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ABSTRACT

Hierarchical clustering has usually been addressed by discrete optimization us-
ing heuristics or continuous optimization of relaxed scores for hierarchies. In
this work, we propose to optimize expected scores under a probabilistic model
over hierarchies. (1) We show theoretically that the global optimal values of the
expected Dasgupta cost and Tree-Sampling divergence (TSD), two unsupervised
metrics for hierarchical clustering, are equal to the optimal values of their discrete
counterparts contrary to some relaxed scores. (2) We propose Expected Proba-
bilistic Hierarchies (EPH), a probabilistic model to learn hierarchies in data by
optimizing expected scores. EPH uses differentiable hierarchy sampling enabling
end-to-end gradient-descent based optimization, and an unbiased subgraph sam-
pling approach to scale to large datasets. (3) We evaluate EPH on synthetic and
real-world datasets including vector and graph datasets. EPH outperforms all
other approaches on quantitative results and provides meaningful hierarchies in
qualitative evaluations.

1 INTRODUCTION

A fundamental problem in unsupervised learning is clustering. Given a dataset, the task is to parti-
tion the instances into similar groups. While flat clustering algorithms such as k-means group data
points into disjoint groups, a hierarchical clustering divides the data recursively into smaller clus-
ters, which yields several advantages over a flat one. Instead of only providing cluster assignments
of the data points, it captures the clustering at multiple granularities, allowing the user to choose the
desired level of fine and coarseness depending on the task. The hierarchical structure can be easily
visualized in a dendrogram (e.g. see Fig. 4), making it easy to interpret and analyze. Hierarchical
clustering finds applications in many areas, from personalized recommendation (Zhang et al., 2014)
and document clustering (Steinbach et al., 2000) to gene-expression (Eisen et al., 1998) and phylo-
genetics (Felsenstein, 2004). Furthermore, the presence of hierarchical structures can be observed
in many real-world graphs in nature and society (Ravasz & Barabási, 2003).

A first family of methods for hierarchical clustering are discrete approaches. They aim at optimizing
some hierarchical clustering quality scores on a discrete search space, i.e.:

max
T̂

score(X, T̂ ) s.t.T̂ ∈ discrete hierarchies, (1)

where X denotes a given (vector or graph) dataset. Examples of scores optimization could be the
minimization of the discrete Dasgupta score Dasgupta (2016), the minimization of the error sum of
squares (Ward Jr, 1963), the maximization of the discrete TSD Charpentier & Bonald (2019), or the
maximization of the modularity score (Blondel et al., 2008). Discrete approaches have two main
limitations: the optimization search space of discrete hierarchies is large and constrained which
often makes the problem intractable without using heuristics, and the learning procedure is not
differentiable and thus not amenable to gradient-based optimization, as done by most deep learning
approaches. To mitigate these issues, a second more recent family of continuous methods proposes
to optimize some (soft-)scores on a continuous search space of relaxed hierarchies:

max
T

soft-score(X, T ) s.t.T ∈ relaxed hierarchies, (2)

Examples are the relaxation of Dasgupta (Chami et al., 2020; Chierchia & Perret, 2019; Zügner
et al., 2021) or TSD scores (Zügner et al., 2021). A major drawback of continuous methods is that
the optimal value of soft scores might not align with their discrete counterparts.
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Contributions. In this work, we propose to optimize expected discrete scores, called Exp-Das and
Exp-TSD, instead of the relaxed soft scores called Soft-Das and Soft-TSD (Zügner et al., 2021). In
particular, our contributions can be summarized as follows:

• Theoretical contribution: We analyze the theoretical properties of both the soft scores
and the expected scores. We show that the optimal values of the expected scores are equal
to their optimal discrete counterparts. Further, we show that the minimal value of Soft-Das
can be different from that of the discrete Dasgupta cost.

• Model contribution: We propose a new method called Expected Probabilistic Hierarchies
(EPH) to optimize the Exp-Das and Exp-TSD. EPH provides an unbiased estimate of Exp-
Das and Exp-TSD with biased gradients based on differentiable hierarchy sampling. EPH
scales to even large (vector) datasets based on an unbiased subgraph sampling.

• Experimental contribution: In quantitative experiments, we show that EPH outperforms
other baselines on 20/24 cases on 16 datasets including both graph and vector datasets. In
qualitative experiments, we show that EPH provides meaningful hierarchies.

2 RELATED WORK

Discrete Methods. We further differentiate between agglomerative (bottom-up) and divisive (top-
down) discrete algorithms. Well-established agglomerative methods are the linkage algorithms that
subsequently merge the two clusters with the lowest distance, into a new cluster. There are several
ways to define the similarity of two clusters. The average linkage (AL) method uses the average sim-
ilarity, while single linkage (SL) and complete linkage (CL) use the minimum and maximum similar-
ity between the groups, respectively (Hastie et al., 2009). Finally, the ward linkage (WL) algorithm
(Ward Jr, 1963) operates on Euclidean distances and merges the two clusters with the lowest increase
in the sum of squares. Another agglomerative approach is the Louvain algorithm (Blondel et al.,
2008) which maximizes iteratively the modularity score. Unlike agglomerative methods, divisive al-
gorithms work in a top-down fashion. Initially, all leaves share the same cluster and are recursively
divided into smaller ones using flat clustering algorithms. Famous examples are based on the k-
means algorithm (Steinbach et al., 2000) or use approximations of the sparsest cut (Dasgupta, 2016).

Continuous Methods. In recent years, many continuous algorithms emerged to solve hierarchical
clustering. These methods minimize continuous relaxations of the Dasgupta cost using gradient de-
scent based optimizers. Monath et al. (2017) optimized a probabilistic cost version. To parametrize
the probabilities, they performed a softmax operation on learnable routing functions from each node
on a fixed binary hierarchy. Chierchia & Perret (2019) proposed UFit, a model operating in the
ultra-metric space. Furthermore, to optimize their model, they presented a soft-cardinal measure
to compute a differentiable relaxed version of the Dasgupta cost. Other approaches operate on
continuous representations in hyperbolic space such as gHHC (Monath et al., 2019) and HypHC
(Chami et al., 2020). Zügner et al. (2021) recently presented a flexible probabilistic hierarchy
model (FPH), on which our method is based. FPH directly parametrizes a probabilistic hierarchy
and substitutes the discrete terms in the Dasgupta cost and Tree-Sampling Divergence with their
probabilistic counterparts. This results in a differentiable objective function which they optimize
using projected gradient descent.

Differentiable Sampling Methods. Stochastic models with discrete random variables are difficult
to train as the backpropagation algorithm requires all operations to be differentiable. To address this
problem, estimators such as the Gumbel-Softmax (Jang et al., 2016) or Gumbel-Sinkhorn (Mena
et al., 2018) are used to retain gradients when sampling discrete variables. These differentiable
sampling methods have been used for several tasks including DAG predictions (Charpentier et al.,
2022), spanning trees or subset selection (Paulus et al., 2020) and generating graphs Bojchevski
et al. (2018). Note that sampling spanning trees is not applicable in our case since we have a
restricted structure, where the nodes of the graph correspond to the leaves of the tree.

3 PROBABILISTIC HIERARCHICAL CLUSTERING

We consider a graph dataset. Let G = (V,E) be a graph with n vertices V = {v1, . . . , vn} and m
edges E = {e1, . . . , em}. Let wi,j denote the weight of the edge connecting the nodes vi and vj if
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Figure 1: Overview of our proposed EPH model. A formal description is given in App. B.8

(i, j) ∈ E, 0 otherwise and wi =
∑

j wi,j the weight of the node vi. We define the edge distribution
P (vi, vj) for pairs of nodes, P (vi, vj) ∝ wi,j , s.t.

∑
vi,vj∈V P (vi, vj) = 1 and equivalently the node

distribution P (vi) ∝ wi, s.t.
∑

vi∈V P (vi) = 1. We can extend this representation to any vector
dataset D = {x1, . . . , xn} and interpret the dataset as a graph by using the data points xi as nodes
and pairwise similarities (e.g. cosine similarities) as edge weights.

Discrete hierarchical clustering. We define a discrete hierarchical clustering T̂ of a graph G
as a rooted tree with n leaves and n′ internal nodes. The leaves V = {v1, v2, . . . , vn} represent
the nodes of G, while the internal nodes Z = {z1, z2, . . . , zn′} represent clusters, with zn′ being
the root node. Each internal node groups the data into disjoint sub-clusters, where edges reflect
memberships of clusters. We can represent the hierarchy using two binary adjacency matrices
Â ∈ {0, 1}n×n′

and B̂ ∈ {0, 1}n′×n′
, i.e. T̂ = (Â, B̂). While Â describes the edges from the

leaves to the internal nodes, B̂ specifies the edges between the internal nodes. Since every node
in the hierarchy except the root has exactly one outgoing edge, we have the following constraints:∑n′

j Âi,j = 1 for 1 ≤ i ≤ n,
∑n′

j B̂i,j = 1 for 1 ≤ i < n′ and
∑n′

j B̂n′,j = 0 for the last row.
Thus, except for the last row of B̂, both matrices are row-stochastic. We denote the ancestors of v
as anc(v), and the lowest common ancestor (LCA) of the two leaves vi and vj in T̂ as vi ∧ vj .

Probabilistic hierarchical clustering. Zügner et al. (2021) recently proposed probabilistic
hierarchies. The idea is to use a continuous relaxation of the binary adjacency matrices while
keeping the row-stochasticity constraints. Thus, we end up with two matrices A ∈ [0, 1]n×n′

and
B ∈ [0, 1]n

′×n′
. The entries represent parent probabilities, i.e. Ai,j := p(zj |vi) describes the

probability of the internal node zj being the parent of vi and Bi,j := p(zj |zi) the probability of the
internal node zj being the parent of zi. Together, they define a probabilistic hierarchy T = (A,B).
Given such a probabilistic hierarchy, one can easily obtain a discrete hierarchy by interpreting the
corresponding rows of A and B as categorical distributions. We sample an outgoing edge for each
leaf and internal node. Since B is restricted to be an upper triangular matrix, this tree-sampling
procedure will result in a valid discrete hierarchy, denoted by T̂ = (Â, B̂) ∼ PA,B(T ).

4 EXPECTED PROBABILISTIC HIERARCHICAL CLUSTERING

4.1 EXPECTED METRICS

Unlike flat clusterings, there has been a shortage of objective functions for hierarchical cluster-
ings. Thus, many algorithms to derive hierarchies were developed without a precise objective. An
objective function not only allows us to evaluate the performance of a hierarchy, but also yields
possibilities for optimization techniques. Recently the two unsupervised functions Dasgupta cost
(Das) (Dasgupta, 2016) and Tree-Sampling Divergence (TSD) (Charpentier & Bonald, 2019) were
proposed, triggering the development of a new generation of hierarchical clustering algorithms. The
Dasgupta cost is a well-established metric for graphs and vector data, while the TSD is a recent met-
ric specifically designed for graphs. In addition to being unsupervised, i.e., applicable in cases where
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the data is unlabeled, both metrics also have intuitive motivations. The metrics can be written as:

Das(T̂ ) =
∑

vi,vj∈V

P (vi, vj)c(vi ∧ vj) and TSD(T̂ ) = KL(p(z)||q(z)), (3)

where c(z) is the number of leaves whose ancestor is z, i.e. c(z) =
∑

vi∈V 1[z∈anc(vi)],
and p(z) and q(z) are two distributions induced by the edge and node distributions, i.e.
p(z) =

∑
vi,vj 1[z=vi∧vj]P (vi, vj) and q(z) =

∑
vi,vj 1[z=vi∧vj]P (vi)P (vj). Importantly, both

Dasgupta and TSD scores have intuitive motivations. Dasgupta favors similar leaves to have lowest
common ancestors low in the hierarchy (Dasgupta, 2016). TSD quantifies the ability to reconstruct
the graph from the hierarchy in terms of information loss Charpentier & Bonald (2019). Recently,
Zügner et al. (2021) proposed the Flexible Probabilistic Hierarchy (FPH) method. FPH substitutes
the indicator functions with their corresponding probabilities under the tree-sampling procedure,
obtaining cost functions for probabilistic hierarchies, called Soft-Das and Soft-TSD. These two
metrics correspond to the scores of the expected hierarchies (see App.A.1). In contrast, we propose
in this work to optimize the expected metrics under the tree-sampling procedure. Intuitively, this
corresponds to moving the expectation from inside the metric functions to outside, reflecting the
natural way of performing Monte-Carlo approximation via (tree-) sampling. More specifically, our
objectives are:

min
A,B

ET̂

[
Das(T̂ )

]
s.t. T̂ ∼ PA,B(T ) and max

A,B
ET̂

[
TSD(T̂ )

]
s.t. T̂ ∼ PA,B(T ), (4)

which we denote as Exp-Das and Exp-TSD. Note that we optimize over A and B, which
parametrize a probabilistic hierarchy, while the edge weights are given by the dataset and used
to compute the node and edge distribution. We show in Section 4.2 that the optimal values of
the expected scores share the same intuitive meaning as their discrete counterparts. While the
probabilities used in the FPH computation are consistent, their relaxed scores are not consistent
with the expected scores under the tree-sampling procedure. In Fig. 2 we show a simple case where
Soft-Das does not align with the global optimal value whereas Exp-Das does.

4.2 THEORETICAL ANALYSIS OF EPH AND FPH

The main motivation to use the expected metrics is the property that their global optimal value,
i.e. the score obtained by the globally optimal hierarchy (the optimizer), is equal to their discrete
counterparts as we show in Theo. 1.
Theorem 1. Let A and B be probabilistic transition matrices. Then the following equalities hold,

min
A,B

ET̂ ∼PA,B(T )

[
Das(T̂ )

]
= min

T̂
Das(T̂ ) and max

A,B
ET̂ ∼PA,B(T )

[
TSD(T̂ )

]
= max

T̂
TSD(T̂ )

(5)
(See proof in App. A.5)

Consequently, optimizing our cost function aims to find the optimal discrete hierarchy. Furthermore,
we prove in Theo. 2 that Soft-Das is a lower bound of Exp-Das, therefore its minimum is a lower
bound of the optimal discrete Dasgupta cost.
Theorem 2. Let A and B be transition matrices describing a probabilistic hierarchy. Then,
Soft-Das will be lower than or equal to the expected Dasgupta cost under the tree-sampling pro-
cedure, i.e., (see proof in App. A.4)

Soft-Das(T ) ≤ ET̂ ∼PA,B(T )

[
Das(T̂ )

]
. (6)

In Fig. 2 we show a specific example where the minimizer of Soft-Das is continuous and FPH fails
to find the optimal hierarchy. For EPH, we know that an integral solution exists since Exp-Das and
Exp-TSD are convex combinations of their discrete counterparts. Furthermore, Exp-Das is neither
convex nor concave, as we show in App. A.6. In Table 1 we provide an overview of properties of
the cost functions of FPH and EPH.

4.3 UNBIASED COMPUTATION OF EXPECTED SCORES VIA DIFFERENTIABLE SAMPLING

In order to compute the expected scores we can use a closed-form expression. To derive these for
Exp-Das and Exp-TSD, we need to be able to calculate the probability p (z = vi ∧ vj , z ∈ anc(v))

4



Under review as a conference paper at ICLR 2023

v1 v2

v3 v4

(a) K4 Graph

z3

z1 z2

v1 v2 v3 v4

(b) A minimizing hierarchy

z3

z1 z2

v1 v2 v3 v4

(c) FPH

z3

z1 z2

v1 v2 v3 v4

(d) EPH

Figure 2: Example where FPH fails to infer a minimizing hierarchy. A hierarchy minimizing the
Dasgupta cost and the inferred hierarchies by FPH and EPH on the unweighted K4 graph, i.e.
every normalized edge weight is equal to 1

6 . While FPH achieves a Dasgupta cost of 4.0 after
discretization, the continuous hierarchy has a Soft-Das score below 3.0. On the other hand, EPH
finds a minimizing hierarchy with the cost of 10

3 .

Table 1: Properties of Soft-Das, Exp-Das, Soft-TSD, and Exp-TSD.
Property Problem Type Convex/Concave Integral Optimal Consistent

Soft-Das Min. Neither w.r.t. A and B (see Fig.12 (left)) ✗ ✗ ✗
Exp-Das Min. Neither w.r.t. A and B (see App.A.6) ✓ ✓ ✓
Soft-TSD Max. Convex w.r.t. LCA probabilities (Zügner et al., 2021) ✓ ✓ ✗
Exp-TSD Max. - ✓ ✓ ✓

for which no known solution exists, and the expectancy of a logarithm (see Eq. 13 and Eq. 14).
An alternative to the closed-form solution is to approximate the expectancies via the Monte Carlo
method. We propose to approximate Exp-Das and Exp-TSD with N differentiably sampled hierar-
chies {T̂ (1), . . . , T̂ (N)} (see “Loss computation” in Fig. 1):

Exp-Das(T ) ≈ 1

N

N∑
i=1

Das(T̂ (i)) and Exp-TSD(T ) ≈ 1

N

N∑
i=1

TSD(T̂ (i)). (7)

However, differentiable sampling of discrete structures like hierarchies is often complex. To this
end, our differentiable hierarchy sampling algorithm combines the tree-sampling procedure (Zügner
et al., 2021) and the straight-through Gumbel-Softmax estimator (Jang et al., 2016) in three steps: (1)
We sample the parents of the leaf nodes by interpreting the column of A as parameters of straight-
through Gumbel-Softmax estimators. (2) We sample the parents of the leaf nodes by interpreting
the column of B as parameters of straight-through Gumbel-Softmax estimators. This procedure
is differentiable – each step is differentiable – and expressive – it can sample any hierarchy with n
leaves and n′ internal nodes. (3) We use the Monte Carlo method to approximate the expectancies by
computing the arithmetic mean of the scores of the sampled hierarchies. We reuse the differentiable
computation of Soft-Das and Soft-TSD which match the discrete scores for discrete hierarchies
while providing gradients w.r.t. A and B (see Fig. 1 for an overview).

Complexity. Since we sample N hierarchies from n′ + n − 1 many categorical distributions with
O(n′) classes, the sampling process can be done with a complexity ofO(N×n×n′+N×n′2). The
dominating term is the computation of the Das and TSD scores with a complexity ofO(N×m×n′2)
for graph datasets andO(N×n2×n′2) for vector datasets (Zügner et al., 2021). This is often efficient
as we typically have n′ ≪ n and for graphs m ≪ n2. In Sec. 4.4 we propose a subgraph sampling
approach to reduce the complexity toO(N×M×n′2+n2) for large vector datasets, where M < n2.

Limitations. While the previously explained MC estimators of the expectancies are unbiased in
the forward pass, the estimation of the gradients is not (Paulus et al., 2021) thus impacting the
EPH optimization. Furthermore, even though the global optimal values of the expected and discrete
scores match, EPH does not guarantee convergence into a global optimum when optimizing using
gradient descent methods.

4.4 SCALABLE EXP-DAS COMPUTATION VIA SUBGRAPH SAMPLING

As we discussed in the complexity analysis the limiting factor is O(n2 × n′2) corresponding to
the evaluation of the Dasgupta cost, which becomes prohibitive for large datasets. To reduce the
complexity we propose an unbiased subgraph sampling approach. First, we note that the normalized
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similarities P (vi, vj) can be interpreted as a probability mass function of a categorical distribution.
This interpretation allows the Dasgupta cost to be rewritten as an expectancy and approximated via
a sampling procedure. More specifically,

Das(T̂ ) =
∑
vi,vj

P (vi, vj)c(vi ∧ vj) = E(vi,vj)∼P (vi,vj) [c(vi ∧ vj)] ≈
1

M

M∑
k=1

c(v(k)
i ∧ v(k)j ) (8)

where {(v(1)
i , v(1)j ), . . . , (v(M)

i , v(M)
j )} are M edges sampled from the edge distribution P (vi, vj),

which can be done in O(M + n2) (Kronmal & Peterson, 1979). We refer to this sampling approach
as subgraph sampling (see Fig. 1). Using the same procedure, we can approximate the expected
Dasgupta cost. In contrast to Exp-Das, Exp-TSD cannot be easily viewed as an expectation of edges,
thus making the approximation via sub-graph sampling impractical. However, since TSD is a metric
originally designed for graphs which are generally sparse, it would not yield substantial benefits.

Note that we end up with two different sampling procedures. First, we have the differentiable hi-
erarchy sampling (see Eq. 7). This is necessary to approximate the expectancies. Since we do not
have a closed-form expression of Exp-Das and Exp-TSD, we sample discrete hierarchies from the
probabilistic ones and average the scores. Secondly, we have the subgraph sampling (see Eq. 8),
which interprets the Dasgupta cost as an expectancy. This is done to speed up the runtime for vec-
tor datasets since the number of pairwise similarities grows quadratically in the number of data
points. The estimation is unbiased and introduces an additional parameter, i.e. the number of sam-
pled edges, which allows a trade-off between runtime and quality. By inserting the probabilistic edge
sampling approach into the tree-sampling, we estimate Exp-Das to scale it to large vector datasets.
An overview of our model is shown in Fig. 1 and a formal description in App. B.8.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on both graph and vector datasets. Graph datasets: We use the
same graphs and preprocessing as Zügner et al. (2021). More specifically, we use the datasets Pol-
blogs (Adamic & Glance, 2005), Brain (Amunts et al., 2013), Citeseer (Sen et al., 2008), Genes (Cho
et al., 2014), Cora-ML (McCallum et al., 2000; Bojchevski & Günnemann, 2018), OpenFlight (Pa-
tokallio), WikiPhysics (Aspert et al., 2019), and DBLP (Yang & Leskovec, 2015). To preprocess the
graph, we first collect the largest connected component. Secondly, every edge is made bidirectional
and unweighted. An overview of the graphs is shown in Tab. 6 in the appendix. Vector datasets: We
test our method on vector data for the Dasgupta cost. Here we selected the seven datasets Zoo, Iris,
Glass, Digits, Segmentation, Spambase, and Letter from the UCI Machine Learning repository (Dua
& Graff, 2017). Furthermore, we also use Cifar-100 (Krizhevsky et al., 2009). Digits and Cifar-100
are image datasets, the remaining ones are vector data. While we only flatten the images of Digits,
we preprocess Cifar-100 using the ResNet-101 BiT-M-R101x1 by Kolesnikov et al. (2020) which
was pretrained on ImageNet-21k (Deng et al., 2009). More specifically, we use the 2048 dimen-
sional activations of the final layer for each image in Cifar-100 as feature vector. Furthermore, we
normalize all features to have a mean of zero and a standard deviation of one. We compute cosine
similarities between all pairs of data points using their normalized features. This results in a dense
similarity matrix. Finally, we remove the self-loops. Note that in contrast to the graph datasets, the
vector data similarities are weighted. An overview is shown in Tab. 7 in the appendix. Since we are
in an unsupervised setting we have no train/test split, i.e. we train and evaluate on the whole graph.

Baselines. We compare our model against both discrete and continuous approaches. For discrete
approaches, we use the single, average, complete (Hastie et al., 2009) and ward linkage (Ward Jr,
1963) algorithm, respectively referred to as SL, AL, CL and WL. We do not report results of
SL and CL on the graph datasets which do not have edge weights since these methods are not
applicable for unweighted graphs. In addition to the linkage algorithms, we also compare to the
recursive sparsest cut (RSC) (Dasgupta, 2016) and the Louvain method (Louv.) (Blondel et al.,
2008). For continuous approaches, we use the gradient-based optimization approaches Ultrametric
Fitting (UF) (Chierchia & Perret, 2019), Hyperbolical Hierarchical Clustering (HypHC) (Chami
et al., 2020), gradient-based Hyperbolic Hierarchical Clustering (gHHC) (Monath et al., 2019) and
Flexible Probabilistic Hierarchy (FPH) (Zügner et al., 2021). While the linkage algorithms derive
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Table 2: Results for the graph datasets.
Dasgupta cost Tree-sampling divergence

Dataset PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP

WL 338.52 567.90 137.80 270.18 301.68 379.68 660.12 OOM 26.59 25.13 62.14 60.93 52.76 50.59 42.18 OOM
AL 355.61 556.68 83.69 196.50 292.77 363.40 658.04 36,463 25.25 28.91 67.80 66.72 55.30 52.02 43.15 38.99
Louv. 344.47 582.45 158.79 247.27 335.57 501.29 798.75 40,726 28.86 30.74 68.09 67.51 58.18 52.97 47.01 41.40
RSC 307.70 526.17 85.41 188.82 264.62 367.36 630.53 OOM 28.04 29.19 67.39 66.28 56.14 52.01 44.86 OOM
UF 331.79 508.30 91.86 208.51 305.43 410.17 560.45 OOM 21.77 24.49 60.13 59.45 48.42 47.64 42.37 OOM
gHHC 349.71 595.70 147.17 308.42 313.29 390.21 672.84 87,344 24.70 25.62 59.53 54.20 49.56 51.36 41.08 16.29
HypHC 272.81 519.96 416.38 632.02 594.23 529.04 678.45 OOM 19.65 7.26 18.98 13.00 19.18 26.82 23.92 OOM
FPH 238.65 425.70 76.03 182.91 257.42 355.61 482.40 31,687 31.37 32.75 69.38 67.78 59.55 57.58 49.87 41.62
EPH 235.50 400.20 74.01 176.57 238.28 312.31 456.26 30,600 32.05 34.24 69.36 67.75 59.41 57.83 50.23 42.74

a hierarchy based on heuristics or local objectives, UF, HypHC, gHHC, and FPH aim to reduce a
relaxed Dasgupta cost. For all the methods, we set a time limit of 120 hours and provide a budget
of 512GB of memory for each experiment.

Experimental Setup. We repeat the randomized methods with five random seeds and report the
scores of the discrete hierarchies. We use the same experimental setup as Zügner et al. (2021), i.e.,
we use n′ = 512 internal nodes, compress hierarchies using the scheme presented by Charpentier
& Bonald (2019), and use 10 and 32-dimensional DeepWalk embeddings (Perozzi et al., 2014) on
the graphs for methods that require features. We train EPH using PAdamax (projected Adamax
(Kingma & Ba, 2014)) for 10000 epochs for Exp-Das and 3000 epochs for Exp-TSD. Additionally,
every 1000 epochs we reduce the learning rate for B by a factor of 0.1 and reset the probabilistic
hierarchy to the so far best discrete hierarchy. To approximate the expectancy of EPH, we use 20
samples, except for Spambase, Letter, and Cifar-100 where we use 10, 1, and 1, respectively, to
reduce the runtime. On the datasets Digits, Segmentation, Spambase, Letter, and Cifar-100, we train
EPH and FPH by sampling n

√
n edges, on the remaining datasets, we use the full graph. Both, EPH

and FPH are initialized using the average linkage algorithm. We train FPH with its original setting
and our proposed scheduler and report the minimum of both for each dataset. Finally, to obtain
the discrete hierarchy for EPH and FPH we take the most likely edge for each row in A and B as
Zügner et al. (2021) did. For the remaining methods, we use the recommended hyperparameters.
An overview of the hyperparameters is shown in Tab. 9 and an ablation study in App. B.5.

5.2 RESULTS

Graph Dataset Results. We report the Dasgupta and Tree-Sampling Divergence results for
the graph datasets in Tab. 2. EPH achieves 13/16 best scores and second best scores otherwise.
In particular, EPH which optimizes Exp-Das always achieves a better Dasgupta cost compared
to FPH which optimizes Soft-Das. This observation aligns with the theoretical advantages of
Exp-Das compared to Soft-Das (see Sec. 4.2). EPH and FPH which both use the tree sampling
probabilistic framework always achieve the best results. This highlights the benefit of the tree
sampling probabilistic framework for hierarchical clustering. The discrete approaches which uses
heuristics achieve competitive results but are constantly inferior than EPH.

Furthermore, we can observe that the performance of the linkage algorithms, WL and AL, and
the Louvain method is competitive, even though they use heuristics or local objectives to infer a
hierarchy. Finally, the inferior performance of gHHC and HypHC can intuitively be explained by
the fact that these methods are originally designed for vector datasets. WL, UF, and HypHC were
not able to scale to the DBLP datasets within the memory budget. Indeed, they require to compute
a dense n2 similarity matrix leading to out-of-memory (OOM) issues.

Vector Dataset Results. We report the Dasgupta costs of several methods on the vector datasets
in Tab. 3. Similarly to the graph datasets, EPH outperforms all baselines and achieves 7/8 best
scores. These results demonstrate the capacity of EPH to also adapt to vector datasets. Further, EPH
constantly outperforms FPH. This emphasized the benefit of optimizing expected scores compared
to soft scores. In contrast with graph datasets, HypHC performs competitively on vector datasets. It
is reasonable since this method is originally designed for vector datasets. FPH has a slightly worse
performance than HypHC on most datasets and is only better on Iris.

Hyperparameter study. We show in Fig. 3 (left) the effect of the number of sampled hierarchies
on the EPH performances. On one hand, we observe that a large number of sampled hierarchies (i.e.
N ≥ 20) generally yields better results than a small number of sampled hierarchies (i.e. N ≤ 10)
except for Citeseer. Intuitively, a higher number of sampled hierarchies should lead to a more
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Table 3: Results for the vector datasets.
Dasgupta cost Accuracy

Dataset Zoo Iris Glass Digits Segm. Spam. Letter Cifar Zoo Iris Glass Digits Segm. Spam. Letter Cifar

WL 56.28 69.98 122.16 1126.77 1266.17 2962.62 12241 32979 0.74 0.76 0.44 0.82 0.61 0.76 0.33 0.49
AL 56.31 69.48 121.64 1121.68 1258.22 2952.21 12181 32972 0.80 0.82 0.43 0.65 0.48 0.82 0.31 0.16
SL 57.67 70.71 126.33 1166.05 1368.21 3042.28 13166 33314 0.84 0.67 0.37 0.10 0.15 0.61 0.04 0.01
CL 55.78 70.10 123.02 1140.26 1277.48 2971.59 12396 33131 0.81 0.77 0.40 0.59 0.51 0.74 0.26 0.33
Louv. 56.26 72.31 125.94 1126.48 1238.35 2916.48 11946 32940 0.60 0.83 0.42 0.68 0.29 0.86 0.18 0.05
RSC 55.94 69.10 121.45 1119.43 1237.20 2917.07 11895 32907 0.41 0.35 0.38 0.39 0.51 0.84 0.11 0.05
UF 56.28 69.40 122.43 1137.53 1322.86 2998.17 13090 OOM 0.60 0.55 0.43 0.43 0.54 0.54 0.04 OOM
gHHC 60.09 69.63 123.33 1119.74 1269.28 3018.44 12151 33089 0.59 0.71 0.42 0.51 0.30 0.69 0.08 0.01
HypHC 56.05 69.22 121.52 1118.08 1233.07 2921.38 11930 OOM 0.79 0.82 0.52 0.42 0.29 0.60 0.10 OOM
FPH 56.13 69.13 122.00 1132.84 1238.45 2933.56 12197 33224 0.58 0.83 0.40 0.20 0.44 0.61 0.06 0.03
EPH 55.77 69.10 120.94 1117.58 1230.60 2916.17 11894 32913 0.70 0.83 0.40 0.65 0.53 0.86 0.14 0.18
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Figure 3: Hyperparameter study. Normalized Dasgupta costs for different numbers of sampled
hierarchies (left) and different number of sampled edges (right) after the EPH training, including
the average linkage algorithm (AL) and a training on the full graph (FG). The scores are normalized
such that each dataset has a mean of zero and a standard deviation of one.

accurate expected score approximation. On the other hand, we observe that a very large number for
sampled hierarchies (i.e. N ≥ 100) might not lead to significant improvements while requiring more
computational resources. Intuitively, the noise induced by a lower number of sampled hierarchies
could be beneficial to escape local optima. In general, we found that 20 samples lead to satisfactory
results for all datasets, thus achieving a good trade-off between approximation accuracy, optimiza-
tion noise, and computational requirements. We show in Fig. 3 (right) the effect of the number of
sampled edges on the EPH performances on vector datasets. Using more edges consistently leads
to better results. In particular, going from n to n

√
n shows a significant performance improvement

while going from n
√
n to n2 yields only minor improvements. Hence, controlling the amount of

sampled edges allows us to scale our method to large datasets while maintaining high performance.
On the small datasets Zoo, Iris and Glass, we use the whole graph, while for the other datasets, we
sample n

√
n edges as a trade-off between runtime and quality of the hierarchical clustering.

External Evaluation. We propose to complement the evaluation with Dasgupta and TSD which
are internal metrics with external evaluation metrics. However, since we typically do not have
access to ground-truth hierarchies in real-world data, it is difficult to perform external evaluation.
To address this, we evaluate our models on synthetic datasets with known ground-truth hierarchies
and investigate whether the inferred hierarchies on the vector datasets preserve the flat class-labels.

For the graph datasets, we use two hierarchical stochastic block models (HSBMs) which allow us
to compare the inferred hierarchies with the ground-truth hierarchies. As the HSBM graphs are
generated based on a random process, the ground-truth hierarchy is not necessarily the best in terms
of the Dasgupta cost or Tree-Sampling Divergence. Hence, we observe that the Dasgupta cost and
Tree-Sampling Divergence of the hierarchies inferred by EPH are even better than the ground-truth
hierarchies on the HSBMs. This underlines the great capacity of EPH to optimize the Dasgupta
and TSD scores. Furthermore, we compute the normalized mutual information (NMI) between the
different levels of the ground-truth hierarchy and the inferred hierarchy (see Tab. 4). We observe
that EPH recovers almost perfectly the first three levels of the ground-truth hierarchy. Interestingly,
the TSD objective appears to be a more suitable metric to recover the ground-truth HSBM levels.
We show the results of FPH in App. B.3. We show a visualization of the ground truth and inferred
hierarchies in Fig. 4.

For vector datasets, we flatten the derived hierarchies and compare clusters with the avail-
able ground-truth labels, by applying the Hungarian algorithm to align the cluster assign-
ments with the labels as explained by Zhou et al. (2022). This procedure allows us to com-
pute the accuracy, which we show on the right-hand side in Tab. 3. While the linkage al-
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Table 4: Results of EPH for the HSBMs with n′=# Cluster.
Dasgupta cost Tree-sampling divergence

Method HSBM Small HSBM Large HSBM Small HSBM Large

GT 26.29 130.16 43.14 51.50
EPH 26.19 121.08 43.56 51.53

Level Normalized Mutual Information Normalized Mutual Information

Level 1 1.0 1.0 1.0 1.0
Level 2 1.0 1.0 1.0 1.0
Level 3 0.77 0.81 0.87 0.99

(a) Small HSBM - GT (b) Small HSBM - Exp-Das (c) Small HSBM - Exp-TSD

(d) Large HSBM - GT (e) Large HSBM - Exp-Das (f) Large HSBM - Exp-TSD

Figure 4: Ground truth clusters and dendrograms compared to the inferred ones for the HSBMs.

gorithms were inferior to the continuous optimization algorithms in terms of Dasgupta cost,
they dominate here. EPH, which was trained on Exp-Das, yields the best accuracies only
on Iris and Spambase. As the linkage algorithms and Louvain generate hierarchies using
heuristics while the continuous methods aim to minimize the Dasgupta cost the results are
not surprising, since the Dasgupta cost and other metrics do not necessarily go hand in hand.

(a) Highest Probability (b) Lowest Probability

Figure 5: Largest derived cluster on Cifar-100.

Qualitative Evaluation. We visu-
alize the largest cluster, i.e. most
directly connected leaves, inferred on
Cifar-100 using EPH. More specif-
ically, we select the internal nodes
with the most directly connected
leaves. Furthermore, we sort the
images by their probability, i.e. their
entry in the matrix A. We show the
16 images with the highest prob-
ability and the 16 with the lowest
probability for the largest cluster in
Fig. 5. We observe that the images with high probabilities are related to insects. This shows that
EPH is able to group similar images together. In contrast, the last images with the lowest probability,
do not fit into the group. This demonstrates the capacity of EPH to measure the uncertainty in
the cluster assignments. We show additional results with the same behavior for other clusters in
App. B.4 (see Fig. 9 and Fig. 10, Fig. 8). Furthermore, we visualize the graph and inferred hierar-
chies of EPH for OpenFlight in Fig. 11 in the appendix. Both, minimizing Exp-Das and Exp-TSD
generate reasonable clusters and are able to successfully distinguish different world regions.

6 CONCLUSION

In this work, we propose EPH, a novel end-to-end learnable approach to infer hierarchies in data.
EPH operates on probabilistic hierarchies and directly optimizes the expected Dasgupta cost and
expected Tree-Sampling Divergence using differentiable hierarchy sampling. We show that the
global optima of the expected scores are equal to their discrete counterparts. Furthermore, we
present an unbiased subgraph sampling approach to scale EPH to large datasets. We demonstrate
the capacity of our model by evaluating it on several synthetic and real-world datasets. EPH
outperforms traditional and recent state-of-the-art baselines.
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ETHICS STATEMENT

EPH is not used on a specific real-world application, therefore, the outcome solely depends on
how the practitioner uses it. This could potentially be abused by governments or corporations by
analyzing collected data at large scales using our algorithm. However, EPH can also have positive
contributions by supporting scientists finding hierarchies in data.

While EPH outperforms other state-of-the-art methods for hierarchical clustering we raise awareness
of the possibility that the algorithm fails to generate meaningful hierarchies, especially in a novel
setting. Therefore, the result should carefully be assessed by its practitioner.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments we provide an overview of our datasets in App. B.
Furthermore, we provide a detailed description of the experimental setup and data preprocessing in
Sec.5.1 and an overview of the hyperparameters we used in Table 9. Our model is implemented in
PyTorch and will be publicly available upon acceptance. We use sklearn1 to flatten the hierarchies
and compute the Louvain algorithm. We provide proofs of the theorems we used in App. A for
verifiability of our theoretical results.

1https://scikit-learn.org/stable/index.html
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A APPENDIX

A.1 EQUATIONS OF SOFT-DAS AND SOFT-TSD

In the following, we show the equations of Soft-Das and Soft-TSD.

Soft-Das(T ) =
∑

vi,vj∈V

P (vi, vj)
∑
z∈Z

∑
v∈V

p (z = vi ∧ vj)P (z ∈ anc(v)) (9)

Soft-TSD(T ) =
∑
z∈Z

p(z) log
p(z)
q(z)

(10)

where p(z) =
∑

vi,vj∈V

P (vi, vj)p (z = vi ∧ vj) (11)

q(z) =
∑

vi,vj∈V

P (vi)P (vj)p (z = vi ∧ vj) (12)

A.2 CLOSED FORM SOLUTIONS OF EXP-DAS AND EXP-TSD

To compute closed form solutions of the expectancies, the following equations need to be solved:

Exp-Das(T ) =
∑

vi,vj∈V

P (vi, vj)
∑
z∈Z

∑
v∈V

p (z = vi ∧ vj , z ∈ anc(v)) (13)

Exp-TSD(T ) =
∑
z∈Z

ET̂ ∼PA,B(T =(A,B))

[
p(z) log

p(z)
q(z)

]
. (14)

A.3 RELATION BETWEEN JOINT AND INDEPENDENT LCA AND ANCESTOR PROBABILISTIES

While the LCA probabilities are crucial to compute Soft-Das, Exp-Das requires the joint LCA and
ancestor probabilities, i.e. p(zk = vi ∧ vj , v ∈ anc(zk)), for the leaves vi, vj and v and the internal
node zk. In Theo. 3, we show that the joint probabilities are an upper bound of the product of the
single terms.

zk

zk′

v1 v v2

(a) rzk
v and r

zk
v1 meet at node zk′ .

zk

zk′

v1 v v2

(b) rzk
v and r

zk
v2 meet at node zk′ .

zk

v1 v v2

(c) rzk
v , rzk

v1 and r
zk
v2 meet at node

zk.

Figure 6: The different cases of the event p (zk = v1 ∧ v2|zk ∈ anc(v)). While the LCA of v1 and
v2 is zk in every case, the LCA of v1 and v and the LCA of v2 and v are different. We have three
cases: either the paths from v1 or v2 and v meet before zk at node zk′ (shown in (a) and (b)), or all
paths meet for the first time at zk (shown in fig. (c)).

Theorem 3. Let p describe the probability under the tree-sampling procedure, zk an internal node,
v1, v2 and v leaves. Then, the following inequality holds:

p(zk = v1 ∧ v2)p(zk ∈ anc(v)) ≤ p (zk = v1 ∧ v2, zk ∈ anc(v)) (15)
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Proof. First, we observe that the right-hand side of the inequality can be rewritten as:
p (zk = v1 ∧ v2, zk ∈ anc(v)) = p (zk = v1 ∧ v2|zk ∈ anc(v))P (zk ∈ anc(v)). (16)

To prove the non-trivial case p (zk ∈ anc(v)) ̸= 0, we need to show that the following holds:
p (zk = v1 ∧ v2) ≤ p (zk = v1 ∧ v2|zk ∈ anc(v)) . (17)

Let rzj
vi = (vi, . . . , zj) denote a path from a leaf vi to an internal node zj and let zn′ be the root

node. Recalling from Zügner et al. (2021) that the paired path probability under the tree-sampling
procedure is

p((r
zn′
v1 , r

zn′
v2 )) = p(rzk

v1 )p(r
zk
v2 )p(r

zn′
zk ), (18)

with zk = v1 ∧ v2, we can rewrite the LCA probabilities as

p (zk = v1 ∧ v2) =
∑

(r
zk
v1 ,r

zk
v2 ):zk=v1∧v2

p(rzk
v1 )p(r

zk
v2 ). (19)

Adding the condition zk ∈ anc(v) means there exists a path from the leaf v to the internal node zk.
There are three different cases: first, the path meets rzk

v1 and rzk
v2 at zk for the first time, or the path

meets the path rzk
v1 or rzk

v2 in a lower node zk′ , with k′ < k. The cases are shown in Fig. 6. In the first
case, all three paths are independent. Thus, the LCA probabilities do not change. In the other two
cases, they are only independent up to the node zk′ . The probability for the path rzkzk′ is equal to 1
since we know that zk ∈ anc(v). More formally, the conditional probability is

p (zk = v1 ∧ v2|zk ∈ anc(v)) =
∑

(r
zk
v1 ,r

zk
v2 ):zk=v1∧v2

p(rzk
v1 |zk ∈ anc(v))p(rzk

v2 |zk ∈ anc(v)). (20)

Assuming that the path from v to zk meets the path from v1 to zk in the node zk′ with k′ ≤ k, we
have

p(rzk
v1 |zk ∈ anc(v))p(rzk

v2 |zk ∈ anc(v)) = p(r
z′k
v1 )p(r

zk
v2 ) ≥ p(rzk

v1 )p(r
zk
v2 ). (21)

The last inequality follows since r
z′k
v1 is a subpath of rzk

v1 and therefore has a higher probability. This
concludes the proof.

A.4 PROOF OF THEO. 2

In the following, we provide the proof of the inequality shown in Theo.2.

Proof. To prove it, we first write out the definitions of Soft-Das and the expected Dasgupta cost.

Soft-Das(T ) =
∑
v1,v2

P (v1, v2)
∑
z

∑
v

P (z = v1 ∧ v2)P (z ∈ anc(v)) (22)

and

ET̂ ∼PA,B(T )

[
Das(T̂ )

]
= ET̂ ∼PA,B(T )

[∑
v1,v2

P (v1, v2)
∑
z

∑
v

I[z=v1∧v2]I[z∈anc(v)]

]
(23)

= ET̂ ∼PA,B(T )

[∑
v1,v2

P (v1, v2)
∑
z

∑
v

I[z=v1∧v2,z∈anc(v)]

]
(24)

=
∑
v1,v2

P (v1, v2)
∑
z

∑
v

ET̂ ∼PA,B(T )

[
I[z=v1∧v2,z∈anc(v)]

]
(25)

=
∑
v1,v2

P (v1, v2)
∑
z

∑
v

P (z = v1 ∧ v2, z ∈ anc(v)) (26)

The proof follows by using Theo. 3.

A.5 PROOF OF THEO. 1

Here we provide the proof of Theo. 1.

Proof. To prove the left-hand side, we first observe that the expected Dasgupta cost can be rewritten
as a convex combination of the Dasgupta costs of all possible hierarchies under the tree-sampling
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procedure. More formally,

ET̂ ∼PA,B(T )

[
Das(T̂ )

]
=

∑
T̂ ∈H(n,n′)

PA,B(T̂ )Das(T̂ ) (27)

where H(n, n′) describes the set of all valid hierarchies with n leaves and n′ internal nodes. Thus,
the minimizer of the expected Dasgupta cost is a convex combination of all minimizing hierarchies,
with the minimum being equal to the optimal Dasgupta cost. The equation on the right-hand side
for TSD can be proved equivalently.

Note that, since the expectation operator is convex, any discrete optimizer (i.e. discrete hierarchies
achieving the optimum value) of the discrete scores will be an optimizer of the expected scores and
vice-versa. In this case discrete hierarchies are represented by deterministic A, B matrices. In
this case discrete hierarchies are represented by deterministic A, B matrices. Only probabilistic
hierarchies which are optmizers of the expected scores, represented by non-discrete A, B matrices,
are not optimizers of the discrete scores. This is expected since those probalistic hierarchies do not
belong to the valid input domain of the discrete scores. In addition, any sample we draw from these
probabilistic optimizers is also a discrete optimizer of Dasgupta or TSD because of the convexity of
the expectation operator.

A.6 NON-CONVEXITY AND NON-CONCAVITY OF EXP-DAS

Minimizing a convex function using gradient descent is easier than a concave one. In a constrained
setting, minimizing a concave function heavily depends on the initialization. Exp-Das(T = (A,B))
is neither convex nor concave with respect to A and B. For both, a counter-example exists. This
implies that we can not tell whether Exp-Das converges into a local or global minimum when train-
ing. To show that Exp-Das is not concave, it is sufficient to find two hierarchies T1 = (A1,B1) and
T2 = (A2,B2) such that:

1

2
Exp-Das(T1) +

1

2
Exp-Das(T2) ≥ Exp-Das

(
1

2
(T1 + T2)

)
, (28)

and equivalently to show that it is not convex:
1

2
Exp-Das(T1) +

1

2
Exp-Das(T2) ≤ Exp-Das

(
1

2
(T1 + T2)

)
, (29)

where T1 + T2 = (A1 +A2,B1 +B2). In Fig. 7, we show these two examples. In (a) and (b) we
show two hierarchies and in (c) a linear interpolation of these two. The graph in (d) satisfies Eq. 28,
while the graph in (e) satisfies Eq. 29. We report the Dasgupta costs for all hierarchy and graph
combinations in Tab. 5.

Hierarchy T̂1 T̂2 TI
Convex Example 3.5 3.5 3.375
Concave Example 3.0 3.0 3.25

Table 5: Dasgupta costs for all combinations of hierarchies and graphs from Fig. 7.

B EXPERIMENTS INFORMATION

B.1 DATASETS

An overview of the graph and vector datasets are given in Tab. 6 and Tab. 7. The deatils of the
HSBMs are shown in Tab. 8.
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(e) Concave Example

Figure 7: Three hierarchies and two graphs that show that Exp-Das is neither convex nor concave
with respect to A and B. The hierarchy in (c) is a linear interpolation of the hierarchies in (a) and
(b). The graphs in (d) and (e) are counter-examples, with convex and concave behavior, respectively.

Table 6: Overview of the graph datasets.

Dataset Number of Nodes Number of Edges

PolBlogs 1222 16715
Brain 1770 8957
Citeseer 2110 3694
Genes 2194 2688
Cora-ML 2810 7981
OpenFlight 3097 18193
WikiPhysics 3309 31251
DBLP 317080 1049866

B.2 HYPERPARAMETERS

We show an overview of the hyperparameters we used in Tab. 9.

B.3 HSBM RESULTS FOR FPH

We show the results for FPH on the HSBM graphs in Tab 10.
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Table 7: Overview of the vector datasets.

Dataset Number of Data Points Number of Attributes Number of Classes

Zoo 101 17 7
Iris 150 4 3
Glass 214 10 6
Digits 1797 8×8 10
Segmentation 2310 19 7
Spambase 4601 57 2
Letter 20000 16 26
Cifar-100 50000 2048 100

Table 8: Overview of the HSBMs.

Dataset Number of Nodes Number of Edges Number of Clusters

Small HSBM 101 1428 15
Large HSBM 1186 27028 53

B.4 ADDITIONAL VISUALISATIONS

(a) Largest Cluster (b) Second Largest Cluster

(c) Third Largest Cluster (d) Fourth Largest Cluster

Figure 8: Largest derived clusters on Digits. On the left in each subplot the 16 images with the
highest probability, on the right the 16 images with the lowest probability.
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Table 9: Overview of the Hyperparameters.

Method Hyperparameter Value

EPH

LR Scheduler
Initialization Average Linkage

Num. Samples 20
Num. Samples* 10
Num. Samples** 1

FPH
LR min{Scheduler, 0.05}
LR min{Scheduler, 150}

Initialization Average Linkage
Epochs 1000

HypHC

LR min{1e−3, 5e−4, 1e−4}
Temp. min{1e−1, 5e−2, 1e−2}

LR*** 1e−3

Temp.*** 1e−1

Epochs 50
Num. Triplets n2

UF
Loss min{Dasgupta, Closest+Size}
LR 0.1

Epochs 500

Scheduler

LRA (Exp-Das) 0.1
LRA (Exp-Das)**** 0.05
LRB (Exp-Das) 0.1
LRB (Exp-Das)***** 0.01
LRA (Exp-TSD) 150
LRB (Exp-TSD) 500

Sampling frequency 1000
Sampling frequency***** 2000
Epochs (Exp-Das) 10000
Epochs (Exp-TSD) 3000

DeepWalk Embedding Dim. 10
Embedding Dim.***** 32

* Used for DBLP and Spambase
** Used for Letter and Cifar-100
*** Used for Letter
**** Used for Cifar-100
***** Used for DBLP
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Table 10: Results of EPH for the HSBMs with n′=# Cluster.

Dasgupta cost Tree-sampling divergence

Method HSBM Small HSBM Large HSBM Small HSBM Large

GT 26.29 130.16 43.14 51.50
Level 27.84 127.99 43.53 51.53

Level 1 1.0 0.99 1.0 1.0
Level 2 1.0 0.95 1.0 1.0
Level 3 0.77 0.81 0.87 0.99

(a) Highest Probability (b) Lowest Probability

Figure 9: Second largest derived cluster on Cifar-100..

B.5 ABLATION

For our ablation study we use a simplified optimization scheme. More specifically, we use a fixed
learning rate of 0.05 and only train for 1000 epochs.

Constrained vs. Unconstrained Optimization. We require the rows of the matrices A and B to
be row-stochastic. There are several possibilities to enforce this. Either we can perform constrained
optimization using projections onto the probabilistic simplex or simply perform a softmax operation
over the rows. In Tab. 11 we show a comparison of the Dasgupta costs on the graph datasets for
several graph datasets. We can observe that the constrained optimization,i.e. using projections after
each step yields better results than the unconstrained optimization on every graph. This aligns with
the findings of Zügner et al. (2021). Therefore, we recommend using constrained optimization.

Initialization. The initialization of a model can play a crucial role. Zügner et al. (2021) found that
using the AL algorithm as initialization yields substantial improvements. Therefore, we compare

(a) Highest Probability (b) Lowest Probability

Figure 10: Third largest derived cluster on Cifar-100..
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(a) Das - 64 clusters

(b) TSD - 64 clusters

Figure 11: Inferred clusters inferred by EPH optimizing Exp-Das and Exp-TSD. 64 clusters are
highlighted in the graphs and dendrograms.

Table 11: Dasgupta costs for constrained and unconstrained optimization on several graph datasets
with n′ = 512 internal nodes.

Dataset PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics

Constrained 252.55 428.40 74.84 178.90 242.38 324.45 481.92
Unconstrained 272.60 457.62 79.47 188.02 269.10 349.20 526.99
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Figure 12: Linear interpolation of Soft-Das and Exp-Das scores from the average linkage hierarchy
to the hierarchy inferred by Exp-Das.

both initializations and additionally test using their algorithm FPH as initialization. We show the
Dasgupta costs for several graph datasets in Tab. 12. As expected, using the AL algorithm or FPH

Table 12: Dasgupta costs for different initializations on several graph datasets with n′ = 512 internal
nodes. In the first three rows the initial Dasgupta costs and in the last three rows the Dasgupta costs
after the training. Best scores in bold, second best underlined.

Dataset PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics

Random 914.11 1285.68 1574.76 1621.82 2107.65 2302.13 2479.51
AL 355.60 556.68 83.69 196.50 292.77 363.40 658.04
FPH 262.47 453.17 77.05 179.55 257.42 355.61 538.47

Exp-Das (Random) 275.44 499.12 307.52 368.66 564.35 502.22 624.27
Exp-Das (AL) 252.55 428.40 74.84 178.90 242.87 324.45 481.92
Exp-Das (FPH) 251.55 431.15 74.88 177.32 245.79 326.46 527.02

as initialization yields significant improvements over a random initialization. Even though the FPH
initialization starts with a better hierarchy, the resulting hierarchies are inferior than the AL initializa-
tion. This could be caused by local minima, in which the model gets stuck. We recommend using AL
as initialization since it performs best on most datasets and has a lower computational cost than FPH.

Direct vs. Embedding Parametrization. Additionally to the direct parametrization of the
matrices A and B, we test an embedding parametrization for each node in the hierarchy. More
specifically we use d-dimensional embeddings for the leaves and internal nodes. To infer A and
B, we perform a softmax operation with an additional learnable temperature parameter ti over
the cosine similarities between the embeddings. The main advantage of the embedding approach
is that, additionally to the hierarchical clustering, we gain node embeddings that can be used for
downstream tasks such as classification or regression. We test the embedding parametrization with
d = 128 on several graph datasets. Once we let ti be learnable and once we freeze it to ti = 1.
We compare the results to the constrained optimization. While we train the direct parametrization
for 1000 epochs, the embedding approach is trained for 20000 epochs. This is done to ensure
convergence since it is randomly initialized. We show the results in Tab. 13. First, we observe that

Table 13: Dasgupta costs for the direct and embedding parametrization on several graph datasets
with n′ = 512 internal nodes. Best scores in bold, second best underlined.

Dataset PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics

Direct 252.55 428.40 74.84 178.90 242.38 324.45 481.92
Embedding (ti = 1) 451.63 659.11 1008.23 1146.86 1261.91 968.41 1108.42
Embedding 249.84 440.29 213.99 290.19 409.68 373.07 514.91

not using a temperature parameter yields substantially worse results. Furthermore, the embedding
parametrization is inferior to the direct parametrization, even though it was trained for 20000
epochs, while the constrained optimization was only trained for 1000. Only on the dataset PolBlogs
the embedding approach is slightly better than the direct parametrization. We attribute the inferior
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Figure 13: Dasgupta costs for different numbers of internal nodes.
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Figure 14: TSD scores for different numbers of internal nodes.

Table 14: Standard Deviations for the graph datasets.
Dasgupta cost Tree-sampling divergence

Dataset PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP PolBl. Brain Cites. Genes Cora-ML OpenF. WikiP. DBLP

gHHC 7.43 16.19 7.49 12.05 192.38 200.76 42.82 4,887.56 0.09 0.18 0.12 0.16 5.93 7.97 0.16 0.28
HypHC 6.37 9.05 22.93 16.54 51.74 28.83 36.64 OOM 0.47 0.64 0.71 0.35 1.47 1.02 1.22 OOM
EPH 0.43 1.31 0.10 2.17 1.02 2.49 2.95 35.89 0.31 0.39 0.01 0.07 0.02 0.12 0.15 0.03

Table 15: Standard Deviations for the vector datasets.
Dasgupta cost Accuracy

Dataset Zoo Iris Glass Digits Segmentation Spambase Letter Cifar Zoo Iris Glass Digits Segmentation Spambase Letter Cifar

gHHC 0.03 0.35 2.30 5.95 40.55 1.02 167.34 167.34 0.09 0.04 0.04 0.08 0.01 0.03 0.03 0.01
HypHC 0.08 0.58 0.27 1.37 0.46 2.04 45.10 OOM 0.05 0.01 0.05 0.07 0.06 <0.01 0.01 OOM
FPH - - - 5.29 3.07 19.31 96.52 528.68 - - - 0.04 0.06 0.01 0.02 0.01
EPH 0.01 0.01 0.01 0.11 0.22 1.11 2.42 5.73 0.03 <0.01 0.01 0.06 0.05 <0.01 0.01 0.01

performance to the random initialization and the fact that we have to use a softmax operation
instead of projections. Our results are in line with the ablation study of Zügner et al. (2021). They
also parametrized their model using embeddings and used the softmax function on the negative
Euclidean distances to infer the matrices A and B. Since the embedding approach yields worse
results with longer training times, we recommend using the direct parametrization.

Number of Internal Nodes. As in many real-world problems we do not know the number
of internal nodes n′ beforehand in our experiments. While increasing n′ generally leads to more
refined and expressive hierarchies, it reduces interpretability and comes with a higher computational
cost. To select the hyperparameter n′, we test various choices on several datasets. We show the
corresponding Dasgupta costs and TSD scores in Fig. 13 and Fig. 14. We found that n′ = 512 is
sufficient to capture most information. In practice we recommend using the Elbow method.

Number of Sampled Hierarchies. Another crucial hyperparameter for EPH is the number of
sampled hierarchies. Additionally to Fig. 3, we provide the raw Dasgupta costs and standard errors
after the training in Fig. 15. Furthermore, we show the influence of the number of samples to
approximate the expected Dasgupta cost on randomly initialized hierarchies in Fig. 16

B.6 STANDARD DEVIATIONS

We show the standard deviations of the randomized models on the graph datasets in Tab. 14 and for
the vector datasets in Tab. 15.
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Table 16: Runtime in seconds for the graph datasets with n′ = 512 internal nodes.

PolBlogs Brain Citeseer Genes Cora-ML OpenFlight WikiPhysics DBLP

# Nodes 1222 1770 2110 2194 2810 3097 3309 317080
# Edges 16715 8957 3694 2688 7981 18193 31251 1049866

WL 1 <1 <1 <1 <1 1 1 OOM
AL 1 1 <1 <1 1 1 2 101
Louv. 1 1 1 1 1 1 1 1031
RSC 92 78 104 427 280 626 863 OOM
UF 9 3 1 1 2 4 6 OOM
gHHC 75 79 73 78 73 79 83 15630
HypHC 2043 4163 5981 6816 11557 14278 16778 OOM
FPH 452 547 345 373 644 592 667 6647
EPH 3834 3402 2609 2848 3322 4419 6389 224331

Table 17: Runtime in seconds for the vector datasets with n′ = min{n− 1, 512} internal nodes.

Zoo Iris Glass Digits Segmentation Spambase Letter Cifar-100

# Points 101 150 214 1797 2310 4601 20000 50000

WL <1 <1 <1 8 13 51 983 8316
AL <1 <1 <1 8 13 51 985 8564
SL <1 <1 <1 8 13 51 975 8494
CL <1 <1 <1 8 13 52 986 8594
Louv. <1 <1 <1 8 14 55 1065 7324
RSC 1 1 2 27 40 127 2009 14110
UF <1 <1 <1 9 14 57 1132 OOM
gHHC 47 57 59 83 66 89 110 8462
HypHC 47 60 77 3385 5814 26933 250792 OOM
FPH 87 93 144 2586 3963 13876 134845 427557
EPH 1058 1541 2407 23574 44251 31435 130227 430322
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Figure 15: Dasgupta costs and standard error for different numbers of sampled hierarchies after the
EPH training.
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Figure 16: Approximated Expected Dasgupta costs for different numbers of sampled hierarchies for
randomly initialized probabilistic hierarchies.

B.7 RUNTIMES

We report the runtimes for EPH and the baselines in Tab. 16 and Tab. 17. While HypHC, FPH and
EPH are executed on a GPU (NVIDIA A100), the remaining method do not support or did not re-
quire GPU acceleration. Since gHHC has a lower computational runtime than the other randomized
methods, we run it with 50 random seeds instead of 5.

B.8 PSEUDOCODE

In the following we provide a formal description of our EPH algorithm, the subgraph sampling, and
how we normalize graphs.

Algorithm 1 EPH

Require: G = (V,E): Graph
Require: T = (A,B): Initial hierarchy
Require: α: Learning rate
Require: K: Number of sampled hierarchies

1: for t = 1, . . . do
2: gt ← 0
3: for k = 1, . . . ,K do
4: Ĝ ← SampleSubgraph(G)
5: T̂ ∼ PA,B(T )
6: gt ← gt +∇T Score(Ĝ, T̂ )
7: end for
8: Tt ← Tt−1 − α

K gt
9: Tt ← P (Tt) ▷ simplex projection

10: end for
11: return T̂t

Algorithm 2 NormalizeGraph

Require: G = (V,E): Graph
1: P (vi, vj)← wi,j∑

u,v∈V wu,v

2: P (vi)← wi∑
j wj

Algorithm 3 SampleSubgraph

Require: G = (V,E): Graph
Require: M : Number of sampled edges

1: Ê ←MultiSet() ▷ allow duplicate edges
2: for m = 1 . . .M do
3: e = (vi, vj) ∼ P (vi, vj)
4: Ê.add(e)
5: end for
6: Ĝ ← (V, Ê)

7: NormalizeGraph(Ĝ)
8: return Ĝ
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