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Abstract

We empirically investigate the impact of learning randomly generated labels in
parallel to class labels in supervised learning on memorization, model complexity,
and generalization in deep neural networks. To this end, we introduce a multi-head
network architecture as an extension of standard CNN architectures. Inspired
by methods used in fair AI, our approach allows for the unlearning of random
labels, preventing the network from memorizing individual samples. Based on
the concept of Rademacher complexity, we first use our proposed method as a
complexity metric to analyze the effects of common regularization techniques and
challenge the traditional understanding of feature extraction and classification in
CNNs. Second, we propose a novel regularizer that effectively reduces sample
memorization. However, contrary to the predictions of classical statistical learning
theory, we do not observe improvements in generalization.

1 Introduction

Modern deep learning models are highly prone to overfitting due to their dramatic overparameteriza-
tion (Nakkiran et al., 2021). These models not only overfit under standard training conditions, but
can also achieve 100% training accuracy on datasets with randomly generated labels (Zhang et al.,
2021). This demonstrates that modern ANNs are capable of memorizing sample-specific information,
which is not class-related and therefore irrelevant to the desired task. In essence, overfitting occurs in
the most literal sense, i.e., by fitting each individual sample in the training data.
Beyond the intuitive understanding of a model’s ability to fully memorize training data, its perfor-
mance on randomly generated labels offers a valuable complexity measure within the theoretical
framework of PAC learning. Specifically, Rademacher complexity measures the capacity of a binary
classifier by evaluating how well an optimal model from a given hypothesis class can fit random labels.
Although finding the optimal model is not guaranteed for SOTA neural networks, training with SGD
on random labels provides an empirical estimate of Rademacher complexity. Reducing a model’s
Rademacher complexity is closely tied to improved generalization bounds (see Appendix A.2). The
primary objective of this work is to assess random label prediction accuracy as a complexity metric
and to develop a random label regularizer, which, according to classical learning theory, is predicted
to enhance generalization.
While it is straightforward to assess a model’s memorization capacity by training it on random labels,
effect on generalization for a given task as well as regularization can only be applied when random
labels are learned simultaneously during training on correctly labeled data. This paper addresses
these challenges through the following contributions:

• We propose a novel neural network architecture built on top of classical CNNs that learns
class labels and randomly generated labels in parallel, allowing for regularization of random
labels without compromising the primary objective of class learning.
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• We evaluate our proposed memorization metric in the context of other regularization tech-
niques known to affect model complexity, namely weight decay, dropout, and label smooth-
ing.

• We utilize the memorization metric to challenge the traditional understanding of the transition
from feature extraction to classification in CNNs.

• While our results show that our proposed regularization effectively reduces memorization, we
do not observe improved generalization, raising questions about the direct causal relationship
between memorization and generalization as suggested by classical learning theory.

2 Methods

Instead of training the network only on random labels, as done in previous work, we introduce
additional heads to predict both the randomly generated label s and the class label y. These additional
heads are constructed per class to predict the random label. This setup produces predictions for
all combinations of random labels (n possible values) and class labels (N possible values). While
traditional architectures produce a prediction vector p ∈ RN , our proposed architecture adds a second
output p̂ ∈ RN×n. A visualization of this architecture is shown in Figure 1A. Although a single
additional head would suffice to predict the random labels, we chose a nested structure to allow for
a regularization loss that does not conflict with the class prediction objective, as discussed below.
This scheme is inspired by fair AI, where unwanted biases present in the training data are suppressed
without deteriorating the actual learning objective. Three losses are used to train the different parts of
the model. Using the Kronecker delta δij , these are:

Lclass = −
N∑
i=1

δiy log(pi) Lrnd = −
N∑
j=1

δjy

n∑
i=1

δis log(p̂
j
i ) Lreg = −

N∑
j=1

δjy
1

n

n∑
i=1

log(p̂ji )

The classification loss Lclass is the cross-entropy between the one-hot encoding of the class labels y
and the output of the main classification head p. As in standard training settings, this loss is used
to train the full baseline model, including both the feature extractor and the default classification
head. Second, the random prediction heads are trained using Lrnd, which selects the output of the
random prediction heads corresponding to the correct class label y and correct random label s. A
third loss term is introduced to regularize the feature extractor by unlearning the random labels.
However, simply reversing the sign of the random label loss Lrnd leads to unstable training, since the
simplest strategy to minimize such a loss is to learn nothing at all. To address this, we introduced the
mentioned separate heads for each class, which allows for a non-contradictory formulation of the
regularization loss. The regularization loss Lreg seeks to equalize the probabilities for all random
labels while ensuring accurate class label predictions. The loss is set to the cross-entropy between a
uniform distribution and the predictions of the random prediction head corresponding only to the
correct class. This regularization term, scaled by a tunable hyperparameter λ, is added to the loss of
the feature extractor. The random prediction head is trained to capture sample-specific information
from the feature extractor, since random label predictions can only be correct if individual input
samples are memorized. The regularizer acts as an adversary to this by encouraging the features to
abstract away from individual samples, thereby preventing accurate random label predictions while
still retaining class information for correct class label predictions.

3 Experiments

Unless stated otherwise, the following experiments are performed for a WideResNet-16-4 (Zagoruyko
& Komodakis, 2016) on CIFAR100 (Krizhevsky & Hinton, 2009) with SGD with momentum µ = 0.9,
a cosine learning rate scheduler with a base learning rate of η = 0.5 and a batch size of 256 trained
for 200 epochs without additional regularization and the number of random labels is set to n = 10.

3.1 Complexity Metric

The accuracy of the random prediction heads can be used to define a complexity metric that serves
as an empirical approximation to Rademacher complexity. When the regularizer is not applied (i.e.,
λ = 0), the random prediction heads do not affect the baseline network. Instead, they act only as a
metric.
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Figure 1: A: Illustration of the multi-head architecture that is built on top of the feature extractor to
predict random labels. B: While test and train accuracy converge quickly, the random label accuracy
still increases after reaching nearly 100% train accuracy, and finally also reaches close to 100%.

3.1.1 Classification Features are Sufficient for Memorization

The random prediction heads, consisting of only a single fully connected layer, are sufficient to achieve
high accuracies on the randomly generated labels, as shown in the learning curves in Figure 1B.
This phenomenon was previously observed only for full multi-layer networks trained on the random
prediction task before (Zhang et al., 2017). Since the feature extraction part of the network is
not trained to predict the random label, sample-specific information must be present in the feature
output. Notably, while the test and training accuracies converge rapidly, the accuracy of the random
predictions continues to increase even after the training accuracy approaches 100%. This could
indicate increasing overfitting to the training set even after a perfect training accuracy is achieved.

3.1.2 Common Regularizers Reduce Memorization

We confirm that the accuracy of the random label predictions correlates with model complexity by
evaluating our proposed metric for three well-known regularization techniques: dropout, weight
decay, and label smoothing. Each of these regularizers effectively reduces the random label accuracy,
as shown in Figure 2.
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Figure 2: The effect of common complexity regularizers can be measured with the proposed metric.
A: Dropout. B: Weight decay. C: Label smoothing.

3.1.3 Feature Extraction vs. Classification: Copy Depth

In the other sections of this paper, random prediction heads are applied only before the last fully
connected layer. However, these heads can also be constructed from earlier layers. In this section, we
investigate the effect of placing the random prediction heads at various depths within the network.
We therefore introduce the copy depth parameter d, where the value d = 1 corresponds to copying
only the last layer, as done in the rest of this paper. To allow copying layers at any position, in this
section we investigate a network without residual connections, in particular a VGG16 (Simonyan &
Zisserman, 2015), which consists of 16 sequential layers: the first 13 are convolutional, followed
by 3 fully connected layers. The additional random label prediction heads copy all layers from the
chosen copy location onwards. Thus, d = 16 corresponds to copying the entire network for each
head. The results are shown in Figure 3A. Conventionally, CNNs are viewed as feature extractors
in their convolutional stages, transforming inputs into abstract feature maps. Although abstract,
these features remain sample-specific. The subsequent fully connected layers then transform these
features into class labels. Interestingly, while the analysis shows a steep increase in random label
prediction accuracy, this increase does not occur at the transition between the convolutional and fully
connected layers (i.e., between layers 3 and 4, counted from the network output). Instead, accuracy
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increases between layers 5 and 7, which is still within the convolutional part of the network. Since
learning random labels requires sample-specific information, random label accuracy can be seen as
an indicator of the transition from sample-specific to class-specific information within the feature
maps. These results suggest a clear transition between feature extraction and classification in the
network, but this transition does not occur between the fully connected and convolutional layers, but
rather deeper within the convolutional part of the network.
An alternative explanation for the increase in random label accuracy could be the increasing capacity
of the random prediction heads, which grows as more layers are copied. To test this hypothesis, we
increased the width of the copied layers at a copy depth of d = 3, but did not observe a significant
increase in memorization.
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Figure 3: A: Effect of the number of copied layers, i.e., the copy depth d, on the random label
prediction accuracy. VGG16 trained on CIFAR100 with SGD. Number of RND labels n = 2, so
50% accuracy corresponds to no memorization. B+C: While the regularization effectively reduces
memorization, especially when no weight decay is used, there is no improvement in test accuracy.

3.2 Regularization

The effect of applying the proposed regularization techniques, i.e. setting λ > 0, is examined in
Figure 3B&C. The regularization successfully reduces the random label prediction accuracy, thus,
mitigating memorization. However, no improvement in test accuracy is observed, contradicting
the expectation that reduced memorization would lead to better generalization, as suggested by
generalization bounds based on Rademacher complexity.

4 Conclusion

This study examined the relationship between memorization, quantified as random label prediction
accuracy, and several complexity regularizers, namely dropout, weight decay, and label smoothing.
The findings indicate that the proposed memorization metric serves as a valid measure of model
complexity, consistent with the theoretical motivation of the proposed method based on Rademacher
complexity. Additionally, the introduced metric provided valuable insights into the transition from
sample-specific image data to class-specific information, offering new perspectives on feature extrac-
tion and classification in CNNs.
However, when the proposed memorization metric was applied as an additional regularizer, the results
differed from theoretical expectations. Although the metric effectively reduced memorization, it did
not lead to improved generalization. This outcome challenges predictions from PAC learning theory
and Rademacher complexity.
There are several limitations to this study. It focuses primarily on CNNs and image classification tasks,
specifically the CIFAR100 dataset. Due to its multi-head structure, the proposed architecture does not
scale efficiently to tasks with many classes. Furthermore, the proposed architecture only measures
memorization at the layer where additional prediction heads are attached. Hence, potential shifts
in memorization to earlier layers, induced by regularization, rather than eliminating memorization
altogether, remain undetected.
In future work we plan to further analyze the impact of the proposed regularizer on the network,
specifically investigating whether memorization shifts occur and how these shifts can be mitigated.
Independent of our technical proposal, we are interested in alternative realizations of the general
concept of random label regularization to mitigate overfitting.
The appendix offers further analysis of the relation to the learning rate and label smoothing as well as
a simplified network architecture that eliminates the need for the hyperparameter λ.
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Appendix

A.1 Related Work

The phenomenon of data memorization, although not new, gained significant attention in the era of
modern deep learning with the works of Zhang et al. (2017) and Arpit et al. (2017). Further studies
on memorization have been conducted by e.g. Feldman & Zhang (2020); Carlini et al. (2019); Yun
et al. (2019), with a special focus on the effects of heavy overparameterization by Zhang et al. (2020),
as well as with minimal overparameterization by Daniely (2020). While the work presented here
focuses on memorization in vision models, language models often show even more pronounced
memorization, often leading to privacy risks if training data can be extracted from the models, as
highlighted by Tirumala et al. (2022) and Carlini et al. (2021).
Efforts to mitigate generalization and thus data memorization have included regularization techniques
such as dropout (Srivastava et al., 2014) and weight decay (Krogh & Hertz, 1991). However, to the
best of our knowledge, no approach to directly regularize memorization, as presented in this work,
has been previously published.
Similar to the desired reduction of single-sample specific features, the suppression of unwanted
features is a key concern in fair AI to avoid biased models caused by biases in the training data itself,
e.g., in the form of gender, ethnicity, or religion (Mehrabi et al., 2021; Tian et al., 2022; Wang et al.,
2020; Zhang et al., 2018). The network structure proposed here has similarities to the multi-head
structure proposed by Alvi et al. (2018) in fair AI, though our proposed architecture uses a different
head structure as well as a different loss formulations.
Additionally, interpreting the random label accuracy as a measure of information abstraction shares
conceptual similarities with mutual information, as applied to ANNs by Gabrié et al. (2018). More-
over, interpreting random label accuracy as a measure of information abstraction has conceptual
similarities to mutual information as applied to ANNs by Gabrié et al. (2018).

A.2 Rademacher Complexities

Rademacher complexities quantify the ability of a model to fit randomly assigned labels. In the
context of binary classification, this can be formally defined as follows:
Rademacher Complexity for Binary Classification (Mohri et al., 2012): Given a hypothesis class
H, train data {x1, ..., xn}, i.i.d. uniform random variables σ1, ..., σn ∈ {±1}:

Rn(H) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
(1)

In binary classification, the model’s alignment with the true labels can be evaluated by the product of
the labels and the model’s output. The model h is chosen as a supremum over the model class, which
in practice can be approximated by empirical risk minimization. However, this supremum makes an
exact evaluation of Rademacher complexity difficult.
Rademacher complexity is model-agnostic, meaning that it does not depend directly on specific
attributes of the model, such as the number of parameters or its architecture. Instead, it evaluates
the model class based on its ability to fit the data. In PAC-learning Rademacher complexity can be
used to derive bounds on the generalization error of particular model classes. Specifically, in binary
classification, an upper bound on the generalization error is provided as:
Theorem 1. Given a hypothesis class H, train data S = {(x1, σ1), ..., (xn, σn)}, with σ1, ..., σn ∈
{±1}, then for any δ > 0, with probability at least 1− δ for any h ∈ H it holds, that

R(h) ≤ R̂S(h) +Rn(H) +

√
log(1/δ)

2n
.

Where R̂S(h) is the empirical error on the training dataset (Mohri et al., 2012).

A.3 Implicit Effect on Learning Rate Finetuning

The proposed regularization not only facilitates the unlearning of the random label but also trains
the feature extractor to generate discriminative features for class label prediction. This results from
the fact that the summation in the definition of Lreg is limited to the correct class head. Thus,
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Lreg has a positive training effect on the feature extractor (see Subsection A.5 for a version of the
proposed algorithm that is solely trained by this effect). Therefore, the regularization parameter λ has
a significant impact on the learning rate, so it is necessary to carefully tune the learning rate before
adding the regularizer. However, this same effect makes λ a stable hyperparameter, meaning that too
high values of λ do not cause dramatic performance drops, unlike many other regularizers. As shown
in Figure A.1, the regularization parameter λ has a similar effect as increasing the learning rate η. For
high learning rates (η > 0.5), increasing λ degrades performance. However, with lower learning rates,
the implicit learning effect of the regularizer compensates this, resulting in significant performance
improvements as λ is increased. It is crucial to separate this interaction from the actual effect of the
regularization itself. Otherwise, any observed benefits may simply be due to implicit fine-tuning of
the learning rate rather than to the mitigation of memorization. In the experiment shown here, the
regularization has a positive effect only for the optimal learning rate when augmentation is used (see
Figure A.1B). Otherwise, any observed benefits may simply be due to implicit fine-tuning of the
learning rate rather than to the mitigation of memorization.

0 10−1 100 101

Regularization Factor λ

40%

45%

50%

55%

60%

65%

70%

T
es
t
A
cc
ur
ac
y

A

η = 0.005
η = 0.01
η = 0.02

η = 0.05
η = 0.1
η = 0.2

η = 0.5
η = 1
η = 2

0 10−1 100 101

Regularization Factor λ

68%

70%

72%

74%

76%

78%

T
es
t
A
cc
ur
ac
y

B

η = 0.005
η = 0.01
η = 0.02

η = 0.05
η = 0.1
η = 0.2

η = 0.5
η = 1
η = 2

Figure A.1: Dependence of regularization factor λ and learning rate η. WideResNet-16-4 trained
on CIFAR100 with number of random labels n = 10. A: No augmentation. B: Including flipping,
cropping and cutout. If the learning rate is too low, increasing λ may have a positive effect, which
could be misinterpreted as a reduction in memorization, but is actually caused by implicit learning
rate fine-tuning of the regularizer.

A.4 Relation to Label Smoothing

Label smoothing (Szegedy et al., 2016) alters the loss by evaluating the cross entropy against soft
labels instead of one-hot encoded label vectors. The resulting cross-entropy loss

LLS = −(1− δ) log(ps)−
N∑
i=1
i ̸=s

δ

N − 1
log(pi) (2)

can be reformulated to

LLS = −
(
1− δ − δ

N − 1

)
log(ps)−

N∑
i=1

δ

N − 1
log(pi), (3)

with prediction output p, correct label index s, and label smoothing factor δ. Setting δ = 0 restores
the default cross entropy loss for one-hot encoded targets, i.e.,

LLS = − log(ps) (4)

From the formulation in equation Equation 3 it is apparent that label smoothing combines a rescaling
of the learning rate (which is equivalent to a rescaling of the loss function) with an additional loss
term that regularizes the model towards a uniform distribution of the predictions. Both effects are also
implicit in the proposed regularization technique. However, unlike label smoothing, the proposed
regularizer does not impact the actual predictions used for classification. Instead, it is generated from
the additional random label prediction heads and only affects the network from the last feature layer
backwards. In a comprehensive study of the effects of label smoothing, Müller et al. (2019) suggested
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that the main effect of label smoothing occurs in the penultimate layers, which in the case of the
WideResNet architecture primarily studied here, corresponds to the last feature layer. Therefore, we
expect similar effects between label smoothing and the proposed regularizer.
Figure A.2 shows the test accuracies for various combinations of label smoothing factor δ and random
label regularization factor λ. Without random label regularization (i.e., λ = 0), label smoothing
achieves its highest performance improvements of more than 4% for δ = 0.3. With little or no label
smoothing (δ = 0), increasing λ leads to significant accuracy gains. However, at larger values of
δ, including the optimal δ = 0.3, the proposed regularization leads to a monotonic decrease in test
accuracy. For high regularization factors λ, label smoothing has no significant effect, either positive
or negative.
Combined with the empirical results from the previous section, these findings challenge the hypothesis
that the proposed regularizer improves generalization by reducing sample memorization. Instead,
the results support an alternative hypothesis: the proposed regularizer exhibits an implicit effect
similar to label smoothing. While this effect improves performance in the absence of label smoothing,
it provides no additional benefit when optimal label smoothing is already applied. The proposed
regularizer does not achieve test accuracies comparable to those of label smoothing. Moreover, for
large regularization factors λ, the same results are observed for all label smoothing factors δ. This
suggests that in addition to the implicit effect of the regularizer, which is similar to label smoothing,
there is a second, detrimental effect that counteracts label smoothing. As λ increases, this second
effect dominates, negating the benefits of label smoothing for large λ values.
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Figure A.2: WRN16-4 trained on CIFAR100 with number of random labels n = 100. The proposed
random prediction regularizer improves the test accuracy only when low label smoothing is chosen.

A.5 Single Output Variant
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Figure A.3: Single prediction head architecture. WRN16-4 trained on CIFAR100 with number
of random labels n = 100. Used augmentations: flipping, cropping, and cutout. Only small
improvements in test accuracy occur.

As previously discussed, the regularization loss also promotes learning of the correct class labels.
Since it is formulated to enforce an equal distribution of random predictions only in the correct class
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head, the head selection results in learning of the correct class. Summing over the random predictions
in each head allows generating class predictions from the random prediction heads:

p̂class
j =

n∑
i

p̂ji (5)

This eliminates the need for an additional class prediction layer. As a result, the feature extractor can
be trained using only the regularization loss Lreg , while the random prediction heads are still trained
by the random label loss Lrnd. Consequently, the class prediction loss Lclass and the additional
hyperparameter λ are no longer needed. While this simplifies the model by removing the need to
tune an additional parameter, it also limits the ability to continuously control the regularization effect.
Nevertheless, this variant of the random label learning architecture allows learning (and thus mem-
orization) of the random labels. Experimental results shown in Figure A.3 demonstrate that only
marginal improvements in test accuracy can be achieved both with and without weight decay. Fur-
thermore, for several other hyperparameter settings, such as training without augmentation, there
were significant decreases in test accuracy.

10


	Introduction
	Methods
	Experiments
	Complexity Metric
	Classification Features are Sufficient for Memorization
	Common Regularizers Reduce Memorization
	Feature Extraction vs. Classification: Copy Depth

	Regularization

	Conclusion
	Appendix
	Related Work
	Rademacher Complexities
	Implicit Effect on Learning Rate Finetuning
	Relation to Label Smoothing
	Single Output Variant


