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Abstract
Mixed-integer rounding (MIR) cutting planes (cuts) are effective at improving
the strength of a linear relaxation for mixed-integer linear programming (MIP)
problems. The cuts in this family are derived by aggregating constraints then
rounding coefficients, but finding the strongest MIR cuts requires optimizing
a costly MIP for the aggregation step, so in practice, heuristic strategies for
separating fractional points are employed. We propose to improve MIR cut gen-
eration in the context of a common scenario in applications, where constraints
remain fixed but costs are varied. We present a hybrid cut generation framework
in which we train a machine learning (ML) model to classify which constraints
are involved in useful MIR cuts based on fractional points from relaxations of
the problem. At test time, the predictions of the ML model create a reduced
MIP-based generator of MIR cuts. In our experiments, we create an instance
family from each of three benchmark MIP instances by performing a careful and
costly perturbation of objective coefficients to build a dataset of 1,000 fractional
points to be separated over the same constraint set. The results indicate that the
reduced separator better strengthens the bound in each round of cut generation,
particularly for instances in which the full separator failed to find strong cuts.

Keywords: integer programming, machine learning, cutting planes, aggregations,
mixed-integer rounding inequalities
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1 Introduction
Cutting planes, or cuts, are used by mixed-integer linear programming (MIP)
solvers to strengthen formulations and improve running time. Some cut families
contain a large number of possible inequalities, leading to heuristic separation strate-
gies and prompting research into optimization-based generation to find the best
cuts [2, 6, 9, 13]. In this work, we investigate a learning-based approach to reduce
the computational cost of MIP subproblems for generation of mixed-integer rounding
(MIR) inequalities [19, 21].

An MIR cut is derived via a weighted aggregation of a subset of constraints, fol-
lowed by appropriate rounding of the resulting base inequality’s coefficients. Selecting
which constraints to aggregate is, in practice, based on computationally-inexpensive
heuristics [1, 18], which may miss strong MIR cuts obtainable by optimization. How-
ever, applications often involve repeatedly solving related optimization problems,
which provides an opportunity for inferring helpful structural properties. Specifically,
we consider a practitioner that solves a set of MIP instances with the same constraints
but varying cost vectors.

We ask the following question: assuming access to samples of a distribution of sim-
ilar MIP instances, can one learn useful constraint selection models from an expensive
optimization-based generator for MIR cuts? Our work tests two hypotheses: (i) infor-
mation about effective cutting planes for a distribution of MIP instances can inform
the separation of cutting planes for similar but previously unseen MIP instances; and
(ii) an optimization-based generator can be accelerated by carefully fixing to zero
some of its decision variables, i.e., eliminating some constraints from consideration,
at little sacrifice to the dual bound improvement obtained by the original separator.
Our approach can be seen as a hybrid of machine learning (ML) and MIP: an ML
model accelerates a MIP-based generator.

We frame the ML problem as supervised binary classification of constraints. The
MIP-based separator of Dash, Günlük, and Lodi [9] is executed for a number of rounds
on each training instance to produce a portfolio of cuts, tracking which constraints
are aggregated to produce each cut. Binary “labels” are assigned to each constraint
depending on whether it was selected to generate a good MIR cut or not. Given a
MIP instance, a fractional vertex to be separated, and a particular constraint, we
devise and compute a set of 54 features that contextualize the relationship between
that constraint and the vertex, as well as that constraint and other constraints of the
problem. The supervised learning problem is then one of finding an accurate mapping
from features to labels. Given an unseen test instance in which a different fractional
point is to be cut, the trained ML classifier selects a subset of promising constraints,
after which MIP-based MIR separation is restricted only to those constraints.

We test our framework on datasets derived from three benchmark instances from
the 2017 Mixed Integer Programming Library (MIPLIB 2017) [14] that have nontrivial
integrality gaps, i.e., the objective value of an integer-optimal solution is significantly
different than the optimal value after relaxing integrality constraints. We create a large
dataset from each base MIPLIB 2017 instance by perturbing the objective function
coefficients to find 1,000 different initial fractional solutions that need to be cut off.
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Our results indicate that learning a useful classifier is indeed possible and can result
in favorable performance compared to running the separator with all constraints.

2 Related Work
In recent years, several papers have explored ML techniques to enhance optimization
solvers. In the context of general-purpose MIP solvers, ML has been used to design
branching strategies [16] and to decide when and which heuristics to run [7]. As for
cutting planes, most work has been on selecting which cuts to add from a pool of cuts
[15, 23, 24], while a more recent paper has tackled the problem of deciding whether
to generate cuts only at the root node of the branch-and-bound tree [5].

One stream of literature has studied Chvátal-Gomory (CG) cuts, which also involve
aggregation of constraints followed by a different rounding step [8]. Balcan et al. [3]
study the sample complexity of learning CG constraint aggregation coefficients. They
establish lower bounds on the number of samples (instances) needed to accurately
estimate expected search tree size resulting from adding CG cuts with specific coeffi-
cients. Deza et al. [11] present a framework to predict a set of useful CG coefficients for
aggregation using graph neural networks. Becu et al. [4] use the aggregation weights
of known instance variations to Gomory mixed integer cuts for other variations of the
same instance. Dragotto et al. [12] generate more general split cuts with the help of
ML, identifying a split disjunction by a neural network.

A more comprehensive survey of ML for cuts literature was recently completed
by Deza and Khalil [10]. We note that ML-based approaches have also been used to
exploit problem structures and accelerate the solving process for specific classes of
problems (see, e.g., Larsen et al. [17], Xavier et al. [27]).

3 Methodology
In this section, we describe how to optimize over MIR cuts, add in a step to produce a
pool of cuts, introduce our data generation procedure, set up our classification model,
and explain how this is then given to a reduced MIR generator.

We consider a MIP problem over integer variables x ∈ Zn
≥0 and continuous variables

v ∈ Rp
≥0 associated to rational objective coefficients f and g, subject to m constraints

with rational data A, C, b:

min
x,v

f Tx + gTv

Ax + Cv = b,

x, v ≥ 0,

x ∈ Zn,

v ∈ Rp.

(1)

Let (x⋆, v⋆) be a fractional feasible solution to the linear relaxation of (1), obtained
by relaxing the integrality restrictions. Our target is to find cuts that are violated by
(x⋆, v⋆) but valid for (1), i.e., satisfied by all integer-feasible points.
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3.1 Generation of MIR Cuts
We first provide an overview of MIR inequalities, following the presentation by Dash,
Günlük, and Lodi [9], based on [20] and [26]. We then review the optimization-based
approach by Dash, Günlük, and Lodi [9] to identifying strong cuts in the family.

3.1.1 Relaxed MIR Inequalities
Let λ ∈ Rm be a set of multipliers that we treat as a row vector to aggregate the
constraints of the MIP (1) into a single constraint

λAx + λCv = λb. (2)

Suppose α̂ ∈ [0, 1]n and ᾱ ∈ Zn satisfy α̂ + ᾱ ≥ λA, where α̂ represents the
fractional component. Further, let c+ ∈ Rp

≥0 with c+ ≥ max{0, λC}. Finally, let
β̂ ∈ [0, 1] and β̄ ∈ Z such that β̂+β̄ ≤ λb, in which β̂ is again the fractional component.
Then, for any (x, v) feasible to the linear relaxation of (1), it holds that

(α̂ + ᾱ)x + c+v ≥ λAx + λCv = λb ≥ β̂ + β̄.

We can then deduce the validity of the following “relaxed” MIR inequality [9, Eq. (11)]:

α̂x + β̂ᾱx + c+v ≥ β̂
(
β̄ + 1

)
.

3.1.2 Separating from the Family of MIR Inequalities
MIR cuts are effective in practice at strengthening a MIP’s linear relaxation [1, 19].
However, as there are infinitely many aggregation vectors λ, each of which yields a
valid cut, finding the “best” cut to add is a nontrivial task. One approach to computing
a “good” MIR cut is to formulate a MIP to find an aggregation vector that maximizes
some measure of violation of a cut by a fractional solution. Given a MIP instance and
a fractional solution (x⋆, v⋆), Dash, Günlük, and Lodi [9, Eqs. (12)–(18)] propose the
following MIP, referred to as Appx-MIR-Sep, to (approximately) search for the MIR
cut most violated by (x⋆, v⋆):

max
λ,α̂,ᾱ,c+,β̂,β̄,{∆k,πk}k∈K ,∆

∑
k∈K

εk∆k −
(
c+v⋆ + α̂x⋆

)
(3a)

α̂ + ᾱ ≥ λA (3b)
c+ ≥ λC (3c)
β̂ + β̄ ≤ λb (3d)

β̂ ≥
∑
k∈K

εkπk (3e)

∆ =
(
β̄ + 1

)
− ᾱx⋆ (3f)

∆k ≤ ∆ ∀ k ∈ K (3g)
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∆k ≤ πk ∀ k ∈ K (3h)
c+ ≥ 0 (3i)
α̂, β̂ ∈ [0, 1] (3j)
π ∈ {0, 1}|K| (3k)
ᾱ, β̄ ∈ Z. (3l)

Since computing the violation of an MIR cut would yield a nonlinear model, Appx-
MIR-Sep approximates the violation ε of a cut by assuming it is representable over
a set E = {εk = 2−k : k ∈ K}. Any feasible solution to Appx-MIR-Sep can be used
to compute an MIR cut to add to the linear relaxation of the problem. The reader is
referred to [9] for a more complete account of this model.

What is of interest to us here is that MIR cuts empirically close large gaps and can
be separated via a MIP. As cut separation is most useful at the root node of a branch-
and-bound tree, the de facto procedure for MIP solving, it is rather impractical to
solve another complex separation MIP to facilitate solving the original MIP instance.
However, since the number of variables in Appx-MIR-Sep depends on the number
of constraints in the original MIP, a straightforward way to reduce Appx-MIR-Sep’s
computational cost is to reduce the number of constraints to aggregate (i.e., fix some
entries of the vector λ to zero a priori). This is what we will attempt to do by training
an ML classifier that identifies “useful” versus “unimportant” constraints.

3.2 Populating a Pool of Cuts
Given a fractional point, Appx-MIR-Sep seeks the most violated MIR cut. However,
violation is one of many cut quality metrics [25]. An arguably more relevant metric, for
which violation serves as a tractable but imperfect substitute, is percent (integrality)
gap closed, defined as the percent of the “gap” between the optimal objective value of
the MIP (zI) and of its LP relaxation (zLP ) that is closed by adding cuts (leading to
objective value z): GapClosed ..= 100 · (z − zLP )/(zI − zLP ).

To increase the chance of obtaining MIR cuts with large gap closed via
Appx-MIR-Sep, we use the fact that any feasible solution to Appx-MIR-Sep gives a
valid cut, and populate a “pool” of cuts using the off-the-shelf capability of modern
solvers to collect multiple feasible solutions to a MIP. These alternative (and poten-
tially suboptimal for Appx-MIR-Sep) cuts may result in a larger gap closed than the
most violated cut. Similarly to the approach by Bonami, Cornuéjols, Dash, Fischetti,
and Lodi [6] and Dash, Günlük, and Lodi [9], we populate the cut pool with all
the incumbent solutions that the solver finds while solving Appx-MIR-Sep within a
given time limit, add all the cuts in the pool to the linear relaxation, get a new frac-
tional solution to separate, and repeat this procedure iteratively until Appx-MIR-Sep
is unable to find a separating cut. Algorithm 1 describes the complete cutting loop;
lines 3 and 4 are skipped when the classification model is not used, resulting in the
benchmark “full” separator that operates on all constraints.
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Algorithm 1: Cutting loop (optionally with ML)
Input: MIP instance P in the form (1); ML model ζ (optional)

1 Initialize: LP ← LP relaxation of P ; (x⋆, v⋆)← Solve(LP )
2 while x⋆ ̸∈ Zn do
3 featuresC ← get features(P, x⋆, v⋆)
4 Λ← ζ(featuresC) ; /* Λ are constraints ζ predicts to be useful */
5 C ← Solve Appx-MIR-Sep(x⋆, v⋆, Λ) ; /* C is a set of cuts */
6 if C = ∅ then
7 break
8 else
9 LP ← LP ∪ C ; /* Add cuts to LP */

10 (x̂, v̂)← Solve(LP )
11 if (x̂, v̂) = (x⋆, v⋆) then
12 break
13 else
14 (x⋆, v⋆)← (x̂, v̂)

3.3 Learning for MIR Cuts
3.3.1 Data Generation
To conduct supervised learning, one must assume access to a sample over a distribu-
tion of similar MIP instances. While these may be available in a variety of application
domains or through synthetic generators for specific families of combinatorial prob-
lems, we have opted to generate perturbations of instances from the MIPLIB 2017
library of benchmark MIP instances [14]. We will now detail that generation process.

Consider a “base” MIP instance P in the form (1). If the base MIP instance
contains inequality constraints, we explicitly add continuous slack variables, and we
add variable upper bounds as rows of the constraint matrix. We generate a new
instance P̃ ..= min{f̃ Tx+ g̃Tv : Ax+Cv = b, x ∈ Zn, v ∈ Rp, x, v ≥ 0} by replacing the
objective coefficients with random vectors f̃ and g̃ drawn from a truncated normal
distribution, then using rejection sampling to ensure that P̃ has a different optimal
solution to its linear relaxation compared to P . Specifically, every positive component
of (f, g) is replaced by max{0, u+}, where u+ is normally distributed with mean and
variance computed based on all positive components of (f, g), while every negative
component of (f, g) is replaced by min{0, u−} where u− is normally distributed with
mean and variance computed based on the negative components of (f, g).

We denote by P the instance family generated from the base instance P , where
each member of the family is identified by a different objective vector. For any pair
of instances from the same family, Appx-MIR-Sep only differs in the objective func-
tion (3a) and in constraint (3f). Following Algorithm 1, for every instance P ∈ P, we
find a solution (x⋆, v⋆)0 to its linear relaxation. If this solution is not integer-feasible,
we solve Appx-MIR-Sep to obtain a set of MIR cuts that we add to the linear relax-
ation, for which we then compute a new solution (x⋆, v⋆)1. We repeat these rounds of
cuts until we find a feasible solution to the original MIP instance, or Appx-MIR-Sep
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cannot find a cut that separates the last fractional solution. We generate only rank-
1 cuts, i.e., previously-computed cuts are not used in the derivation of new cuts, so
the only difference between Appx-MIR-Sep in different rounds is the objective func-
tion (3a) and constraint (3f). Finally, after each run of Appx-MIR-Sep, we record the
multiplier vector λ for each cut in the solution pool.

3.3.2 Classification Models
To test both our hypotheses, we train an ML model that uses information about a
MIP instance and a fractional solution and predicts a subset of constraints that will
be useful in generating MIR cuts. The prediction is made for each constraint of the
instance independently.

Each observation in our dataset corresponds to a constraint of an instance P̃ and a
round of separation. For example, for an instance family P with |P| = 10, constructed
from a base instance P with m = 5 constraints, for which the cutting loop did 2
rounds, the dataset would have 10 × 5 × 2 = 100 observations. We construct a set
of features based on previous work on ML for MIP [16], and on measures that are
traditionally used to score cuts [25], which we describe in Table 1. These features
describe the instance (e.g., through statistics of the cost coefficients), the constraint
(e.g., the constraint’s constant side bi, 1 ≤ i ≤ m), and the relationship between the
fractional point of interest and the constraint (e.g., the value of the corresponding
slack variable, the distance between the constraint’s hyperplane and the point). This
results in a set of 54 features that will serve as input to the binary classification model.
In Algorithm 1, the features are computed in line 3.

As for the labels, the observation corresponding to constraint i on any round is
assigned a positive label if |λi| > ϵ for any cut in the cut pool of that round of
separation, and a negative label otherwise. This gives us a dataset that can be used
for the traditional binary classification task in ML.

3.4 Solving a Reduced Separator
We can use the output of the ML model to predict which constraints will be useful
to generate MIR cuts. Then, at each iteration of the cutting loop in Algorithm 1,
we compute the features for the current fractional solution on line 3, and use the
ML model to classify each constraint on line 4. We use the predicted class for each
constraint to update Appx-MIR-Sep and fix λi = 0 for those constraints that the ML
model classified in the negative class. We call this the “reduced” separator.

4 Computational Experiments
In our experiments, we compare the “reduced” and “full” separators to evaluate how
removing constraints that are predicted to be unimportant affects Appx-MIR-Sep.

4.1 Evaluation and Computational Setup
To evaluate the impact of a set of cuts, we use the percent integrality gap closed
as defined in Section 3.2. We implement the pipeline described above and test it on
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Table 1 Features for the ith constraint Ai·x + Ci·v = bi and a fractional solution (x⋆, v⋆) of a MIP.

Feature Description Count

Right-hand side (RHS) The raw value of bi and a categorical feature if it is nonzero 2
Slack The raw value of the slack variable and a categorical feature

if it is nonzero
2

Dual The value of the dual variable in the optimal LP solution 1
Degree The number of variables with nonzero coefficients in the con-

straint: considering all the variables, only the variables that
are nonzero at (x⋆, v⋆), only the variables that are zero at
(x⋆, v⋆), and only the variables that are at their upper bound
at (x⋆, v⋆)

3

Sense One-hot encoding of the sense of the constraint 2
Stats of the coefficients Mean, standard deviation, minimum, and maximum of the

coefficients: considering all the variables, only the variables
that are nonzero at (x⋆, v⋆), only the variables that are zero
at (x⋆, v⋆), and only the variables that are at their upper
bound at (x⋆, v⋆)

16

Stats of the ratios Mean, standard deviation, minimum, and maximum of the
ratios between the coefficients and the RHS: considering all
the variables, only the variables that are nonzero at (x⋆, v⋆),
only the variables that are zero at (x⋆, v⋆), and only the
variables that are at their upper bound at (x⋆, v⋆)

16

Euclidean distance to (x⋆, v⋆) From [25] 1
Relative violation From [25] 1
Adjusted distance to (x⋆, v⋆) From [25] 1
Objective function parallelism From [25] 1
Stats of the cost vector Mean, standard deviation, minimum, and maximum of the

cost coefficients of the variables with nonzero coefficients in
the constraint

4

We normalize the absolute value of the cost vector, and com-
pute the number of variables on the top 1, 5, 10, and 20%
of the costs that appear with non zero coefficient in the con-
straint

4

Total count 54

instance families derived from three base instances in the benchmark set of MIPLIB
2017 [14]: binkar10 1, gen-ip054, and neos5.

These three base instances are selected from 37 MIPLIB 2017 “Benchmark”
instances for which two conditions are satisfied: (1) random perturbations of the
objective function coefficients lead to 1,000 distinct LP relaxation optima; and (2)
Algorithm 1 closes at least 5% gap on average across the random variations. We limit
our experiments to only three of these 37 potential instances due to the high computa-
tional costs of running our experiments and limitations on our shared computational
resources: for each of the 1,000 instances in an instance family, the cut generation loop
of Algorithm 1 runs for up to three hours. Table 2 provides characteristics on the three
chosen instances, which sample some of the diversity of the broader set: binkar10 1
and neos5 are mixed integer, whereas gen-ip054 is pure integer; binkar10 1 has
more than 2,000 variables and 1,000 constraints, whereas the other two are smaller.

We run Algorithm 1 on each of the 1,000 variations from each instance family.
We set the time limit to 10 minutes for each individual run of Appx-MIR-Sep, and to
three hours for the entire cutting loop per instance. The instances are then split into
three disjoint parts: “training”, “test”, and “unseen” sets. The training and test
sets are an 80/20 split among instances in which MIR cuts perform well: we discard
perturbed instances from each family that have less than 5% gap closed at the end of
the cutting loop. Table 2 shows the number of instances in each of the sets.
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Table 2 Descriptive statistics for the three instance families.

Family Constraints Continuous vars. Integer vars. Training Test Unseen

binkar10 1 1026 2128 170 478 120 402
gen-ip054 27 0 30 416 104 480
neos5 63 10 53 611 153 236

Training set: For each instance family, we use the corresponding training data to fit
a gradient-boosted tree ensemble using sklearn’s [22] implementation with default
hyperparameters except for the maximum tree depth, which we switch from 3 to
5. Table 3 shows that the trained models perform fairly well as measured by their
accuracy, precision (fraction of constraints predicted to be useful that are labeled
as useful), and recall (fraction of constraints labeled as useful that are predicted to
be useful). For example, for instance binark10 1, 80% of the constraints that the
classifier selects to keep have a label of “useful”, and 93% of the constraints with a
label of “useful” are correctly classified.

Test set: We next use the trained ML models to reduce the Appx-MIR-Sep problem
in each round of separation. Since we know a priori that the reduced separator closes
more than 5% gap in these variations, this comparison favors the full separator.

Table 3 Trained classifier performance on the training and test sets.

Training Test

Family Accuracy Precision Recall Accuracy Precision Recall

binkar10 1 0.819 0.786 0.928 0.823 0.794 0.926
gen-ip054 0.878 0.839 0.778 0.820 0.674 0.846
neos5 0.940 0.776 0.820 0.936 0.755 0.833

Unseen set: The last set is of instances from each family not considered in the train-
ing and test sets, i.e., objective functions that lead to an initial fractional optimal
solution from which the eventual gap closed is less than 5% at the end of the cut-
ting loop. Effectively, we investigate if this negative performance is inherent to these
instances, i.e., we cannot find good MIR cuts from these starting points, or if the
learned “useful” constraint set produces better MIR cuts from Appx-MIR-Sep.

4.2 Computational Results
Figures 1 to 3 show the effect of the reduced separator for each instance family. The
three panels correspond to the training set on the left, test set in the middle, and
unseen set on the right. The horizontal axis is the round of separation. The bottom
subplots show the number of instances for which the cutting loop does not terminate
by that round. In the top subplots, the vertical axis is percent integrality gap closed.
The solid lines show the average percent gap closed calculated over only the instances
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Table 4 Average of number of rounds, number of generated cuts, and seconds to solve
Appx-MIR-Sep for each dataset.

Rounds (#) Cuts (#) Time per round (s)

Family Set Full Reduced Full Reduced Full Reduced

binkar10 1 Training 24.01 10.51 16.02 16.15 307.24 496.79
Test 24.48 11.13 16.40 16.31 296.66 501.85
Unseen 11.87 10.65 15.42 16.43 231.24 492.73

gen-ip054 Training 4.92 4.47 16.14 15.83 279.06 270.32
Test 4.98 4.30 15.79 15.55 279.62 289.08
Unseen 2.96 3.48 14.40 14.66 172.85 194.79

neos5 Training 2.79 1.93 5.27 4.61 107.15 226.92
Test 2.59 1.89 5.25 4.90 103.11 255.45
Unseen 1.07 1.42 4.93 4.61 0.02 235.40

that require at least that many rounds of the cutting plane loop. This set of surviving
instances may differ across the methods, and the behavior is nonmonotone since an
instance with a high gap closed no longer contributes to the average after its last
round of cuts. The error bars show the standard deviation of the percent gap closed
over the surviving instances. The dashed lines show the average percent gap closed
across all instances in the family, where the gap closed for an instance that terminates
at an earlier round remains constant for all subsequent rounds.

We will also refer to Table 4 for averaged statistics for each instance family, dataset,
and method for (1) number of cutting plane rounds, (2) number of generated cuts,
and (3) time for cut generation. Generally, the reduced separator uses fewer rounds,
generates a comparable number of cuts, and requires more time. We do not focus on
cut generation time, as it can be easily skewed: an instance that does no rounds of
cuts at all would have a lowest-possible value of zero on that metric.

4.2.1 Instance Family binkar10 1

Figure 1 shows the results for instance family binkar10 1. We first discuss the training
and test sets. The reduced separator tends to close a larger percent of the integrality
gap for the instances that survive to a given round (these may not be the same
subset across methods), However, as seen in the bottom subplots and in Table 4,
the cutting loop with the reduced separator tends to terminate earlier. This means
that the reduced separator terminates for many instances at an early round with a
small gap closed. The reduced separator may close more gap by that round for those
instances, but the full generator continues for more rounds and eventually tends to
provide better bounds. This is seen with the dashed lines in the top subplots.

The reduced separator is about 30% smaller than the full separator for this family,
for both training and test sets. However, from Table 4, we see that cut generation time
is larger on average. Hence, the smaller Appx-MIR-Sep requires more time to solve
to optimality. The reduced separator generates around the same number of cuts in
total as the full separator, but it obtains these over fewer rounds. Thus, the reduced
separator finds more cuts in each round, on average, which may explain the observed
larger gap closed (for the surviving instances per round).
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Fig. 1 Effect of reduced separator on instance family binkar10 1.

Table 4 does not state the cumulative time spent on cut generation per method.
With respect to that metric, for the training and test sets, since the reduced generator
requires significantly fewer rounds, it also takes 25–30% less time on average, even
though each round is more expensive.

For the unseen set, the reduced separator, using 71% of the constraints, closes
more gap than the full separator for all variations, with (slightly) fewer rounds of the
cutting loop, but on average Appx-MIR-Sep running time (both per round and, for
this set, cumulative) is higher. This additional cost is related to (and justified by) the
higher “success” (in terms of cut quality) solving Appx-MIR-Sep for these instances.
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Fig. 2 Effect of reduced separator on instance family gen-ip054.

4.2.2 Instance Family gen-ip054

Figure 2 shows the results for instance family gen-ip054. We again first analyze the
training and test sets. Both generators have a similar initial progression of average
percent gap closed for surviving instances in these sets. The cutting loop for the
reduced separator terminates after slightly fewer iterations in most cases. However, on
the instances that do not terminate early, the full separator closes more gap. Around
30% of the constraints are labeled “unimportant” by the classifier for both training
and test sets. In contrast to the situation with binkar10 1, for this family we observe
in Table 4 that there is a slight decrease in time to solve Appx-MIR-Sep for the
training set, and a slight increase for the test set, but the values are comparable.

For the unseen set, the reduced separator, using 75% of the constraints, again
outperforms the full separator in terms of gap closed (both on average and per round)
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Fig. 3 Effect of reduced separator on instance family neos5.

and notably closes 100% of the gap for one instance. The reduced separator also
performs more cutting plane rounds on average than the full generator, and each round
requires more time, leading to a 30% increase in cumulative time on cut generation.

4.2.3 Instance Family neos5

Finally, Figure 3 shows our results for instance family neos5. We observe that the full
separator closes more gap than the reduced separator. On average, for the training
and test sets, only 15% of the constraints are labeled “useful”, but, from Table 4, the
average cut generation time (per round), i.e., the average time to prove optimality
of Appx-MIR-Sep, is still longer for the reduced separator. For the unseen set, the
reduced separator uses 16% of the constraints and consistently outperforms the full
separator, closing 100% of the gap for one instance.
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5 Conclusion
Takeaway 1: Figures 1 to 3 show that the reduced separator tracks the full separator

reasonably well on both training and test instances. Importantly, these
instances are ones for which we know that the full separator closes
at least 5% of the gap. Since the ML model is trained to imitate the
cuts produced by the full separator on the training instances, it is not
surprising that the performance of the reduced separator is typically
upper bounded by that of the full separator.

Takeaway 2: The results shown for the unseen set in Figures 1 to 3 are espe-
cially promising, as they show the potential for incorporating ML into
optimization-based separators. When optimizing purely for violation,
the total gap closed by the full separator is negligible, but when using
the information learned by the ML models, the (reduced) separator
generates cuts that close much more gap, the true goal in cut generation.

We have explored the potential of a rather simple binary classification formula-
tion for the problem of reducing the set of constraints that are considered by an
optimization-based cut separator. While more sophisticated ML models such as graph
neural networks or transformers could be used instead of a gradient-boosted tree
ensemble, we have chosen the latter for its simplicity in terms of fitting and amount of
training data it requires. We are yet to achieve a significant improvement in the run-
ning time of the reduced MIR separator as compared to the full separator. We believe
this to be an important step towards operationalizing this hybrid approach. Although
we have considered only three MIPLIB 2017-derived instance datasets, we note that
generating the training data and evaluating both the full and reduced separators
on the training and test instances required hundreds of CPU days in computation.
Expanding the experiments to more instance families both from MIPLIB 2017 and
other more structured problem classes is of immediate interest.
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[27] Álinson S. Xavier, Feng Qiu, and Shabbir Ahmed. Learning to solve large-scale
security-constrained unit commitment problems. INFORMS J. Comput., 33(2):
739–756, 2021. URL https://doi.org/10.1287/ijoc.2020.0976.

17

https://doi.org/10.1287/ijoc.2020.0976

	Introduction
	Related Work
	Methodology
	Generation of MIR Cuts
	Relaxed MIR Inequalities
	Separating from the Family of MIR Inequalities

	Populating a Pool of Cuts
	Learning for MIR Cuts
	Data Generation
	Classification Models

	Solving a Reduced Separator

	Computational Experiments
	Evaluation and Computational Setup
	Computational Results
	Instance Family binkar10_1
	Instance Family gen-ip054
	Instance Family neos5


	Conclusion

