agents drawn from a pool
P of size m ≥ n, when participating in a known game G. Each agent k ∈ P is assumed to possess a
unknown reward function R∗

k which they wish to maximise. This reward has two latent components:
an intrinsic reward function r∗k : S × Am → [rmin, rmax], capturing the agent’s individual welfare,
and a fairness level λ∗

k ∈ [λmin, λmax], quantifying the extent to which it values the welfare of others.

We define Pn := {p ⊆ P | |p| = n} as the set of all possible groupings of n agents drawn from P .
Each grouping p ∈ Pn represents a set of agents that are matched to play the game G. When an agent
i gets paired, we use Rp,i to indicate the reward function under grouping p.

When a grouping p plays the game, it deploys a joint policy πp ∈ Πn. We denote by D := (Πn)
|Pn|

the set of all policy deployments over the groupings. An element d = (πp)p∈Pn
∈ D specifies one

possible way of assigning joint policies to every possible grouping in the population.
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Example 4.1. Consider a pool of 3 agents P = {A,B,C} and a 2-player game G, then P2 =
{{A,B}, {A,C}, {B,C}}. A deployment d ∈ D consists of a joint policy for each grouping:

d = (π{A,B},π{A,C},π{B,C}),

where each π{i,j} ∈ Π2 defines how the two agents i and j act when paired together.

We consider a setting in which we are given demonstrations in the form of a set of trajectories
X =

⋃
p∈Pn

Xp = {τk}k, where each Xp contains trajectories collected from games played by
the grouping p. Each trajectory τk is a sequence of states visited and joint actions taken τk =
(sk0 ,a

k
0 , s

k
1 ,a

k
1 , . . . ). To enable inference over the underlying fairness structure and reward functions

from these demonstrations, we first define a general class of reward models capable of capturing both
agent-level preferences and fairness considerations.
Assumption 4.1 (Fairness-Structured Rewards). Let p ∈ Pn be a subset of n agents playing a game
G, and let Rp = (Rp,i)i∈p be the joint reward function induced by the grouping p. We assume that
Rp is fairness-structured, meaning that for each agent i ∈ p,

Rp,i(s,a) = ri(s,a) +
λi

n− 1

∑
k∈p, k ̸=i

rk(s,a).

Under the assumption that rewards follow a fairness-based structure, our goal shifts from directly
inferring the latent reward function set R∗ = {R∗

k}k∈P to disentangling their two underlying
components: the fairness levels L∗ = {λ∗

k}k∈P and the intrinsic reward functions I∗ = {r∗k}k∈P .
From this point onward, the latent reward set is summarised by its intrinsic rewards and fairness levels,
R = (L, I), with joint rewards similarly represented as R = (λ, r). Moreover, we let P(· | X )
denote the posterior over reward functions given demonstrations X .

5 Identifiability of rewards in MAIRL

Before diving into reward inference, we discuss on the identifiability of rewards in MAIRL.

5.1 Uniqueness of equilibria

General-sum MGs may admit multiple equilibria, leading to ambiguity in the set of feasible re-
wards [16]. This non-uniqueness hinders reward inference, as distinct equilibria can correspond to
radically different outcomes. A common remedy is to entropy-regularise the game, which guarantees
a unique equilibrium. In such games, optimal policies correspond to a Quantal Response Equilibrium
(QRE) [27, 46, 23, 26, 29, 3, 30, 16, 20], and take the form:

πQRE
i (ai | s) =

exp
(

1
β

∑
a−i∈An−1 π

QRE
−i (s,a−i)Q̃

πQRE

i (s, ai,a−i)
)

∑
a′
i∈A exp

(
1
β

∑
a−i∈An−1 π

QRE
−i (s,a−i)Q̃πQRE

i (s, a′i,a−i)
) , (1)

where β is the entropy regularisation coefficient. QRE policies act as softmax responses to expected
Q-values over the policies of other agents. While this introduces entropy parameters into the
inference process, it poses no fundamental obstacle: we can infer over them using a suitable prior of
the parameter. Moreover, QRE policies vary smoothly with respect to rewards, enabling the use of
gradient-based posterior sampling methods such as the Unadjusted Langevin Algorithm (ULA) [13].

5.2 Linearly separable rewards

Entropy regularisation guides the solution toward unique equilibria, but this alone does not guarantee
identifiability, especially when reward functions have a strong dependence on the joint actions.
Nonetheless, in the two-player zero-sum case, it was demonstrated that rewards are identifiable (up
to a constant) if they are linearly separable [38, 16]. In our case, this corresponds to requiring that
intrinsic rewards depend only on each agent’s own action: ri(s,a) = ri(s, ai). If we further assume
that all agents share the same intrinsic reward and fairness levels are fixed at −1, we recover the
identifiable zero-sum case from [16], making our model a natural generalisation. This suggests that
identifiability may still hold for other fairness levels. However, we do not know agents’ fairness,
introducing additional degrees of freedom. This may again render the inference problem ill-posed.
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5.3 Agent combinations and multiple equilibria

Leveraging multiple agent combinations could be crucial for resolving ambiguities in rewards. To
illustrate our point, in a 2-player game with 3 agents, we can observe up to 3 different equilibria
instead of just one. Those multiple equilibria can then be exploited for identification: if a candidate
reward function explains one grouping’s behaviour but not another’s, it can be ruled out.

This idea, largely unexplored in MAIRL, aligns with recent findings in IRL and MAIRL, which
show that varying demonstration environments helps reward identification [6, 40, 4]. Just as altering
policies in multi-agent settings can shift transition dynamics [5], observing diverse groupings across
equilibria constrains the space of compatible rewards.

6 Two Bayesian methods for inferring fairness and rewards.

All our inference algorithms use a Bayesian perspective, as it provides a principled framework for
reasoning about reward uncertainty [36]. Given a prior distribution P(·) over reward functions,
the goal of Bayesian IRL is to recover the posterior distribution P(· | X ) conditioned on a set of
demonstrations X . Inference can then proceed by sampling from the posterior using Markov Chain
Monte Carlo (MCMC) methods [36, 12, 41, 28, 29].

In this section, we introduce two Bayesian methods tailored to our multi-agent fairness setting.
The first method directly constructs a posterior distribution over reward functions by evaluating the
likelihood of observed demonstrations, assuming agents follow near-optimal responses to candidate
rewards. To model behaviours, we extend the concept of Boltzmann-rational policies to the multi-
agent setting, similarly to [20]. This approach serves as a baseline, building on a widely used Bayesian
IRL approach [22, 5, 4]. The second approach follows a two-step procedure: first constructing a
posterior over policies given demonstrations, and subsequently estimating a posterior over reward
functions conditioned on the inferred policies [12].

6.1 Direct Reward Posterior (DRP)

One way to write the reward posterior over reward functions is to directly model the likelihood
of the observed demonstrations under those rewards, i.e., P(X | R) =

∏
τ∈X P(τ | R). Since

demonstrations are a partition over groupings, we can rearrange the product accordingly:

P(X | R) =
∏

p∈Pn

∏
τ∈Xp

P(τ | Rp).

This formulation is conceptually similar to that of [4], though their focus is on multiple environments
(i.e., transition functions), whereas we consider different agent combinations.

Somehow, we need to specify the likelihood P(τ | R), modelling how agents generate trajectories
based on the underlying rewards. To get started, we suggest that demonstrated policies have a specific
probabilistic structure for each reward function. This assumption allows us to encode the idea that
reward functions should, to some degree, explain observed behaviours. As stated in Section 5, it is
useful to consider regularised MGs, where equilibrium policies take the QRE form (1). Interestingly,
the QRE form reduces to a Boltzmann-rational policy if the game is single-agent [20], a common
choice in IRL. Taking the analogy further, the entropy parameter β in this context can naturally act
as a sub-optimality coefficient: larger β implies more stochastic (less optimal) behaviour, and vice
versa. We therefore assume all agents adopt QRE policies, and denote by πQRE

R (· | ·;β) the QRE
policy under joint reward R with entropy parameter β. Given a prior belief P(β) over β, we can
marginalise it out, and obtain the trajectory likelihood:

P(τ | R) =
∏

(s,a)∈τ

∫ ∞

0

πR(a | s;β)dP(β).

In practice, the integral can be approximated via a Riemann sum over a finite partition (βk)k
of [0, βmax], where βmax is chosen sufficiently large. Substituting this expression back into the
demonstration likelihood, this yields the full DRP:

P(R | X ) ∝ P(R)
∏

p∈Pn

∏
τ∈Xp

∏
(s,a)∈τ

∫ ∞

0

πRp
(a | s;β)dP(β). (2)

5



As a result, this posterior can be explored using any standard posterior sampling techniques. For DRP,
any prior can be picked for the rewards, while the prior for beta can typically be chosen exponential,
putting more weights on near-optimality.

6.2 Policy-Oriented Reward Posterior (PORP)

In contrast to the DRP approach, where we modelled the likelihood of demonstrations given rewards,
we now take a complementary view: we place a prior over policies, and infer a posterior over policies
from the demonstrations. We hereby shift our focus to a prior on the optimality of the policies
demonstrated [12]. Recalling that D denotes the set of possible joint policy deployments over all
agent groupings, we express the posterior over rewards by marginalising over policy deployments:

P(R | X ) =

∫
D
P(R | d)dP(d | X ), (3)

assuming that rewards are conditionally independent of demonstrations given policies P(R | d,X ) =
P(R | d). This reduces the need for us to make assumptions about the policy structure. Instead, it
requires us to evaluate how likely a reward is, given a policy. Intuitively, a reward is more plausible
if the policy is nearl-optimal under it. We formalise this via a gap function ∆R : Π → R+, which
measures the suboptimality of policy π under joint reward R. The likelihood of R given π is then:

P(R | π) ∝ P(R) · e−c∆R(π),

where c controls how strongly we believe demonstrations are optimal. Since each grouping induces
a joint policy πp with a corresponding reward Rp, the rewards can be factorised across groupings:
P(R | d) =

∏
πp∈d P(Rp | πp). Plugging this into (3), we obtain:

P(R | X ) =

∫
D

1

Zd

∏
πp∈d

P(Rp) · e−c∆Rp (πp)dP(d | X ),

where Zd is a normalisation constant dependent on the specific policy deployment d. A practical
difficulty here is that Zd varies with each d, and thus cannot be pulled outside of the integral.
However, Zd is approximately constant across policies, partly because the posterior over policy
deployments P(d | X ) tends to be sharply peaked, especially when enough demonstration data is
available.1 This makes the following approximation reasonable:

P(R | X ) ∝∼

∫
D

∏
πp∈d

P(Rp) · e−c∆Rp (πp)dP(d | X ). (4)

This integral is easy to approximate, as long as a posterior over policies can be computed and sampled
from, as we show in the next paragraph. We then only need to choose an appropriate gap function
and reward prior, as we explain in the remainder of this section.

Two-step posterior sampling. We now outline a practical procedure to sample from the PORP (4).
The method proceeds in two steps:

1. Given that the likelihood of a trajectory under a policy is simply the probability of the policy
generating it, we have: P(π | τ) ∝ P(π)

∏
(s,a)∈τ π(a | s). This allows us to factor the posterior

over a full deployment of policies as:

P(d | X ) ∝
∏

πp∈d

∏
τ∈Xp

P(πp)
∏

(s,a)∈τ

πp(a | s). (5)

In the first step, we draw N samples d1, . . . ,dN from this posterior over policy deployments.
2. We can then approximate the reward posterior (4) using Monte Carlo integration:

P̂(R | X ) ∝∼
N∑

k=1

∏
πp∈dk

P(Rp) · e−c∆Rp (πp). (6)

We are then left with sampling from that approximate posterior to generate reward candidates.

This two-step approach enables efficient approximation of the posterior over joint rewards: first by
inferring plausible policies from data, and then by weighting rewards according to how well these
policies align with optimal behaviour under each reward hypothesis.

1An empirical study on the near constant nature of Zd over d is provided in Appendix B
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Gap functions. To evaluate proximity to equilibrium, we define two gap functions to use alongside
the PORP. These functions are constructed such that a value of zero indicates an equilibrium, while
larger values reflect deviations from optimality. The first is the Nash Imitation Gap (NIG) [37],
recently standardised in the MAIRL setting [16]. It measures the maximum incentive any agent has
to unilaterally deviate from the current policy (without entropy regularisation). A NIG of zero implies
that no agent can benefit from deviating, thus identifying a Nash equilibrium.

Definition 6.1 (Nash Imitation Gap (NIG)). Let G(R) be the underlying game and π some arbitrary
joint policy. The NIG is defined as:

∆V (π) := max
i∈[n]

max
πi∈Π

V̄
{πi}∪π−i

i − V̄ π
i .

Unfortunately, the NIG can become intractable as the number players increases. Additionally, the
NIG is overly sensitive to degenerate reward functions, such as constant reward functions, under
which any policy is trivially optimal. To mitigate this, we recommend using a prior that penalises
constant rewards, such as setting P(R) = 0 if Var(r) < ε with ε ∈ R+. As an alternative, we propose
the Policy Stability Gap (PSG), which addresses both computational efficiency and the handling of
degenerate rewards by leveraging the known characterisation of optimal entropy-regularised policies.

Definition 6.2 (Policy Stability Gap (PSG)). Let G(R) be the underlying game and π some arbitrary
joint policy. Let DKL be the Kullback-Leibler (KL) divergence. Furthermore, let the ‘soft response’ of
the i-th agent to the joint policy π−i, under regularisation parameter β, be:

σπ−i(ai | s;β) :=
exp

(
1
β

∑
a−i∈An−1 π−i(s,a−i)Q̃

π
i (s, ai,a−i)

)
∑

a′
i∈A exp

(
1
β

∑
a−i∈An−1 π−i(s,a−i)Q̃π

i (s, a
′
i,a−i)

) . (7)

We define the PSG as:

∆KL(π, β) := max
i∈[n]

∑
s∈S

DKL

(
πi(· | s)

∣∣∣∣ σπ−i(· | s;β)
)
.

The PSG quantifies how far a joint policy deviates from its corresponding soft response. If a policy is
indeed a QRE under the reward candidate, then its KL divergence is zero, as it satisfies the fixed-point
condition in (1). Moreover, constant reward functions yield uniform optimal policies under entropy
regularisation, and therefore cannot achieve a zero PSG unless the policy is also uniform. PSG thus
provides a natural regularisation against constant rewards. Importantly, the PSG is computationally
efficient: it requires only the evaluation of Q̃ for the current joint policy. As with the direct reward
posterior (Section 6.1), inference over the regularisation parameter β is necessary.

7 Experiments

We aim to see if we can disentangle fairness levels from intrinsic rewards and learn reliable estimates
for each. In Section 7.1, we address this question using randomised MGs, evaluating both DRP and
PORP on fairness estimation and reward accuracy, under limited number of demonstrations. We also
perform an ablation study to quantify the impact of leveraging multiple agent groupings compared to
a fixed single group. Next, in Section 7.2, we test our approach in a simplified collaborative cooking
scenario inspired from the Overcooked game [7, 43, 1, 20], exploring the boundaries of inference in
a more complex task.

To align with Section 5, we assume agents share the same intrinsic rewards (r = r1 = · · · =
rm), which are linearly separable and bounded in [0, 1]. We use an exponential prior for sub-
optimality/entropy parameters and uniform priors for rewards, fairness, and policies unless stated
otherwise. Demonstrations are generated with QRE policies using a hidden entropy parameter, and
evenly distributed across groupings.

To assess the quality of learned estimates, we measure the mean absolute error over fairness and
intrinsic rewards, rescaled such that an error of 1 matches the expected error of random guessing.
For posterior evaluation, metrics are computed over sampled batches and averaged. Additional
experimental results and details are provided in Appendices B and C.
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Figure 1: Average inference errors, over 10 seeds. Plots with error bars are provided in Appendix B.

7.1 Benchmarking on random MGs

In this experiment, we evaluate our methods with two posterior sampling strategies: Metropolis
Hastings (MH) and ULA, alongside evaluations of the proposed gap functions (NIG and PSG).

Experimental setup. For each run, we generate a game with 5 states and 3 actions, sampling symmet-
ric transition dynamics from a Dirichlet distribution to ensure invariance under player permutation:
T (s, a1, a2) = T (s, a2, a1). We limit the fairness space to [−1, 1] and fix the intrinsic rewards to +1
for a single (s, a) pair and 0 elsewhere. A pool of 3 agents is then constructed by sampling uniformly
fairness levels. Demonstrations consist of 100-timestep trajectories generated from all groupings.
When using the NIG, we apply a prior that penalises constant reward functions, as discussed in
Section 6.2. To assess the impact of multiple groupings, we conduct an ablation study with 2-agent
pools, using a single fixed grouping for all demonstrations. Fairness errors are computed only over
the first 2 agents, even for 3-agent runs, for consistent comparison.

Results. Figure 1 shows that ULA-PORP-PSG is the only method to consistently disentangle fairness
from intrinsic rewards, recovering near ground-truth estimates even with limited demonstrations.
Notably, it relies solely on the optimality prior, without any informative reward or policy prior,
demonstrating that fairness-structured rewards can be inferred almost entirely from behaviour. MH-
PORP-PSG also shows solid performance, though ULA appears more effective in sampling from the
PORP. The ablation study in Figure 1 further confirms our hypothesis on the importance of groupings,
with clear benefits observed for ULA-PORP-PSG.

7.2 Fairness inference in a collaborative cooking task.

In this experiment, we consider a task where two players act as chefs, working together to prepare
and deliver tomato soups. Players must collect tomatoes, cook them, carry dishes and deliver soups.
The kitchen layout (see Figure 2a) requires object interaction in the correct sequence and tight
coordination. While players cannot move through each other, they start at the same position to
make the game invariant to player permutations. Our setup includes 390 unique states and 5 actions
(4 directions and 1 interaction), making Bayesian reward inference challenging. Given its strong
performance in random MGs, we focus exclusively on ULA-PORP-PSG for this experiment.

Experimental setup. A player perceives a reward of one point each time they successfully deliver
a soup. By representing the game state by the tuple s = (sg, s1, s2), where sg contains global
features, and s1, s2 describe the states of each player, we confirm that the ground-truth intrinsic
reward function satisfies a linearly separable property. Indeed, deliveries only depend on one agent’s
action, and rewards are symmetric in player features: r1((sg, s1, s2), a) = r2((sg, s2, s1), a), where
ri represents intrinsic rewards when the agent takes the role of player i.

A pool of 3 agents with fixed, hidden fairness values of 0, 0.5 and 1 is initially constructed. We then
let agents demonstrate over trajectories of length 1000, and employ ULA-PORP-PSG to infer rewards.
We limit the fairness space to [0, 1]. A prior belief over intrinsic rewards P(r) ∝

∑
(s,a) r(s, a) is

chosen to encourage sparsity. Note that this prior still demands the method to identify the correct
(s, a) pairs associated with successful soup deliveries.

Results. Figure 2 presents the inferred fairness and rewards as the number of demonstrations increases.
Early on, ULA-PORP-PSG yields uncertain fairness estimates (Figure 2b), but quickly converges to

8



(a) Kitchen layout. (b) Fairness posteriors. (c) Intrinsic rewards error.

Figure 2: Experiments with ULA-PORP-PSG on the collaborative cooking task over 10 seeds. (a)
The collaborative cooking task. (b) Fairness posteriors of a single run for an increasing number of
trajectories. (c) Average intrinsic reward error over (s, a) pairs, segmented by whether the pair was
visited and whether it corresponds to a successful delivery. Standard error is given by error bars.

the correct values as data accumulates. In Figure 2c, we plot errors for both all state-action pairs and
those actually visited. The method struggles to distinguish delivery states under few demonstrations,
but becomes accurate with more than 100 trajectories. With enough samples, the true reward function
could perhaps be fully recovered. Hence, we confirm that fairness-structured rewards are identifiable
from demonstrations alone, given only weak prior information.

8 Conclusion

We introduced the MAIRL problem of disentangling fairness from intrinsic preferences. We developed
Bayesian inference techniques tailored to handle multiple agent groupings. Our experiments show
that, with a suitable optimality prior and enough demonstrations, both fairness levels and intrinsic
rewards can be reliably recovered, even in complex settings. Moreover, we find that learning from
diverse agent combinations significantly improves identifiability of the true underlying rewards.

Limitations. It remains unclear why some sampling methods underperform. Understanding this gap
could lead to more robust inference. The data needed could be high for expensive demonstrations.

Future work. One exciting direction is the development of an online inference mechanism that
actively selects promising agent combinations, rather than observing them equally frequently. This
could significantly cut the amount of demonstrations needed, hereby solving one limiting factor of
our work. Another intriguing extension involves relaxing the assumption of fixed agent preferences.
Allowing agents to express varying underlying preferences would mirror real-world dynamics more
closely.
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A Details on reward inference.

A.1 Extraction of fairness levels and intrinsic rewards

To sample from the posterior of the fairness levels L or intrinsic rewards I independently, it is always
possible to marginalise over the aspect we want to overlook:

P(L | X ) =

∫
([rmin,rmax]S×Am )m

P(R | X )dI, P(I | X ) =

∫
[λmin,λmax]m

P(R | X )dL.

B Additional experimental results

Constant nature of Zd. We conducted an empirical analysis to study the invariance of the normal-
ising factor Zd across different policy deployments d for both the NIG and PSG gaps. To achieve
this, we generated MGs of varying state and action space sizes, alongside a fixed pool of three agents,
each equipped with a common intrinsic reward function r∗ and fairness levels λ∗.

First, we sampled 200 policies from the policy posterior, representing the initial step of the PORP
procedure. For each policy deployment d, we then estimated the corresponding value of Zd.

Given that the gap distributions are highly concentrated around the ground truth parameters (λ∗, r∗),
we sampled N = 2× 104 fairness levels and intrinsic rewards from truncated normal distributions:

λi ∼ N[λmin,λmax](λ
∗, 0.16), ri ∼ N[rmin,rmax](r

∗, 0.16).

An empirical estimate of Zd was then obtained through importance sampling:

Ẑd =
1

N

N∑
i=1

∏
πp∈d

e∆(λi,ri)(πp) · (rmax − rmin)(λmax − λmin) q(λ
i, ri),

where q(λi, ri) is the density of the joint truncated normal distribution at (λi, ri). We report the
results for the configuration rmax = 1, rmin = 0, λmax = 1, and λmin = 0 in Figure 3. Our findings
indicate that Zd remains nearly constant across different policy deployments d, with variations mostly
within 20% for both gap functions.

Randomised MGs. We provide error bars (standard error) for every method evaluated in Figure 4.

Collaborative cooking. Figure 4 presents the fairness posteriors obtained from additional runs
across varying numbers of demonstrations. We also provide a comparison of error rates for pool
sizes of 2 and 3 agents in Table 1. These findings are consistent with our observations from the
randomised MG experiments: leveraging multiple agent combinations significantly reduces ambiguity
in identifying fairness and intrinsic rewards. Notably, with a pool size of 2, fairness remains practically
unidentifiable even with many demonstrations, as average performance falls below the baseline of
random guessing.

C Additional experimental details

Suboptimality/entropy parameter. To account for sub-optimality, we divided the interval [0.04, 1]
into 19 equal segments and appended an additional segment, [1, 100]. We applied an exponential
prior, Exp(6), such that for each interval [βi, βi+1], the belief measure is given by:

P([βi, βi+1]) = e−6·βi − e−6·βi+1 .

In the randomised MG experiments, the true agents policies used an entropy-parameter of 0.1. For
the collaborative cooking experiments, we used a value of 0.05.

ULA. We employed an RMSProp based implementation of ULA, with parameters ϵ = 1 ×
10−8, β = 0.99.
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Policy and reward parametrisation. We parameterise policies using a softmax representation.
Specifically, the MH and ULA samplers operate over the policy parameter space θ ∈ R|S|×|A|, with
the policy at state s and action a given by:

πθ(s, a) =
exp(θs,a)∑
a′ exp(θs,a′)

.

For reward modeling, we parameterise intrinsic reward components in R, passing them through an
offset sigmoid function for scaling:

rϕ(s, a) = sigmoid(ϕs,a) · (rmax − rmin) + rmin,

where ϕ represents the reward parameters. We also learn fairness for each agent i, λi, using similarly
an offset sigmoid representation:

λi,w = sigmoid(wi) · (λmax − λmin) + λmin,

where w are the fairness parameters.

NIG. To keep the NIG differentiable w.r.t. fairness and intrinsic rewards, we computed it under
entropy-regularisation, using a small entropy parameter β = 0.04.

Markov game parameters. For all experiments, we used a discount factor of γ = 0.9. To generate
transition probabilities in randomised Markov games, we used a Dirichlet distribution with parameter
1.2.

Collaborative cooking task. Our implementation of the cooking task is inspired from the Over-
cooked game, which is widely used as a benchmark for RL and IRL [7, 1, 20]. We provide a
visualisation of the sequence of actions needed to deliver a soup in Figure 6. In our setup, game states
are described by:

1. Player positions. Players cannot have the same position, except at the start where they
overlap.

2. Player state: carrying nothing, a plate, a tomato or a soup.
3. Pot state: empty or ready.

Notably, players do not have orientations, and have full observability of the game. A player has 5
actions:

1. Moving up, down, left and right.
2. Interact. The action’s effect depends on the nearby tiles: take a plate, put tomatoes into the

pot, etc.

We kept the game simple enough in order to be able to fit everything tractable when computing
equilibria, or for it to fit into GPU RAM when performing Bayesian inference.

Implementation. We provide the code used for our experiments at
https://github.com/53H3m/fair_mairl

Compute. For randomised Markov game experiments, we used an Intel(R) Xeon(R) CPU
E5-2683 v4 with 32GB of RAM. For the collaborative cooking task, we used Tensorflow’s GPU
acceleration to sample from the PORP, using an NVIDIA GeForce RTX 4090 GPU with 24 GB of
RAM. See Table 4 for computation times per method.
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(a) NIG. (b) PSG.

Figure 3: Rescaled normalising constant Zd computed across random games of varying sizes
(|S| × |A|), gap functions, and 200 policy deployments sampled from the policy posterior step of
the PORP, with a pool of 3 agents. Each value of Zd is estimated using 2× 104 reward samples and
rescaled by the maximum value attained across all deployments.

Table 1: Mean and standard error of fairness and intrinsic reward errors given a total of 3072
trajectories on the collaborative cooking task, grouped by pool size. Results are averaged over 10
independent runs. All error values are rescaled such that a value of 1 corresponds to the expected
error of random guessing. For fairness comparisons, errors are computed exclusively with respect to
the two agents common to both pool sizes, ensuring consistency across evaluations. Relative fairness
error is the sum of pairwise distance between agents fairness:

∑
i,j

∣∣|λi −λj | − |λ∗
i −λ∗

j |
∣∣, capturing

the fairness relationships between agents.
Pool Size Absolute Fairness Error Relative Fairness Error Intrinsic Rewards Error

2 1.16± 0.06 0.62± 0.03 0.62± 0.03
3 0.46± 0.05 0.25± 0.03 0.21± 0.01

Table 2: PORP Hyperparameters for Random MGs and Collaborative Cooking experiments.
Hyperparameter Random MGs Collaborative Cooking

c (NIG) 25
c (PSG) 15

Sampling warmup fraction 0.5
ULA learning rate (policy) 0.05 0.1

ULA Number of samples (policy) 6000
ULA learning rate (reward) 0.2

ULA Number of samples (reward) 5000 9000
MH step size (policy) 0.01 ↔ 1 N/A

MH Number of samples (policy) 16000 N/A
MH step size (reward) 0.01 ↔ 1 N/A

MH Number of samples (reward) 5000 N/A

Table 3: DRP Hyperparameters for Random MGs and Collaborative Cooking experiments.
Hyperparameter Random MGs Collaborative Cooking

Sampling warmup fraction (reward) 0.5 N/A
ULA learning rate 0.03 N/A

ULA Number of samples 5000 N/A
MH step size 0.01 ↔ 1 N/A

MH Number of samples 5000 N/A
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(a) MH-DRP.

(b) ULA-DRP.

(c) MH-PORP-NIG.

(d) ULA-PORP-NIG.

(e) MH-PORP-PSG.

(f) ULA-PORP-PSG.

Figure 4: Average inference errors over trajectories. Errors are rescaled such that an error of
1 corresponds to the expected error of random guessing. Shaded areas represent standard error,
computed over 10 distinct seeds. Relative fairness error is the sum of pairwise distance between
agents fairness:

∑
i,j

∣∣|λi − λj | − |λ∗
i − λ∗

j |
∣∣, capturing the fairness relationships between agents.
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Figure 5: Fairness posteriors obtained given an increasing number of demonstrations, for 3 different
seeds.

Table 4: Average computation time for all methods on randomised MGs with 5 states, 3 actions, and
384 trajectories, evaluated on an Intel(R) Xeon(R) CPU E5-2683 v4.

Method Computation Time (seconds)
ULA-PORP-NIG 6896.5
MH-PORP-NIG 4711.0

ULA-DRP 1785.0
ULA-PORP-PSG 1098.0
MH-PORP-PSG 933.0

MH-DRP 732.5
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(a) Step 0 (b) Step 1 (c) Step 2 (d) Step 3 (e) Step 4

(f) Step 5 (g) Step 6 (h) Step 7 (i) Step 8 (j) Step 9

Figure 6: Example trajectory extract in the collaborative cooking task. Blue and red circles represent
the players. The red tile marks the tomato stand, while the white circle indicates the plate stand.
The top black/yellow circle shows the pot, with black representing empty and yellow representing
filled. Finally, the green tile designates the delivery location where players must deliver their soup.
(a) players pick up a plate and a tomato. (d) Blue player puts its tomato into the pot: the soup is ready.
(g) Red player fills its plate with soup. (j) Red player delivers the soup.
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