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Abstract

Recent advances in LLMs, particularly in language reasoning and tool integration,
have rapidly sparked the Language Agents for real-world development. Among
these, travel planning represents a prominent domain, combining complex multi-
objective planning challenges with practical deployment demands. However, ex-
isting benchmarks often oversimplify real-world requirements by focusing on
synthetic queries and limited constraints. We address the gap of evaluating lan-
guage agents in multi-day, multi-POI travel planning scenarios with diverse and
open human needs. Specifically, we introduce ChinaTravel, the first open-ended
benchmark grounded in authentic Chinese travel requirements collected from
1,154 human participants. We design a compositionally generalizable domain-
specific language (DSL) for scalable evaluation, covering feasibility, constraint
satisfaction, and preference comparison. Empirical studies reveal the potential of
neuro-symbolic agents in travel planning, achieving a 37.0% constraint satisfaction
rate on human queries, a 10× improvement over purely neural models. These find-
ings highlight ChinaTravel as a pivotal milestone for advancing language agents in
complex, real-world planning scenarios.

1 Introduction

A long-standing goal in AI is to build planning agents that are reliable and general, capable of assisting
humans in real-world tasks. Recently, LLMs [3, 19, 1] have demonstrated remarkable potential
in achieving human-level understanding and reasoning capabilities. This has sparked the rapid
development of Language Agents, which employ LLMs to perceive the surroundings, reason solutions,
and take appropriate actions, ultimately building autonomous planning agents [22, 30, 26, 13].
Among numerous real-world planning tasks, travel planning stands out as a significant domain,
presenting both academic challenges and practical value due to its inherent complexity and real-world
relevance. Specifically, given a query, agents require information integration from various tools (e.g.,
searching for flights, restaurants, and hotels) to generate a feasible itinerary. This involves making
interdependent decisions across multiple aspects such as spatial, temporal, and financial dimensions,
all while meeting the user’s requirements and preferences (e.g., budget, dining habits, etc).

To evaluate the existing language agents on real-world travel planning tasks, Xie et al. [27] first
provide a pivotal benchmark TravelPlanner [27]. However, it exhibits two critical limitations: (1) Task
bias (U.S.-centric intercity itineraries vs. common but more complex single-city multi-day trips). (2)
Synthetic query construction (limited requirements and templated expressions vs. real human travel
queries which are diverse and open-ended). Just a few months after the benchmark’s release, Hao
et al. [12] proposed a neural-symbolic solution that integrates formal verification tools into agents,
achieving a 97% success rate. This underscores the oversimplification of the TravelPlanner.
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I am in Shanghai now and 

would like to go to Beijing for 

2 days, visit some museums, 

and taste some Beijing cuisine. 

My budget is 5,000 yuan and 

I hope to visit as many 

attractions as possible. Please 

give me a travel plan.User

Agent

GPT DeepSeek GLM

…

FlightSearch() TrainSearch()

AttractionSearch() RestaurantSearch()

AccommodationSearch() RouteSearch()

Tool Use Information

Itinerary PlanPlanning

[1] visit some museums…

There are some museums in Beijing:

    - The Palace Museum

    - National Museum of China

    - Beijing Capital Museum

    …

[2] taste some Beijing cuisine…

There are some restaurants:

    - Dadong Duck

    - Siji Minfu

    - Xiaodiao Litang

    …

[4] visit as many attractions as possible

- select adjacent attractions

- choose convenient transportation

…

[3] budget is 5000 yuan…

The cross-city transportation costs 

about 1,500, and the accommodation 

costs about 500, leaving me with a 

budget of about 3,000.

- The budget is sufficient to try 

different foods

[Day 1, Activity 1]

Train, G104, 06:27 → 13:12, cost: 693

Shanghai Hongqiao Railway Station 

→ Beijingnan Railway Station

[Day 1, Activity 2]

The Palace Museum, 14:00 → 17:30

Transports: Metro, Beijingnan Railway 

Station→ The Palace Museum, cost 3, 

13:15 → 13:50, walking: 1.5km

[Day 1, Activity 3]

Siji Minfu, 17:45 → 18:45, cost 180, 

Transports: Walking, The Palace 

Museum → Siji Minfu, cost 0, 

17:30 → 17:45, walking: 0.8km

[Day 1, Activity 4]

Wangfujing Street, 17:45 → 18:45, 

Transports: Taxi, The Palace Museum 

→ Wangfujing Street, cost 16, 

17:30 → 17:45, 

…

[Day 1, Activity 6]

Beijing XX hotel, room: 1, cost: 580  

Transports: …

[Day 2, Activity 1]

Chenji century-old Luzhu, 08:10 → 

08:40, cost: 32

Transports: Walking, Beijing XX hotel 
→ Chenji century-old Luzhu, 0.4km

08:00 → 08:06

[Day 2, Activity 2]

National Museum of China, 09:15 → 

11:45, cost: 0

Transports: Metro, Chenji century-old 

Luzhu → National Museum of China, 

cost 3, 08:40 → 09:15, walking: 1.2km

…

[Day 2, Activity 4]

Beijing Capital Museum

…

[Day 2, Activity 5]

Train, G153, 16:30 → 22:27, cost: 576

Beijingnan Railway Station→Shanghai 

Hongqiao Railway Station

Transports: Metro, Beijing Capital 

Museum → Beijingnan Railway Station, 

cost: 4, 15:30 → 16:02, walking: 0.8km

Figure 1: Overview of ChinaTravel. Given a query, language agents employ various tools to gather
information and plan a multi-day multi-POI itinerary. The agents are expected to provide a feasible
and reasonable plan while satisfying the logical constraints and preference requirements.

To address the gap, we introduce ChinaTravel, an open-ended travel planning benchmark. It con-
centrates on multi-point-of-interest (multi-POI) itineraries (as illustrated in Fig. 1) and supports the
compositional constraints evaluation with authentic Chinese travel queries. It is more realistic and
challenging, providing a new milestone for real-world travel planning. The main contributions are:

• Comprehensive Evaluation Framework: ChinaTravel provides a rich sandbox with authentic
travel data, a domain-specific language for scalable requirements formulation and automated
evaluation, and diverse metrics covering feasibility, constraint satisfaction, and preference ranking.

• Integration of Synthetic and Human Data: ChinaTravel integrates both LLM-generated and
human-authored queries to create realistic evaluation scenarios. The validation set contains 154
human queries with combinatorial constraint requirements absent from synthetic data, while the
test subset provides 1,000 open-scenario queries. This structure specifically assesses agents’
generalization capabilities across unseen constraint composition.

• Empirical Neuro-Symbolic Insights: Extensive experiments are conducted and the results reveal
that neuro-symbolic agents significantly outperform pure LLM-based solutions on constraints
satisfaction, achieving a constraint satisfaction rate of 27.9% compared to 2.60% by purely neural
methods, thus highlighting their promise for travel planning tasks.

• Identified Challenges for Future Research: We pinpoint key challenges of open-world require-
ments: open contextual reasoning, and unseen concept composition, providing a foundation for
advancing agents toward real-world applicability.

Overall, ChinaTravel provides a multi-dimensional benchmark that rigorously assesses travel planning
capacity, serving as a critical bridge between academic research and practical applications.

2 ChinaTravel Benchmark

Motivated by China’s substantial travel demand, ChinaTravel provides a sandbox environment for
generating multi-day itineraries with multiple POIs across specified cities. It is meticulously designed
to provide a comprehensive and scalable evaluation framework in travel planning, encompassing three
critical dimensions: environmental feasibility, constraint satisfaction, and preference comparison.

2.1 Environment Information

ChinaTravel provides a sandbox with real-world travel information. We collect information from 10
of the most popular cities in China. It includes 720 airplanes and 5,770 trains connecting these cities,
with records detailing departure and arrival times, origins, destinations, and ticket prices. Additionally,
the dataset contains 3,413 attractions, 4,655 restaurants, and 4,124 hotels, each annotated with name,
location, opening hours, and per-person prices. Type annotations for these POIs are included to meet
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Table 1: ChinaTravel’s Domain-Specific Language (DSL) for logical constraints.

Name Syntax Description

variables 𝑥, 𝑦, 𝑧, · · · Variables that refer to activities in the travel planning domain.
not 𝑛𝑜𝑡 𝑒𝑥𝑝𝑟 The negation of an Boolean-valued expression.
and,or 𝑒𝑥𝑝𝑟1 and 𝑒𝑥𝑝𝑟2 The conjunction/disjunction of an Boolean-valued expression.
<, >,== 𝑒𝑥𝑝𝑟1 < 𝑒𝑥𝑝𝑟2 Return an expression with built-in number comparison functions.
+,−, ∗, / 𝑒𝑥𝑝𝑟1 + 𝑒𝑥𝑝𝑟2 Return an expression with built-in number calculation functions.
attributes 𝑐𝑜𝑠𝑡 (𝑣𝑎𝑟) A function that takes activities as inputs and returns the attributes,

such as cost, type or time.
relation 𝑑𝑖𝑠𝑡 (𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) A function that takes locations as inputs and returns the distance.
effect 𝑣𝑎𝑟 = 𝑒𝑥𝑝𝑟 An assignment affects a variable 𝑣𝑎𝑟 with the expression 𝑒𝑥𝑝𝑟.
union, inter,
diff

𝑢𝑛𝑖({𝑣𝑎𝑟}1, {𝑣𝑎𝑟}2) Return a set with the built-in union/intersection/difference operations
of given two sets.

enumerate for 𝑣𝑎𝑟 in {𝑣𝑎𝑟} Enumerate all variables in the collection {𝑣𝑎𝑟}.
when if 𝑒𝑥𝑝𝑟 : effect The conditional effect takes a Boolean-valued condition of the ex-

pression 𝑒𝑥𝑝𝑟, and the effect effect.

(a) Dining expenses. (b) Arrived Time. (c) Count of attraction visited.

Figure 2: Examples of DSL expressions for logical constraints and preference ranking.

user needs. For a realistic interaction, we simulate the API interface of real market applications to
query real-time information. We present 25 environmental constraints across six categories: Dietary,
Accommodation, Transportation, Temporal, Spatial, and Attractions. The detailed designs of the
sandbox are available in App. D.1. It acts as a feasibility metric, ensuring that the generated plans are
both valid and effective. For example, POIs in the plan must exist in the designated city, transportation
options must be viable, and time information must remain accurate.

2.2 Logical Constraint

A crucial ability for travel planning is to effectively satisfy personalized user needs. We extend the
form of logical constraints from TravelPlanner [27] and present a Domain-Specific Language (DSL)
to support general compositional reasoning in logical constraints. ChinaTravel’s DSL is a general set
of pre-defined concept functions with built-in implementations, as listed in Tab. 1. TravelPlanner
relies on 5 pre-defined concepts {total budget, room rules, room types, cuisines, and transportation
types}, to evaluate the logical constraints, where each concept is equivalent to a specific logical
requirement. We find this design limits the ability to validate diverse logical needs in an open-world
context. For example, it cannot express that the dining expenses should be within 1000 CNY or
that arriving in Shanghai should be before 6 PM on the second day, despite the generated plan
already including the expenses and time information of each activity. Each new logical requirement
necessitates human intervention for incremental definition. To address this issue, our approach is
grounded in a DSL-based solution that leverages basic concept functions and syntax to express and
fulfill various logical requirements. Fig 2a and 2b present two examples, the DSL can represent
varying requirements through concept composition in a Python format, and perform automated
validation of plans using a Python compiler. This strategy maximizes the evaluation capability of the
ChinaTravel. In App. D.2, we provide a detailed tutorial on DSL expression with more examples.

2.3 Preference Requirement

Travel requirements encompass not only hard logical constraints but also soft preferences. The
term “soft” implies that these preferences cannot be addressed as boolean constraint satisfaction
problems, instead, they involve quantitative comparisons based on continuous values. This distinction
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(a) Token count across different benchmarks. (b) Constraints across different benchmarks.

Figure 3: (a) ChinaTravel’s fine-grained spatiotemporal planning demands extremely larger input/out-
put text volumes than existing benchmarks, posing fundamental challenges to text-wise planning.
(b) ChinaTravel’s authentic requirements, with combinatorial scalable constraints formulation, sys-
tematically surpasses conventional closed-form benchmarks in diversity and openness.

highlights the unique nature of preference-based requirements compared to logical constraints.
Common preferences identified through surveys include maximizing the number of attractions visited,
minimizing transport time between POIs, and visiting positions near the specific POI, among others.
In ChinaTravel, we formalize such preferences as minimization or maximization objectives via our
DSL, thereby providing an automated evaluation. Fig. 2c provides a detailed case of DSL expression
for maximizing the attractions visited.

2.4 Benchmark Construction

ChinaTravel provides user queries reflecting diverse requirements through a four-stage process:

Stage I: Manual design of database and APIs. We collect travel information for multi-day,
multi-POI itineraries across attractions, accommodations, and transportation. We define essential
POI features, such as cuisine types and hotel characteristics, to construct the database from public
information. APIs are designed to support agent queries via regular expressions and modeled after
commercial APIs to ensure realism. See App. D.1 for details.

Stage II: Automatic data generation with LLMs. We model travel tasks with core parameters
(origin, duration, etc.) and logical constraints. For scalable generation, we randomly construct query
skeletons converted to natural language via DeepSeek-V2.5. Queries are stratified by complexity:
Easy (1 extra constraint), with LLM-generated varying expressions (encouraging “Try local Beijing
food”→“Taste Beijing cuisine”). See App. D.3 for synthesis details.

Stage III: Quality control and auto-validation. To ensure data quality, we manually check if the
generated query conform to symbolic skeletons, and re-calibrate natural language description that
contain ambiguities. Based on the symbolic skeletons, we verify if the plan can pass the required
logical constraints by executing the DSL code via Python compiler. Building on this, we ensure that
each query has at least one solution that satisfies the logical constraints via heuristic search.

Stage IV: Open requirements from humans. After the first round of closed-loop development with
LLMs, including data generation and annotation, baseline development, and evaluation, we gathered
over 250 human requirements via questionnaires. Rigorous quality control yielded 154 queries with
novel constraints (e.g., departure time/dining cost), constructing the Human-154 validation set with
DSL-annotated automated evaluation. Subsequent scaling through WJX (survey platform) yielded
the Human-1000 test set after analogous quality control and DSL annotation.

3 Benchmark Characteristics

Context-Rich Long-Horizon Planning. ChinaTravel poses unprecedented contextual complexity
in travel planning compared to existing benchmarks, NaturalPlan [33] and TravelPlanner [27]. As
quantified in Fig. 3a, (1) Processing over 1,200 candidate POIs per query (4× TravelPlanner’s 244
max, 120× Trip Planning’s 10) with detailed square order transportation. (2) Generating 540M
contextual tokens from dense POI networks, surpassing both DeepSeek-V3 (64K) and GPT-4o
(128K) capacities, even aggressive 6-POI downsampling retains 40K tokens (Fig. 3a). (3) Requiring
4.8K output tokens for 5-day plans, versus 0.9K (TravelPlanner’s 7-day) and 0.5K (Trip Planning’s
30-day) [31]. These findings necessitate a paradigm shift: the traditional single-pass text generation
approach proves inadequate for such ultra-long-horizon planning tasks [31]. Effective solutions may
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(a) TravelPlanner (b) ChinaTravel (c) POI Reasoning

Figure 4: Co-occurrence distribution of differnt constraints on TravelPlaner (a) and ChinaTravel’s
Human1000 (b). (c) The unsatisfactory performance of advanced LLMs on the auxiliary task, POI
reasoning, reveals the challenges of open contextual reasoning in ChinaTravel’s dataset.

require agents to adopt human-like hierarchical decomposition or symbolic planning techniques,
iteratively executing subtasks to achieve final planning objectives through multi-step decisioning.

Diversity and Openness of Travel Requirements. ChinaTravel surpasses TravelPlanner and Nat-
uralPlan in diverse requirement modeling. As Fig. 3b shown: (1) Constraint volume: ChinaTravel
exhibits Gaussian-style distribution (6-12 constraints per query) versus TravelPlanner’s simplicity
bias (≤5 constraints) and TripPlanning’s limited diversity (16 max constraints but only 2 types). (2)
Combinatorial capacity: TravelPlanner’s atomic constraints yield merely 10 combinations, while
ChinaTravel scales exponentially from 15 (synthetic) to 100 types (human1000 test), including
88 novel constraints formulated through Tab. 1’s compositional system. We further investigate
co-occurrence patterns of constraint types within individual queries, we categorize basic concepts in
our DSL into seven clusters as visualized in Fig. 4b. The constraint co-occurrence distribution in
ChinaTravel follows Zipf’s law [2] with a characteristic long-tail pattern, contrasting sharply with
TravelPlanner (Fig. 4a), whose synthetic data demonstrates relatively uniform frequencies. We could
also find a strong correlation between cost-related constraints and transportation/accommodation
requirements, which aligns with common sense, because transportation and accommodation typi-
cally constitute primary cost components. These characteristics stem from systematic user studies
integrating open-ended travel requirements’ evolving nature into our benchmark. Users continually
raise novel composite constraints which are inexhaustible during developing, enhancing the chal-
lenges while ensuring verifiability through Section 3.2’s verification framework, posing fundamental
challenges for agents to achieve human-like composite reasoning.

Open Contextual Reasoning. From human queries, we could find that travel requirements often
exhibit contextual ambiguity not directly aligned with predefined database attributes. For instance,
when users express requirement for “local cuisine”, which contextually maps to Benbang cuisine in
Shanghai versus Beijing cuisine in Beijing. Another representative case involves users specifying
“traveling with children who cannot eat spicy food”,requiring agents to logically exclude Sichuan and
Chongqing cuisines from restaurant selections, beacuse both of them are well-known as the spaicy
style. These observations arise the necessity for real-world travel agents to conduct open contextual
reasoning that bridges arbitrary user expressions with verifiable symbolic semantics in databases, a
evaluation capability inadequately supported by existing synthetic benchmarks like TravelPlanner.
To systematically investigate this challenge, we designed a auxiliary task, POI reasoning, within
ChinaTravel. It involves replacing all Chinese POIs in DSL-defined constraints with a <placeholder>
tags, requiring LLMs to complete masked-DSL sentences through contextual reasoning. This
simplified formulation isolates POI inference from full DSL generation. We further categorize POIs
as Literal (explicitly mentioned in user queries) or Semantic (requiring cultural/contextual inference).
Quantitative analysis shows 78.4% of DSL statements from Human1000 contain Semantic POIs
needing implicit reasoning, contrasting sharply with TravelPlanner’s 5.4% rate that predominantly
requires literal mapping. Experimental results from DeepSeek-V3 and GPT-4o are shown in Fig. 4c.
Both models achieve the accuracy over 90% on TravelPlanner, where semantic POIs follow simplistic
synthetic patterns. However, on ChinaTravel’s authentic Semantic POIs, performance significantly
declines (DS: 94% → 76%, GPT: 79% → 53%). This performance gap underscores the benchmark’s
crucial open contextual understanding challenges for real-world travel planning.
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4 Empirical Study

LLMs. We evaluate the state-of-the-art LLMs, DeepSeek-V3, OpenAI GPT-4o, recognized for
their world-leading performance. We also examine the open-source LLMs, Qwen3-8B, Llama3.1-
8B, and Mistral-7B, selected based on their computationally efficient 7B/8B architectures, which
enables practical deployment in resource-constrained academic computing environments.

Metrics. We examine the Delivery Rate (DR), Environmental Pass Rate (EPR), Logical Pass Rate
(LPR), and Final Pass Rate (FPR) from TravelPlanner [27]. To address potential evaluation biases
caused by unrealistic constraint prioritization, e.g., misreporting costs to satisfy budget requirements,
we design a novel metric, Conditional Logical Pass Rate (C-LPR). It assesses the success rate of
travel plans that first satisfy environmental constraints before meeting logical requirements, thereby
ensuring logical validity within realistic contextual boundaries. The introduction of C-LPR provides
a more rigorous viewpoint for quantifying meaningful constraint satisfaction in travel planning.

C-LPR=

∑
𝑝∈𝑃 𝟙passed(𝐸𝑛𝑣,𝑝) ·

∑
𝑐∈𝐶𝑝

𝟙passed(𝑐,𝑝)∑
𝑝∈𝑃 |𝐶𝑝 |

𝑃 is the plan set, 𝐶𝑝 is the constraints set for plan 𝑝, and passed(𝑐, 𝑝) indicates whether 𝑝 satisfies 𝑐.

Methods. In this work, we mianly focus on the training-free methods with both pure-LLM-based and
neuro-symbolic solutions on the ChinaTravel benchmark. For the former category, we implement Re-
Act [30], a widely-adopted reasoning-and-acting framework, along with its Act-only ablation variant.
We exclude Reflexion [22] due to its performance being similar to ReAct on the TravelPlanner [27]
and the high economic overhead associated with the larger input token size. For neuro-symbolic
methods, we assess three frameworks: (1) TTG [14], which converts natural language requirements
into mixed-integer linear programming formulations for solver-based optimization. We adapt their
formulation into ChinaTravel. The rapied growth of transformed constraints in TTG becomes com-
putationally prohibitive. To address this, we employ LLMs to extract the most relevant POIs for
constraint reduction, with detailed linear constraint formulations and experimental configurations
provided in App. K. (2) LLM-modulo [15, 9], employing ground-truth symbolic verification to guide
iterative LLM self-refinement, which could be regrad as an enhanced variant of Reflexction. To ensure
compatibility with mainstream LLMs, we perform POI subsampling within a 64K context window.
(3) NeSy Planning, extending prior NeSy pipelines [12, 20, 29, 28] through our DSL enhancements
to address complex multi-day, multi-POI itineraries.

4.1 Neuro-Symbolic Planning
I am in Shanghai now and 

would like to go to Beijing for 

2 days, visit some museums, 

and taste some Beijing cuisine. 

My budget is 5,000 yuan and 

I hope to visit as many 

attractions as possible. 

Please give me a travel plan.User

Personal Requirements

𝒙. 𝐭𝐲𝐩𝐞 = 𝐦𝐮𝐬𝐞𝐮𝐦𝐬,
∃ 𝒙 ∈ 𝐀𝐭𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧_𝐯𝐢𝐬𝐢𝐭𝐞𝐝

𝒙. 𝐜𝐮𝐢𝐬𝐢𝐧𝐞 = 𝐁𝐞𝐢𝐣𝐢𝐧𝐠 𝐂𝐮𝐢𝐬𝐢𝐧𝐞,
∃ 𝒙 ∈ 𝐑𝐞𝐬𝐭𝐫𝐚𝐮𝐧𝐭𝐬_𝐯𝐢𝐬𝐢𝐭𝐞𝐝

𝐭𝐨𝐭𝐚𝐥_𝐛𝐮𝐝𝐠𝐞𝐭 ≤ 𝟓𝟎𝟎𝟎
maximize 𝐀𝐭𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧_𝐯𝐢𝐬𝐢𝐭𝐞𝐝

Current Plan

[Day 1, Activity 1]

Train, G104, 06:27 → 13:12, cost: 693

Shanghai Hongqiao Railway Station 

→ Beijingnan Railway Station

[Day 1, Activity 2]

The Palace Museum, 14:00 → 17:30

…

[Day 1, Activity 3]

Current time: 17:30 

Current position: The Palace Museum

1. What type of place should we visit next, 

attractions, restaurants or hotels?

2. Which POI should we visit next?

LLM 

Extraction

(1) Siji Minfu, Beijing Cuisine

(2) Beijing Pie, Beijing Cuisine

…

(x) Xinrongji, Jiangzhe Cuisine

…
DFS

Validated Plan

Plan Verification

Failed
Completed 

Plan

Planning step by step:

RestaurantSearch()

It is 17:30 now. We 

can find a restaurant 

to have dinner.

Siji Minfu is a well-

known restaurant with 

delicious Peking duck

LLM-based 

choice

LLM-based 

ranking

Figure 5: NeSy Planning with search-based solver.

This subsection presents a NeSy solution
as a preliminary baseline for ChinaTravel.
This solution consists of two stages. (I)
NL2DSL translation transforms natural lan-
guage queries into logic and preference DSL
requirements. We use Reflexion [22] and a
DSL syntax checker to iteratively assist the
LLMs (5 rounds in experiments). (II) Inter-
active search uses a neuro-symbolic solver
to sequentially arrange activities, guided by a
symbolic sketch and LLM-driven POI recom-
mendations, generating a multi-day itinerary
with DSL validation. If constraints are vi-
olated, the process backtracks until a feasi-
ble solution is found. To ensure fairness,
the symbolic sketch search is limited to 5
minutes per query, excluding LLM inference
time. To observe the performance across
the two stages, we also evaluated the plan-
ning results based on the Oracle DSL. In App. F, we provide the search algorithm’s
pseudo-code and LLM prompts to enhance reproducibility and support future research.
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Table 3: Main results of different LLMs and planning strategies on the ChinaTravel benchmark.

DR EPR LPR C-LPR FPR DR EPR LPR C-LPR FPR
Mic. Mac. Mic. Mac. Mic. Mac. Mic. Mac.

Easy (#300) Human-Val (#154)

Act 70.4 49.9 0 64.6 30.8 0 0 -
97.5 70.8 0 86.8 68.8 0 0 -

ReAct (zero-shot)
43.3 40.8 0 41.9 19.6 0 0 36.4 29.5 0.65 35.2 16.2 0.38 0
95.4 48.2 0 71.3 32.9 0 0 96.1 50.5 0 72.4 32.5 0 0

ReAct (one-shot)
77.5 68.3 6.25 74.1 52.5 5.77 5.42 55.2 57.3 2.60 64.6 44.2 1.71 2.60
94.2 68.1 0 89.4 70.8 0 0 69.5 46.3 0 63.6 46.8 0 0

NeSy Planning 75.3 75.3 75.3 70.4 52.6 70.4 52.6 51.9 53.2 52.5 47.0 37.6 46.5 37.0
75.0 73.6 64.0 73.5 63.3 61.7 60.6 45.4 50.1 45.4 40.9 29.8 38.5 27.9
72.3 67.0 34.0 70.4 49.6 32.6 28.3 42.8 47.4 42.2 36.2 27.2 34.4 25.3
32.0 31.9 31.3 29.1 21.0 28.3 21.0 25.9 25.8 24.0 22.3 12.3 20.5 11.0
30.3 30.3 30.3 27.6 19.6 27.6 19.6 37.6 38.2 37.6 32.7 18.8 32.2 18.8

TTG (oracle) 18.3 21.5 8.66 17.2 15.0 8.23 8.66 9.09 12.8 2.59 7.65 5.19 2.39 1.29

LLM-Modulo*
(Oracle Verifier)

48.3 94.5 4.33 58.4 43.6 4.11 4.33 61.6 90.2 2.59 75.9 51.2 2.75 2.59
91.6 88.2 7.66 95.5 84.6 7.66 7.00 91.5 87.2 3.24 92.9 66.2 2.87 3.24
30.0 80.5 0.0 62.7 25.0 0.0 0.0 35.0 75.3 0.0 61.6 19.4 0.0 0.0
28.6 69.4 0.0 55.2 8.33 0.0 0.0 19.4 74.1 0.0 43.4 5.19 0.0 0.0
10.3 90.5 0.0 39.1 9.0 0.0 0.0 3.24 92.2 0.0 31.4 4.54 0.0 0.0

NeSy Planning*
(Oracle Translation)

82.6 81.7 75.0 82.2 75.3 75.0 74.0 58.4 59.6 57.7 53.8 46.1 52.0 45.4
66.6 66.7 66.0 64.6 63.6 64.6 62.6 52.6 46.9 42.9 47.6 40.9 43.9 40.9
69.3 69.3 59.3 70.2 59.6 59.3 57.9 53.2 55.1 54.5 48.0 42.8 47.6 40.9
52.6 52.6 52.6 50.4 45.3 50.4 45.6 40.9 42.8 42.8 37.7 28.5 37.7 27.9
33.3 33.2 32.6 32.1 32.0 31.4 32.3 29.2 29.1 26.6 25.4 20.1 23.4 19.4

Human-Test (#1000) NeSy Planning* (Oracle Translation)

NeSy Planning
44.6 44.5 42.6 38.7 23.3 37.6 23.3 60.6 60.3 59.0 53.6 32.0 52.5 31.6
37.3 37.2 35.0 30.7 11.3 29.2 11.3 27.8 27.8 27.1 24.8 12.8 24.4 12.8
36.6 36.5 34.6 29.6 6.43 28.5 6.43 41.1 41.1 40.6 34.6 13.8 34.2 13.8

4.2 Main Results Table 2: Cost per query across different methods.

Method #Input #Output ($) ($)
Act 88K 2K 007 .219

ReAct (0-shot) 206K 3K .021 .638
ReAct (1-shot) 1058K 4K .081 2.43
LLM-modulo 362K 11K .025 1.12

NeSy Planning 467K 3K .003 .306

Based on the results presented in Table 3 and 2,
we have the following finding and analyses:

Pure LLMs struggle in ChinaTravel. The DR
evaluates agents’ capability to generate valid
JSON travel plans (see Fig. 1). While high DR
values indicate that state-of-the-art LLMs can
produce structurally correct outputs, the near-
zero EPR reveals their fundamental limitations
in acquiring and strictly adhering to required constraints. The sole exception is the DeepSeek
model, which achieves the 6% EPR and 5% FPR at easy level, likely due to its strong capability
to follow Chinese requirements. ReAct (one-shot, GPT-4o) excels in Macro LPR but achieves no
FPR, suggesting it circumvents constraints via shortcuts. Our proposed C-LPR metric offers a more
reliable measure of logical constraints, serving as a supplement to FPR. As shown in Table 2, pure
neural methods incur prohibitively high computational costs due to excessive token consumption.
When powered by GPT-4o, each query incurs $2.4 on average, yet these approaches fail to produce
any constraint-satisfying plans.

The Inadequacies of Existing NeSy Approaches. The fundamental limitation of TTG arises from
its computational complexity, where the constraint count scales as 𝑂 (𝑁3𝑇) with 𝑁 POIs and 𝑇 time
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(a) Solution Time of TTG. (b) Refinement of LLM-modulo.

Figure 6: (a) The high computational complexity of TTG renders it infeasible for real-world multi-day
itineraries. (b) LLM-modulo’s error correction declines during iteration, causing emergent errors.

windows. Even when subsampling to 22 POIs and discretizing time into 1-hour slots (𝑇 = 24), the
system generates approximately 600,000 constraints for 2-day itinerary. In our main experiments
using the SCIP solver from the PuLP package, TTG was allocated a relaxed 15-minute search
limitation. However, this configuration yielded only 18% valid solutions on easy-subet instances,
with the FPR further reduced to 8% due to the solver’s pruning heuristics. Fig. 6a illustrates the
solution time of TTG on 1-3 day itinerary. Within the time limit, solutions were found for merely
23% for two-day and 6% for three-day itineraries.

LLM-modulo introduces a oracle symbolic verifier and feedback the error to LLM to refine the plan.
As illustrated in Fig. 6b, which depicts the error dynamics across 10 refinement iterations, GPT-4o
maintains the lowest cumulative error count (𝜇 = 3.2 ± 0.8), followed by DeepSeek (𝜇 = 5.1 ± 1.2).
However, their rectification capacity, quantified by successfully rectified errors per iteration rapidly
decays to ≤ 1 after 3-5 rounds, indicating diminishing returns in error correction. Notably, smaller
models (Qwen3-8B and Llama3-8B) achieve higher rectification, but this comes at the cost of
introducing substantial emergent errors. The error reduction remains statistically insignificant across
these models. This pattern suggests that while LLM-modulo enables basic constraint feedback from
previous travel benchmarks [33, 27], its effectiveness diminishes for complex multi-day itineraries.

Nesy Planning provides a promising solution. Our NeSy Planning framework integrates sym-
bolic programs to orchestrate travel planning and tool management while utilizing LLMs to extract
language-based requirements and prioritize POIs. By separating understanding (flexible natural lan-
guage handling), planning (DSL-guided backtrack) and grounding (precise execution), the framework
enhances adaptability and ensures compliance with constraints during context-rich long-horizon
planning. Across all data subsets, it outperforms previous TTG and LLM-modulo mthods, even
without the help of oracle translation. Among the evaluated LLMs, DeepSeek-V3 achieves state-of-
the-art performance across three subsets. With DeepSeek-V3 as the backend, it achieves FPRs of
52.6%, 37.0% and 23.3% on three subsets, highlighting the effectiveness of NeSy solutions for travel
planning with complex constraints. Moreover, this superior performance demonstrates its enhanced
capability for inter-constraint generalization in compositionally novel situations. Another potential
explanation is that the model is developed by a Chinese company. As a result, it has been trained on
a vast amount of Chinese-language data. This extensive exposure to Chinese text has enabled it to
perform exceptionally well in our Chinese travel planning scenarios, giving it advantages over others.

Challenges Persist for Nesy Planning. The performance gap between standard and oracle modes
underscores the importance of DSL translation in NeSy planning. Inadequate translations may result
in plan searches failing to meet user requirements, while incorrect translations can misguide the
search, making feasible solutions unattainable.

We conclude with three challenges and provide the corresponding cases in the Fig. 7. (1) DSL
Syntax Compliance: As evidenced in Fig. 7a, while the reflexion process with syntactic validation
effectively reduces surface-level errors, it inadvertently triggers constraint deletion behaviors across
multiple LLMs. Specifically, Qwen3-8B, Llama3-8B, and Mistral-7B exhibit progressive reduction
in extracted DSL constraints during iterative refinement. Notably, GPT-4o generates approximately
two fewer constraints per iteration than DeepSeek-V3 on average. Although this conservative
strategy enables rapid error convergence (achieving zero detected errors within limited iterations), it
risks oversimplifying constraint specifications, critical dependencies may be prematurely discarded,
ultimately yielding solutions that fail to satisfy complex requirements. This observed conservatism
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(a) Syntax error of DSL translation.

74.8%

14.7%

9.7%
0.8%

75.4%

15.1%

8.3% 1.2%

77.3%

14.6%

7.1% 1.0%

Matched Unseen Syntax
Unmatched Unseen Syntax

Matched Seen Syntax
Unmatched Seen Syntax

DeepSeek-V3 GPT-4o Qwen3-8B

(b) Syntax generalization of DSL translation.

Figure 7: Challenges in NL2DSL translation.

toward unseen constraints likely contributes to GPT-4o’s relative performance gap on the Human-154
and Human-1000 benchmarks compared to DeepSeek-V3. (2) Open Contextual Reasoning: In the
Section 3 we have provided a quantitative analysis. In App. D.2, more examples are provied for this
challenges. (3) Unseen Concept Composition: Real-world requirements are inherently diverse and
complex, making expecting models to encounter all possible needs during development impractical.
A more feasible way is to emulate human reasoning by generalizing existing knowledge to novel
problems. Fig. 7b compares three LLMs on seen vs unseen DSL structures under POI-anonymized
evaluation with syntax-level pattern matching. Results reveal critical gaps: 84% novel DSLs show
only 12% alignment (9% overall), vs 93% accuracy on 16% known patterns. GPT-4o and Qwen3
also demonstrate this limitation, excelling on same concepts but failing on novel compositions.

In summary, ChinaTravel poses significant challenges for current agents. Neuro-symbolic agents
outperform pure-LLM approaches in constraint satisfaction, showing strong potential for real-world
travel planning. With realistic queries and a versatile DSL for constraint validation, we highlight the
critical challenges while providing a foundation for advancing neuro-symbolic systems in practice.

4.3 Ablation Study with Preference
R1

R2

R3

NeSy Planning BQ PEQ PDS

Daily attractions ↑ 0.75 0.79 1.63

Transport time ↓ 27.0 26.9 24.8

Transport time to rest. ↓ 22.2 26.8 22.8

Food cost ratio ↑ 0.19 0.29 0.32

Hotel cost ↓ 1350 559 519

Distance to POI ↓ 30.9 30.6 26.1

Figure 8: Ablation on preference ranking.

The comparison of preferences should be con-
ducted under the premise that both environmen-
tal and logical constraints are satisfied. Given
the limited FPR achieved by existing methods,
we perform a separate analysis of preference
optimization here. Specifically, we sampled
50 queries from the easy subset that NeSy-
DeepSeek-Oracle successfully passed as seed
samples. Based on these, six subsets were created by introducing common preferences identified
from user surveys. Three comparative scenarios were designed to explore the roles of LLMs and
symbolic search in optimizing preferences during NeSy Planning: (1) BQ: Baseline solutions without
preference consideration. (2) PEQ: LLM-enhanced recommendations with natural language prefer-
ences. (3) PDS: Hybrid symbolic search optimizing preference objectives under 5-min constraints.
The results are provided in Fig. 8 (where ↑ /↓ indicate maximization/minimization). We cound find
that: (1) PEQ outperforms BQ in 5/6 preference scenarios, confirming LLMs’ capacity to interpret
natural language preferences during POI ranking. (2) PEQ underperforms on P2 (transport time
minimization), likely from LLMs’ misinterpretation of complex spatiotemporal constraints. These
results support the scalability of DSL in preference optimization but also highlights the pressing need
for more efficient algorithms.

5 Conclusion

We present ChinaTravel, a benchmark for multi-day multi-POI travel planning focused on authentic
Chinese needs. We address the limitations of previous benchmarks by incorporating open-ended
and diverse human queries, capturing real-world user needs. Additionally, we propose a scalable
evaluation framework based on DSL, enabling comprehensive assessments of feasibility, constraint
satisfaction, and preference comparison. These advancements provide a foundation for developing
language agents capable of meeting diverse user requirements and delivering reliable travel solutions.
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A Limitations

Our research represents a significant step forward in evaluating the travel planning capabilities of
language agents, but it is not without challenges. One limitation lies in its focus on Chinese travel
planning. Due to the inherent differences in natural language, the translated versions of queries may
fail to fully capture the challenges of understanding requirements in Chinese queries, potentially
limiting its applicability in a global context. However, given the substantial demand within China’s
travel market, we believe a benchmark tailored to Chinese travel planning is both necessary and
socially valuable. Although our benchmark is comprehensive, it may not encompass the full range
of requirements encountered in real-world scenarios. The high cost of collecting authentic data
has limited the number of human queries in our study. To address this, future work will focus on
combining LLMs with real user queries to automate the generation of a wider variety of human-like
queries. Continuous refinement and expansion of our benchmark are crucial for more accurately
reflecting the realistic travel planning needs.

B Broader impacts

The ChinaTravel benchmark primarily serves as a foundational research tool to evaluate language
agents in complex, real-world travel planning scenarios. By providing an open-ended benchmark
grounded in authentic Chinese travel requirements, this work aims to advance the development of
reliable and generalizable AI systems for practical planning tasks. Its positive societal impacts include:
(1) Improved Travel Planning Efficiency: By rigorously testing agents’ ability to handle multi-day
itineraries and combinatorial constraints, this benchmark encourages the creation of more robust AI
assistants, potentially reducing the time and effort users spend on organizing trips. (2) Validation for
Real-World Applications: The benchmark establishes a critical foundation for deploying language
agents in practical travel planning settings, where multi-objective planning and constraint satisfaction
are essential. (3) Promotion of Open Research: The release of this benchmark bridges cutting-edge
LLMs with classical neuro-symbolic AI paradigms, fostering cross-disciplinary collaboration between
academia and industry. It promotes the reliable, constraint-aware AI systems, while accelerating
innovation in both foundational planning capabilities and real-world deployment scenarios.

Potential negative impacts largely depend on how future systems built upon this benchmark are
deployed. For instance: (1) Bias and Fairness: If agents inherit biases from training data or misalign
with diverse user preferences, they might disproportionately recommend certain POIs or services.
Mitigation requires ongoing fairness audits and inclusive data practices. (2) Misuse Risks: Malicious
actors could exploit highly capable planning agents to generate deceptive itineraries or manipulate
travel services. Such risks underscore the need for ethical guidelines and safeguards in downstream
applications. As a benchmark, ChinaTravel itself does not directly deploy agents but focuses on
evaluation. Its design emphasizes transparency, verifiability, and scalability, aligning with broader
efforts to ensure AI systems are both effective and controllable. Future work should prioritize
responsible use, including robust validation of real-world systems and addressing socio-technical
challenges like bias mitigation and user privacy.
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C Discussion with Related Work

LLM-based Agents have demonstrated significant capability in understanding complex instructions
and employing domain-specific tools to complete tasks, showcasing their potential in fields such
as visual reasoning [10], healthcare [32] and robotics [16]. This reduces the reliance of previous
agents on domain-specific efforts, that is, either mainly following domain-specific rules to plan
(rule-based agents, such as DeepBlue [4] and Eliza [21]) or mainly learning from domain-specific
data to plan (reinforcement-learning-based agents, such as AlphaGo [23] and Atari DQN [18]). While
the language agents have shown promising results in some domains, most of their planning scenarios
are limited to simple tasks with single objective function and fail in the travel planning benchmark
with complex logical constraints.

Neuro-Symbolic Learning explores to combine traditional symbolic reasoning with learning to
enhance the reliability [17, 25, 6]. In the era of large language models, Pan et al. [20] presents the
LogicLM integrates LLMs with separate symbolic solvers for various logical reasoning tasks. They
first utilize LLMs to translate a natural language problem into a symbolic formulation. Afterward, a
deterministic symbolic solver performs inference on the formulated problem to ensure the correctness
of the results. Deng et al. [7] supplement LogicLM with a Self-Refinement Module to enhance the
reliability of LLM translation. In the travel planning domain, Hao et al. [12] presents a framework
with a similar pipeline. It first extracts the logical constraints from natural language queries and
then formalizes them into SMT code. Thanks to SMT solvers being sound and complete, this
neuro-symbolic solution guarantees the generated plans are correct and has basically solved the
TravelPlanner benchmark with a 97% pass rate.

Travel Planning is a time-consuming task even for humans, encompassing travel-related information
gathering, POI selection, route mapping, and customization to meet diverse user needs [11]. Natural
languages are one of the most common ways for users to express their travel requirements. However,
the ambiguity and complexity of travel requirements make it still challenging for LLMs to generate
accurate and reliable travel plans. Xie et al. [27] presents the TravelPlanner benchmark for cross-city
travel planning and reveals the inadequacies of pure-LLM-driven agents. TravelPlanner generates
user queries through LLMs and provides a rigorous evaluation mechanism to verify whether the
provided plans can meet the logical constraints in the queries. It has become a pivotal benchmark
for language agents in real-world travel planning. Tang et al. [24] study the open-domain urban
itinerary planning where a single-day multi-POI plan is required. They integrates spatial optimization
with large language models and present a system ITTNERA, to provide customized urban itineraries
based on user needs. A concurrent work, TravelAgent [5], also considers a multi-day multi-POI
travel planning problem for the specified city. It constructs an LLM-powered system to provide
personalized plans. However, due to the high cost of collecting and annotating real travel needs,
they evaluate the proposed TravelAgent in only 20 queries. This also demonstrates the necessity of
introducing a new benchmark for travel planning.

D Detailed Design of ChinaTravel

D.1 Sandbox Information

We started collecting travel information with the motivation of planning a multi-day, multi-POI
itinerary in four aspects: attractions, accommodation, activities, and transportation. Developers first
determine the POI description information that needs to be obtained from the user’s perspective, such
as cuisine and hotel features. Based on this feature set, we collect public information to construct the
database. For the design of APIs, we directly support queries based on the regular expressions from
agents. At the same time, we expect the design of APIs to have similar features and characteristics
to existing commercial APIs, enabling our dataset to be applicable to more realistic scenarios. The
information our database contains is shown in Table 4 and the APIs we offer is in Table 5. Table 6
shows the information of environment constraints in ChinaTravel.

D.2 Tutorial of DSL Expression

Here is a tutorial, that provides a step-by-step guide to utilizing ChinaTravel’s Domain-Specific
Language (DSL) with predefined concept functions for expressing logical constraints and preferences.
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Tool Information

Attractions Name, Type, Latitude, Longitude, Opentime, Endtime, Price,
Recommendmintime, Recommendmaxtime

Accommodations Name, Name en, Featurehoteltype, Latitude, Longitude, Price, Numbed

Restaurants Name, Latitude, Longitude, Price, Cuisinetype, Opentime, Endtime,
Recommendedfood

Transportation Transportation in specific city including walk, metro and taxi

IntercityTransport Flight: FlightID, From, To, BeginTime, EndTime, Duration, Cost
Train: TrainID, TrainType, From, To, BeginTime, EndTime, Duration, Cost

Poi Names of POIs(including intercity transportation hub) and their coordinates

Table 4: Sandbox Information

DSL Overview In the main body of this paper, we have detailed the basics of our DSL in the Table 1.
The DSL is a Python-like language designed to formalize travel planning requirements into executable
code. It enables automated validation of itineraries against user constraints and preferences. Key
components include: 1) Concept Functions: Predefined functions (e.g., activity cost, poi distance)
that extract attributes from travel plans. 2) Operators: Logical (and, or, not), arithmetic (+, -, *, /),
and comparison operators (<, >, ==). 3) Control Structures: Loops (for), conditionals (if), and set
operations (union, intersection). More examples are provided in Fig. 9.

Figure 9: Challenges in the Neuro-Symbolic Planning.

Core Concept Functions We have defined 35 concept functions. Their definition and implementa-
tion is in Table 10, 11, 12 and 13. Below are common use cases:

Example: Budget Constraint User Query: ”Total expenses must not exceed 5000 CNY.”

total_cost = 0
for act in all_activities(plan):

total_cost += activity_cost(act)
total_cost += innercity_transport_cost(activity_transports(act))

return total_cost <= 5000

The function all activities(plan) iterates through all activities in the itinerary. The function activ-
ity cost retrieves the cost of each activity. The function innercity transport cost sums transportation
expenses. Based on Python syntax, combining these concept functions can calculate the cost of the
entire plan, thereby determining whether the budget constraints are met.

Debugging Tips (1) Syntax Validation: Use the python compiler to check for syntax errors (e.g.,
missing colons, undefined variables). (2) Unit Testing: Test individual concept functions (e.g.,
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Tool API Docs

Attractions attractions keys(city) Return a list of (key, type) pairs of the at-
tractions data.

attractions select(city, key, func) Return a DataFrame with data filtered by
the specified key with the specified func-
tion.

attractions id is open(city, id, time) Return whether the attraction with the spec-
ified ID is open at the specified time.

attractions nearby(city, point, topk, dist) Return the top K attractions within the spec-
ified distance of the location.

attractions types Return a list of unique attraction types.

Accommodations accommodations keys(city) Return a list of (key, type) pairs of the ac-
commodations data.

accommodations select(city, key, func) Return a DataFrame with data filtered by
the specified key with the specified func-
tion.

accommodations nearby(city, point, topk,
dist)

Return the top K accommodations within
the specified distance of the location.

Restaurants restaurants keys(city) Return a list of (key, type) pairs of the
restaurants data.

restaurants select(city, key, func) Return a DataFrame with data filtered by
the specified key with the specified func-
tion.

restaurants id is open(city, id, time) Return whether the restaurant with the spec-
ified ID is open at the specified time.

restaurants nearby(city, point, topk, dist) Return the top K restaurants within the spec-
ified distance of the location.

restaurants with recommended food( city,
food)

Return all restaurants with the specified
food in their recommended dishes.

restaurants cuisine(city) Return a list of unique restaurant cuisines.

Transportation goto(city, start, end, start time, trans-
port type)

Return a list of transportation options be-
tween two locations with the specified de-
parture time and transportation mode.

IntercityTransport intercity transport select(start city,
end city, intercity type, earliest leave time)

Return the intercity transportation informa-
tion between two cities.

Others notedown(description, content) Write the specified content to the notebook
plan(query) Generates a plan based on the notebook con-

tent and query and report the plan is done.
next page() Get the next page of the latest Result history

if it exists. Because of the length limited,
all returned DataFrame information is split
into 10 rows per page.

Table 5: APIs
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Category Environment Constraints Semantics

Cross-city Transportation

Intercity transportation events must occur. The first event and last event must be cross-city
transports.

Available Trains or Airplanes across cities. The provided TrainID/FlightID, origin and des-
tination should be valid in the travel sandbox.

Correct information of price, duration. The price and duration information should
match the travel sandbox.

Detailed cost on inter-city transportation Provide number of tickets and cost of each inter-
city activity. 𝑐𝑜𝑠𝑡 = 𝑝𝑟𝑖𝑐𝑒 × 𝑡𝑖𝑐𝑘𝑒𝑡𝑠

Inner-city Transportation
Available Metro, Taxi or Walking between
different positions.

The provided routes should be valid in the
travel sandbox.

Correct information of price, distance, and
duration.

These details should match the travel sandbox.

Detailed cost on inner-city transportation Provide number of tickets/cars and cost. Taxi: 4
people per car. 𝑐𝑜𝑠𝑡 = 𝑝𝑟𝑖𝑐𝑒 × 𝑡𝑖𝑐𝑘𝑒𝑡𝑠, 𝑐𝑜𝑠𝑡 =
𝑝𝑟𝑖𝑐𝑒 × 𝑐𝑎𝑟𝑠

Attractions

Available attractions in the target city The provided attractions should be valid in the
travel sandbox.

Visiting during opening hours. Activities must respect the attraction’s opening
time.

Correct price information. Must match the sandbox.
Detailed cost of attraction activity. Provide ticket number and total cost. 𝑐𝑜𝑠𝑡 =

𝑝𝑟𝑖𝑐𝑒 × 𝑡𝑖𝑐𝑘𝑒𝑡𝑠
No repeated attractions. Attractions should not repeat across the trip.

Restaurants

Available restaurants in the target city Must be valid in the travel sandbox.
Visiting during opening hours. Same as above.
Correct price information. Must match the sandbox.
Detailed cost of restaurant activity. 𝑐𝑜𝑠𝑡 = 𝑝𝑟𝑖𝑐𝑒 × 𝑡𝑖𝑐𝑘𝑒𝑡𝑠
No repeated restaurants. Same restaurant should not be visited more than

once.
Meals served in proper time slots. Breakfast: 06:00–09:00; Lunch: 11:00–14:00;

Dinner: 17:00–20:00.

Accommodation

Available accommodations in target city. Must be valid in the travel sandbox.
Correct price and room type. Must match the sandbox.
Detailed accommodation cost. 𝑐𝑜𝑠𝑡 = 𝑝𝑟𝑖𝑐𝑒 × 𝑟𝑜𝑜𝑚𝑠
Required for trips over one day. A hotel is necessary for multi-day trips.

Time Activity duration details. Must include start and end time; end time must
be after start.

Activities in chronological order. Events listed in order, respecting preceding
transport arrivals.

Space Transport info for changing positions. If positions differ, the transport route must be
included.

Table 6: Environment Constraints and Semantics in ChinaTravel Environment

poi distance) with mock itineraries. (3) Iterative Refinement: For ambiguous requirements (e.g.,
”local cuisine”), map natural language to precise DSL concepts from sandbox information (e.g.,
restaurant type(act, city) == ”Beijing Cuisine”).

Integration with Neuro-Symbolic Agents. (1) NL2DSL Translation: Convert user queries into
DSL using LLMs (e.g., ”Try local food” → restaurant type(POI, city) == ”Beijing Cuisine” when the
destination city is Beijing). (2) Symbolic Validation: Execute DSL code to verify plans against logical
constraints. (3) Search Optimization: Use DSL-defined preferences (e.g., minimize(transport time))
to rank candidate itineraries.
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Query in Chinese (from easy subset):当前位置成都。我和朋友两个人想去南京玩 2 天，住一间双床房，酒店要

可以打牌，请给我一个旅行规划。 

Current location: Chengdu. My friend and I want to go to Nanjing for 2 days. We need a twin room in a hotel where 

we can play cards. Please provide a travel plan for us. 

 

accommodation_type_set=set() 

for activity in allactivities(plan): 

  if activity_type(activity) == 'accommodation': accommodation_type_set.add(accommodation_type(activity, 

target_city(plan))) 

result=({'棋牌室'}<=accommodation_type_set) 

Query in Chinese (from medium subset): 当前位置成都。我一个人想去重庆玩 2 天，预算 3000 人民币，坐火车

往返，想吃火锅，想去洪崖洞。 

Current location: Chengdu. I want to travel alone to Chongqing for 2 days with a budget of 3000 RMB. I plan to take 

the train, want to eat hotpot, and visit Hongya Cave. 

total_cost=0  

for activity in allactivities(plan): 

    total_cost+=activity_cost(activity) 

    total_cost += innercity_transport_cost(activity_transports(activity)) 

result=(total_cost<=3000) 

intercity_transport_set=set() 

for activity in allactivities(plan): 

  if activity_type(activity) in ['train', 'airplane']: intercity_transport_set.add(intercity_transport_type(activity)) 

result=({'train'}==intercity_transport_set)" 

restaurant_type_set=set() 

for activity in allactivities(plan): 

  if activity_type(activity) in ['breakfast', 'lunch', 'dinner']: restaurant_type_set.add(restaurant_type(activity, 

target_city(plan))) 

result=({'火锅'}<=restaurant_type_set) 

attraction_name_set=set()\nfor activity in allactivities(plan): 

  if activity_type(activity)=='attraction': attraction_name_set.add(activity_position(activity)) 

result=({'洪崖洞'}<=attraction_name_set) 

Query in Chinese (from human subset): [当前位置南京,目标位置武汉,旅行人数 2,旅行天数 3] 我们 2 人想去武汉

玩 3 天，主要想体验武汉的一些有些历史的区域，同时还想尝一尝本地人常去吃的特色美食，怎么规划行

程。 

English translation: [Current location: Nanjing, Destination: Wuhan, Number of travelers: 2, Travel days: 3] The two 

of us want to visit Wuhan for 3 days. We mainly want to experience some of the historical areas in Wuhan and also try 

the local specialty foods that residents often eat. How should we plan our itinerary? 

attraction_type_set=set() 

    for activity in allactivities(plan):  

       if activity_type(activity)=='attraction': attraction_type_set.add(attraction_type(activity, target_city(plan))) 

result=({'历史古迹'}<=attraction_type_set)" 

restaurant_type_set=set()\nfor activity in allactivities(plan):   

    if activity_type(activity) in ['breakfast', 'lunch', 'dinner']: restaurant_type_set.add(restaurant_type(activity, 

target_city(plan))) 

result=({'湖北菜'}<=restaurant_type_set)" 

Query in Chinese (from human subset): [当前位置南京,目标位置杭州,旅行人数 2,旅行天数 3] 我们打算去杭州看

西湖，预算 2000，给我一个旅游安排。 

[Current location: Nanjing, Destination: Hangzhou, Number of travelers: 2, Number of travel days: 3] We plan to visit 

West Lake in Hangzhou with a budget of 2000. Please provide me with a travel itinerary. 

attraction_name_set=set() 

for activity in allactivities(plan): 

  if activity_type(activity)=='attraction': attraction_name_set.add(activity_position(activity)) 

result=({'西湖风景名胜区'}<=attraction_name_set) 

total_cost=0  

for activity in allactivities(plan): 

total_cost+=activity_cost(activity) 

    total_cost += innercity_transport_cost(activity_transports(activity)) 

result=(total_cost<=2000)" 

Figure 10: Examples of travel requirements and their DSL expressions.
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Logical Constraint

Transportation The required type of transportation.
Attraction The required type or specified attractions.
Restruants The required type or specified restruants.
Accommodation The number of rooms and the room type must meet the requirements.

The required features or specified hotels.
Budget The total cost is within required budget.

Unseen Logical Constraints in Human data

POIs The negation/conjunction/disjunction of given POIs
Time The duration of specific activities is within the limitation
Budget The cost of specific activities is within the required budget

Table 7: Descriptions of Logical Constraints for two benchmarks. Constraints in black are common
in both TravelPlanner and ChinaTravel. Metrics in brown are the metrics only in our benchmark.

Preference Requirements

Daily attractions ↑ Visit as many attractions as possible
Transport time ↓ Minimize the travel time between POIs
Transport time to the restaurants ↓ Minimize the travel time to restaurants
Food cost ratio ↑ Maximize the proportion of dining expenses
Hotel cost ↓ Minimize accommodation costs
Distance to POI ↓ Visit places as close to {POI} as possible

Table 8: Descriptions of Preference Requirements in ChinaTravel benchmark.

D.3 Query Synthesis

We designed common travel information (origin, destination, days, number of people) and logical
constraints based on the nature of travel tasks. To facilitate scalable queries for ChinaTravel, we
randomly constructed query skeletons from the aforementioned information and used advanced LLMs
to generate natural language queries from these skeletons. In practice, we provide the LLMs with
more intuitive hard logic constraints to ensure the LLMs do not make mistakes and use a Python
script to convert it after generating the query. The automatically generated data is categorized into
two difficulty levels: In the Easy level, user inputs encompass a single logical requirement, sourced
from categories such as transportation, restaurants, attractions, and accommodations. In the Medium
level, user inputs involve 2 to 5 logical requirements, introducing more complex constraints. During
the generation, we encourage the LLMs to provide varied and human-like expressions, necessitating a
deeper understanding and processing to accurately interpret and fulfill the user’s needs. For instance,
the logical requirement ”taste Beijing cuisine” could correspond to the natural language query: ”Try
local food in Beijing.” We utilize prompt engineering to guide LLMs in refining natural language
expressions to facilitate automated generation. One of the prompts is shown in Figure 11. Several
examples of generated data is in Figure 12. As a result, we obtain the synthetic queries across diverse

Table 9: Results of different LLMs and planning strategies on the ChinaTravel medium subset.

DR EPR LPR C-LPR FPR DR EPR LPR C-LPR FPR
Mic. Mac. Mic. Mac. Mic. Mac. Mic. Mac.

Act 72.7 52.3 0 63.5 15.3 0 0
NSP

71.3 71.9 69.3 69.4 50.0 69.3 46.7
97.4 70.5 0 89.3 55.3 0 0 68.0 68.0 68.0 64.1 46.6 64.1 46.7

ReAct
(zero-shot)

41.3 35.2 0 37.6 4.0 0 0 53.3 45.9 16.0 49.2 33.3 14.8 8.50
92.0 54.8 0 78.6 22.7 0 0 NSP

oracle

68.6 65.4 54.0 66.2 61.3 52.5 54.0
ReAct

(one-shot)
82.7 77.1 3.33 82.6 48.7 2.95 1.33 60.8 59.4 54.9 60.3 58.2 60.3 56.9
94.7 69.2 0.67 91.8 64.0 0.53 0 53.3 51.3 36.6 51.9 43.3 34.8 34.6

20



Function
Name

Meaning Implementation

day count total days in the plan def day_count(plan):
return len(plan["itinerary"])

people count number of people in the trip def people_count(plan):
return plan["people_number"]

start city start city of the plan def start_city(plan):
return plan["start_city"]

target city target city of the plan def target_city(plan):
return plan["target_city"]

allactivities all the activities in the plan

def allactivities(plan):
activity_list = []
for day_activity in plan["itinerary"]:

for act in day_activity["activities"]:
activity_list.append(act)

return activity_list

allactivities -
count

the number of activities in the
plan

def allactivities_count(plan):
count = 0
for day_activity in plan["itinerary"]:

count += \
len(day_activity["activities"])

return count

dayactivities all the activities in the specific
day [1, 2, 3, ...]

def dayactivities(plan , day):
activity_list = []
for act in plan["itinerary"]\

[day - 1]["activities"]:
activity_list.append(act)

return activity_list

activity cost the cost of specific activity with-
out transport cost

def activity_cost(activity):
return activity.get("cost", 0)

activity posi-
tion

the position name of specific ac-
tivity

def activity_position(activity):
return activity.get("position", "")

activity price the price of specific activity def activity_price(activity):
return activity.get("price", 0)

activity type the type of specific activity def activity_type(activity):
return activity.get("type", "")

activity tickets the number of tickets needed for
specific activity

def activity_tickets(activity):
return activity.get("tickets", 0)

activity trans-
ports

the transport information of spe-
cific activity

def activity_transports(activity):
return activity.get("transports", [])

activity -
start time

the start time of specific activity def activity_start_time(activity):
return activity.get("start_time")

activity -
end time

the end time of specific activity def activity_end_time(activity):
return activity.get("end_time")

Table 10: Concept Function
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Function
Name

Meaning Implementation

activity time the duration of specific activity

def activity_time(activity):
start_time = activity.get("start_time")
end_time = activity.get("end_time")
if start_time and end_time:

st_h , st_m = \
map(int , start_time.split(":"))

ed_h , ed_m = \
map(int , end_time.split(":"))

return \
(ed_m - st_m) + (ed_h - st_h) * 60

return -1

poi recom-
mend time

the recommend time of specific
poi(attraction) in the city

def poi_recommend_time(city , poi):
select = Attractions ().select
attrction_info = \

select(city , key="name",
func=lambda x: x == poi).iloc [0]

recommend_time = \
(attrction_info["recommendmintime"]) \
* 60

return recommend_time

poi distance the distance between two POIs
in the city

def poi_distance(city , poi1 , poi2):
start_time="00:00"
transport_type="walk"
goto = Transportation ().goto
return goto(city , poi1 , poi2 , start_time ,

transport_type)[0]["distance"]

innercity -
transport cost

the total cost of specific innercity
transport

def innercity_transport_cost(transports , mode):
cost = 0
for transport in transports:

if node is None or \
transport.get("type") == node:
cost += transport.get("cost", 0)

return cost

innercity -
transport price

the price of innercity transport

def innercity_transport_price(transports):
price = 0
for transport in transports:

price += transport["price"]
return price

innercity -
transport -
distance

the distance of innercity trans-
port

def innercity_transport_distance\
(transports , mode=None):
distance = 0
for transport in transports:

if mode is None or \
transport.get("type") == mode:
distance += \

transport.get("distance", 0)
return distance

innercity -
transport -
time

the duration of innercity trans-
port

def innercity_transport_time(transports):
def calc_time_delta(end_time , start_time):

hour1 , minu1 = \
int(end_time.split(":")[0]), \

int(end_time.split(":")[1])
hour2 , minu2 = \

int(start_time.split(":")[0]), \
int(start_time.split(":")[1])

return (hour1 - hour2) * 60\
+ (minu1 - minu2)

Table 11: Concept Function

22



Function
Name

Meaning Implementation

metro tickets the number of metro tickets if
the type of transport is metro

def metro_tickets(transports):
return transports [1]["tickets"]

taxi cars the number of taxi cars if the
type of transport is taxi

def taxi_cars(transports):
return transports [0]["cars"]

room count the number of rooms of accom-
modation

def room_count(activity):
return activity.get("rooms", 0)

room count the number of rooms of accom-
modation

def room_count(activity):
return activity.get("rooms", 0)

room type the type of room of accommoda-
tion

def room_type(activity):
return activity.get("room_type", 0)

restaurant -
type

the type of restaurant’s cuisine
in the target city

def restaurant_type(activity , target_city):
restaurants = Restaurants ()
select_food_type = \

restaurants.select(
target_city , key="name",
func=lambda x: x == activity["position"]

)["cuisine"]
if not select_food_type.empty:

return select_food_type.iloc [0]
return ""

attraction -
type

the type of attraction in the target
city

def attraction_type(activity , target_city):
attractions = Attractions ()
select_attr_type = \

attractions.select(
target_city , key="name",
func=lambda x: x == activity["position"]

)["type"]
if not select_attr_type.empty:

return select_attr_type.iloc [0]
return ""

accommo-
dation type

the feature of accommodation in
the target city

def accommodation_type(activity , target_city):
accommodations = Accommodations ()
select_hotel_type = \

accommodations.select(
target_city , key="name",
func=lambda x: x == activity["position"]

)["featurehoteltype"]
if not select_hotel_type.empty:

return select_hotel_type.iloc [0]
return ""

innercity -
transport -
type

the type of innercity transport

def innercity_transport_type(transports):
if len(transports) == 3:

return transports [1]["mode"]
elif len(transports) == 1:

return transports [0]["mode"]
return ""

intercity -
transport -
type

the type of intercity transport def intercity_transport_type(activity):
return activity.get("type", "")

Table 12: Concept Function
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Function
Name

Meaning Implementation

innercity -
transport -
start time

the start time of innercity trans-
port

def innercity_transport_start_time(transports):
return transports [0]["start_time"]

innercity -
transport -
end time

the end time of innercity trans-
port

def intercity_transport_end_time(transports):
return transports [-1]["end_time"]

intercity -
transport -
origin

the origin city of intercity trans-
port

def intercity_transport_origin(activity):
if "start" in activity:

for city in city_list:
if city in activity["start"]:

return city
return ""

intercity -
transport -
destination

tthe destination city of intercity
transport

def intercity_transport_destination(activity):
if "end" in activity:

for city in city_list:
if city in activity["end"]:

return city
return ""

Table 13: Concept Function

travel requirements, including 28 restaurant types, 23 attraction types, 29 hotel features, and more
than 130 specific POIs.
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D.4 Data Diversity and Bias Mitigation

This subsection provides a detailed analysis of ChinaTravel’s hybrid query design, addressing
concerns about synthetic data limitations and real-world representativeness.

ChinaTravel integrates both synthetic and human-authored queries to balance scalability and realism.
When synthesizing data, we randomly constructed constraints based on the types and specific visit
requirements of POIs such as restaurants, accommodations, transports, and attractions, thereby
ensuring the diversity of the dataset. The human query subset comprises 154 samples collected
through structured questionnaires, which introduce complex real-world constraints such as time-
bound returns (e.g., explicit requirements like “return before 7 PM”) and activity-specific budget
allocations. These queries also incorporate colloquial expressions that reflect native Chinese travel
preferences, exemplified by phrases like local specialty foods frequented by residents. The synthetic
queries are generated through LLM-based paraphrasing techniques and systematically categorized
into two tiers: Easy-tier queries contain single logical constraints (e.g., specific cuisine requirements),
while Medium-tier queries combine 3–5 interdependent constraints (e.g., compound conditions like
“budget ≤ 3000 CNY + train transport + hotpot dining”).

To mitigate synthetic data bias and enhance diversity, three primary strategies were implemented. First,
constraint combinations were deliberately diversified across temporal, spatial, and cost dimensions,
as detailed in Table 7. Second, a human validation layer filters out unrealistic LLM-generated queries,
such as physically implausible itineraries like ”visiting 10 attractions within one day.” Third, the DSL
framework enables compositional generalization of requirements, supporting open-ended constraint
combinations through its formal syntax shown in Table 1.

The current human query subset remains limited by annotation costs, as discussed in the limitation
section. In future work, we will advance data collection by integrating LLMs with real user queries
to automate and diversify the generation of human-like queries. Additionally, all human queries
and automated synthesis tools will be publicly released to support community-driven benchmark
extensions.

D.5 Data with Preference

We introduce six common preferences from user surveys to construct the preference sub-datasets.
Table 8 provides a summary of these preferences.

The corresponding DSL could be formulated as follows.

# The number of attractions visited
count = 0
for act_i in all_activities(plan):

if activity_type(act_i)=="attraction": count = count + 1
return count

# The average travel time between POIs
time_cost = 0
transport_count = 0
for activity in allactivities(plan): transports =

activity_transports(activity)
transport_count += 1 time_cost += innercity_transport_time(

transports)
average_time_cost = time_cost / transport_count if transport_count > 0

else -1
return average_time_cost

# The average travel time to restaurants
restaurant_count = 0
time_cost = 0
for activity in allactivities(plan):

if activity_type(activity) in [’breakfast ’, ’lunch ’, ’dinner ’]:
restaurant_count += 1
time_cost += innercity_transport_time(activity_transports(

activity))
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if restaurant_count == 0:
average_time_cost = -1

else:
average_time_cost = time_cost / restaurant_count

return average_time_cost

# The ratio of food cost
food_cost = 0
total_cost = 0
for activity in allactivities(plan):

total_cost += activity_cost(activity)
total_cost += innercity_transport_cost(activity_transports(activity

))
if activity_type(activity) in [’breakfast ’, ’lunch ’, ’dinner ’]:

food_cost += activity_cost(activity)
food_cost_ratio = food_cost / total_cost if total_cost > 0 else -1
return food_cost_ratio

# The cost of accommodations
accommodation_cost = 0
for activity in allactivities(plan):

if activity_type(activity) == ’accommodation ’:
accommodation_cost += activity_cost(activity)"

return accommodation_cost

# The average distance to poi (e.g. xxx)
target_poi = ’xxx’
poi_list = list()
total_distance = 0
poi_count =0
city = target_city(plan)
for activity in allactivities(plan):

if activity_type(activity) in [’breakfast ’, ’lunch ’, ’dinner ’, ’
accommodation ’, ’attraction ’]:
poi_list.append(activity_position(activity))

for poi in poi_list:
total_distance += poi_distance(city , target_poi , poi)
poi_count += 1

average_dist_cost = total_distance / poi_count if poi_count > 0 else
-1

return average_dist_cost

D.6 Benchmark Difficulty and Applicability

While the Human subset presents significant challenges, the baseline NeSy solution has achieved
60.6% and 46.7% FPR on Easy and Medium subsets, respectively, providing developers with action-
able validation points for initial testing and refinement. Additionally, the Human subset’s extreme
difficulty arises from open language reasoning and unseen concept composition, key challenges
absent in prior benchmarks but unavoidable in practice. By explicitly formalizing these challenges,
ChinaTravel has provided a roadmap for advancing agents toward real-world robustness. Despite
current LLMs’ limitations in handling unseen combinations, their success in code generation suggests
that post-training with DSL may enhance their understanding of diverse travel needs, moving toward
real-world applications.

E Discussion with TravelPlanner

TravelPlanner’s logical constraints contain the total cost, 15 cuisines, 5 house rules, 3 room types,
and 3 intercity transports. ChinaTravel’s logical constraints contain the total cost, 42 cuisines, 15
attraction types, 78 hotel features, 2 room types, 2 intercity-transports types, 3 inner-city-transports
types, and specific POI names (attractions, restaurants, hotels). Crucially, our benchmark introduces
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compositional constraints derived from human queries (e.g., “return before 7 PM”, “cost of intercity
transports”), reflecting real-world complexity. The key advancement lies in addressing open-language
reasoning and unseen concept composition, which represent significant challenges beyond Trav-
elPlanner’s scope. Our Domain-Specific Language (DSL) enables automated validation of these
combinatorial requirements, bridging the gap between synthetic and real-world needs.

We also provide some example queries and corresponding examples from the TravelPlanner at each
level in Figure 18, 19, and 20.

As shown in Figure 18, in the “easy level”, TravelPlanner only includes constraints on cost. In
contrast, ChinaTravel demonstrates significant advantages over TravelPlanner, particularly in terms of
personalized support for specific Points of Interest (POIs) and more realistic transportation and time
management. These advantages are crucial for developing and evaluating language agents that can
handle real-world travel planning scenarios effectively. ChinaTravel allows users to directly specify
POI names, such as ”Nanjing DaPaXiang” or ”HuQiu Mountain Scenic Area,” requiring the agent to
precisely match the entity information from the travel sandbox.

As shown in Figure 19, in the medium set, TravelPlanner includes queries with two types of con-
straints: cost and cuisine, or cost and accommodation. In contrast, ChinaTravel includes queries with
2 to 5 types of constraints, reflecting more complex and diverse multi-constraint requirements. This
difference highlights the ability of ChinaTravel to handle more realistic and varied travel planning
scenarios.

As shown in Figure 20, TravelPlanner includes queries with multiple constraints, such as cost, ac-
commodation type, and cuisine preferences. However, ChinaTravel goes a step further by including
queries with unseen logical constraints and more colloquial expressions. These unseen logical con-
straints and colloquial expressions are essential for travel planning agents to handle real-world users
effectively. They reflect the complexity and diversity of real-world travel planning scenarios, where
users may have diverse requirements that need to be understood and addressed. By incorporating these
elements, ChinaTravel bridges the gap between current academic research benchmarks and real-world
application demands, making it a more comprehensive and realistic benchmark for evaluating the
capabilities of travel planning agents.

F NeSy Planning

Since the Z3 solver from [12] would restructure the tool API to return travel information expressed in
specific Z3 variables, which may not be feasible given that APIs in the real world are typically black
boxes that agents can only call. Following their two-stage solution, we first extract logical constraints
from natural language. Based on these constraints, we implement a step-by-step plan generation
process using depth-first search, mimicking how humans plan to travel by arranging activities one
by one. As shown in Fig. 5, we first translate the natural languages to logical constraints through
prompting. generate the next activity type based on the current plan, and then recursively generate
the next activity until the goal is reached. The generated plan is then used to solve the problem. In
the second step, we define the rule-based activity selection and score function. For example, if the
current time is in the [10:30, 12:30] and there is no scheduled lunch in the current plan, then the agent
should find a restaurant to have lunch at this time. If the current time is after 22:00 and there are no
open-time attractions nearby, the agent should choose to return to the hotel. For the score function,
we select the restaurants that satisfy the required cuisine and sort the candidates by the price if there a
budget constraints in the constraints 𝐶. These ranking functions will help us to find a feasible solution
as soon as possible. In ChinaTravel, the duration arrangement of activities is continuous and difficult
to enumerate and search. We pre-define a meal or a visit to an attraction as 90 minutes, and when
there are less than 90 minutes until closing time, the event continues until the closing time. Given
these designs, we adapt the neural-symbolic solution into a multi-POI planning problem and evaluate
it in the ChinaTravel benchmark.

Given that some queries are particularly challenging due to the limited number of feasible plans,
we set the maximum runtime for the symbolic sketch from interactive search to 5 minutes per
query, excluding the LLM inference time, to ensure a fair comparison across different models. If
a plan satisfying the generated DSL validation is found within the time limit, it is returned directly.
Otherwise, the program halts when the time limit is reached, and the plan that satisfies environmental
constraints while achieving the highest number of validation code successes among all intermediate
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Algorithm 1 Depth-First Greedy Search

Require: Constraints 𝐶, current plan 𝑝,
if the least activity is an intercity-transport from destination to origin then

return ConstraintValidation(p, C), p ⊲ The plan 𝑝 is finished, return the validation result.
end if
type = GetNextActivityType(p) ⊲ Select the next type of activities, e.g. lunch, attraction.
candidates = ToolUse(type) ⊲ Collect the corresponding information for the activity type
scores = LLMScore(candidates, p, C) ⊲ Score candidates through constraints C.
for activity in candidates do

p.push(activity) ⊲ Perform a greedy search with priority ranking.
flag, p = Depth-FirstGreedySearch(C, p)
if flag then

return True, p ⊲ Return the solution 𝑝 if the validation is passed.
end if
p.pop(activity)

end for
return False, p ⊲ Fail to find a solution with the given conditions.

results is returned. In cases where no environment-compliant plan is identified, the partially completed
plan generated up to that point is returned.

In the Figure 21, 22 and 23, we provide the prompts of the LLM POI-ranking phases.

G Evaluation Metric in Competition

The Delivery Rate (DR), Environmental Pass Rate (EPR), Logical Pass Rate (LPR), and Final Pass
Rate (FPR) have been detailed in TravelPlanner [27]. To make the paper more self-contained, we
also provide the corresponding definition here.

Delivery Rate: This metric assesses whether agents can successfully deliver a formatted plan. For
the Nesy planning, if a solution that satisfies the logical constraints has not been found by the time
out, the search is terminated, and the current solution that satisfies the environmental constraints
is returned. If no solution that satisfies the environmental constraints is obtained, an empty plan
is returned. Therefore, unlike the pure LLM method, which primarily assesses the Delivery Rate
based on whether the output meets the formatting requirements, the nesy planning method, which
uses depth-first-search to arrange POIs one by one, shows differences in the Delivery Rate. These
differences mainly reflect the proportion of effective solutions obtained within a limited time based
on the LLM’s POI recommendation. This proportion demonstrates the degree to which the LLM
prioritizes POI arrangements from a natural language perspective and meets formalized logical
requirements. The more accurately the LLM can arrange POIs that are beneficial for long-horizon
planning, the more likely it is to obtain effective solutions and improve the Delivery Rate.

Environmental Pass Rate Comprising the environmental dimensions (as detailed in Tab. 6), this
metric evaluates whether a language agent can accurately incorporate sandbox information into their
generated plans.

𝐸𝑃𝑅 − 𝑚𝑖𝑐𝑟𝑜 =

∑
𝑝∈𝑃

∑
𝑐∈𝐸𝑛𝑣 𝟙passed(𝑐,𝑝)

|𝑃 | ∗ |𝐸𝑛𝑣 |

𝐸𝑃𝑅 − 𝑚𝑎𝑐𝑟𝑜 =

∑
𝑝∈𝑃

∏
𝑐∈𝐸𝑛𝑣 𝟙passed(𝑐,𝑝)

|𝑃 |

Logical Pass Rate Comprising the logical dimensions (as detailed in Tab. 7), this metric evaluates
whether a language agent can accurately meet the personalized requirements of the queries.

𝐿𝑃𝑅 − 𝑚𝑖𝑐𝑟𝑜 =

∑
𝑝∈𝑃

∑
𝑐∈𝐶𝑝

𝟙passed(𝐶𝑝 , 𝑝)∑
𝑝∈𝑃 |𝐶𝑝 |
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𝐿𝑃𝑅 − 𝑚𝑎𝑐𝑟𝑜 =

∑
𝑝∈𝑃

∏
𝑐∈𝐶𝑝

𝟙passed(𝐶𝑝 , 𝑝)

|𝑃 |

Final Pass Rate This metric represents the proportion of feasible plans that meet all aforementioned
constraints among all tested plans. It serves as an indicator of agents’ proficiency in producing plans
that meet a practical standard.

𝐹𝑃𝑅 =

∑
𝑝∈𝑃 𝟙passed(𝐸𝑛𝑣,𝑝) ·𝟙passed(𝐶𝑝 , 𝑝)

|𝑃 |

Preference Ranking To systematically evaluate the satisfaction of soft user preferences in travel
planning, we introduce a Preference Ranking metric that quantifies the alignment of generated
itineraries with diverse user requirements. Each preference (e.g., ”maximize attraction visits” or
”minimize transportation time”) is formalized into a Domain-Specific Language (DSL)-based concept,
enabling automated numerical extraction from plans. For instance, the preference for ”visiting more
attractions” is translated into a DSL function that counts the total attraction-type activities in a
plan, while ”minimizing dining costs” is operationalized via cumulative expense calculations for
meal-related activities.

The Preference Ranking metric operates in two steps: 1) Quantification: Execute DSL code to
compute concept-specific scores (e.g., attraction count, transport time) for each generated plan. 2)
Ranking: Compare methods (e.g., BQ vs. PEQ vs. PDS) by ranking their concept values, prioritizing
higher values for maximization goals (↑) and lower values for minimization goals (↓). 3) Aggregation:
Calculate the average ranking on the given samples.

H Additional Experimental Results

H.1 Multi-Preference Comparison

For multi-preference scenarios (e.g., balancing ”attraction visits ↑” and ”transport time ↓”), we adopt
an averaged aggregation approach, where rankings reflect the combined performance across all
preferences. This framework ensures scalability and objectivity.

To rigorously evaluate the ability of language agents to balance multiple soft constraints, we con-
structed 15 test subsets by pairing six user preferences (P0–P5) into all possible combinations (e.g.,
”P0 + P1”). Each subset contains queries with two preference requirements. We compared two meth-
ods, Baseline Query (BQ) and Preference-Enhanced Query (PEQ), by quantifying their performance
through our DSL-based Preference Ranking metric. For each subset, we extracted numerical scores
for both preferences (Value-1 and Value-2), computed individual rankings (Rank-1, Rank-2), and
derived an aggregated ranking (Agg. Rank.) to reflect overall performance. The results are provided
in the Table 14.

From these results, we could find that: (1) PEQ Outperforms BQ in Most Scenarios: In 10/15
combinations, PEQ achieves superior aggregated rankings (Aggregated Ranking = 1.43 vs. BQ’s
1.56). Notably, PEQ demonstrates stable improvements on preferences P3 (e.g., maximizing dining
quality↑) and P4 (e.g., minimizing accommodation costs↓). For instance: In ”P0↑ + P4↓”, PEQ
reduces accommodation costs by 64% (Value-2: 441 vs. BQ’s 1221) while maintaining high attraction
counts (Value-1: 0.97 vs. 0.79). For ”P3↑ + P4↓”, PEQ simultaneously improves dining quality
(Value-1: 0.26 vs. BQ’s 0.18) and lowers costs (Value-2: 531 vs. 1229). This stability likely stems
from the direct impact of POI selection on these preferences. LLMs in PEQ effectively prioritize
low-cost hotels or high-quality restaurants through natural language hints (e.g., ”reduce the cost
on accommodations”), enabling explicit alignment with P3 and P4 requirements. (2) Challenges
in Balancing Multiple Preferences: The results also reveal inherent difficulties in harmonizing
conflicting preferences, particularly when optimizing one requirement necessitates sacrificing another.
Notably, in the P0↑ + P1↓ scenario, PEQ underperforms BQ on both preferences, highlighting the
inherent difficulty in resolving conflicting objectives. While PEQ marginally improves attraction
counts (Value-1: 0.83 vs. BQ’s 0.79), it incurs a 5.7% increase in transport time (Value-2: 29.7
vs. BQ’s 28.0). This trade-off results in a worse aggregated ranking for PEQ (1.55 vs. BQ’s 1.44),
indicating that the combined effect of conflicting preferences negates the benefits of natural language
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Preference Combination Vaule-1 Vaule-2 Rank-1 Rank-2 Agg. Rank.
BQ PEQ BQ PEQ BQ PEQ BQ PEQ BQ PEQ

P0 ↑, P1 ↓ 0.79 0.83 28.0 29.7 1.44 1.55 1.44 1.55 1.44 1.55

P0 ↑, P2 ↓ 0.82 1.26 29.0 31.9 1.56 1.43 1.43 1.56 1.5 1.5

P0 ↑, P3 ↑ 0.81 0.94 0.18 0.20 1.42 1.57 1.59 1.40 1.51 1.48
P0 ↑, P4 ↓ 0.79 0.97 1221 441 1.46 1.53 1.73 1.26 1.59 1.40
P0 ↑, P5 ↓ 0.78 0.91 33.6 34.0 1.37 1.62 1.70 1.29 1.54 1.45
P1 ↓, P2 ↓ 28.2 27.8 26.6 30.1 1.62 1.37 1.48 1.51 1.55 1.44
P1 ↓, P3 ↑ 28.2 36.2 0.20 0.27 1.31 1.68 1.6 1.4 1.45 1.54

P1 ↓, P4 ↓ 30.3 44.8 1440 585 1.14 1.85 1.77 1.22 1.45 1.54

P1 ↓, P5 ↓ 30.1 38.3 30.7 30.2 1.27 1.72 1.69 1.30 1.48 1.51

P2 ↓, P3 ↑ 24.7 23.3 0.27 0.27 1.43 1.56 1.60 1.39 1.52 1.47
P2 ↓, P4 ↓ 24.1 21.1 1687 719 1.51 1.48 1.89 1.10 1.70 1.29
P2 ↓, P5 ↓ 28.0 30.8 29.4 26.0 1.51 1.48 1.89 1.10 1.70 1.29
P3 ↑, P4 ↓ 0.18 0.26 1229 531 1.64 1.35 1.69 1.30 1.66 1.33
P3 ↑, P5 ↓ 0.22 0.22 33.3 29.0 1.51 1.48 1.84 1.15 1.68 1.31
P4 ↓, P5 ↓ 1366 767 33.1 31.6 1.67 1.32 1.45 1.54 1.56 1.43

Aggregated Ranking 1.56 1.43

Table 14: Multi-Preference Comparison of BQ and PEQ.

guidance. In 9/15 combinations, PEQ improves one preference at the expense of the other. For
example: P1↓ + P4↓: PEQ reduces accommodation costs by 59% (Value-2: 585 vs. BQ’s 1440) but
increases transport time by 48% (Value-1: 44.8 vs. 30.3). The inability to concurrently satisfy both
preferences underscores the limitations of current LLM-driven prioritization in handling trade-offs.

Our experiments demonstrate that the neuro-symbolic agent (PEQ), enhanced by LLM-driven POI
recommendation, outperforms baseline methods in multi-preference travel planning. By integrating
natural language hints to guide POI selection, PEQ effectively translates user requirements into
actionable itineraries, demonstrating its capability to handle synergistic preferences. However,
balancing inherently conflicting objectives remains challenging. This highlights the need for future
advancements, such as domain-specific fine-tuned LLMs to better resolve preference conflicts or
multi-objective optimization techniques to systematically navigate trade-offs.

H.2 Open Reasoning with Chinese Context

In this section, we quantitatively compare the reasoning capabilities of LLMs in the context of
Chinese travel requirements. Given that many leading LLMs, such as GPT-4, are primarily trained in
English corpora, it is essential to evaluate their performance in a Chinese travel planning context to
better understand their reasoning abilities. We focus on three LLMs: GPT-4o, DeepSeek-V2.5, and
Qwen2.5-7B, which are employed in the main experiments.

Specifically, we analyze the POI matching in the NL2DSL process with varying travel requirements
from the synthesized quires and further provide the distribution of the results in Figure 13. The
comparative analysis reveals significant disparities in reasoning capabilities across the three LLMs
when handling Chinese travel-related queries. DeepSeek-V2.5 demonstrates robust performance in
most categories, achieving high accuracy (Correct ≥ 93%) for attraction-names, attraction-types,
restaurant-names, and hotel-features. However, its performance sharply declines in hotel-names
(Correct: 67%, Missing: 33%), suggesting limited familiarity with Chinese hotel nomenclature
or insufficient contextual grounding in this domain. This contrasts with GPT-4o, which excels in
hotel-names (Correct: 93%) and achieves perfect accuracy (Correct: 100%) for attraction-types,

30



highlighting its superior cross-lingual transfer capabilities despite being primarily English-trained.
Notably, GPT-4o maintains consistent performance across all categories (Correct ≥ 93%), underscor-
ing its balanced reasoning proficiency in Chinese contexts. In stark contrast, Qwen2.5-7B exhibits
critical weaknesses, particularly in attraction-names (Correct: 13%, Error: 43%), indicating severe
limitations in entity recognition and syntactic coherence for Chinese proper nouns. The pronounced
missing rates observed in Qwen2.5-7B (e.g., 43% for attraction-names and 23% for hotel-names)
align with its constrained parameter size (7B), which likely impedes its ability to internalize diverse
travel requirements or align them with sandbox’s POI information.

We further conduct the analysis and provide the results on human queries in Figure 14. The evaluation
of human queries reveals critical limitations in LLMs’ practical reasoning capabilities that synthetic
data fails to expose. DeepSeek-V2.5’s accuracy plummets in hotel-feature (Correct: 40% vs. 93%
in synthetic data), indicating severe degradation when handling ambiguous or culturally nuanced
requirements (e.g., interpreting subjective descriptors like “luxury” or ”traditional courtyard-style” in
Chinese contexts). GPT-4o similarly exhibits instability, with significant declines in restaurant-types
(Correct: 37% vs. 97% in synthetic data) and attractions-type (Correct: 69% vs. 100%), suggesting
that its cross-lingual transfer mechanisms falter when confronted with real-world linguistic variability
(e.g., colloquial phrasing or dialect influences). This analysis underscores the necessity of introducing
human queries into benchmarks when evaluating travel planning, as they reveal critical gaps in open
language reasoning for deploying LLMs in real-world travel assistants.

H.3 Analysis of Pure-LLM Methods

Pure LLM-based methods have demonstrated significant shortcomings in constraint satisfaction, as
evidenced by their near-zero success rates in benchmarks like TravelPlanner. We also attempt the
multi-round refinement methods like Reflexion. While theoretically promising, it is still impractical
in our context. In preliminary evaluations, Reflexion not only failed to achieve improvements in
constraint satisfaction (consistent 0% FPR) but also incurred prohibitive computational costs due
to its reliance on iterative token-heavy interactions. This rendered large-scale evaluation infeasible
given our resource constraints. In light of their current limitations in constraint satisfaction, NeSy
frameworks remain the effective pathway for real-world travel planning. Therefore, in the main body
of this work, we mainly analyze the Nesy method.

In this section, we further summarize the key failure modes of pure-LLM-based methods observed in
our experiments:

(1) Incorrect API Calls: LLMs frequently generate invalid or hallucinated API calls, leading
to cascading errors in downstream planning. For instance, models may query non-existent APIs
(e.g., city transport select instead of inter city transport select) or misuse parameters (e.g., filtering
attractions by an unsupported feature like ”bus”). Such errors exhaust API call limits and prevent
agents from retrieving essential information.

(2) Repetitive Output Loops In iterative planning frameworks like ReAct, LLMs often enter infinite
loops when resolving constraints. For example, an agent might repeatedly query transportation details
for all candidate attractions, even after selecting one, due to a failure to update its internal state. This
behavior mimics the “hallucination loops” reported in TravelPlanner paper.

(3) Reasoning-Action Inconsistency. In ReAct framework, the model first reasons and then takes
an action. However, the reasoning and the action are not always consistent. For example, the model
may reason that the user wants to book a flight, but then take an action to check the information of
trains. Another example is that the model may detect that the expenses exceed the budget but does
not respond to this and ultimately generates a plan that exceeds the budget.

(4) Critical Information Missing. Even when intermediate steps (e.g., API responses) are logged
in a ”notebook,” LLMs frequently omit essential details when synthesizing final plans. A recurring
failure is neglecting return transportation (e.g., omitting the train from Shanghai back to Beijing),
which violates feasibility constraints.

Figure 15 provides the fail examples of ReAct (one-shot) with DeepSeek, which outperforms other
pure-LLM-based methods in the main experiments.

These limitations underscore the inadequacy of pure-LLM-based approaches for deployment in
long-horizon and constraint-rich domains like travel planning.
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I Statements about Scientific Artifacts

The ChinaTravel benchmark is designed to facilitate research in natural language processing and
artificial intelligence, specifically for travel planning tasks. ChinaTravel includes a travel sandbox,
user queries, and an evaluation framework intended for non-commercial, academic research purposes.

Availability. We will publicly release the ChinaTravel benchmark upon publication to facilitate
community research. We look forward to broader adoption and extension of this benchmark.

Licenses. The ChinaTravel benchmark and its associated datasets are licensed under the Creative
Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0) license. This license
allows for the free use, distribution, and reproduction of the benchmark in any medium, provided that
appropriate credit is given to the original authors and the source of the data is acknowledged, and that
the use is for non-commercial purposes only.

Data anonymization and offensive content. We anonymized the human queries during collection
and instructed participants to avoid including sensitive information. We removed queries containing
offensive content during the data cleaning process.

J Statements about Human Participants

We recruited over 250 volunteers through a structured questionnaire to collect authentic Chinese travel
requirements. Participants were informed about the public use of their data and instructed to avoid
including sensitive personal information. During data cleaning, offensive content and identifiable
details were removed. While no explicit ethics board approval is mentioned, we ensured compliance
with anonymization practices and obtained participant consent for data inclusion. The final dataset
contains 154 human-derived queries reflecting diverse real-world travel needs.

J.1 Instructions Given To Participants

To gather the authentic travel requirements, we collected data through a carefully designed question-
naire. We provided the following instruction information to the participants:

1. The specific constraints the agent can handle and the corresponding details, including the
types and specific names of attractions, restaurants, and hotels; requirements for intercity
transportation (airplane or train) and urban transportation (walk, taxi or subway); as well as
budget limitations for overall expenses or specific activities (such as accommodation and
intercity transportation).

2. The necessary information should be provided in the query, including the departure and
destination cities of the trip, the number of travel days and constraint information.

3. A detailed example with the query and travel planning response.

Fig. 16 and Fig. 17 respectively show the questionnaire and its translated version.

J.2 Recruitment And Payment

For the collection of Human-154, we recruited a total of 250 student volunteers to provide authentic
Chinese travel requirements. The participants included 121 undergraduate students, 86 master’s
students, and 43 doctoral students. The task of understanding the query background and providing
travel requirements was estimated to take 1-2 minutes per participant. Given the simplicity of the task
and the fact that it did not require extensive professional background or expertise, we compensated
each participant with 1 yuan. This compensation was deemed adequate considering the nature of the
task and the time required to complete it. The payment was determined based on the estimated time
and the straightforward nature of the natural language requirements, ensuring a fair and reasonable
reward for the participants.

For Human-1000, we partnered with WJX (a professional survey platform) to scale data collection.
Each valid query was incentivized with 6 CNY. After WJX’s initial screening, our team rigorously
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annotated responses, filtering invalid entries (e.g., nonsensical inputs). It finally yielded 1,000
high-quality queries meeting DSL annotation standards, ensuring both diversity and alignment with
real-world planning scenarios.

J.3 Data Consent

When collecting the data, we clearly informed the participants about the usage of the data and the
potential irreversible risks of it becoming part of a public dataset. We did not track the ID information
of the questionnaire respondents. Additionally, we reminded participants not to include any sensitive
personal information in the questionnaire responses. During the data cleaning process, we directly
removed queries containing offensive content and filtered out sensitive identity information.

J.4 Characteristics of Annotators

Our data collection process solely involved travel requirements and did not include any protected
information, such as sexual orientation or political views as defined under the General Data Protection
Regulation (GDPR). All data were collected from native Chinese speakers to ensure that the travel
requirements fully align with the context and nuances of the Chinese language. This approach was
taken to accurately capture the needs and preferences of the target population, which is primarily
composed of Chinese-speaking individuals. The annotators were recruited from a diverse range of
academic backgrounds, including undergraduate, master’s, and doctoral students, to provide a broad
and representative set of travel requirements.

J.5 DSL Annotation for Human Data

The annotation process for the human data involved four stages to ensure the accuracy and validity of
the Domain-Specific Language (DSL) annotations: (1) Initial DSL Version Generation: GPT-4o was
utilized to provide the initial version of the DSL annotations for the human data. This step aimed
to leverage the language model’s capabilities to generate a baseline for further refinement. (2) Data
Annotation Team Revision: A team of five data annotators was responsible for reviewing and revising
the DSL annotations. The team members divided the workload and made necessary corrections to
the DSL annotations to ensure their accuracy and relevance to the travel requirements. (3) Primary
Developer Verification and Correction: Three of the main developers of the benchmark conducted
a thorough review of all the DSL annotations. They verified the correctness of the annotations and
made revisions as needed. This stage also involved the exclusion of any invalid queries that could not
be verified within the sandbox environment. (4) Final Verification by Primary Developers: The same
three main developers performed a final check on all the DSL annotations. This step ensured that the
annotations were accurate, consistent, and met the required standards for the benchmark.

Throughout the annotation process, the focus was on ensuring that the DSL annotations accurately
captured the travel requirements and were valid within the context of the ChinaTravel benchmark’s
sandbox environment. The annotation process for human data required a deep understanding of the
ChinaTravel DSL and involved joint debugging and verification with the sandbox information. This
significantly limited the size of the annotation team, as only a limited number of annotators had the
necessary expertise and familiarity with both the DSL and the sandbox environment. Additionally,
the process was time-consuming and required meticulous attention to detail, further constraining
the rate at which the human dataset could grow. Despite these challenges, the rigorous annotation
process ensured the quality and reliability of the human data, which is crucial for the evaluation and
development of language agents in real-world travel planning.

K TTG

K.1 Constraints Formulation

TTG [14] models the travel planning problem as a MILP (Mixed-Integer Linear Programming)
problem. We adapt their formulation into ChinaTravel for solver-based optimization and the specific
parameters, variable and constraint settings can be found in Tab. 151617.
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K.2 Experiment

Although TTG performs very well on Travelplanner, the solver takes slightly more than 1 second on
average to complete the computation. On the ChinaTravel benchmark, the rapid growth of constraints
in TTG becomes computationally prohibitive. If we use the full sandbox, the average number of
constraints will exceed 10B (For detailed calculations of variable sizes and the number of constraints,
please refer to Tab. 1819). Therefore, we only include 22 POIs (2 hotels, 10 attractions, 5 restaurants,
5 stations, 100 intercity transports each for arrivals and departures) and use one hour as a time step.
We use LLMs to select them from sandbox to ensure sufficient flexibility in handling different queries.
Nonetheless, its constraint scale still reaches 320𝑘 × days and the number of variables also reaches
36𝑘 × days. In comparison, the commonly used benchmark for evaluating MILP solvers, MIPLIB
2017 [8], contains only 10 instances with more than 320k constraints and about 60 instances with
over 36k variables (out of a total of 1065 instances).

In our main experiments, using the SCIP solver from the PuLP package, TTG was allocated a
relaxed 15-minute search limitation. However, this configuration yielded only 18% valid solutions on
easy-subset instances, with the false positive rate (FPR) further reduced to 8% due to the solver’s
pruning heuristics. Fig. 6(a) illustrates the solution time of TTG on 1- to 3-day itineraries. Within the
time limit, solutions were found for merely 23% of two-day and 6% of three-day itineraries.

Parameter Meaning
hotelNum Number of hotels

attrNum Number of attractions

restNum Number of restaurants

transNum Number of transport modes

stationNum Number of stations

goNum Number of arriving trains/buses

backNum Number of departing trains/buses

timeStep Number of time steps

locNum = hotelNum + attrNum + restNum Total number of POI locations except stations

totalNum = locNum + stationNum Total number of all locations including stations

Table 15: Definition of parameters used in TTG

Variable Meaning
𝑢[idx] [𝑡] The traveler is at location idx at time 𝑡
event[𝑡] The traveler’s location changes at time 𝑡
hotel[idx] [𝑑] Number of times the traveler visits hotel idx on day (𝑑 + 1)
attr[idx] Number of times the traveler visits attraction idx
rest[idx] [meal] Number of times the traveler visits restaurant idx at meal meal
𝑧hotel, 𝑧attr, 𝑧rest, 𝛿 Auxiliary variables
needEat[𝑚] Whether the traveler needs to eat meal 𝑚 (during intercity travel)
check[idx][t] Whether the attraction idx is open at time t
y[(i, j, tr,t)] The solution, a matrix of shape totalNum × totalNum × transNum × timeStep

Table 16: Variables used in TTG
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Constraint Type Mathematical Formulation

Spatio-temporal 𝛿[idx] [𝑡] ≥ 𝑢[idx] [𝑡 + 1] − 𝑢[idx] [𝑡]
Constraints 𝛿[idx] [𝑡] ≥ 𝑢[idx] [𝑡] − 𝑢[idx] [𝑡 + 1]

event[𝑡] = 0 ⇒ 𝑢[idx] [𝑡] = 𝑢[idx] [𝑡 + 1]
event[𝑡] = 1 ⇒ ∑

idx 𝛿[idx] [𝑡] = 2∑
𝑖 𝑢[𝑖] [𝑡] = 1

Hotel Constraints 𝑧hotel [idx] [𝑡] = 𝑢[idx] [𝑡] ∧ event[𝑡]
hotel[idx] [𝑑] = ∑(𝑑+1) ·stepPerDay

𝑡=𝑑 ·stepPerDay 𝑧hotel [idx] [𝑡]∑
idx hotel[idx] [𝑑] = 1

Attraction Constraints 𝑧attr [idx] [𝑡] = 𝑢[idx] [𝑡] ∧ event[𝑡]
attr[idx] = ∑

𝑡 𝑧attr [idx] [𝑡]∑
idx attr[idx] ≥ min attr

check[idx] [𝑡] = False ⇒ 𝑢[idx] [𝑡] = 0

Meal Necessity needEat[𝑚] = 1 ⇒ 𝑎[𝑚] < 𝑇dep

needEat[𝑚] = 1 ⇒ 𝑏[𝑚] > 𝑇arr

Innercity Transport 𝑦[(𝑖, 𝑗 , tran, 𝑡)] ≤ 𝑢[𝑖] [𝑡]
Constraints 𝑦[(𝑖, 𝑗 , tran, 𝑡)] ≤ event[𝑡]

𝑦[(𝑖, 𝑗 , tran, 𝑡)] ≤ 𝑢[tran] [𝑡 + 1]
𝑦[(𝑖, 𝑗 , tran, 𝑡)] ≤ 𝑢[tran] [𝑡 + 𝛿]
𝑦[(𝑖, 𝑗 , tran, 𝑡)] ≤ event[𝑡 + 𝛿]
𝑦[(𝑖, 𝑗 , tran, 𝑡)] ≤ 𝑢[ 𝑗] [𝑡 + 𝛿 + 1]

Restaurant Constraints 𝑧rest [idx] [𝑡] = 𝑢[idx] [𝑡] ∧ event[𝑡]
rest[idx] [𝑚] = ∑𝑏[𝑚]

𝑡=𝑎[𝑚] 𝑧rest [idx] [𝑡]∑
idx rest[idx] [𝑚] ≤ needEat[𝑚]

check[idx] [𝑡] = False ⇒ 𝑢[idx] [𝑡] = 0

Intercity Travel
∑

𝑖 interGo[𝑖] = 1
Constraints

∑
𝑖 interBack[𝑖] = 1

interGo[𝑖] = 1 ⇒ 𝑢[goStation[𝑖]] [𝑡] = 1

interBack[𝑖] = 1 ⇒ 𝑢[backStation[𝑖]] [𝑡] = 1
Table 17: Constraints used in TTG
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An Example of Prompts for Data Generation

# You are a user who wants to ask an AI agent to help you
plan a trip. Please construct some natural language
inquiries based on the following example and provide
the corresponding logical constraint expressions. Note
that "tickets" and "people_number" are the same.

# Example:
# JSON:
# {}
# Use the following restaurants.
# Restaurant name: {}
# This means that "restaurant_names" should include this

restaurant.
# The dining options may not always be exactly as

described by the provided features; synonyms can be
used. For example , if the hotel’s feature is a pool ,
you could ask naturally in language like "I want to
swim in the hotel pool."

# Now , your departure location is {}, and your destination
is {}. The number of people is {}, and the number of

days is {}.
# Now please provide a JSON inquiry.
# JSON:

Figure 11: An example of prompts for data generation. This example is about restaurant name. By
replacing this with other constraints or combining multiple constraints, we can generate data with
different levels of difficulty based on different constraints.

Variable Dimension
𝑢[idx] [𝑡] (totalNum + transNum) × timeStep

𝛿[idx] [𝑡] (totalNum + transNum) × (timeStep − 1)
event[𝑡] timeStep

hotel[idx] [𝑑] hotelNum × days

𝑧hotel [idx] [𝑡] hotelNum × timeStep

attr[idx] attrNum

𝑧attr [idx] [𝑡] attrNum × timeStep

rest[idx] [meal] restNum × 3 × days

𝑧rest [idx] [𝑡] restNum × timeStep

𝑦[(𝑖, 𝑗 , tr, 𝑡)] totalNum × totalNum × transNum × timeStep

total days × stepPerHour × 36𝑘
Table 18: Variable sizes in TTG
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Examples of Generated Data

Example 1
{

”start city”: ”杭州”,
”target city”: ”上海”,
”hard logic”: [

”days==2”,
”people number==1”,
”tickets==1”,
”{’本帮菜’} ¡= food type”

],
”nature language”: ”当前位置杭州。我一个人想去上海玩2天，想尝试当地的特

色菜，请给我一个旅行规划。”
}

Example 2
{

”start city”: ”深圳”,
”target city”: ”北京”,
”hard logic”: [

”days==2”,
”people number==3”,
”intercity transport=={’airplane’}”,
”tickets==3”,
”rooms==3”,
”room type==1”

],
”nature language”: ”当前位置深圳。我们三个人计划去北京玩两天，选择飞机出

行，开三间大床房。请给我一个旅行规划。”
}

Example 3
{

”start city”: ”重庆”,
”target city”: ”苏州”,
”hard logic”: [

”days==3”,
”people number==3”,
”cost¡=7300”,
”{’日本料理’} ¡= food type”,
”intercity transport=={’train’}”,
”tickets==3”,

”rooms==2”,
”room type==2”

],
”nature language”: ”当前位置重庆。我们三个人计划去苏州玩三天，选择火车出

行，想吃日本料理，预算7300元，开两间双床房。请给我一个旅行规划。”
}

Figure 12: Examples of Generated Data
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Figure 13: Results Distribution on Synthesized Quires

att
rac

tio
n_

na
mes

att
rac

tio
n_

typ
es

res
tau

ran
t_t

yp
es

ho
tel

_fe
atu

re
0.0

0.2

0.4

0.6

0.8

1.0

R
at

e

GPT-4o Correct
GPT-4o Missing
GPT-4o Mismatch

GPT-4o Syntax
DeepSeek Correct
DeepSeek Missing

DeepSeek Mismatch
DeepSeek Syntax
Qwen Correct

Qwen Missing
Qwen Mismatch
Qwen Syntax

Figure 14: Results Distribution on Human Quires

Category Estimated Size
Spatio-temporal constraints (totalNum + transNum) × (4 × timeStep + 3)
Hotel constraints hotelNum × (3 × timeStep + days)
Attraction constraints 4 × attrNum × timeStep

Restaurant constraints restNum × (4 × timeStep + days)
Urban transport constraints 7 × totalNum2 × transNum × timeStep + 4 × totalNum × timeStep

Intercity transport constraints (goNum + backNum) × timeStep
Table 19: Number of constraints sizes in TTG
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Action[20]: goto(city=“深圳”, start=“深圳北站”, end=“大鹏所城”, 

start_time=“19:00”, method=“bus”)

Observation[20]: Invalid method. Only support ['metro', 'walk', 'taxi']

…

Action[25]: goto(city=“深圳”, start=“深圳北站”, end=“大鹏所城”, 

start_time=“19:00”, method=“bus”)

Observation[25]: Invalid method. Only support ['metro', 'walk', 'taxi’]

…

Action[30]: goto(city=“深圳”, start=“深圳北站”, end=“大鹏所城”, 

start_time=“19:00”, method=“bus”)

Observation[30]: Invalid method. Only support ['metro', 'walk', 'taxi’]

Action[3]: city_transport_select(start_city="成都", end_city="武汉", 

intercity_type="train", earliest_leave_time="19:00")

Observation[3]: 调用失败，错误信息：name ‘city_transport_select’ 

is not defined请思考错误原因以及如何修改.

Thought[4]": 函数名错误，应该是intercity_transport_select。重新
调用正确的函数。

Thought[12]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景
点。接下来我们需要查找这两个景点的详细信息。
Action[12]: attractions_select(city="武汉", key="name", 

func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)

…

Thought[13]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景点。
接下来我们需要查找这两个景点的详细信息。
Action[13]: attractions_select(city="武汉", key="name", 

func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)

…

Thought[14]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景点。
接下来我们需要查找这两个景点的详细信息。
Action[14]: attractions_select(city="武汉", key="name", 

func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)

…

Thought[15]: 我们可以选择黄鹤楼和东湖磨山景区作为主要景点。
接下来我们需要查找这两个景点的详细信息。
Action[15]: attractions_select(city="武汉", key="name", 

func=lambda x: "黄鹤楼" in x or "东湖磨山景区" in x)

…

Incorrect API Calls Repetitive Output Loops

Reasoning-Action Inconsistency

Thought[2]: "根据我们的经验判断，高铁可能比较快且舒适，可
以查看一下高铁的航班。
Action[2]": "intercity_transport_select(start_city="深圳", end_city="

南京", intercity_type="airplane")

Observation[2]: [‘FlightID’ ‘From’ ‘To’ ‘BeginTime’ ‘EndTime’ 

‘Duration’ ‘Cost’]\n[‘FL240’ ‘深圳宝安国际机场’ ‘南京禄口国际
机场’…

Thought[14]: 预算超支，我们需要重新规划。我们可以考虑减少

一些开销，比如选择更便宜的餐馆或者减少一些景点的游览时
间。
Action[14]: planner(query="当前位置广州。我和我朋友想去上海
玩一天，预算3100人民币，请给我一个旅行规划。")

Observation[14]: Task finished. The answer is: {"people_number": 2, 

"start_city": "广州", "target_city": "上海", "itinerary": [{"day": 1, 

"activities": [{"start_time": "08:00", "end_time": "14:48", "start": "广
州南站", "end": "上海虹桥站", "cost": 787.73, "FlightID": "G818", 

"type": "train", "tickets": 2, "transports": []}, {"position": "外滩", 

"type": "attraction", "transports": [{"start": "上海虹桥站", "end": "虹
桥火车站-地铁站", "mode": "walk“ …

Critical Information Missing

Action[15]: planner(query="当前位置广州。我一个人想去武汉玩
一天，预算3000人民币，请给我一个旅行规划。")

Observation[15]:  Task finished. The answer is: {"people_number": 1, 

"start_city": "广州", "target_city": "武汉", "itinerary": [{"day": 1, 

"activities  … {"start_time": "18:00", "end_time": "22:39", "start": "

武汉站", "end": "广州南站", "cost": 543.6, "TrainID": "G877", 

"type": "train", "tickets": 1, "transports": []}]}]}"

Action[23]: planner(query=“当前位置深圳。我一个人想去苏州玩
一天，预算1600人民币，请给我一个旅行规划。")“

Observation[23]: Task finished. The answer is: {“people_number”: 1, 

“start_city”: “深圳”, “target_city”: “苏州”, “itinerary”: [{“day”: 1, 

“activities”: [{“type”: “train”, “start_time”: “06:33”, “end_time”: 

“15:46”, “cost”: 759.35, “tickets”: 1, “start”: “深圳站”, “end”: “苏州
站”, “TrainID”: “G2787”, “transports”: []}, …,, "start": "虎丘山风
景名胜区", "end": "苏州站", "transports": []}, {"type": "train", 

"start_time": "22:33", "end_time": "07:00", "cost": 759.35, "tickets": 

1, "start": "苏州站", "end": "深圳站", "TrainID": "G2788", 

"transports": []}]}]}"

Figure 15: Fail case studies of React-one-shot DeepSeek Method.
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开放旅行规划问题搜集 

本问卷旨在构建一个开放环境下的旅行规划数据集，以便于相关研究的开展。由于填写的问题将作为公开数据集的一部分，存

在无法撤销的风险；请勿在填写内容中包含任何敏感的个人信息，感谢大家的参与！ 

1. 出发城市：     （从北京、南京、上海、杭州、深圳、武汉、广州、成都、重庆、苏州中选择） 

2. 目标旅游城市：     （从北京、南京、上海、杭州、深圳、武汉、广州、成都、重庆、苏州中选择） 

3. 旅行人数：     （1-5） 

4. 旅行天数：     （1-5） 

您作为用户可以向智能代理发起査询请求。查询内容可以包括对景点、餐饮、住宿、跨城交通(如火车、飞机)以及城内交通

(如地铁、步行、出租车)的具体要求。同时，您也可以提供个人偏好。请确保查询中包含以下三个信息:目标城市、人数和天

数，并确保这些信息相互匹配。智能代理将根据您的请求提供一个旅行规划结果，包括这几天的交通安排、住宿地点、推荐的

景点及餐饮建议。 

用户问题的例子: 

当前位置苏州。我一个人想去南京玩 2天，预算 3000 人民币，往返都坐高铁，请给我一个旅行规划。 

智能代理回复的例子: 

起点:苏州 

目的地:南京 

交通:苏州北站 -> 南京南站 

列车:G4，07:24->08:15 

费用:122.9 元 

车票:1 张 

游览:玄武湖景区 

交通:地铁(南京南站 ->南京林业大学·新庄)，步行 3分钟 +地铁 23 分钟+步行 8 分钟 

费用:4 元 

游览时间:08:50->10:00 

门票:0 元 

…… 

午餐:南京金鹰国际酒店·满园春中餐厅 

费用:188 元 

时间:12:10 ->13:10 

住宿:桔子水晶南京玄武湖酒店 

房型:大床房，1间 

费用:370 元 

返回:南京南站 > 苏州站 

列车:G7220，20:09->21:23 

费用:122.9 元 

车票:1 张 

我们将用户问题分为不同难度级别进行分类，以下是每个级别的描述 

低级:涉及一般性问题，不包含个性化需求。 

中级:包含一定程度的个性化需求，通常涉及到食宿交通等方面。 

高级:涉及更复杂、更具体的需求，如时间要求、特定地点或活动的安排等。 

以下是不同难度级别下的用户问题示例: 

低级:我想知道去上海玩 2 天的行程规划，从杭州出发。 

中级:我想独自一人前往南京穷游，计划在那里待 3 天左右。我对历史文化很感兴趣，希望能深度游览一些古迹。 

高级:我们三人后天需要前往北京玩 2天。第二天晚上十点前需要从北京站返回。想在第一天去故宫，第二天去天坛，请给一

个旅行规划 

5. 请给出用户问题：                                                      

Figure 16: Questionnaire
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Open Travel Planning Data Collection Questionnaire 

This questionnaire aims to construct a dataset for travel planning in an open environment to facilitate relevant research. Since the 

responses will be part of a public dataset and cannot be revoked, please do not include any sensitive personal information in your 

responses. Thank you for your participation! 

 

1. Departure City:      (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu, Chongqing, 

Suzhou) 

2. Destination City:        (Choose from Beijing, Nanjing, Shanghai, Hangzhou, Shenzhen, Wuhan, Guangzhou, Chengdu, 

Chongqing, Suzhou) 

3. Number of Travelers:       (1-5) 

4. Number of Travel Days:       (1-5) 

As a user, you can submit queries to the intelligent agent. Your query may include specific requirements for attractions, dining, 

accommodation, intercity transportation (e.g., train, plane), and intra-city transportation (e.g., subway, walking, taxi). You may also 

provide personal preferences. Please ensure that your query includes the following three pieces of information: the destination city, the 

number of travelers, and the number of travel days, and make sure they are consistent. The intelligent agent will generate a travel plan 

based on your request, covering transportation arrangements, accommodation, recommended attractions, and dining suggestions. 

 

Example User Query: 

"My current location is Suzhou. I want to travel alone to Nanjing for 2 days with a budget of 3,000 RMB, taking the high-speed train for 

both departure and return. Please provide a travel plan." 

 

Example Response from the Intelligent Agent: 

 

Departure: Suzhou 

Destination: Nanjing 

Transportation: Suzhou North Station → Nanjing South Station 

Train: G4, 07:24 → 08:15 

Cost: 122.9 RMB 

Tickets: 1 

Attraction: Xuanwu Lake Scenic Area 

Transportation: Subway (Nanjing South Station → Nanjing Forestry University·Xinzhuang) 

Route: Walk 3 minutes → Subway 23 minutes → Walk 8 minutes 

Cost: 4 RMB 

Visit Time: 08:50 → 10:00 

Admission: 0 RMB 

… 

Lunch: Nanjing Jinling Hotel · Man Yuan Chun Chinese Restaurant 

Cost: 188 RMB 

Time: 12:10 → 13:10 

Accommodation: Crystal Orange Hotel Nanjing Xuanwu Lake 

Room Type: Queen Room, 1 room 

Cost: 370 RMB 

Return: Nanjing South Station → Suzhou Station 

Train: G7220, 20:09 → 21:23 

Cost: 122.9 RMB 

Tickets: 1 

Classification of User Queries by Difficulty Level 

We categorize user queries into different difficulty levels as follows: 

 

Easy Level: General inquiries without personalized requirements. 

Medium Level: Includes some degree of personalization, usually involving food, lodging, or transportation. 

Hard Level: Involves more complex and specific needs, such as time constraints, particular locations, or planned activities. 

Examples of User Queries at Different Difficulty Levels: 

Basic Level: "I want to know the itinerary for a 2-day trip to Shanghai from Hangzhou." 

Intermediate Level: "I plan to travel alone to Nanjing on a budget and stay for about three days. I'm interested in history and culture and 

would like to explore historical sites in depth." 

Advanced Level: "Three of us need to travel to Beijing the day after tomorrow for a 2-day trip. We need to return from Beijing Railway 

Station before 10 PM on the second day. We want to visit the Forbidden City on the first day and the Temple of Heaven on the second 

day. Please provide a travel plan." 

 

5. Please provide a user query:                                                      

Figure 17: The translated version of the questionnaire
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ChinaTravel TravelPlanner 

当前位置武汉。我一个人想去苏州玩一天，预

算 1400 人民币，请给我一个旅行规划。 

Current location: Wuhan. I want to visit Suzhou for 

a day by myself with a budget of 1,400 RMB. 

Please provide me with a travel plan. 

Please help me plan a trip from St. Petersburg to 

Rockford spanning 3 days from March 16th to 

March 18th, 2022. The travel should be planned for 

a single person with a budget of $1,700. 

当前位置南京。我一个人想去重庆玩 3 天，喜

欢吃甜食面包啥的，请给我一个旅行规划。 

Current location: Nanjing. I want to travel to 

Chongqing alone for 3 days. I like sweet foods and 

bread. Please provide me with a travel plan. 

Please design a travel plan departing from Las 

Vegas and heading to Stockton for 3 days, from 

March 3rd to March 5th, 2022, for one person, with 

a budget of $1,400.  

当前位置重庆。我和朋友两个人想去武汉玩 3

天，想尝试当地菜，请给我们一个旅行规划。 

Current location: Chongqing. My friend and I want 

to visit Wuhan for 3 days and try the local cuisine. 

Could you please provide us with a travel plan?  

Craft a travel plan for me to depart from New 

Orleans and head to Louisville for 3 days, from 

March 12th to March 14th, 2022. I will be 

travelling alone with a budget of $1,900. 

当前位置成都。我们三个人想去深圳玩 2 天，

想去历史感比较重的景点，请给我们一个旅行

规划。 

Current location: Chengdu. The three of us want to 

visit Shenzhen for 2 days and are interested in 

historical sites. Could you please provide us with a 

travel itinerary? 

Could you aid in curating a 5-day travel plan for 

one person beginning in Denver and planning to 

visit 2 cities in Washington from March 23rd to 

March 27th, 2022? The budget for this trip is now 

set at $4,200. 

当前位置深圳。我和朋友两个人想去上海玩 3

天，想去海洋水族馆，请给我们一个旅行规

划。 

Current location: Shenzhen. My friend and I want 

to visit Shanghai for 3 days and we would like to go 

to the Ocean Aquarium. Could you please provide 

us with a travel plan? 

Could you assist in crafting a travel itinerary for a 

5-day, single-person trip departing from Orlando 

and touring 2 cities in Texas? The travel dates 

should range from March 10th to March 14th, 2022, 

and the entire travel budget is $3,100. 

当前位置成都。我和朋友两个人想去上海玩 3

天，住一间双床房，期间可能要开会，酒店最

好能提供个开会的地方，请给我一个旅行规

划。 

Current location: Chengdu. My friend and I want to 

visit Shanghai for 3 days. We need a twin room, 

and we might need a meeting space during our stay. 

Please provide me with a travel plan.  

Could you help me arrange a 7-day solo travel 

itinerary from Kona to California with a budget of 

$5,800, intending to visit 3 distinct cities in 

California from March 7th to March 13th, 2022? 

我目前在南京，计划和两个朋友一起去上海玩

两天，选择原舍·在水一方度假酒店，请帮我

们规划一个旅行方案。 

I am currently in Nanjing and plan to travel to 

Shanghai with two friends for two days. We have 

chosen the YuanShe · Zai Shui Yi Fang Resort 

Hotel. Please help us plan a travel itinerary. 

Please help me craft a 7-day travel plan. I'm 

planning on leaving from Punta Gorda and 

exploring 3 different cities in Wisconsin from 

March 16th to March 22nd, 2022. The budget for 

this trip is set at $5,700. 

当前位置北京。我和三个朋友计划去成都玩两

天，选择火车出行，市内交通方式为地铁。请

给我一个旅行规划。 

Current location: Beijing. My three friends and I 

are planning to visit Chengdu for two days. We 

have chosen to travel by train and use subway for 

city transportation. Please provide me with a travel 

itinerary.  

Could you help me create a 7-day travel plan 

starting on March 18th, 2022, and ending on March 

24th, 2022? The trip will start in Washington and I 

would like to visit 3 cities in Minnesota. This trip is 

for one person with a budget of $7,200. 

Figure 18: Examples of easy-level queries from ChinaTravel and TravelPlanner.
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当前位置武汉。我两个人想去苏州玩 2 天，预算

4000 人民币，坐火车去，住一间大床房，想去虎

丘山风景名胜区这样的自然风光，请给我一个旅

行规划。 

Current location: Wuhan. Two of us want to visit 

Suzhou for 2 days with a budget of 4000 RMB. We 

plan to take the train and stay in a room with a king-

size bed. We would like to visit natural attractions 

like Tiger Hill Scenic Area. Please provide a travel 

itinerary. 

Could you please arrange a 3-day trip for two, 

starting in Sacramento and heading to Atlanta, 

from March 14th to March 16th, 2022. The 

budget for this trip is $4,700, and we require 

accommodations where parties are allowed.  

当前位置广州。我两个人想去成都玩 3 天，预算

9000 人民币，坐火车往返，住一间大床房，麻烦

给我一个旅行规划。 

Current location: Guangzhou. Two of us want to visit 

Chengdu for 3 days with a budget of 9,000 RMB. We 

plan to travel round-trip by train and stay in a room 

with a double bed. Could you please provide a travel 

itinerary for us? 

Could you please design a 3-day travel plan for a 

group of 5, departing from Manchester and 

heading to Charlotte, from March 29th to March 

31st, 2022? Our budget is set at $4,800 and we 

would prefer to have entire rooms for our 

accommodations. 

当前位置广州。我和我的两个朋友想去深圳玩两

天，预算 2100 人民币，住两间双床房，坐地铁游

玩，想吃海鲜，想去深圳欢乐谷玩。Current 

location: Guangzhou. My two friends and I want to 

go to Shenzhen for two days. Our budget is 2,100 

RMB. We plan to stay in two twin-bed rooms, travel 

around by metro, eat seafood, and visit Shenzhen 

Happy Valley. 

Could you tailor a 5-day travel plan for two people, 

departing from Knoxville and visiting 2 cities in 

Florida from March 20 to March 24, 2022? Our budget 

is set at $3,900. We'd love to explore local Chinese and 

Mediterranean cuisines during our stay.  

 

当前位置武汉。我两个人想去杭州玩 3 天，预算

7000 人民币，坐飞机往返，住一间大床房，麻烦

给我一个旅行规划。 

Current location: Wuhan. Two of us want to visit 

Hangzhou for 3 days with a budget of 7,000 RMB. 

We plan to travel by plane round-trip and stay in a 

room with a large bed. Could you please provide a 

travel plan for us? 

Could you help create a 7-day travel plan for a 

group of 3, departing from Greensboro and 

touring 3 different cities in Georgia from March 

10th to March 16th, 2022? We have a new budget 

of $4,000 for this trip. We'd also appreciate if our 

accommodations have smoking areas. 

当前位置杭州。我两个人想去苏州玩 2 天，预算

3500 人民币，住一间大床房，想去看看拙政园这

样的园林景观，请给我一个旅行规划。 

Current location: Hangzhou. Two of us want to visit 

Suzhou for 2 days with a budget of 3,500 RMB. We 

would like to stay in a room with a large bed and 

visit garden attractions like the Humble 

Administrator's Garden. Please provide a travel plan. 

Could you help create a 5-day travel itinerary for 

a group of 4, starting from New York and visiting 

2 cities in Louisiana from March 15th to March 

19th, 2022? We have a budget of $12,300. Please 

note that we require accommodations where 

smoking is permissible. 

当前位置北京。我两个人想去深圳玩 3 天，预算

7000 人民币，住一间大床房，坐飞机去，酒店最

好有泳池，想去深圳欢乐谷看一下，请给我一个

旅行规划。 

Current location: Beijing. Two of us want to visit 

Shenzhen for 3 days with a budget of 7,000 RMB. 

We would like to stay in a hotel with a king-size bed 

and preferably a swimming pool. We plan to fly there 

and would like to visit Shenzhen Happy Valley. 

Please provide a travel itinerary. 

Can you provide me with a 5-day travel plan for 2 

people, starting from Asheville and exploring 2 

cities in New York from March 13th to March 

17th, 2022? Our budget is set at $4,700 and we 

would love to try local Mexican and Chinese 

cuisines during our trip. 

Figure 19: Examples of medium-level queries from ChinaTravel and TravelPlanner.
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[当前位置武汉,目标位置南京,旅行人数 2,旅行天数

4] 我和同学 2 人打算去南京玩 4 天，预算 1500 (不

包括车票住宿)，只是玩和吃饭，请你帮忙规划。 

[Current location: Wuhan, Destination: Nanjing, 

Number of travelers: 2, Duration of travel: 4 days] My 

classmate and I are planning to visit Nanjing for 4 days. 

Our budget is 1500 (excluding transportation and 

accommodation), just for activities and meals. Please 

help us plan. 

Can you create a 5-day itinerary for a group of 

7 people traveling from Richmond to two cities 

in Florida between March 9th and 13th, 2022? 

Our budget is $8,500. We require 

accommodations that allow visitors and should 

ideally be entire rooms. In regards to dining 

options, we prefer French, American, 

Mediterranean, and Italian cuisines. 

[当前位置南京,目标位置成都,旅行人数 3,旅行天数

5] 我们一家三口想去成都旅游一周，主要想逛一些

适合带小朋友的景点，预算 8000 元，然后品尝一些

当地的美食。 

[Current location: Nanjing, Destination: Chengdu, 

Number of travelers: 3, Travel days: 5] Our family of 

three wants to travel to Chengdu for a week. We mainly 

want to visit attractions suitable for children, with a 

budget of 8,000 yuan, and also taste some local 

delicacies. 

Could you help design a travel plan for two 

people leaving from Houston to Pensacola for 

3 days, from March 6th to March 8th, 2022? 

Our budget is set at $1,400 for this trip and we 

require our accommodations to be visitor-

friendly. We would like to have options to dine 

at Indian, American, Chinese, and Italian 

restaurants. We also prefer not to self-drive 

during the trip. 

[当前位置广州,目标位置深圳,旅行人数 3,旅行天数

2] 我们一行三人要从广州去到深圳玩两天，想去繁

华的街区逛逛，尽可能减少麻烦的交通，总消费尽

可能少。 

[Current location: Guangzhou, Destination: Shenzhen, 

Number of travelers: 3, Number of travel days: 2] Our 

group of three plans to travel from Guangzhou to 

Shenzhen for two days. We want to explore bustling 

neighborhoods, minimize inconvenient transportation, 

and keep the total expenses as low as possible. 

Could you help create a 3-day travel plan for 

two people? We're traveling from West Palm 

Beach to White Plains, visiting only one city 

from March 5th to March 7th, 2022. We have a 

budget of $2,600. For our accommodations, 

we'd like rooms that are not shared. We are not 

planning on self-driving and will be reliant on 

public transportation. Cuisines we are 

interested in trying include Mexican, Chinese, 

Mediterranean, and American. 

[当前位置苏州,目标位置杭州,旅行人数 4,旅行天数

2] 我想 4 个人去杭州 2 天进行历史文化遗址的考察

顺带玩一下。 

[Current location: Suzhou, Destination: Hangzhou, 

Number of travelers: 4, Duration of travel: 2 days] I 

would like 4 people to go to Hangzhou for 2 days to 

explore historical and cultural sites and have some fun 

along the way. 

Could you generate a 3-day travel plan for a 

group of 3 people, departing from Bangor and 

visiting Washington from March 21st to March 

23rd, 2022? Our budget is set at $3,100. We 

require accommodations that are pet-friendly 

and we would prefer to have entire rooms to 

ourselves. We do not plan on self-driving for 

this trip 

[当前位置上海,目标位置北京,旅行人数 1,旅行天数

3] 我要从上海出发，到北京玩三天，希望看一些名

胜古迹，吃一些当地特色，预算充分。 

[Current location: Shanghai, Destination: Beijing, 

Number of travelers: 1, Number of travel days: 3] I want 

to depart from Shanghai and spend three days in 

Beijing. I hope to see some famous landmarks and try 

some local specialties, with a sufficient budget. 

Could you help with creating a 5-day travel 

plan for 2 people, originating from Evansville 

and covering 2 cities in Texas from March 17th 

to March 21st, 2022? Our preferred 

accommodations are private rooms, and they 

must permit children under 10 since we will 

have them with us. Transportation should not 

involve any flights. The budget for this trip is 

set at $2,800. 

[当前位置北京,目标位置上海,旅行人数 2,旅行天数

3] 我和朋友计划用三天的时间从北京到上海玩，计

划坐飞机来回，偏红色旅游线路。 

[Current location: Beijing, Destination: Shanghai, 

Number of travelers: 2, Number of travel days: 3] My 

friend and I are planning to spend three days traveling 

from Beijing to Shanghai. We plan to fly round trip and 

prefer a red-themed travel route. 

Can you assist in creating a travel itinerary for 

a group of 4, starting in Seattle and visiting 3 

unique cities across Texas? This trip will span 

over 7 days from March 10th through March 

16th, 2022. We have a budget of $11,000. 

Regarding our accommodations, we would like 

to rent entire rooms, and it's important that our 

lodgings allow parties. As for transportation, 

we do not plan to drive ourselves around. 

 Figure 20: Examples of human/hard level queries from ChinaTravel and TravelPlanner.
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Prompts for POI recommendation

NEXT_POI_TYPE_INSTRUCTION = """
You are a travel planning assistant.
The user’s requirements are: {}.
Current travel plans are: {}.
Today is {}, current time is {}, current location is

{}, and POI_type_list is {}.
Select the next POI type based on the user’s needs and

the current itinerary.
Please answer in the following format.
Thought: [Your reason]
Type: [type in POI_type_list]
"""

Figure 21: Prompts for next-POI-type recommendation
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Prompts for restaurants recommendation

RESTAURANT_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user’s requirements are: {user_requirements }.
The restaurant info is:
{restaurant_info}
The past cost for intercity transportation and hotel

accommodations is: {past_cost }.

Your task is to select and rank restaurants based on
the user’s needs and the provided restaurant
information. Consider the following factors:

1. Restaurant name
2. Cuisine type
3. Price range
4. Recommended food

Additionally , keep in mind that the user’s budget is
allocated across multiple expenses , including
intercity transportation and hotel accommodations.
Ensure that the restaurant recommendations fit

within the remaining budget constraints after
accounting for the past cost.

Note that the price range provided for each restaurant
is the average cost per person per meal , the

remaining budget must cover the cost of three
meals per day for {days} days.

For each day , recommend at least 6 restaurants ,
combining restaurants for all days together.

Your response should follow this format:

Thought: [Your reasoning for ranking the restaurants]
RestaurantNameList: [List of restaurant names ranked

by preference , formatted as a Python list]
"""

Figure 22: Prompts for restaurant recommendation

46



Prompts for attractions recommendation

ATTRACTION_RANKING_INSTRUCTION = """
You are a travel planning assistant.
The user’s requirements are: {user_requirements }.
The attraction info is:
{attraction_info}
The past cost for intercity transportation and hotel

accommodations is: {past_cost }.

Your task is to select and rank attractions based on
the user’s needs and the provided attraction
information. Consider the following factors:

1. Attraction name
2. Attraction type
3. Location
4. Recommended duration

Additionally , keep in mind that the user’s budget is
allocated across multiple expenses , including
intercity transportation and hotel accommodations.
Ensure that the attraction recommendations fit

within the remaining budget constraints after
accounting for the past cost.

For each day , recommend at least 8 attractions ,
combining attractions for all days together. To
ensure a comprehensive list , consider a larger
pool of candidates and prioritize diversity in
attraction type and location.

Your response should follow this format:

Thought: [Your reasoning for ranking the attractions]
AttractionNameList: [List of attraction names ranked

by preference , formatted as a Python list]

Example:
Thought: Based on the user’s preference for historical

sites and natural attractions , the attractions
are ranked as follows:

AttractionNameList: ["Attraction1", "Attraction2",
...]

"""

Figure 23: Prompts for attraction recommendation
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