
Published in Transactions on Machine Learning Research (07/2023)

Towards Multi-Spatiotemporal-Scale
Generalized PDE Modeling

Jayesh K. Gupta∗ jkg@cs.standford.edu
Microsoft Autonomous Systems and Robotics Research

Johannes Brandstetter∗ johannesb@microsoft.com
Microsoft Research AI4Science

Reviewed on OpenReview: https: // openreview. net/ forum? id= dPSTDbGtBY

Abstract

Partial differential equations (PDEs) are central to describing complex physical system sim-
ulations. Their expensive solution techniques have led to an increased interest in deep neural
network based surrogates. However, the practical utility of training such surrogates is con-
tingent on their ability to model complex multi-scale spatio-temporal phenomena. In recent
years, various neural network architectures have been proposed to target such phenomena,
most notably Fourier Neural Operators (FNOs), which give a natural handle over local
& global spatial information via parameterization of different Fourier modes, and U-Nets
which treat local and global information via downsampling and upsampling paths. How-
ever, large-scale comparisons between these convolution-based approaches are notoriously
sparse. In this work, we make such comprehensive comparisons regarding performance,
runtime complexity, memory requirements, and generalization capabilities. Concretely, we
stress-test various FNO, (Dilated) ResNet, and U-Net like approaches to fluid mechanics
problems in both vorticity-stream and velocity function form. For U-Nets, we transfer recent
architectural improvements from computer vision, most notably from object segmentation
and generative modeling. Next, we use our insights on design considerations, and intro-
duce U-FNets, i.e., modern U-Nets that are augmented with FNO downsampling layers.
Those architectures further improve performance without major degradation of computa-
tional cost. Finally, we ablate and discuss various choices for parameter conditioning, and
show promising results on generalization to different PDE parameters and time-scales with
a single surrogate model. Source code for our PyTorch benchmark framework is available
at https://github.com/microsoft/pdearena.

1 Introduction

Many mathematical models of physical phenomena are expressed in differential equation forms (Olver, 1986),
generally as temporal partial differential equations (PDEs). Their expensive solution techniques have led to
an increased interest in deep neural network based surrogates (Bar-Sinai et al., 2019; Raissi et al., 2019; Lu
et al., 2021; Li et al., 2020a; Brandstetter et al., 2022c; Um et al., 2020); especially in the studies that relate
to fluid dynamics (Guo et al., 2016; Kochkov et al., 2021; Rasp & Thuerey, 2021; Keisler, 2022; Weyn et al.,
2020; Sønderby et al., 2020; Wang et al., 2020a; Pathak et al., 2022). However, generalizing across different
PDE parameters, and different time-scales is a notoriously hard problem. For example, in fluid mechanics,
slightly different values of a single parameter like Reynolds numbers can make all the difference for flows
being laminar or turbulent. Another source of challenge stems from the fact that physical phenomena appear
at different spatial and temporal scales. For example, blizzards are rather local weather phenomena, whereas
heat waves are rather global ones, both resulting from the same underlying principles. For exactly these

∗Equal contributions.

1

https://openreview.net/forum?id=dPSTDbGtBY
https://github.com/microsoft/pdearena

Published in Transactions on Machine Learning Research (07/2023)

reasons, fluid mechanics in general (Munson et al., 2013), and weather forecasting in particular (Jolliffe &
Stephenson, 2012) have always posed a great scientific challenge.

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.5

1.0

1.5

Figure 1: Example rollout trajectories of the best-performing
U-Net model, which is trained to generalize across different
timesteps (∆t) and different force terms.

Prominent examples of neural PDE sur-
rogates are Fourier Neural Operators
(FNOs) (Li et al., 2020a). At its core,
FNO building blocks consist of Fast Fourier
transforms (FFTs) (Cooley & Tukey, 1965;
Van Loan, 1992) and weight multiplication
in the Fourier space, where low Fourier
modes provide global information, and high
Fourier modes provide local information. An
FNO layer processes global and local infor-
mation simultaneously via weight multipli-
cation of the different modes. On the other
hand, U-Nets (Ronneberger et al., 2015)
are standard architectures in the context of
image modeling, image segmentation, and
image generation. U-Nets are constructed
as a spatial downsampling pass followed by a spatial upsampling pass, with additional skip connections
present between the downsampling pass activations and corresponding upsampling layers. Local and global
information is therefore treated in a more distributed fashion than in FNO like architectures. Downsam-
pling corresponds to sequentially processing information more globally, whereas upsampling corresponds to
fine-graining the global information and adding local information via skip connections. Figure 2 contrasts
local and global information flows in FNO and U-Net like architectures. Given the recent success of modern
U-Net architectures in complex generative image modeling tasks (Ho et al., 2020; Nichol & Dhariwal, 2021;
Ramesh et al., 2021) it’s pertinent that these are evaluated on PDE Operator learning tasks and compared
to FNO like approaches. Furthermore, given the different nature of FNO and U-Net like approaches, it is
worth surveying their respective advantages and performance on different tasks, as well as investigating under
which circumstances combining them might be beneficial. The third line of models are ResNet (He et al.,
2016a) like architectures, which a priori have no natural handle on processing local and global information
– in contrast to recently introduced Dilated ResNets (Stachenfeld et al., 2021) which adapt filter sizes at
different layers via dilated convolutions.

To summarize our contributions: (1) To our knowledge, we are the first to present a side-by-side analysis of
FNO, (Dilated) ResNet, and U-Net like architectures on their ability to model complex multi-scale spatio-
temporal phenomena. In doing so, we present new architecture designs based on modern updates to U-Nets.
(2) We generalize to different PDE parameters and time-scales showing promising results for single surrogate
models as exemplified in Figure 1. (3) We propose a unified PyTorch based framework for enabling easy
side-by-side comparisons of various PDE operator learning methods which is available at https://github.
com/microsoft/pdearena.

2 Preliminaries

Common parameterization of Fourier transform layers. The discrete Fourier transform (DFT) to-
gether with point-wise multiplication in the Fourier space is the heart of Fourier Neural Operator (FNO)
layers. DFTs convert an n-dimensional complex signal f(x) = f(x1, . . . , xn) : Rn → C at M1 × . . .×Mn grid
points into its complex Fourier modes f̂(ξ1, . . . , ξn) via:

f̂(ξ1, . . . , ξn) = F{f}(ξ1, . . . , ξn) =
M1∑
m1=0

. . .

Mn∑
mn=0

f(x) · e−2πi·
(

m1ξ1
M1

+...+ mnξn
Mn

)
, (1)

2

https://github.com/microsoft/pdearena
https://github.com/microsoft/pdearena

Published in Transactions on Machine Learning Research (07/2023)

Spatial information Fou
rier

mo
des

Global

Local

· · ·

+

FNO Layer FNO Layer FNO Layer Local spatial information

Global spatial information

Figure 2: Information flow in Fourier based (left) and U-Net based architectures (right). FNO layers (Li
et al., 2020a) consist of Fast Fourier transforms and weight multiplication in the Fourier space. Low Fourier
modes provide global and high Fourier modes provide local information. U-Nets (Ronneberger et al., 2015)
are constructed as a spatial downsampling pass, followed by a spatial upsampling pass, where information
from the downsampling pass is added via skip-connections.

where (ξ1, . . . , ξn) ∈ ZM1 . . .× . . .ZMn
. In FNO layers, discrete Fourier transforms on real-valued input fields

and respective back-transforms – implemented as Fast Fourier Transforms1 on real-valued inputs (RFFTs)2

– are interleaved with a weight multiplication by a complex weight matrix of shape cin × cout for each mode,
which results in a complex-valued weight tensor of the form W ∈ Ccin×cout×(ξmax

1 ×...×ξmax
n), where Fourier

modes above cut-off frequencies (ξmax
1 , . . . , ξmax

n) are set to zero. These cut-off frequencies turn out to be
important hyperparameters. Additionally, a residual connection is usually implemented as convolution layer
with kernel size 1 (see Figure 2).

Common parameterizations of convolution layers. Regular convolutional neural network (CNN)
(Fukushima & Miyake, 1982; LeCun et al., 1998) layers are the basic building blocks of U-Net like architec-
tures. CNNs take as input feature maps f : Zn → Rcin and convolve3 them with a set of cout filters {wi}cout

i=1
with wi : Zn → Rcin :

[f ⋆ wi](x) =
∑
y∈Zn

〈
f(y), wi(y − x)

〉
, (2)

which can be interpreted as an inner product of input feature maps with the corresponding filters at every
point y ∈ Zn. The filter size of a convolutional layer is a crucial choice in neural network design since it defines
the regions from which information is obtained. Common practice is to use rather small filters (Simonyan &
Zisserman, 2014; Szegedy et al., 2015; He et al., 2016a). Continuous formulations of filters were introduced to
handle irregularly sampled data (Schütt et al., 2018; Simonovsky & Komodakis, 2017; Wang et al., 2018; Wu
et al., 2019) and to match the resolution of the underlying data (Peng et al., 2017; Cordonnier et al., 2019;
Romero et al., 2021b). A promising direction is to adapt filter sizes at different layers using dilation (Dai et al.,
2017). For example, dilated convolutions in the context of PDE modeling were proposed in Stachenfeld et al.
(2021). As a downside, dilations might limit the bandwidth of the filters, and thus the amount of collected
detail. A rather new direction is therefore to adapt filter sizes either via learnable dilation (Pintea et al.,
2021) or via flexible sized continuous convolutions (Romero et al., 2021a; 2022).

1Fast Fourier transforms (FFTs) immensely accelerate DFT computation by factorizing Equation 1 into a product of sparse
(mostly zero) factors.

2The FFT of a real-valued signal is Hermitian-symmetric, so the output contains only the positive frequencies below the
Nyquist frequency for the last spatial dimension.

3In deep learning, a convolution operation in the forward pass is implemented as cross-correlation.

3

Published in Transactions on Machine Learning Research (07/2023)

0 50 100

0
20
40
60y-

m
od

es
1st block

6

8

·10−2

0 20 40 60

0
10
20
30

2nd block

5
6
7
8

·10−2

0 10 20 30

0
5

10
15

3rd block

7
8
9

·10−2

0 5 10 15

0
2
4
6
8

4th block

6
6.5
7
7.5
8·10−2

x-modes

Figure 3: Analyzing filter properties of trained U-Net architectures. Absolute values of Fourier modes of the
filters in each first layer of the respective down-sampling blocks are shown, where for each mode the average
is taken over all filters.

Connecting Fourier transform and convolution. Starting with the 1-dimensional case and omitting
channel dimensions, we assume a signal consisting of n input points, and we further assume circular padding.
We can now rewrite Equation 2 into a discrete circular convolution (Bamieh, 2018; Bronstein et al., 2021)
of two n−dimensional vectors f ,w ∈ Rn:

[f ⋆w]i =
n∑
j=0

w(i−j) mod nfj =
n−1∑
j

(Cw)ijfj , Cw =

á
w1 w2 . . . wn−1 w0
w0 w1 w2 . . . wn−1
...

. . .
...

w2 . . . wn−1 w0 w1

ë
. (3)

The indexing (i− j) mod n returns circular shifts, which can be combined into a circulant matrix Cw. It is
general practice to use rather small filters which only consist of k non-zero elements where usually k << n.
The remaining elements of Cw are filled up with zeros. The action of Cw on f , or equivalently the convolution
of f with w can be expressed via the convolution theorem:

Cwf =
Å 1√

n
W
ã

D
Å 1√

n
W∗
ã

f , (4)

where the matrix W consists of the eigenvectors of Cw and W∗ is its complex conjugate. All circulant
matrices have the same eigenvectors, which if multiplied with a signal yields the discrete Fourier transform
(DFT) of the signal. That is, multiplication (from left) with W∗ is the discrete Fourier transform (of f),
and multiplication by W is the inverse Fourier transform. The matrix D has the Fourier modes of the vector
w on its diagonal. Thus, we can analyze a convolution by expressing its filters as vectors w ∈ Rn, which
comprise the actual k filter values (k corresponds to the kernel size) and additional n − k zeros. When
we extend the circular convolution approach to two dimensions, w itself becomes a matrix w ∈ Rn×n. In
Figure 3, we plot the Fourier modes of the two dimensional filters of a trained U-Net. We take the absolute
values of the modes and average for each mode over all filters in the first convolution layer of different down-
sampling blocks. Although precise statements are difficult to make, it is evident that Fourier mode averages
of different blocks are downsampled versions of each other, which complies with the interpretation that the
downsampling blocks of U-Nets process information at different scales. This is therefore in contrast to FNO
like architectures which process different scales within each FNO layer.

Fourier transform for downsampling. Bandlimited pre-subsampling (Mallat, 1999), i.e., suppressing
high-frequencies before down-sampling, is a well know technique in signal processing; for an illustrative
example see e.g., Figure 1 in Worrall & Welling (2019). We hypothesize that replacing convolutions with
FNO layers which set Fourier modes above cut-off frequencies to zero is advantageous, especially in the lower
downsampling blocks of U-Net architectures where the spatial resolution is large. In the lower U-Net blocks,
convolutions might be all what is needed to learn efficient coarse-grained representations.

Tested partial differential equations. A partial differential equation (PDE) relates solutions u : X → Rn
and respective derivatives for all points x in the domain X ∈ Rm, where u0(x) are initial conditions
at time t = 0 and B[u](t,x) = 0 are boundary conditions with boundary operator B when x is on the
boundary ∂X of the domain. In this work, we investigate PDEs of fluid mechanics problems. To be more
precise, we focus on the incompressible Navier-Stokes equations (Temam, 2001), and the shallow water

4

Published in Transactions on Machine Learning Research (07/2023)

equations(Vreugdenhil, 1994) as an important variant thereof. For the latter, we test for data obtained
in velocity function and vorticity stream formulation. Such comparisons, although never done for deep
learning PDE surrogates, are important since the characteristics of these two formulations are different.
While vorticity stream formulation is often easier to solve, it has limited applicability in complex and
realistic flow scenarios, especially when dealing with complex geometries and resultant boundary conditions.
Comparatively, velocity function formulation is more intuitive, directly dealing with physical measurable
quantities, i.e., velocity fields, with easier implementation of boundary conditions (Gatski, 1991; Kundu
et al., 2015).

In 2 dimensions, the Navier-Stokes equations in vector velocity form conserve the velocity flow fields
v : X → R2 where X ∈ R2 via:

∂v

∂t
= −v · ∇v + µ∇2v − ∇p+ f , ∇ · v = 0 , (5)

where v · ∇v is the convection, i.e. the rate of change of v along v, µ∇2v the viscosity, i.e. the diffusion
or net movement of v, ∇p the internal pressure and f an external force. An additional incompressibility
constraint ∇ · v = 0 yields mass conservation of the Navier-Stokes equations.

By introducing the vorticity ω : X ∈ R as the curl of the flow velocity, i.e. ω = ∇ × v, we can rewrite the
incompressible 2-dimensional Navier-Stokes equations in scalar vorticity stream function form (Kundu
et al., 2015; Guyon et al., 2001; Acheson, 1991) as:

∂ω

∂t
+ ∂ψ

∂y

∂ω

∂x
+ ∂ψ

∂x

∂ω

∂y
= 1

Re

Å
∂2ω

∂x2 + ∂2ω

∂x2

ã
,

Å
∂2ψ

∂x2 + ∂2ψ

∂x2

ã
= −ω , (6)

where the streamfunction is defined via the relations ∂ψ
∂y = vx and ∂ψ

∂x = −vy, and Re is the Reynolds number
which is indirectly proportional to the viscosity and proportional to the absolute velocity. As a result, the 2D
incompressible Navier-Stokes equations are turned into one parabolic equation, i.e. the vorticity transport
equation (Equation 6 left), and one elliptic equation, i.e. the Poisson equation (Equation 6 right). Since
the streamfunction is directly obtained from the vorticity via the Poisson equation one usually solves for the
scalar vorticity.

The shallow water equations (Vreugdenhil, 1994) can be derived from integrating the incompressible
Navier–Stokes equations, in cases where the horizontal length scale is much larger than the vertical length
scale. As such, shallow water equations describe a thin layer of fluid of constant density in hydrostatic
balance, bounded from below by the bottom topography and from above by a free surface. For simplified
weather modeling, the shallow water equations express the velocity in x- direction termed zonal velocity,
the velocity in the y- direction termed meridional velocity, and the vertical displacement of free surface,
which subsequently is used to derive pressure fields. Since the shallow water equations are derived from the
Navier-Stokes equations, a vorticity-stream function formulation exists as well. Note however that when it
comes to describing flows in e.g. more complex geometries, the velocity formulation is in general easier to
deal with (Kundu et al., 2015).

3 PDE Surrogates

(Dilated) ResNets. We implement ResNet architectures using 8 residual blocks, where each block consists
of two convolution layers with 3 × 3 kernels, shortcut connections, group normalization (Wu & He, 2018),
and GeLU activation functions (Hendrycks & Gimpel, 2016). In contrast to standard ResNets for image
classification, we don’t use any down-projection techniques, e.g. convolution layers with strides larger than 1
or via pooling layers. In doing so, ResNets have no natural built-in handle over local and global informations,
and therefore serve as important baseline to ablate effects of local and global information flow which is
fundamental in e.g. FNO and U-Net like architectures. Recently, Stachenfeld et al. (2021) introduced
Dilated ResNets, which adapt filter sizes at different layers using dilated convolutions, and thus are an
alternative way of subsequently aggregating global information. The models consist of 4 residual blocks
where each block individually consists of 7 dilated CNN layers with dilation rates of [1, 2, 4, 8, 4, 2, 1]. We
implement Dilated ResNets with and without group normalization layers.

5

Published in Transactions on Machine Learning Research (07/2023)

Fourier Neural Operators. We implement FNO architectures where the number of FNO layers, the
number of channels, and the number of non-zero Fourier modes are hyperparameters. All architectures
consist of two embedding and two output layers. Each FNO layer comprises a convolution path with a 1 × 1
kernel and a Fourier path where pointwise weight multiplication is done for the lower modes in the Fourier
domain. We use GeLU activation functions, and no normalization scheme.

U-Nets. U-Nets have already been used as PDE surrogates in Ma et al. (2021); Chen & Thuerey (2021).
U-Nets are constructed as a spatial downsampling followed by a spatial upsampling pass, where each down-
and upsampling block consists of two convolutional layers. A particularity of U-Nets is the presence of skip
connections between the downsampling pass activations and corresponding upsampling layers. Orignially,
downsampling is achieved via max-pooling operations. We term the 2015 U-Net implementation as U-
Net2015, which is based on the PDEbench repository of Takamoto et al. (2022). Furthermore, we include a
slightly different version which we term U-Netbase which has bias weights and group normalization instead
of batch normalization to be comparable with modern U-Net versions. To match the number of weights of
U-Net2015, the bottleneck layer in U-Netbase is omitted. Modern versions of the architecture (Ho et al., 2020;
Nichol & Dhariwal, 2021; Ramesh et al., 2021) often use Wide ResNet (Zagoruyko & Komodakis, 2016) style
2D convolutional blocks, each of which can be followed by a spatial attention block (Vaswani et al., 2017).
Other notable changes are the substitution of max-pooling operations by downsampling layers. We term the
respective implementations U-Netmod and U-Netatt in our experiments.

Fourier U-Nets. Based on the insights of Section 2, we replace lower blocks both in the downsampling and
in the upsampling path of U-Net architectures by Fourier blocks, where each block consists of 2 FNO layers
and residual connections. We test substituting only the lowest block (U-F1Net), and the lowest two blocks
(U-F2Net) of the U-Netmod architecture. Substituting all blocks would yield an architecture which resembles
the UNO architecture (Rahman et al., 2022b), with the difference that in UNO architectures downsampling
is done individually via linear layers along the x- and y- dimension, and that “mode scheduling” reduces
the number of modes for higher blocks in the respective downsampling and upsampling paths. For complete
comparison, we therefore also implement the UNO architecture4.

3.1 Operator learning

Major practical benefits of neural PDE surrogates come from amortizing the cost of their compute-expensive
training process which depends on the surrogates’ ability to effectively generalize across different parameter
settings as well as across different time discretizations. Operator learning is a popular term for training
these neural surrogates. Theoretical grounding arises from Chen & Chen (1995) who extend the universal
approximation theorem in neural networks (Hornik et al., 1989; Cybenko, 1989) to operator approximation,
forming the basis for DeepONets (Lu et al., 2019) with theoretical extensions in Lu et al. (2021), graph
kernel networks (Li et al., 2020b), and FNOs. An impressive comparison of DeepONets and FNOs can be
found in Lu et al. (2022).

Operator learning (Lu et al., 2019; Li et al., 2020b;a; Lu et al., 2021; 2022) relates solutions u : X → Rn,
u′ : X ′ → Rn′ defined on different domains X ∈ Rm, X ′ ∈ Rm′ via operators G:

G : (u ∈ U) → (u′ ∈ U ′) , (7)

where U and U ′ are the spaces of solutions u and u′, respectively.

Parameter conditioning. We evaluate FNO and U-Net like architectures on their generalization ca-
pabilities across PDE parameters and different time-scales. Data points consist of solution pairs u,u′ ∈ U
where the pair itself is from the same solution space U , but different pairs {u,u′}1 and {u,u′}2 are from
different solution spaces U1 and U2 characterized by different PDE parameters, e.g., force terms. Simply
put, an input-output pair is always drawn from one trajectory and therefore naturally shares the same PDE
parameters. Further, the mapping u → u′ should generalize across different time windows ∆t, which is taken
into account by conditioning on the lead time, i.e., the time the neural surrogate is asked to predict into the
future. Taking all these requirements into account, we train neural surrogates to generalize across different

4We based our implementation on https://github.com/ashiq24/UNO

6

https://github.com/ashiq24/UNO

Published in Transactions on Machine Learning Research (07/2023)

initial conditions, different PDE parameters (force terms) and different time windows. Both time windows
∆t and force terms are continuous scalar parameters, and thus can be encoded into a vector representation
by using sinusoidal embeddings as is common in Transformers (Vaswani et al., 2017) and various neural
implicit representation learning techniques (Mildenhall et al., 2021).

4 Experiments

We establish the following set of desiderata for our benchmarks: (i) simplicity: the tasks should be easy
to setup, while being backed by actual PDE solvers written by domain experts, (ii) challenging: the tasks
should be difficult enough, (iii) diverse: the tasks should be diverse, both in their formulation as well
as in their requirements, and (iv) generalizability: the tasks should probe generalization across different
time horizons as well as different parameter settings. Following these desiderata, we assessed the described
architectures in four experimental settings to probe (i) Fourier vs. U-Net based approaches, (ii) differences
due to the voriticty-stream vs. velocity function formulation of the datasets, and (iii) parameter conditioning
performance. Results of the main paper are complemented by comprehensive studies and various ablations
in Appendix B.

Concretely, we first probe selected architectures on the shallow water equations, both in vorticity-stream and
velocity function form. We do a second comprehensive evaluation on the Navier-Stokes equations in velocity
function formulation since this formulation turns out to be harder to model for neural surrogates. Finally,
we probe parameter conditioning choices on the Navier-Stokes equations. We discuss results and differences
between architectures.

All datasets contained multiple input and output fields. More precisely, one scalar and one velocity vector
field in case of the velocity formulation, and two scalars in case of the vorticity formulation. Inputs to the
neural PDE surrogates were respective fields at previous t timesteps, where t varies for different PDEs. The
one-step loss is the mean-squared error at the next timestep summed over fields. The rollout loss (reported in
Appendix B) is the mean-squared error after applying the neural PDE surrogate 5 times, summing over fields
and time dimension. We alternatively test the relative MSE loss as used in Li et al. (2020a). We optimized
models using the AdamW optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2019) for 50 epochs and
minimized the summed mean squared error. We used cosine annealing as learning rate scheduler (Loshchilov
& Hutter, 2016) with a linear warmup. Table 1 compares parameter count, runtime and memory requirement
of the tested architectures, showing that runtime and memory requirements are in the same ballpark for both
architecture families if the number of parameters is kept similar.

Shallow water equations. We modified the implementation in SpeedyWeather.jl5(Klöwer et al., 2022),
obtaining data on a grid with spatial resolution of 192 × 96 (∆x = 1.875◦, ∆y = 3.75◦), and temporal
resolution of ∆t = 48 h. We first evaluated the different architectures on the shallow water equations in
velocity function formulation, predicting scalar pressure field and vector wind velocity field. Figure 4 (left)
shows results obtained by various models. In general, all methods which have a dedicated local and global
information flow, i.e. Dilated ResNet, FNO, and U-Net architectures, perform rather well. Nevertheless,
across all tested models, performance differences of an order of magnitude arise, where U-Nets in general
perform best. Adding FNO blocks to U-Net architectures (U-F1Net, U-F2Net) seems to be beneficial.
We further evaluate on the shallow water equations in vorticity stream formulation, and predict the scalar
pressure field and the scalar wind vorticity field. Figure 4 (middle) shows results obtained by various models.
Performance-wise a similar pattern arises, where again the lowest losses are observed for U-Net architectures.

Velocity function formulation of Navier-Stokes equations. We further tested on Navier-Stokes
equations in velocity function form, which is more common in the real world than the vorticity stream
function form. In addition to the velocity field v of Equation 5, we introduced a scalar field representing
a scalar quantity, i.e. particle concentration, that is being transported via the velocity field. The scalar
field is advected by the vector field, i.e. as the vector field changes, the scalar field is transported along with
it. Complementary, the scalar field influences the vector field only via an external buoyancy force term in
y-direction, i.e. f = (0, f)T . We obtained data on a grid with spatial resolution of 128 × 128 (∆x = 0.25,

5https://github.com/milankl/SpeedyWeather.jl

7

https://github.com/milankl/SpeedyWeather.jl

Published in Transactions on Machine Learning Research (07/2023)

Table 1: Comparison of parameter count, runtime, and memory requirement of various architectures. Sub-
script numbers indicate the used number of Fourier modes. For U-FNet experiments subscript numbers
indicate the number of Fourier modes in the lowest and second-lowest block.

Method Channels Res.Layers/Blocks Params.
Runtime [s] Mem. [MB]

Fwd. Fwd.+bwd. f32 size Peak usage

ResNet128 128 8 2.4 M 0.084 0.180 9 4273
ResNet256 256 8 9.6 M 0.231 0.497 38 8500
DilResNet128 128 4 4.2 M 0.118 0.342 16 4849
DilResNet128-norm 128 4 4.2 M 0.183 0.423 16 6922

FNO128-8modes8 128 8 33.7 M 0.057 0.162 134 2161
FNO128-8modes16 128 8 134 M 0.059 0.171 537 2953
FNO128-4modes16 128 4 67.2 M 0.031 0.089 268 1852
FNO64-4modes32 64 4 67.1 M 0.016 0.050 268 1204
FNO96-4modes32 96 4 151 M 0.026 0.080 604 2179
FNO128-4modes32 128 4 268 M 0.036 0.118 1100 3420
UNO64 64 7 110 M 0.070 0.134 440 1925
UNO128 128 7 440 M 0.160 0.341 1800 5513

U-Net201564 64 9 31 M 0.013 0.037 124 1305
U-Net2015128 128 9 124 M 0.042 0.117 496 3002
U-Netbase64 64 8 31.1 M 0.021 0.046 124 1277
U-Netbase128 128 8 124 M 0.056 0.132 496 3000
U-Netmod64 64 9 144 M 0.079 0.184 577 3900
U-Netatt64 64 9 148 M 0.081 0.190 593 3975

U-F1Netmodes8 64 9 154 M 0.083 0.205 617 3936
U-F1Netmodes16 64 9 185 M 0.084 0.208 743 4037
U-F2Netmodes8,4 64 9 163 M 0.085 0.213 652 3961
U-F2Netmodes8,8 64 9 193 M 0.085 0.216 772 4046
U-F2Netmodes16,8 64 9 224 M 0.086 0.219 897 4149
U-F2Netmodes16,16 64 9 344 M 0.090 0.232 1400 4496

448 5600
10−4

10−3

10−2

10−1

100

M
SE

Shallow water vorticity

ResNet256
DilResNet128-norm
FNO128-8modes16

FNO96-4modes32

UNO64
U-Netbase64
U-Netmod64
U-Netatt64
U-F1Netmodes16

U-F2Netmodes16,8

U-F2Netmodes8,8448 5600

10−3

10−2

10−1

100

Shallow water velocity

2080 5200
10−4

10−3

10−2

10−1

Navier-Stokes velocity

Num. Train Trajectories

Figure 4: One-step errors for modeling different PDEs, shown for different number of training trajectories.
Results are averaged over three different random seeds, and are obtained for the velocity function and vorticity
stream formulation of the shallow water equations on 2-day prediction (left, middle), and for the Navier-
Stokes equation (right). For better visibility only selected architectures are displayed, for full comparisons
see Appendix B. Note the logarithmic scale of the y-axes.

∆y = 0.25), and temporal resolution of ∆t = 1.5 s using ΦFlow6 (Holl et al., 2020). Figure 4 (right) shows
results obtained by different architectures. In contrast to the shallow water experiments, the compute-
expensive Dilated ResNet architectures perform on par with the best U-Net and U-FNet architectures. The
reason for the performance difference of Dilated ResNets is hard to pin down. Our primary guess is on the
importance of aliasing vs. patterns in the data. Concretely, for data with different proportions of higher
frequency modes, the importance of aliasing might shift.

6https://github.com/tum-pbs/PhiFlow

8

https://github.com/tum-pbs/PhiFlow

Published in Transactions on Machine Learning Research (07/2023)

1664 6656
10−4

10−3

10−2

10−1

M
SE

One-step (∆t = 0.375 s)

FNO128-8modes16

U-Netmod64
U-Netatt64
U-F1Netmodes16

U-F2Netmodes16,8

U-F1Netatt,modes16

U-F2Netatt,modes16,8

1664 6656

10−3

10−2

10−1

One-step (∆t = 1.5 s)

1664 6656
10−3

10−2

10−1

One-step (∆t = 3 s)

Num. Train Trajectories

Figure 5: One-step errors obtained on the parameter conditioning experiments of the Navier-Stokes equation.
Results are shown for selected architectures, different number of training trajectories, and different time
windows: ∆t = 0.375 s (left), ∆t = 1.5 s (middle), and ∆t = 3 s (right). Results are averaged over 208
different unseen evaluation buoyancy force values between 0.2 and 0.5.

Probing parameter conditioning. We probe parameter conditioning on the velocity function formu-
lation of the Navier-Stokes equation. We test FNO and U-(F)Net variants, experiments for Dilated ResNet
are too compute-expensive due to their long runtimes, see Table 1. For training, we used a dataset with
higher temporal resolution of ∆t = 0.375 s and get equal number of trajectories from uniformly sampling
832 different external buoyancy force values, f = (0, f)T in Equation 5, in the range 0.2 ≤ f ≤ 0.5, using
input fields at one timestep.

We conditioned our models to predict for different time windows in the range 0.375 s ≤ ∆t ≤ 20 s, and
different strengths of the y-component of the external buoyancy force f . Due to the unbalanced nature of
the dataset size at different ∆t, we reweighed the sampling frequency in our dataloader to try to maintain
parity. We provided conditioning information in the form of an embedding vector which can be added to
each or subset of residual blocks (Ho et al., 2020). Both, ∆t and f , are continuous valued scalar parameters,
and thus can be encoded into a vector representation by using sinusoidal embeddings as is common in
Transformers (Vaswani et al., 2017). We added the embedding vector to the feature maps after the first
convolution/FNO layer in respective down- and up-sampling blocks. To be more precise, for each feature
map we replicated the respective embedding value along x- and y-coordinates. For Fourier layers, this results
in adding the embedding vector, the Fourier branch, and the residual connection together. We also compare
an alternative conditioning approach for U-Nets termed AdaGN (Nichol & Dhariwal, 2021), based on affine
transformation of group normalization layers via projections of our embeddings in Figure 19 of Appendix B.5.

0.1 0.2 0.3 0.4 0.5 0.6
10−3

10−2

10−1

extrapolation extrapolation

interpolation

Force Magnitude

M
SE

FNO128-8modes16,16

U-Netmod64
U-F1Netmodes16

Figure 6: Inter- and extrapolation performance of differ-
ent models tested on buoyancy force values in the range
0.1 ≤ f ≤ 0.6 performing 5 steps rollout at ∆t = 0.375 s.

Figure 5 shows results obtained by various mod-
els averaged over 208 different unseen evalua-
tion force values. U-Net based methods perform
best. In contrast to the unconditioned experi-
ments, substituting lower blocks by FNO blocks
didn’t yield better generalization capabilities. In
general, we observe that conditioning is more dif-
ficult for FNO layers, most strikingly seen in the
performance curves of FNOs. We however do not
discard the possibility that for FNO layers, al-
ternative parameter embedding and conditioning
methods might be required. Nevertheless, our re-
sults also coincide with the findings of Lu et al.
(2022), which state that FNO like architectures
seemed to be extremely sensitive to noise, and
failed to predict solutions for even small amounts
of added Gaussian noise.

9

Published in Transactions on Machine Learning Research (07/2023)

Ground truth Prediction Abs. error
∆
t

=
0.

37
5

s

0.1

0.2

∆
t

=
0.

75
s

0.1

0.2

0.3

∆
t

=
1.

5
s

0.1

0.2

0.3

(a) Buoyancy force= 0.22

Ground truth Prediction Abs. error

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.2

0.4

(b) Buoyancy force= 0.48

Figure 7: Scalar field predictions obtained for the parameter conditioning experiments using the best per-
forming U-Netmod model. Predicted and ground truth fields are shown for different buoyancy force values
and different time windows. Model inputs are the same for different time window prediction tasks. More
conditioning experiments can be found in Appendix B.5.

In Figure 6, we show performance of different models tested on buoyancy force values in the range 0.1 ≤
f ≤ 0.6. The curves indicate that the difficulty of the tasks increases for larger buoyancy force values, but
U-Net based PDE surrogates show better interpolation and extrapolation abilities. In Figure 7, we display
example scalar fields obtained for the parameter conditioning experiments of the Navier-Stokes equations
using the best performing U-Netmod model. Predicted and ground truth fields are shown for different values
of the absolute buoyancy force and different time-scale values.

5 Conclusion

We presented a comprehensive comparison between various (Dilated) ResNet, FNO, and U-Net based ap-
proaches on fluid mechanic problems, paving a basis towards strong baselines for the development of neural
PDE surrogates. For U-Nets, we transferred recent architectural improvements from computer vision, most
notably from object segmentation and generative modeling. We found that the original U-Net architecture
of Ronneberger et al. (2015) already functions as a powerful neural PDE surrogate, and e.g. outperforms
FNOs on the presented tasks, which challenges prevailing claims in the literature, e.g. Li et al. (2020a).
Combined with recent architectural improvements, we achieved significant performance improvements of
U-Net based architectures. Secondly, we reported the first side by side comparison of neural PDE surrogates
on vorticity-stream vs. velocity function formulation of fluid dynamics problems. Overall, velocity function
formulations seem to be more challenging to model. Next, we used our insights on design considerations, and
introduced U-FNets, i.e., modern U-Nets that are augmented with FNO downsampling layers. Those archi-
tectures further improve performance without major degradation of computational cost. As such, U-FNets
are an appealing and well-motivated alternative in the vast design space of neural PDE surrogates containing
the best of both worlds. Finally, we tested parameter conditioning techniques to train generalizable neural
PDE surrogates. In doing so, we were able to show promising U-Net and FNO based architectures which
generalize to different PDE parameters as well as different time-scales within a single surrogate model. How-
ever, similar to the findings of Lu et al. (2022) FNO layers seem to have negative effects when generalizing
to different time-scales and PDE parameters. Finally, we hope that our codebase can be a starting point for
further investigations on neural PDE surrogates.

10

Published in Transactions on Machine Learning Research (07/2023)

Limitations & Future Work. This work focuses on the “image-to-image” modeling aspect of PDE sur-
rogate modeling, more precisely on the understanding of complex multi-scale spatio-temporal phenomena.
That said, in this work we did not elaborate on important aspects of neural PDE surrogates such as stability
over long rollouts, preservation of invariants, or generalization over sampling regularities, over domain topolo-
gies and geometries, and over boundary conditions. We see many of these aspects as future work. Moreover,
in this work we focused on modeling Navier-Stokes equations directly, rather then in the Reynolds-averaged
Navier–Stokes (RANS) form (Tennekes et al., 1972), which is very common when describing turbulent flows.
Finally, this work focuses on comprehensive comparison on various convolution based methods, whereas
future work could extend towards Vision Transformers (Dosovitskiy et al., 2020), comparing their abilities
to model and generalize across spatio-temporal information, especially with respect to data availability.

Acknowledgements

We thank Alok Singh, Ratnesh Madaan, and Shuhang Chen for their comments on early versions of this
paper. We are also thankful to Zongyi Li for suggesting extra settings for better comparisons of our FNO
baselines.

References
David J Acheson. Elementary fluid dynamics, 1991.

Troy Arcomano, Istvan Szunyogh, Jaideep Pathak, Alexander Wikner, Brian R Hunt, and Edward Ott.
A machine learning-based global atmospheric forecast model. Geophysical Research Letters, 47(9):
e2020GL087776, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Bassam Bamieh. Discovering transforms: A tutorial on circulant matrices, circular convolution, and the
discrete fourier transform. arXiv preprint arXiv:1805.05533, 2018.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven discretizations
for partial differential equations. Proceedings of the National Academy of Sciences, 116(31):15344–15349,
2019.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Prediction of
aerodynamic flow fields using convolutional neural networks. Computational Mechanics, 64(2):525–545,
2019.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather: A 3d
high-resolution model for fast and accurate global weather forecast. arXiv preprint arXiv:2211.02556,
2022.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K. Gupta. Clifford neural layers for
PDE modeling. arXiv preprint arXiv:2209.04934, 2022a.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation for
neural pde solvers. arXiv preprint arXiv:2202.07643, 2022b.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv preprint
arXiv:2202.03376, 2022c.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Gengxiang Chen, Yingguang Li, Qinglu Meng, Jing Zhou, Xiaozhong Hao, et al. Residual fourier neural
operator for thermochemical curing of composites. arXiv preprint arXiv:2111.10262, 2021.

11

Published in Transactions on Machine Learning Research (07/2023)

Li-Wei Chen and Nils Thuerey. Towards high-accuracy deep learning inference of compressible turbulent
flows over aerofoils. arXiv preprint arXiv:2109.02183, 2021.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on Neural
Networks, 6(4):911–917, 1995.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series.
Mathematics of computation, 19(90):297–301, 1965.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-attention
and convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convo-
lutional networks. In IEEE International Conference on Computer Vision (ICCV), pp. 764–773, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Thomas Frerix, Dmitrii Kochkov, Jamie Smith, Daniel Cremers, Michael Brenner, and Stephan Hoyer.
Variational data assimilation with a learned inverse observation operator. In International Conference on
Machine Learning, pp. 3449–3458. PMLR, 2021.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for a mechanism
of visual pattern recognition. In Competition and cooperation in neural nets, pp. 267–285. Springer, 1982.

Victor Garcia Satorras, Zeynep Akata, and Max Welling. Combining generative and discriminative models
for hybrid inference. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems 32, pp. 13802–13812. Curran Associates, Inc.,
2019.

Thomas B Gatski. Review of incompressible fluid flow computations using the vorticity-velocity formulation.
Applied Numerical Mathematics, 7(3):227–239, 1991.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-constrained
deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize multigrid
PDE solvers. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA, pp. 2415–2423, 2019.

Steven Guan, Ko-Tsung Hsu, and Parag V Chitnis. Fourier neural operator networks: A fast and general
solver for the photoacoustic wave equation. arXiv preprint arXiv:2108.09374, 2021.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro. Adap-
tive fourier neural operators: Efficient token mixers for transformers. arXiv preprint arXiv:2111.13587,
2021.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow approximation. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
pp. 481–490, 2016.

Etienne Guyon, Jean-Pierre Hulin, Luc Petit, Catalin D Mitescu, et al. Physical hydrodynamics. Oxford
university press, 2001.

12

Published in Transactions on Machine Learning Research (07/2023)

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European Conference on Computer Vision (ECCV), pp. 630–645. Springer, 2016b.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415,
2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving framework
for deep learning via physical simulations. In NeurIPS Workshop, volume 2, 2020.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning neural
PDE solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained control
problems using operator learning. In AAAI Conference on Artificial Intelligence, volume 36, pp. 4504–
4512, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), pp. 448–456. PMLR,
2015.

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes flow nets): Physics-
informed neural networks for the incompressible navier-stokes equations. Journal of Computational
Physics, 426:109951, 2021.

Ian T Jolliffe and David B Stephenson. Forecast verification: a practitioner’s guide in atmospheric science.
John Wiley & Sons, 2012.

Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Milan Klöwer, Tom Kimpson, Alistair White, and Mosè Giordano. milankl/SpeedyWeather.jl: v0.2.1, July
2022. URL https://doi.org/10.5281/zenodo.6788067.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer. Machine
learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118
(21):e2101784118, 2021.

Pijush K Kundu, Ira M Cohen, and David R Dowling. Fluid mechanics. Academic press, 2015.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexander
Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, et al. Graphcast: Learning skillful
medium-range global weather forecasting. arXiv preprint arXiv:2212.12794, 2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

13

https://doi.org/10.5281/zenodo.6788067

Published in Transactions on Machine Learning Research (07/2023)

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’ operator
learning. arXiv preprint arXiv:2205.13671, 2022a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. arXiv
preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stu-
art, and Anima Anandkumar. Markov neural operators for learning chaotic systems. arXiv preprint
arXiv:2106.06898, 2021a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Azizzade-
nesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differential equa-
tions. arXiv preprint arXiv:2111.03794, 2021b.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with
learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209, 2022b.

Marten Lienen and Stephan Günnemann. Learning the dynamics of physical systems from sparse observations
with finite element networks. arXiv preprint arXiv:2203.08852, 2022.

Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, Andrew M Stuart,
and Kaushik Bhattacharya. A learning-based multiscale method and its application to inelastic impact
problems. Journal of the Mechanics and Physics of Solids, 158:104668, 2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations (ICLR), 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Winfried Lötzsch, Simon Ohler, and Johannes S Otterbach. Learning the solution operator of boundary
value problems using graph neural networks. arXiv preprint arXiv:2206.14092, 2022.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for identi-
fying differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature Machine
Intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em
Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022.

Hao Ma, Yuxuan Zhang, Nils Thuerey, Xiangyu Hu, and Oskar J Haidn. Physics-driven learning of the steady
navier-stokes equations using deep convolutional neural networks. arXiv preprint arXiv:2106.09301, 2021.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany Lusch,
Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi. Efficient high-dimensional variational data assim-
ilation with machine-learned reduced-order models. Geoscientific Model Development, 15(8):3433–3445,
2022.

14

https://openreview.net/forum?id=Bkg6RiCqY7

Published in Transactions on Machine Learning Research (07/2023)

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Johannes Brand-
stetter. Boundary graph neural networks for 3d simulations. arXiv preprint arXiv:2106.11299, 2021.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

Bruce Roy Munson, Theodore Hisao Okiishi, Wade W Huebsch, and Alric P Rothmayer. Fluid mechanics.
Wiley Singapore, 2013.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. ClimaX: A
foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

P.J. Olver. Symmetry groups of differential equations. In Applications of Lie Groups to Differential Equations,
pp. 77–185. Springer, 1986.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza
Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram Hassanzadeh, Karthik
Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-driven high-resolution weather
model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214, 2022.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters–improve semantic
segmentation by global convolutional network. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4353–4361, 2017.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual reasoning
with a general conditioning layer. In AAAI Conference on Artificial Intelligence, volume 32, 2018.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-based
simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Silvia L Pintea, Nergis Tömen, Stanley F Goes, Marco Loog, and Jan C van Gemert. Resolution learning
in deep convolutional networks using scale-space theory. IEEE Transactions on Image Processing, 30:
8342–8353, 2021.

Timothy Praditia, Matthias Karlbauer, Sebastian Otte, Sergey Oladyshkin, Martin V Butz, and Wolf-
gang Nowak. Finite volume neural network: Modeling subsurface contaminant transport. arXiv preprint
arXiv:2104.06010, 2021.

Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar Azizzadenesheli.
Generative adversarial neural operators. arXiv preprint arXiv:2205.03017, 2022a.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural operators.
arXiv preprint arXiv:2204.11127, 2022b.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and
Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pp.
8821–8831. PMLR, 2021.

15

Published in Transactions on Machine Learning Research (07/2023)

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for image
classification. Advances in Neural Information Processing Systems, 34, 2021.

Stephan Rasp and Nils Thuerey. Data-driven medium-range weather prediction with a resnet pretrained on
climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems, 13
(2):e2020MS002405, 2021.

David W Romero, Robert-Jan Bruintjes, Jakub M Tomczak, Erik J Bekkers, Mark Hoogendoorn, and Jan C
van Gemert. FlexConv: Continuous kernel convolutions with differentiable kernel sizes. arXiv preprint
arXiv:2110.08059, 2021a.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn. CKConv:
Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611, 2021b.

David W Romero, David M Knigge, Albert Gu, Erik J Bekkers, Efstratios Gavves, Jakub M Tomczak, and
Mark Hoogendoorn. Towards a general purpose CNN for long range dependencies in ND. arXiv preprint
arXiv:2206.03398, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical image computing and computer-assisted interven-
tion, pp. 234–241. Springer, 2015.

David Ruhe, Jayesh K Gupta, Steven De Keninck, Max Welling, and Johannes Brandstetter. Geometric
clifford algebra networks. arXiv preprint arXiv:2302.06594, 2023.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W. Battaglia.
Learning to simulate complex physics with graph networks. arXiv preprint arXiv:2002.09405, 2020.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller. SchNet–a
deep learning architecture for molecules and materials. The Journal of Chemical Physics, 148(24):241722,
2018.

Wenlei Shi, Xinquan Huang, Xiaotian Gao, Xinran Wei, Jia Zhang, Jiang Bian, Mao Yang, and Tie-Yan
Liu. Lordnet: Learning to solve parametric partial differential equations without simulated data. arXiv
preprint arXiv:2206.09418, 2022.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neural networks
on graphs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3693–3702,
2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differ-
ential equations. Journal of computational physics, 375:1339–1364, 2018.

Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim Salimans,
Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. Metnet: A neural weather model for precipitation
forecasting. arXiv preprint arXiv:2003.12140, 2020.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff, Jonathan
Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned coarse models for
efficient turbulence simulation. arXiv preprint arXiv:2112.15275, 2021.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

16

Published in Transactions on Machine Learning Research (07/2023)

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk Pflüger,
and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine Learning. In Neural
Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks, 2022. URL https://
doi.org/10.18419/darus-2986.

Roger Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American Mathematical
Soc., 2001.

Hendrik Tennekes, John Leask Lumley, Jonh L Lumley, et al. A first course in turbulence. MIT press, 1972.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop: Learn-
ing from differentiable physics to interact with iterative pde-solvers. Advances in Neural Information
Processing Systems, 33:6111–6122, 2020.

Charles Van Loan. Computational frameworks for the fast Fourier transform. SIAM, 1992.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing Systems, 30,
2017.

Cornelis Boudewijn Vreugdenhil. Numerical methods for shallow-water flow, volume 13. Springer Science &
Business Media, 1994.

Nils Wandel, Michael Weinmann, and Reinhard Klein. Learning incompressible fluid dynamics from scratch–
towards fast, differentiable fluid models that generalize. arXiv preprint arXiv:2006.08762, 2020.

Nils Wandel, Michael Weinmann, Michael Neidlin, and Reinhard Klein. Spline-PINN: Approaching PDEs
without data using fast, physics-informed hermite-spline CNNs. In AAAI Conference on Artificial Intel-
ligence, volume 36, pp. 8529–8538, 2022.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-informed
deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1457–1466, 2020a.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for improved
generalization. arXiv preprint arXiv:2002.03061, 2020b.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep parametric con-
tinuous convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2589–2597, 2018.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-fno—an
enhanced fourier neural operator-based deep-learning model for multiphase flow. Advances in Water
Resources, 163:104180, 2022.

Jonathan A Weyn, Dale R Durran, and Rich Caruana. Improving data-driven global weather prediction
using deep convolutional neural networks on a cubed sphere. Journal of Advances in Modeling Earth
Systems, 12(9):e2020MS002109, 2020.

Jonathan A Weyn, Dale R Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal forecasting
with a large ensemble of deep-learning weather prediction models. Journal of Advances in Modeling Earth
Systems, 13(7):e2021MS002502, 2021.

Daniel Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. Advances in Neural Information
Processing Systems, 32, 2019.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equations via
latent global evolution. arXiv preprint arXiv:2206.07681, 2022.

17

https://doi.org/10.18419/darus-2986
https://doi.org/10.18419/darus-2986

Published in Transactions on Machine Learning Research (07/2023)

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep convolutional networks on 3d point clouds. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9621–9630, 2019.

Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision (ECCV),
pp. 3–19, 2018.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli, and Robert W
Clayton. Seismic wave propagation and inversion with neural operators. The Seismic Record, 1(3):126–134,
2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision Conference
2016. British Machine Vision Association, 2016.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification. Journal of Computational Physics, 366:415–447, 2018.

Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bot-
tero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, et al. NeuralPDE: Automating physics-
informed neural networks (PINNs) with error approximations. arXiv preprint arXiv:2107.09443, 2021.

18

Published in Transactions on Machine Learning Research (07/2023)

Contents

1 Introduction 1

2 Preliminaries 2

3 PDE Surrogates 5

3.1 Operator learning . 6

4 Experiments 7

5 Conclusion 10

A Related work 20

B Experiments 20

B.1 Experimental details . 20

B.2 Additional model details . 21

B.2.1 ResNet . 21

B.2.2 Dilated ResNet . 21

B.2.3 FNO . 21

B.2.4 U-Net . 21

B.2.5 Parameter Conditioning . 22

B.2.6 Spatial-spectral parameter conditioning for Fourier layers 22

B.3 Shallow water equations. 23

B.4 Navier-Stokes equations. 34

B.5 Parameter conditioning. 40

19

Published in Transactions on Machine Learning Research (07/2023)

A Related work

Neural PDE modeling is appearing in many flavors. Various works are numerical-neural hybrid approaches
where the computation graph of the solver is preserved and heuristically-chosen parameters are left for the
neural network to predict (Bar-Sinai et al., 2019; Kochkov et al., 2021; Greenfeld et al., 2019; Hsieh et al.,
2019; Praditia et al., 2021; Um et al., 2020; Garcia Satorras et al., 2019). The works of Sanchez-Gonzalez
et al. (2020); Pfaff et al. (2020); Mayr et al. (2021) are of similar flavor where neural network predictions are
input to the time-update of node positions in graphs and meshes. Fully neural network based approaches
can be roughly split into two parts. First, methods that focus on the approximation of the solution function
of the underlying PDE (Sirignano & Spiliopoulos, 2018; Han et al., 2018; Raissi et al., 2019; Jin et al., 2021;
Raissi et al., 2020; Zubov et al., 2021). And second, methods that focus on the surrogate learning of solution
operators. CNN-base models were among the first PDE surrogates (Guo et al., 2016; Bhatnagar et al., 2019;
Zhu & Zabaras, 2018). Operator learning models were popularized via Fourier Neural Operators (Li et al.,
2020a) and FNO-based applications and refinements (Li et al., 2021b; Rahman et al., 2022b; Rao et al., 2021;
Guibas et al., 2021; Li et al., 2021a; Rahman et al., 2022a; Pathak et al., 2022; Wen et al., 2022; Liu et al.,
2022; Yang et al., 2021; Guan et al., 2021; Hwang et al., 2022; Chen et al., 2021; Li et al., 2022b), as well as via
DeepONets (Lu et al., 2019; 2021; 2022). Other directions include the modeling of PDE solution operators
via latent space models, transformers, and graph neural networks (GNNs) (Wu et al., 2022; Li et al., 2022a;
Brandstetter et al., 2022c; Lötzsch et al., 2022; Lienen & Günnemann, 2022). The ever persisting chicken-egg
problem (Brandstetter et al., 2022b; Shi et al., 2022) of how to obtain high quality ground truth training
data for neural PDE surrogates is approached either via clever data augmentation (Brandstetter et al.,
2022b), via equivariant neural solvers (Wang et al., 2020b), or via “data-free” learning paradigms (Geneva
& Zabaras, 2020; Wandel et al., 2020; 2022; Shi et al., 2022). Pratical applications of neural PDE surrogates
can especially be found in weather forecasting (Pathak et al., 2022; Guibas et al., 2021; Keisler, 2022; Rasp
& Thuerey, 2021; Weyn et al., 2020; 2021; Arcomano et al., 2020; Sønderby et al., 2020; Frerix et al., 2021;
Maulik et al., 2022; Lam et al., 2022; Bi et al., 2022; Nguyen et al., 2023), and modeling of fluid dynamics (Ma
et al., 2021; Stachenfeld et al., 2021; Wang et al., 2020a; Brandstetter et al., 2022a; Ruhe et al., 2023).

B Experiments

This appendix supports Section 4 of the main paper.

B.1 Experimental details

Loss functions and metrics. We report the summed MSE (SMSE) loss defined as:

LSMSE = 1
Ny

∑
y∈Z2

Nt∑
j=1

Nfields∑
i=1

∥ui(y, tj) − ûi(y, tj)∥2
2 , (8)

where u is the target, û the model output, Nfields comprises scalar fields as well as individual vector field
components, and Ny is the total number of spatial points. Equation 8 is used for training with Nt = 1, and
further allows us to define our two main metrics:

• One-step loss where Nt = 1 and Nfields comprises all scalar and vector components.

• Rollout loss where Nt = 5 and Nfields comprises all scalar and vector components.

Alternatively, we train with the summed relative MSE (RMSE) loss as introduced in Li et al. (2020a):

LSMSE = 1
Ny

∑
y∈Z2

Nt∑
j=1

Nfields∑
i=1

∥ui(y, tj) − ûi(y, tj)∥2
2

∥ûi(y, tj)∥2
2

. (9)

20

Published in Transactions on Machine Learning Research (07/2023)

Training and model selection. We optimized models using the AdamW optimizer (Kingma & Ba, 2014;
Loshchilov & Hutter, 2019) with the best learning rates of [10−4, 2 · 10−4] and weight decay of 10−5 for
50 epochs and minimized the summed mean squared error (SMSE) which is outlined in Equation 8. We
used cosine annealing as learning rate scheduler (Loshchilov & Hutter, 2016) with a linear warmup. For
baseline ResNet models, we optimized number of layers, number of channels, and normalization procedures.
For the reported results we used group normalization (Wu & He, 2018) with 1 group which is equivalent
to Layer norm (Ba et al., 2016) (except for final normalization layer in U-Nets where we use 8 groups).
We further tested different activation functions. For baseline FNO models, we optimized number of layers,
number of channels, and number of Fourier modes. Larger numbers of layers or channels did not improve
the performances for both ResNet and FNO models. For U-Net like architectures, especially for U-Netatt,
we specifically needed to optimize the maximum learning rate to be lower (10−4). We further optimized for
different number of hidden layers, and initialization and normalization schemes. For the reported results, we
used pre-activations (He et al., 2016b) and layer normalization (Ba et al., 2016). We used an effective batch
size of 32 for training.

Computational resources. All experiments used 4×16 GB NVIDIA V100 machines for training. Average
training times varied between 2 h and 140 h, depending on task and number of trajectories. Parameter
conditioning runs were the most expensive ones.

Runtime comparison. We warmup the benchmark for 10 iterations and report average runtimes over
100 runs on a single 16 GB NVIDIA V100 machine with input batch size of 8.

B.2 Additional model details

B.2.1 ResNet

We use two embedding and two output layers with kernel sizes of 1 × 1.

B.2.2 Dilated ResNet

The implemented Dilated ResNet models consist of 4 residual blocks where each block individually consists
of 7 dilated CNN layers with dilation rates of [1, 2, 4, 8, 4, 2, 1]. We implement Dilated ResNets with and
without group normalization layers applied to each layer in the respective dilation blocks.

B.2.3 FNO

We use FNOs consisting of {4, 8} FNO layers, where {8, 16, 32} modes are multiplied in the Fourier space,
and {64, 128} channels are used. We use two embedding and two output layers with kernel sizes of 1 × 1
as suggested in Li et al. (2020a). The number of non-zero Fourier modes, the number of FNO layers and
the number of channels are hyperparameter, where we report results for different values in each of the
experiment. We use GeLU activation functions, and no normalization scheme. Normalization schemes and
residual connections did not improve performance, as already reported in Brandstetter et al. (2022a).

B.2.4 U-Net

We use one embedding and one output layers with kernel sizes of 3 × 3. To allow a fair comparison to FNO
(and ResNet) architectures, we ablated architectures also for kernel sizes of 1 × 1 for embedding and output
layers.

U-Net2015. We use channel multipliers of (2, 2, 2, 2). The network consists overall of 4 downsampling, one
bottleneck and 4 upsampling layers. We further use batch normalization (Ioffe & Szegedy, 2015), and no bias
weights. The implementation is based on the PDEbench repository of Takamoto et al. (2022). Compared to
the implementation of Takamoto et al. (2022), we use GeLU activations instead of tanh activations since we
observe significant better performances. For the sake of completeness, we also report tanh results terming
the models U-Net2015-tanh.

21

Published in Transactions on Machine Learning Research (07/2023)

U-Netbase. We use channel multipliers of (2, 2, 2, 2). We replaced batch normalization (Ioffe & Szegedy,
2015) with group normalization (Wu & He, 2018) with number of groups equal 1 to be consistent with other
architectures. Additionally, compared to the U-Net2015 version, we use bias weights but no bottleneck layer.

U-Netmod. We use channel multipliers of (1, 2, 2, 4), and residual connections in each down- and upsam-
pling block. We use pre-normalization and pre-activations (He et al., 2016b). Additionally, we zero-initialize
the second Conv layer in each residual block.

U-Netmod,attn. Adding attention to all down- and upsampling blocks made training unstable, and would
have required an extensive hyperparameter search. We therefore only use attention in the middle blocks
after downsampling. We further only use a single attention head along with a residual connection bypassing
attention.

B.2.5 Parameter Conditioning

Embedding. We use sinusoidal embedding as proposed in Vaswani et al. (2017) for positional encoding of
scalar values, such as prediction time window and force strength:

Emb(x, d) =
[
cos x

100002x/di
, sin x

100002x/di

]
for 0 ≤ di < d , (10)

where x is the embedded quantity and d is the output embedding dimension.

Projection. We use a two-layer feed-forward network to project each of the embeddings to higher dimension
(4× hidden channels), and add them together before passing them to each block via another linear layer.

Conditioning. We explore two different mechanisms for conditioning, originally proposed in the image
modeling literature. Simple “Addition” as proposed by Ho et al. (2020) which can easily be extended to
FNO layers and “AdaGN” as proposed by Nichol & Dhariwal (2021) which requires normalization layers to
be applicable and was therefore restricted to U-Net based architectures in our experiments.

• Addition: A single Linear layer is used to scale the dimensions appropriately to match the dimen-
sions of the conditioned block. Conditions are added to the first Conv layer’s output, followed by
normalization and a second Conv layer. This conditioning is applied to all blocks in the network.

• AdaGN. Instead of directly adding the Linear projection of the embedding to the respective blocks,
the projection y is split into [ys, yb] to scale and shift the normalized output h before passing to the
second Conv layer in each block, similar to as is done in FiLM (Perez et al., 2018):

h′ = ys ⊙ GroupNorm(h) + yb , (11)

where ⊙ denotes the pointwise product. The conditioning is applied to all blocks. Since FNO
architectures were implemented without group norm, AdaGN was not applicable to those.

In Appendix B.5, we ablate “Addition” and “AdaGN” embeddings for U-Net architectures.

B.2.6 Spatial-spectral parameter conditioning for Fourier layers

Since FNO like architectures are usually implemented without normalization schemes, only “Addition” is
applicable as conditioning strategy. Adding the conditioning at the end of each FNO layer, i.e. in the
spatial domain, omits that the conditioning information is accessible in the Fourier domain too. This was
somewhat unsatisfying, so we explored a straightforward mechanism to apply conditioning to the Fourier
branch as well. We implement an alternative FreqLinear layer to project the embeddings into Fourier space
too. Each Fourier mode is first multiplied with the embedding, then weights are mode-wise multiplied and
the inverse Fourier transform is performed. Adding conditioning both in the Fourier and the spatial domain
seems to work best. We term this alternative embedding “Spatial-Spectral” embedding. In Appendix B.5,
we ablate “Addition” and “Spatial-Spectral” embeddings for FNO like architectures including UFNets with
FNO blocks in the downsampling path.

22

Published in Transactions on Machine Learning Research (07/2023)

B.3 Shallow water equations.

The shallow water equations are solved on a regular grid with periodic boundary conditions as described
in Section 4 of the main paper. The inputs to the shallow water experiments are respective fields at the
previous 2 timesteps. Pressure and vorticity fields are normalized for training. Example rollout trajectories
are displayed in Figure 8 for the velocity function formulation and in Figure 9 for the vorticity stream function
formulation. We outline further details on the results on the shallow water experiments in Figures 10,11,
and Tables 2,3. Additionally, we show results for 1-day predictions in Figure 12 and Table 7. We further
ablate different encoding/decoding choices for U-Net like architectures in Figures 13,14. Finally, we compare
different the specs of different FNO, UNO, and U-FNet architectures in Table 4.

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−2

0

2

0.05

0.10

(a) Scalar pressure field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−10

0

10

0.1

0.2

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0

10

0.1

0.2

0.3

(c) Vector field y-component

Figure 8: Shallow water 2-day predictions, velocity function form. Example rollouts of the scalar pressure
and the vector wind field of the shallow water experiments are shown, obtained by a U-F1Netmodes16 PDE
surrogate model (top), and compared to the ground truth (bottom). Predictions are obtained for a time
window ∆t = 48 h. The respective model input fields comprise two timesteps, we only show the first of those
(left-most ground truth column).

23

Published in Transactions on Machine Learning Research (07/2023)

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−2

0

2

0.025

0.050

0.075

(a) Scalar pressure field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−2.5

0.0

2.5

0.1

0.2

(b) Scalar vorticity field

Figure 9: Shallow water 2-day predictions, vorticity stream function form. Example rollouts of the scalar
pressure and the scalar vorticity field of the shallow water experiments are shown, obtained by a U-
F2Netmodes16,16 PDE surrogate model (top), and compared to the ground truth (bottom). Predictions
are obtained for a time window ∆t = 48 h. The respective model input fields comprise two timesteps, we
only show the first of those (left-most ground truth column).

24

Published in Transactions on Machine Learning Research (07/2023)

448 5600
10−3

10−2

10−1

100

101

M
SE

Shallow water velocity, rollout

ResNet128 ResNet256 DilResNet128 DilResNet128-norm FNO128-8modes8

FNO128-8modes16 FNO128-4modes16 FNO64-4modes32 FNO96-4modes32 FNO128-4modes32

UNO64 UNO128 U-Net201564 U-Net2015128 U-Netbase64
U-Netbase128 U-Netmod64 U-Netatt64 U-F1Netmodes8 U-F1Netmodes16

U-F2Netmodes8,4 U-F2Netmodes16,8 U-F2Netmodes8,8 U-F2Netmodes16,16 U-F1Netatt,modes16,8

448 5600

10−3

10−2

10−1

100

Shallow water velocity, one-step

Num. Train Trajectories

Figure 10: Shallow water 2-day predictions. Rollout and one-step errors of various architectures on the
shallow water equations are reported. Results are obtained for predictions of 2-day time windows for the
velocity function formulation and are averaged over three different random seeds. Note the logarithmic scale
of the y-axes.

25

Published in Transactions on Machine Learning Research (07/2023)

448 5600
10−3

10−2

10−1

100

M
SE

Shallow water vorticity, rollout

ResNet128 ResNet256 DilResNet128 DilResNet128-norm FNO128-8modes8

FNO128-8modes16 FNO128-4modes16 FNO64-4modes32 FNO96-4modes32 FNO128-4modes32

UNO64 UNO128 U-Net201564 U-Net2015128 U-Netbase64
U-Netbase128 U-Netmod64 U-Netatt64 U-F1Netmodes8 U-F1Netmodes16

U-F2Netmodes8,4 U-F2Netmodes16,8 U-F2Netmodes8,8 U-F2Netmodes16,16 U-F1Netatt,modes16,8

448 5600
10−4

10−3

10−2

10−1

100

Shallow water vorticity, one-step

Num. Train Trajectories

Figure 11: Shallow water 2-day predictions. Rollout and one-step errors of various architectures on the
shallow water equations. Results are obtained for predictions of 2-day time windows for the vorticity stream
function formulation and are averaged over three different random seeds. Note the logarithmic scale of the
y-axes.

256 2800
10−3

10−2

10−1

100

M
SE

Shallow water velocity, rollout

ResNet128
ResNet256
DilResNet128
DilResNet128-norm
FNO128-8modes16

UNO64
UNO128
U-Netbase64
U-Netbase128
U-Netmod64
U-Netatt64
U-F1Netmodes16

U-F2Netmodes16,8

U-F2Netmodes8,8

U-F2Netmodes16,16

U-F1Netatt,modes16,8

256 2800
10−4

10−3

10−2

10−1

100

Shallow water velocity, one-step

Num. Train Trajectories

Figure 12: Shallow water 1-day predictions. Rollout and one-step errors of various architectures on the
shallow water equations are reported. Results are obtained for predictions of 1-day time windows for the
velocity function formulation and are averaged over three different random seeds. Note the logarithmic scale
of the y-axes.

26

Published in Transactions on Machine Learning Research (07/2023)

448 5600
10−3

10−2

10−1

100

M
SE

Shallow water vorticity, rollout

U-Netmod64-3x3
U-Netmod64-1x1
U-Netatt64-3x3
U-Netatt64-1x1
U-F1Netmodes8-3x3
U-F1Netmodes8-1x1
U-F1Netmodes16-3x3
U-F1Netmodes16-1x1
U-F2Netmodes8,4-3x3
U-F2Netmodes8,4-1x1
U-F2Netmodes16,8-3x3
U-F2Netmodes16,8-1x1

448 5600
10−4

10−3

10−2

10−1

Shallow water vorticity, one-step

Num. Train Trajectories

Figure 13: Shallow water 2-day predictions. Ablation results of different encoding and decoding choices
for various U-Net architectures are reported. 1 × 1 and 3 × 3 kernels are compared for both encoding and
decoding. Rollout and one-step errors are obtained on the shallow water equations for 2-day predictions for
the vorticity stream function formulation and are averaged over three different random seeds.

448 5600
10−3

10−2

10−1

100

M
SE

Shallow water velocity, rollout

U-Netmod64-3x3
U-Netmod64-1x1
U-Netatt64-3x3
U-Netatt64-1x1
U-F1Netmodes8-3x3
U-F1Netmodes8-1x1
U-F1Netmodes16-3x3
U-F1Netmodes8-1x1
U-F2Netmodes8,4-3x3
U-F2Netmodes8,4-1x1
U-F2Netmodes16,8-3x3
U-F2Netmodes16,8-1x1

448 5600

10−3

10−2

10−1

Shallow water velocity, one-step

Num. Train Trajectories

Figure 14: Shallow water 2-day predictions. Ablation results of different encoding and decoding choices
for various U-Net architectures are reported. 1 × 1 and 3 × 3 kernels are compared for both encoding and
decoding. Rollout and one-step errors are obtained on the shallow water equations for 2-day predictions for
the velocity function formulation and are averaged over three different random seeds.

27

Published in Transactions on Machine Learning Research (07/2023)

Table 2: Shallow water 2-day predictions, velocity function formulation. Rollout and one-step errors of
various architectures on the shallow water equations are reported. Summed mean-squared errors (SMSE)
are obtained for 2-day predictions for the velocity function formulation and are averaged over three different
random seeds. If results are displayed without standard deviation, the obtained standard deviation is lower
than the four digit precision minimum. The best model of each model class is highlighted.

Method Trajs.
SMSE

onestep rollout
ResNet128 448 0.7787 ± 0.0049 5.7408 ± 0.0223
ResNet128 5600 0.5465 ± 0.0130 5.4946 ± 0.2009
ResNet256 448 0.4751 ± 0.0005 4.0954 ± 0.0181
ResNet256 5600 0.5294 ± 0.0364 5.4155 ± 0.0657

DilResNet128 448 0.3800 ± 0.0042 2.4860 ± 0.0260
DilResNet128 5600 0.0429 ± 0.0014 0.5476 ± 0.0109

DilResNet128-norm 448 0.1723 ± 0.0026 1.3377 ± 0.0144
DilResNet128-norm 5600 0.0262 ± 0.0006 0.3770 ± 0.0081

FNO128-8modes8 448 1.0322 ± 0.0055 3.8635 ± 0.0090
FNO128-8modes8 5600 0.2023 ± 0.0023 0.8549 ± 0.0124

FNO128-8modes16 448 0.3681 ± 0.0042 1.7088 ± 0.0096
FNO128-8modes16 5600 0.0236 ± 0.0001 0.0878 ± 0.0007
FNO128-4modes16 448 0.3802 ± 0.0021 1.8542 ± 0.0056
FNO128-4modes16 5600 0.0397 ± 0.0002 0.1601 ± 0.0010
FNO64-4modes32 448 0.3750 ± 0.0012 2.0393 ± 0.0050
FNO64-4modes32 5600 0.0225 ± 0.0007 0.1015 ± 0.0044
FNO96-4modes32 448 0.2794 ± 0.0053 1.5788 ± 0.0253
FNO96-4modes32 5600 0.0102 ± 0.0002 0.0399 ± 0.0008

FNO128-4modes32 448 0.2492 ± 0.0040 1.4460 ± 0.0226
FNO128-4modes32 5600 0.0060 ± 0.0001 0.0213 ± 0.0003

UNO64 448 0.8134 ± 0.0048 3.6621 ± 0.0103
UNO64 5600 0.0319 ± 0.0003 0.1208 ± 0.0010

UNO128 448 0.6328 ± 0.0041 3.0240 ± 0.0064
UNO128 5600 0.0098 ± 0.0001 0.0282 ± 0.0002

U-Netbase64 448 0.1693 ± 0.0026 1.2224 ± 0.0108
U-Netbase64 5600 0.0128 ± 0.0016 0.1026 ± 0.0161

U-Netbase128 448 0.1076 ± 0.0008 0.9096 ± 0.0067
U-Netbase128 5600 0.0054 0.0439 ± 0.0001
U-Netmod64 448 0.1034 ± 0.0001 0.8847 ± 0.0109
U-Netmod64 5600 0.0034 ± 0.0001 0.0465 ± 0.0045

U-Netmod64-1x1 448 0.1013 ± 0.0028 0.8681 ± 0.0161
U-Netmod64-1x1 5600 0.0031 ± 0.0003 0.0389 ± 0.0057

U-Netatt64 448 0.0954 ± 0.0014 0.8158 ± 0.0318
U-Netatt64 5600 0.0060 ± 0.0005 0.0684 ± 0.0206

U-Netatt64-1x1 448 0.0819 ± 0.0060 0.6419 ± 0.1307
U-Netatt64-1x1 5600 0.0051 ± 0.0001 0.0724 ± 0.0037
U-F1Netmodes8 448 0.0797 ± 0.0010 0.4553 ± 0.0057
U-F1Netmodes8 5600 0.0017 ± 0.0002 0.0081 ± 0.0012

U-F1Netmodes16 448 0.0717 ± 0.0013 0.3988 ± 0.0115
U-F1Netmodes16 5600 0.0018 ± 0.0001 0.0060 ± 0.0002

U-F1Netmodes8-1x1 448 0.0743 ± 0.0032 0.4185 ± 0.0259
U-F1Netmodes8-1x1 5600 0.0039 ± 0.0018 0.0185 ± 0.0079

U-F1Netmodes16-1x1 448 0.0699 ± 0.0007 0.3923 ± 0.0001
U-F1Netmodes16-1x1 5600 0.0027 ± 0.0004 0.0089 ± 0.0017

U-F2Netmodes8,4 448 0.0843 ± 0.0004 0.4934 ± 0.0031
U-F2Netmodes8,4 5600 0.0027 ± 0.0012 0.0110 ± 0.0050

U-F2Netmodes16,8 448 0.0765 ± 0.0019 0.4508 ± 0.0116
U-F2Netmodes16,8 5600 0.0017 ± 0.0004 0.0052 ± 0.0013
U-F2Netmodes8,8 448 0.0793 ± 0.0001 0.4553 ± 0.0021
U-F2Netmodes8,8 5600 0.0013 0.0044 ± 0.0002

U-F2Netmodes16,16 448 0.0906 ± 0.0042 0.5596 ± 0.0317
U-F2Netmodes16,16 5600 0.0012 ± 0.0001 0.0037 ± 0.0002

U-F2Netmodes8,4-1x1 448 0.0793 ± 0.0016 0.4587 ± 0.0064
U-F2Netmodes8,4-1x1 5600 0.0015 ± 0.0001 0.0067 ± 0.0005

U-F2Netmodes16,8-1x1 448 0.0728 ± 0.0012 0.4238 ± 0.0049
U-F2Netmodes16,8-1x1 5600 0.0016 ± 0.0003 0.0054 ± 0.0009

U-F2Netatt,modes16,8 448 0.0769 ± 0.0052 0.4517 ± 0.0348
U-F2Netatt,modes16,8 5600 0.0024 ± 0.0010 0.0078 ± 0.0035

U-F3Netmodes8,4,2 448 0.0920 ± 0.0011 0.5318 ± 0.0083
U-F3Netmodes8,4,2 5600 0.0018 0.0062 ± 0.0001

U-F3Netmodes16,8,4 448 0.0812 0.4823 ± 0.0021
U-F3Netmodes16,8,4 5600 0.0016 0.0048

28

Published in Transactions on Machine Learning Research (07/2023)

Table 3: Shallow water 2-day predictions, vorticity stream function formulation. Rollout and one-step errors
of various architectures on the shallow water equations are reported. Summed mean-squared errors (SMSE)
are obtained for 2-day predictions for the vorticity stream function formulation and are averaged over three
different random seeds. If results are displayed without standard deviation, the obtained standard deviation
is lower than the five digit precision minimum. The best model of each model class is highlighted.

Method Trajs.
SMSE

onestep rollout
ResNet128 448 0.189 93 ± 0.002 32 1.809 30 ± 0.046 36
ResNet128 5600 0.221 82 ± 0.017 93 2.045 72 ± 0.050 28
ResNet256 448 0.132 08 ± 0.003 25 1.710 41 ± 0.001 42
ResNet256 5600 0.183 80 ± 0.021 08 1.906 15 ± 0.072 68

DilResNet128 448 0.077 97 ± 0.003 60 0.598 31 ± 0.026 61
DilResNet128 5600 0.010 47 ± 0.000 11 0.140 51 ± 0.003 20

DilResNet128-norm 448 0.041 05 ± 0.000 35 0.345 23 ± 0.003 03
DilResNet128-norm 5600 0.006 49 ± 0.000 09 0.095 71 ± 0.001 10

FNO128-8modes8 448 0.185 53 ± 0.002 78 0.892 44 ± 0.011 09
FNO128-8modes8 5600 0.039 17 ± 0.001 01 0.213 04 ± 0.002 81

FNO128-8modes16 448 0.100 54 ± 0.000 26 0.574 04 ± 0.002 40
FNO128-8modes16 5600 0.005 44 ± 0.000 01 0.029 81 ± 0.000 05
FNO128-4modes16 448 0.086 01 ± 0.000 28 0.511 27 ± 0.000 41
FNO128-4modes16 5600 0.008 36 ± 0.000 03 0.047 23 ± 0.000 05
FNO64-4modes32 448 0.089 23 ± 0.002 33 0.553 83 ± 0.011 40
FNO64-4modes32 5600 0.005 64 ± 0.000 02 0.037 44
FNO96-4modes32 448 0.082 08 ± 0.001 32 0.496 44 ± 0.008 51
FNO96-4modes32 5600 0.002 58 ± 0.000 03 0.015 73 ± 0.000 16

FNO128-4modes32 448 0.074 83 ± 0.000 49 0.455 85 ± 0.002 24
FNO128-4modes32 5600 0.001 47 0.008 47 ± 0.000 03

UNO64 448 0.214 37 1.068 14
UNO64 5600 0.007 51 ± 0.000 01 0.039 18 ± 0.000 02

UNO128 448 0.166 32 ± 0.001 40 0.848 57 ± 0.001 90
UNO128 5600 0.002 07 0.008 58

U-Netbase64 448 0.034 22 ± 0.000 14 0.284 32 ± 0.000 16
U-Netbase64 5600 0.002 03 ± 0.000 02 0.022 77 ± 0.000 47

U-Netbase128 448 0.025 05 ± 0.000 35 0.227 93 ± 0.002 97
U-Netbase128 5600 0.000 99 ± 0.000 04 0.014 25 ± 0.000 89
U-Netmod64 448 0.023 93 ± 0.000 20 0.217 13 ± 0.002 54
U-Netmod64 5600 0.000 62 ± 0.000 03 0.010 31 ± 0.000 70

U-Netmod64-1x1 448 0.023 83 ± 0.000 11 0.218 11 ± 0.000 45
U-Netmod64-1x1 5600 0.000 60 0.010 63 ± 0.000 06

U-Netatt64 448 0.022 69 ± 0.000 60 0.196 43 ± 0.005 66
U-Netatt64 5600 0.001 08 ± 0.000 55 0.019 94 ± 0.016 17

U-Netatt64-1x1 448 0.021 33 ± 0.000 83 0.177 91 ± 0.021 44
U-Netatt64-1x1 5600 0.000 52 0.003 61 ± 0.000 05
U-F1Netmodes8 448 0.018 27 ± 0.000 20 0.129 95 ± 0.002 97
U-F1Netmodes8 5600 0.000 41 0.002 91 ± 0.000 02

U-F1Netmodes16 448 0.018 82 ± 0.000 07 0.131 56 ± 0.000 74
U-F1Netmodes16 5600 0.000 63 ± 0.000 08 0.003 42 ± 0.000 41

U-F1Netmodes8-1x1 448 0.017 74 ± 0.000 04 0.127 51 ± 0.001 20
U-F1Netmodes8-1x1 5600 0.000 44 ± 0.000 02 0.003 36 ± 0.000 11

U-F1Netmodes16-1x1 448 0.018 82 ± 0.000 14 0.132 87 ± 0.001 27
U-F1Netmodes16-1x1 5600 0.000 51 ± 0.000 05 0.002 86 ± 0.000 24

U-F2Netmodes8,4 448 0.017 51 ± 0.000 19 0.122 03 ± 0.001 99
U-F2Netmodes8,4 5600 0.000 39 ± 0.000 02 0.002 52 ± 0.000 17

U-F2Netmodes8,4-1x1 448 0.016 56 ± 0.000 30 0.115 67 ± 0.003 36
U-F2Netmodes8,4-1x1 5600 0.000 37 ± 0.000 02 0.002 50 ± 0.000 11

U-F2Netmodes16,8 448 0.018 90 ± 0.000 42 0.133 86 ± 0.003 63
U-F2Netmodes16,8 5600 0.000 35 ± 0.000 01 0.001 89 ± 0.000 02

U-F2Netmodes16,8-1x1 448 0.017 05 ± 0.000 52 0.120 52 ± 0.004 04
U-F2Netmodes16,8-1x1 5600 0.000 33 0.001 83

U-F2Netmodes8,8 448 0.016 89 ± 0.000 43 0.117 81 ± 0.002 35
U-F2Netmodes8,8 5600 0.000 32 ± 0.000 01 0.001 83 ± 0.000 05

U-F2Netmodes16,16 448 0.035 66 ± 0.004 67 0.254 00 ± 0.028 69
U-F2Netmodes16,16 5600 0.000 32 0.001 67 ± 0.000 01

U-F2Netatt,modes16,8 448 0.017 31 ± 0.000 31 0.121 50 ± 0.001 19
U-F2Netatt,modes16,8 5600 0.000 66 0.003 52

U-F3Netmodes8,4,2 448 0.020 58 ± 0.000 13 0.147 38 ± 0.001 31
U-F3Netmodes8,4,2 5600 0.000 40 0.002 37 ± 0.000 01

U-F3Netmodes16,8,4 448 0.022 03 ± 0.000 26 0.158 55 ± 0.000 55
U-F3Netmodes16,8,4 5600 0.000 38 ± 0.000 01 0.002 08 ± 0.000 05

29

Published in Transactions on Machine Learning Research (07/2023)

Table 4: Comparison of parameter count, runtime, and memory requirement of various FNO, UNO, and U-
FNet architectures. Subscript numbers indicate the used number of Fourier modes. For U-FNet experiments
subscript numbers indicate the number of Fourier modes in the lowest, second-lowest, and third lowest block.

Method Channels Res.Layers/Blocks Params.
Runtime [s] Mem. [MB]

Fwd. Fwd.+bwd. f32 size Peak usage

FNO128-8modes8 128 8 33.7 M 0.057 0.162 134 2161
FNO128-8modes16 128 8 134 M 0.059 0.171 537 2953
FNO128-4modes16 128 4 67.2 M 0.031 0.089 268 1852
FNO64-4modes32 64 4 67.1 M 0.016 0.050 268 1204
FNO96-4modes32 96 4 151 M 0.026 0.080 604 2179
FNO128-4modes32 128 4 268 M 0.036 0.118 1100 3420
UNO64 64 7 110 M 0.070 0.134 440 1925
UNO128 128 7 440 M 0.160 0.341 1800 5513

U-F1Netmodes8 64 9 154 M 0.083 0.205 617 3936
U-F1Netmodes16 64 9 185 M 0.084 0.208 743 4037
U-F2Netmodes8,4 64 9 163 M 0.085 0.213 652 3961
U-F2Netmodes8,8 64 9 193 M 0.085 0.216 772 4046
U-F2Netmodes16,8 64 9 224 M 0.086 0.219 897 4149
U-F2Netmodes16,16 64 9 344 M 0.090 0.232 1400 4496
U-F3Netmodes8,4,2 64 9 198 M 0.086 0.221 658 4332
U-F3Netmodes16,8,4 64 9 259 M 0.088 0.226 1000 4808

30

Published in Transactions on Machine Learning Research (07/2023)

Table 5: Shallow water 2-day predictions, velocity function formulation. Rollout and one-step errors of
various architectures on the shallow water equations are reported. L2 training objective of Li et al. (2020a)
is used. Summed mean-squared errors (SMSE) are obtained for 2-day predictions for the vorticity stream
function formulation and are averaged over three different random seeds. If results are displayed without
standard deviation, the obtained standard deviation is lower than the five digit precision minimum. The
best model of each model class is highlighted.

Method Trajs.
SMSE

onestep rollout
DilResNet128 448 0.312 43 ± 0.004 90 2.115 97 ± 0.036 31
DilResNet128 5600 0.042 30 ± 0.000 75 0.542 99 ± 0.012 92

DilResNet128-norm 448 0.148 49 ± 0.002 38 1.197 04 ± 0.008 19
DilResNet128-norm 5600 0.026 07 ± 0.000 73 0.382 68 ± 0.007 60

FNO128-4modes16 448 0.339 75 ± 0.000 37 1.673 92 ± 0.003 99
FNO128-4modes16 5600 0.040 21 ± 0.000 49 0.163 17 ± 0.002 58
FNO64-4modes32 448 0.302 18 ± 0.002 98 1.678 19 ± 0.015 23
FNO64-4modes32 5600 0.023 08 ± 0.001 02 0.107 56 ± 0.006 50
FNO96-4modes32 448 0.234 39 ± 0.005 60 1.351 64 ± 0.025 51
FNO96-4modes32 5600 0.010 16 ± 0.000 31 0.040 49 ± 0.001 50

U-Netbase64 448 0.147 26 ± 0.002 30 1.115 39 ± 0.005 14
U-Netbase64 5600 0.009 88 ± 0.000 11 0.067 11 ± 0.001 57

U-Netbase128 448 0.095 07 ± 0.000 22 0.844 98 ± 0.002 95
U-Netbase128 5600 0.004 35 ± 0.000 08 0.032 08 ± 0.000 44
U-Net201564 448 0.169 45 ± 0.001 13 1.264 75 ± 0.003 96
U-Net201564 5600 0.012 79 ± 0.000 09 0.084 20 ± 0.001 29

U-Net2015128 448 0.114 96 ± 0.000 23 0.985 53 ± 0.001 19
U-Net2015128 5600 0.005 41 ± 0.000 06 0.039 10 ± 0.001 39

U-Net2015-tanh64 448 0.475 99 ± 0.002 45 2.760 14 ± 0.004 88
U-Net2015-tanh64 5600 0.029 97 ± 0.001 37 0.190 94 ± 0.006 18

U-Net2015-tanh128 448 0.333 82 ± 0.004 30 2.187 05 ± 0.025 79
U-Net2015-tanh128 5600 0.015 05 ± 0.000 32 0.097 31 ± 0.001 29

U-Netmod64 448 0.088 51 ± 0.001 42 0.808 42 ± 0.011 27
U-Netmod64 5600 0.002 25 ± 0.000 07 0.021 95 ± 0.001 11

U-F2Netmodes16,8 448 0.061 98 ± 0.000 23 0.371 33 ± 0.001 92
U-F2Netmodes16,8 5600 0.001 23 ± 0.000 02 0.003 76 ± 0.000 04

31

Published in Transactions on Machine Learning Research (07/2023)

Table 6: Shallow water 2-day predictions, vorticity stream function formulation. Rollout and one-step errors
of various architectures on the shallow water equations are reported. L2 training objective of Li et al. (2020a)
is used. Summed mean-squared errors (SMSE) are obtained for 2-day predictions for the vorticity stream
function formulation and are averaged over three different random seeds. If results are displayed without
standard deviation, the obtained standard deviation is lower than the five digit precision minimum. The
best model of each model class is highlighted.

Method Trajs.
SMSE

onestep rollout
DilResNet128 448 0.069 14 ± 0.004 30 0.541 08 ± 0.034 62
DilResNet128 5600 0.010 49 ± 0.000 19 0.141 19 ± 0.005 32

DilResNet128-norm 448 0.036 62 ± 0.000 21 0.314 18 ± 0.002 97
DilResNet128-norm 5600 0.006 59 ± 0.000 11 0.095 90 ± 0.000 95

FNO128-8modes8 448 0.178 17 ± 0.004 62 0.864 18 ± 0.019 15
FNO128-8modes8 5600 0.039 73 ± 0.000 99 0.213 97 ± 0.002 21

FNO128-8modes16 448 0.093 02 ± 0.003 25 0.543 09 ± 0.016 52
FNO128-8modes16 5600 0.005 10 ± 0.000 02 0.027 47 ± 0.000 04
FNO64-4modes32 448 0.080 56 ± 0.001 65 0.505 15 ± 0.008 60
FNO64-4modes32 5600 0.005 63 ± 0.000 01 0.037 19 ± 0.000 09
FNO96-4modes32 448 0.074 53 ± 0.001 33 0.458 38 ± 0.007 61
FNO96-4modes32 5600 0.002 48 ± 0.000 04 0.014 81 ± 0.000 23

FNO128-4modes32 448 0.067 41 ± 0.000 71 0.418 39 ± 0.003 05
FNO128-4modes32 5600 0.001 33 ± 0.000 01 0.007 42 ± 0.000 01

UNO64 448 0.192 35 ± 0.000 10 0.973 45 ± 0.001 86
UNO64 5600 0.007 29 ± 0.000 01 0.037 24 ± 0.000 10

U-Netbase64 448 0.030 15 ± 0.000 12 0.258 04 ± 0.001 29
U-Netbase64 5600 0.001 99 ± 0.000 02 0.021 40 ± 0.000 17

U-Netbase128 448 0.021 85 ± 0.000 20 0.206 57 ± 0.001 45
U-Netbase128 5600 0.000 84 ± 0.000 02 0.010 85 ± 0.000 49
U-Net201564 448 0.038 41 ± 0.000 52 0.307 50 ± 0.003 27
U-Net201564 5600 0.002 66 ± 0.000 02 0.027 44 ± 0.000 14

U-Net2015128 448 0.026 89 ± 0.000 08 0.239 41 ± 0.001 32
U-Net2015128 5600 0.001 11 ± 0.000 01 0.012 36 ± 0.000 01

U-Net2015-tanh64 448 0.086 29 ± 0.003 04 0.581 40 ± 0.010 45
U-Net2015-tanh64 5600 0.005 49 ± 0.000 02 0.049 60 ± 0.000 40

U-Net2015-tanh128 448 0.059 54 ± 0.000 36 0.449 91 ± 0.001 58
U-Net2015-tanh128 5600 0.002 65 0.025 40 ± 0.000 23

U-Netmod64 448 0.021 55 ± 0.000 44 0.201 22 ± 0.004 35
U-Netmod64 5600 0.000 61 ± 0.000 01 0.010 22 ± 0.000 04

U-F2Netmodes16,8 448 0.017 78 0.128 92 ± 0.000 23
U-F2Netmodes16,8 5600 0.000 36 ± 0.000 01 0.001 92 ± 0.000 02

32

Published in Transactions on Machine Learning Research (07/2023)

Table 7: Shallow water 1-day predictions, velocity function formulation. Rollout and one-step errors of
various architectures on the shallow water equations are reported. Summed mean-squared errors (SMSE)
are obtained for 1-day predictions for the velocity function formulation and are averaged over three different
random seeds. If results are displayed without standard deviation, the obtained standard deviation is lower
than the four digit precision minimum. The best model of each model class is highlighted.

Method Trajs.
SMSE

onestep rollout
ResNet128 256 0.3152 ± 0.0039 2.7775 ± 0.0122
ResNet128 2800 0.1329 ± 0.0010 1.7711 ± 0.0273
ResNet256 256 0.1827 ± 0.0018 1.8015 ± 0.0037
ResNet256 2800 0.1294 ± 0.0122 1.7957 ± 0.0947

DilResNet-128 256 0.1596 ± 0.0097 1.4477 ± 0.0754
DilResNet-128 2800 0.0161 ± 0.0005 0.1900 ± 0.0061

DilResNet-128-norm 256 0.0749 ± 0.0026 0.6621 ± 0.0301
DilResNet-128-norm 2800 0.0102 ± 0.0002 0.1369 ± 0.0009

FNO128-8modes16 256 0.1561 0.9394 ± 0.0081
FNO128-8modes16 2800 0.0122 ± 0.0001 0.0505 ± 0.0004

UNO64 256 0.2732 ± 0.0009 2.0338 ± 0.0071
UNO64 2800 0.0135 ± 0.0001 0.0587 ± 0.0004

UNO128 256 0.2300 ± 0.0039 1.7308 ± 0.0173
UNO128 2800 0.0046 0.0158 ± 0.0001

U-Netbase64 256 0.0569 ± 0.0008 0.4457 ± 0.0038
U-Netbase64 2800 0.0043 0.0316 ± 0.0007

U-Netbase128 256 0.0428 ± 0.0020 0.3761 ± 0.0189
U-Netbase128 2800 0.0023 ± 0.0002 0.0229 ± 0.0022
U-Netmod64 256 0.0272 ± 0.0004 0.2678 ± 0.0017
U-Netmod64 2800 0.0015 ± 0.0002 0.0243 ± 0.0065
U-Netmod64 256 0.0239 ± 0.0008 0.2089 ± 0.0291
U-Netmod64 2800 0.0014 ± 0.0008 0.0144 ± 0.0149

U-F1Netmodes16 256 0.0257 ± 0.0005 0.1638 ± 0.0032
U-F1Netmodes8 2800 0.0009 ± 0.0004 0.0041 ± 0.0019

U-F2Netmodes16,8 256 0.0253 ± 0.0016 0.1710 ± 0.0124
U-F2Netmodes16,8 2800 0.0006 ± 0.0002 0.0023 ± 0.0009
U-F2Netmodes8,8 256 0.0248 ± 0.0006 0.1659 ± 0.0031
U-F2Netmodes8,8 2800 0.0005 0.0022 ± 0.0003

U-F2Netmodes16,16 256 0.0315 ± 0.0007 0.2398 ± 0.0068
U-F2Netmodes16,16 2800 0.0003 0.0013

U-F2Netatt,modes16,8 256 0.0238 ± 0.0016 0.1545 ± 0.0126
U-F2Netatt,modes16,8 2800 0.0070 ± 0.0093 0.0553 ± 0.0841

33

Published in Transactions on Machine Learning Research (07/2023)

B.4 Navier-Stokes equations.

2D Navier-Stokes data is obtained on a grid with spatial resolution of 128 × 128 (∆x = 0.25, ∆y = 0.25),
and temporal resolution of ∆t = 1.5 s, a viscosity parameter of ν = 0.01, and a buoyancy factor of (0, 0.5)T .
The equation is solved on a closed domain with Dirichlet boundary conditions (v = 0) for the velocity, and
Neumann boundaries ∂s

∂x = 0 for the scalar field. We run the simulation for 21 s and sample every 1.5 s.
Trajectories contain scalar and vector fields at 14 different time points. The inputs to the Navier-Stokes
experiments are respective fields at the previous 4 timesteps. Exemplary rollout trajectories are displayed
in Figure 16. We outline further details on the results in Figure 17 and Table 8. Additionally, we ablate
different encoding/decoding choices for U-Net based architectures in Figures 18.

34

Published in Transactions on Machine Learning Research (07/2023)

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.25

0.50

0.75

0

1

(c) Vector field y-component

Figure 15: Navier-Stokes, velocity function form. Example rollouts of the scalar and vector velocity field of
the Navier-Stokes experiments are shown, obtained by a FNO96-4modes32,32 PDE surrogate model (middle),
and compared to the ground truth (top). Predictions are obtained for a time window ∆t = 1.5 s. The
respective model input fields comprise four timesteps, we only show the last of those (left-most ground truth
column).

35

Published in Transactions on Machine Learning Research (07/2023)

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

0

1

(c) Vector field y-component

Figure 16: Navier-Stokes, velocity function form. Example rollouts of the scalar and vector velocity field
of the Navier-Stokes experiments are shown, obtained by a U-F1Netmodes16 PDE surrogate model (top),
and compared to the ground truth (bottom). Predictions are obtained for a time window ∆t = 1.5 s. The
respective model input fields comprise four timesteps, we only show the last of those (left-most ground truth
column).

36

Published in Transactions on Machine Learning Research (07/2023)

2080 5200

10−2

10−1

100

M
SE

Navier-Stokes velocity, rollout

ResNet128 ResNet256 DilatedResNet128 DilatedResNet128-norm FNO128-8modes8 FNO128-8modes16

FNO128-4modes16 FNO64-4modes32 FNO96-4modes32 UNO64 UNO128 U-Net201564
U-Net2015128 U-Netbase64 U-Netbase128 U-Netmod64 U-Netatt64 U-F1Netmodes8

U-F1Netmodes16 U-F2Netmodes8,4 U-F2Netmodes16,8 U-F2Netmodes8,8 U-F2Netmodes16,16 U-F1Netatt,modes16,8

2080 5200

10−3

10−2

10−1

Navier-Stokes velocity, one-step

Num. Train Trajectories

Figure 17: Navier-Stokes velocity function form. Rollout and one-step errors of various architectures on the
Navier-Stokes equations are reported, obtained for predictions of 1.5 s, and are averaged over three different
random seeds. Note the logarithmic scale of the y-axes.

2080 5200

10−2.2

10−2

10−1.8

10−1.6

10−1.4

M
SE

Rollout

U-Netmod64-3x3
U-Netmod64-1x1
U-Netatt64-3x3
U-Netatt64-1x1
U-F1Netmodes8-3x3
U-F1Netmodes8-1x1
U-F1Netmodes16-3x3
U-F1Netmodes16-1x1
U-F2Netmodes8,4-3x3
U-F2Netmodes8,4-1x1
U-F2Netmodes16,8-3x3
U-F2Netmodes16,8-3x3

2080 5200

10−3.2

10−3

10−2.8

10−2.6

10−2.4

One-step

Num. Train Trajectories

Figure 18: Navier-Stokes velocity function form. Ablation results of different encoding and decoding choices
for various U-Net architectures are reported. 1 × 1 and 3 × 3 kernels are compared for both encoding and
decoding. Rollout and one-step errors are obtained on the Navier-Stokes equations in velocity function form
and are averaged over three different random seeds.

37

Published in Transactions on Machine Learning Research (07/2023)

Table 8: Navier-Stokes, velocity function formulation. Rollout and one-step errors of various architectures
on the Navier-Stokes equations are reported. Summed mean-squared errors (SMSE) are obtained and are
averaged over three different random seeds. If results are displayed without standard deviation, the obtained
standard deviation is lower than the five digit precision minimum. The best model of each model class is
highlighted.

Method Trajs.
SMSE

onestep rollout
ResNet128 2080 0.018 60 ± 0.000 49 0.140 02 ± 0.003 44
ResNet128 5200 0.017 22 ± 0.000 17 0.142 30 ± 0.005 98
ResNet256 2080 0.016 75 ± 0.000 32 0.143 44 ± 0.009 61
ResNet256 5200 0.017 25 ± 0.000 52 0.137 47 ± 0.002 84

DilResNet-128 2080 0.002 14 ± 0.000 07 0.014 60 ± 0.000 14
DilResNet-128 5200 0.001 02 ± 0.000 01 0.007 48 ± 0.000 04

DilResNet-128-norm 2080 0.001 67 ± 0.000 01 0.011 48 ± 0.000 01
DilResNet-128-norm 5200 0.000 88 ± 0.000 06 0.006 39 ± 0.000 43

FNO128-8modes8 2080 0.014 00 ± 0.000 36 0.056 96 ± 0.000 51
FNO128-8modes8 5200 0.008 79 ± 0.000 12 0.038 36 ± 0.000 37

FNO128-8modes16 2080 0.008 90 ± 0.000 50 0.040 85 ± 0.002 05
FNO128-8modes16 5200 0.005 10 ± 0.000 19 0.025 76 ± 0.000 71
FNO128-4modes16 2080 0.008 31 0.037 69 ± 0.000 17
FNO128-4modes16 5200 0.005 57 0.027 17 ± 0.000 13
FNO64-4modes32 2080 0.008 99 ± 0.000 14 0.039 94 ± 0.000 45
FNO64-4modes32 5200 0.005 76 ± 0.000 09 0.027 87 ± 0.000 19
FNO96-4modes32 2080 0.008 43 ± 0.000 19 0.036 11 ± 0.000 44
FNO96-4modes32 5200 0.005 07 ± 0.000 06 0.024 14 ± 0.000 13

UNO64 2080 0.022 00 ± 0.000 91 0.083 91 ± 0.001 79
UNO64 5200 0.008 37 ± 0.000 14 0.040 10 ± 0.000 74

UNO128 2080 0.019 33 ± 0.000 03 0.073 14 ± 0.000 35
UNO128 5200 0.006 71 ± 0.000 02 0.033 75 ± 0.000 21

U-Net2015-tanh64 2080 0.006 51 ± 0.000 01 0.033 27 ± 0.000 01
U-Net2015-tanh64 5200 0.003 59 ± 0.000 01 0.020 51 ± 0.000 07

U-Net2015-tanh128 2080 0.004 56 ± 0.000 07 0.025 27 ± 0.000 43
U-Net2015-tanh128 5200 0.002 75 0.016 71 ± 0.000 09

U-Net201564 2080 0.003 56 ± 0.000 02 0.020 04 ± 0.000 13
U-Net201564 5200 0.002 26 0.013 86 ± 0.000 04

U-Net2015128 2080 0.002 64 ± 0.000 05 0.015 72 ± 0.000 30
U-Net2015128 5200 0.001 65 ± 0.000 02 0.010 76 ± 0.000 07

U-Netbase64 2080 0.003 44 ± 0.000 06 0.019 10 ± 0.000 17
U-Netbase64 5200 0.001 97 ± 0.000 03 0.011 97 ± 0.000 08

U-Netbase128 2080 0.002 35 ± 0.000 01 0.013 83 ± 0.000 03
U-Netbase128 5200 0.001 42 ± 0.000 01 0.008 98 ± 0.000 13
U-Netmod64 2080 0.001 66 ± 0.000 01 0.010 53 ± 0.000 06
U-Netmod64 5200 0.000 88 ± 0.000 01 0.006 21 ± 0.000 08
U-Netatt64 2080 0.001 63 ± 0.000 03 0.010 48 ± 0.000 22
U-Netatt64 5200 0.000 90 ± 0.000 03 0.006 20 ± 0.000 18

U-F1Netmodes8 2080 0.001 57 ± 0.000 02 0.010 10 ± 0.000 15
U-F1Netmodes8 5200 0.000 92 ± 0.000 04 0.006 39 ± 0.000 28

U-F1Netmodes16 2080 0.001 55 ± 0.000 02 0.010 12 ± 0.000 19
U-F1Netmodes16 5200 0.000 88 ± 0.000 01 0.006 21 ± 0.000 01
U-F2Netmodes8,4 2080 0.001 87 ± 0.000 01 0.011 67 ± 0.000 08
U-F2Netmodes8,4 5200 0.001 08 ± 0.000 07 0.007 32 ± 0.000 53

U-F2Netmodes16,8 2080 0.002 01 0.012 61 ± 0.000 03
U-F2Netmodes16,8 5200 0.001 13 ± 0.000 02 0.007 71 ± 0.000 11
U-F2Netmodes8,8 2080 0.001 97 ± 0.000 03 0.012 27 ± 0.000 08
U-F2Netmodes8,8 5200 0.001 13 ± 0.000 03 0.007 66 ± 0.000 20

U-F2Netmodes16,16 2080 0.002 29 ± 0.000 03 0.013 88 ± 0.000 04
U-F2Netmodes16,16 5200 0.001 18 0.007 90 ± 0.000 04

U-F2Netatt,modes16,8 2080 0.001 99 ± 0.000 12 0.012 45 ± 0.000 51
U-F2Netatt,modes16,8 5200 0.001 07 ± 0.000 09 0.007 32 ± 0.000 52

38

Published in Transactions on Machine Learning Research (07/2023)

Table 9: Navier-Stokes, velocity function formulation. L2 training objective of Li et al. (2020a) is used.
Rollout and one-step errors of various architectures on the Navier-Stokes equations are reported. Summed
mean-squared errors (SMSE) are obtained and are averaged over three different random seeds. If results are
displayed without standard deviation, the obtained standard deviation is lower than the five digit precision
minimum. The best model of each model class is highlighted.

Method Trajs.
SMSE

onestep rollout
DilResNet128 2080 0.002 06 ± 0.000 01 0.013 96 ± 0.000 05
DilResNet128 5200 0.001 02 ± 0.000 03 0.007 49 ± 0.000 12

DilResNet128-norm 2080 0.001 47 ± 0.000 01 0.010 11 ± 0.000 01
DilResNet128-norm 5200 0.000 82 0.006 04

FNO128-8modes8 2080 0.012 49 0.051 87
FNO128-8modes8 5200 0.008 05 0.035 91

FNO128-8modes16 2080 0.008 23 0.038 65
FNO128-8modes16 5200 0.004 84 0.024 85
FNO64-4modes32 2080 0.007 81 ± 0.000 14 0.035 94 ± 0.000 47
FNO64-4modes32 5200 0.005 17 ± 0.000 07 0.025 56 ± 0.000 13
FNO96-4modes32 2080 0.007 45 ± 0.000 15 0.032 42 ± 0.000 38
FNO96-4modes32 5200 0.004 70 ± 0.000 06 0.022 27 ± 0.000 11

FNO128-4modes32 2080 0.007 10 ± 0.000 04 0.030 80
FNO128-4modes32 5200 0.004 43 0.020 76

UNO64 2080 0.017 07 0.070 89
UNO64 5200 0.007 25 0.035 96

U-Netbase6 2080 0.003 11 ± 0.000 01 0.017 74 ± 0.000 05
U-Netbase64 5200 0.002 02 ± 0.000 01 0.012 22

U-Netbase128 2080 0.002 12 ± 0.000 02 0.012 61 ± 0.000 05
U-Netbase128 5200 0.001 37 0.008 68 ± 0.000 04
U-Net201564 2080 0.003 24 ± 0.000 07 0.018 61 ± 0.000 44
U-Net201564 5200 0.002 23 ± 0.000 01 0.013 76 ± 0.000 15

U-Net2015128 2080 0.002 38 ± 0.000 02 0.014 46 ± 0.000 02
U-Net2015128 5200 0.001 61 ± 0.000 02 0.010 47 ± 0.000 06

U-Netmod64 2080 0.001 51 0.009 75 ± 0.000 05
U-Netmod64 5200 0.000 91 ± 0.000 01 0.006 37 ± 0.000 02

39

Published in Transactions on Machine Learning Research (07/2023)

10−4

10−3

10−2

One-step (∆t = 0.375 s)

U-Netmod64-Add
U-Netmod64-AdaGN
U-Netatt64-Add
U-Netatt64-AdaGN
U-F1Netmodes16-Add
U-F1Netmodes16-AdaGN
U-F2Netmodes16,8-Add
U-F2Netmodes16,8-AdaGN
U-F1Netatt,modes16-Add
U-F1Netatt,modes16-AdaGN
U-F2Netatt,modes16,8-Add
U-F2Netatt,modes16,8-AdaGN

10−4

10−3

10−2

One-step (∆t = 0.75 s)

10−3

10−2

One-step (∆t = 1.5 s)

10−3

10−2

10−1

One-step (∆t = 3 s)

1664 6656
10−2

10−1

One-step (∆t = 6 s)

1664 6656

10−3

10−2

10−1

∑
∆t

M
SE

Num. Train Trajectories

Figure 19: Navier-Stokes parameter conditioning experiments. Ablation results for different parameter con-
ditioning methods. “Addition”(Add) and “AdaGN” are compared on one-step errors, reported for different
time windows and averaged over 208 unseen values of the buoyancy force term. For low time windows,
AdaGN seems to be beneficial.

B.5 Parameter conditioning.

We use the same spatial resolutions and boundary conditions as described in Section B.4. The inputs to the
Navier-Stokes parameter conditioning experiments are respective fields at the previous timestep. Exemplary
rollout trajectories predicted by a single surrogate model for different buoyancy force values are displayed
in Figures 20,21,22. We outline further details on the results in Table 10. Additionally, we ablate different
parameter conditioning choices in Figure 19, namely “Addition” versus “AdaGN” for U-Net blocks, and
“Addition” vs “Spatial-Spectral” for Fourier blocks. The default choice is “Addition”.

40

Published in Transactions on Machine Learning Research (07/2023)

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(c) Vector field y-component

Figure 20: Parameter conditioning for Navier-Stokes equations, f = 0.21. Example rollouts of the scalar and
vector velocity field of the Navier-Stokes experiments are shown, obtained by a U-Netmod PDE surrogate
model (top), and compared to the ground truth (bottom). Predictions are obtained for a time window
∆t = 1.5 s and a buoyancy force term of f = 0.21. Model inputs are respective fields at the last timestep
(left-most ground truth column).

41

Published in Transactions on Machine Learning Research (07/2023)

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

−0.5

0.0

0.5

(c) Vector field y-component

Figure 21: Parameter conditioning for Navier-Stokes equations, f = 0.33. Example rollouts of the scalar and
vector velocity field of the Navier-Stokes experiments are shown, obtained by a U-Netmod PDE surrogate
model (top), and compared to the ground truth (bottom). Predictions are obtained at a time window
∆t = 1.5 s and a buoyancy force term of f = 0.33. Model inputs are respective fields at the last timestep
(left-most ground truth column).

42

Published in Transactions on Machine Learning Research (07/2023)

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

−0.5

0.0

0.5

(c) Vector field y-component

Figure 22: Parameter conditioning for Navier-Stokes equations, f = 0.48. Example rollouts of the scalar and
vector velocity field of the Navier-Stokes experiments are shown, obtained by a U-Netmod PDE surrogate
model (top), and compared to the ground truth (bottom). Predictions are obtained at a time window
∆t = 1.5 s and a buoyancy force term of f = 0.48. Model inputs are respective fields at the last timestep
(left-most ground truth column).

43

Published in Transactions on Machine Learning Research (07/2023)

Table 10: Parameter conditioning on the Navier-Stokes equation, velocity function formulation. Summed
mean-squared errors of various architectures are reported for different number of training trajectories, and
different time windows. Conditioning results at different time windows are averaged over 208 unseen values of
the buoyancy force term. The best model of each model class is highlighted. Different parameter conditioning
choices are ablated, namely “Addition” versus “AdaGN” for U-Net blocks, and “Addition” vs “Spatial-
Spectral” for Fourier blocks. The default choice is “Addition”.

Method Trajs.
SMSE

0.375 s 0.75 s 1.5 s 3.0 s 6.0 s
FNO128modes16 1664 0.005 17 0.006 93 0.011 73 0.026 66 0.064 23
FNO128modes16 6656 0.003 88 0.004 83 0.007 40 0.015 44 0.041 77

FNO128modes16-SpaSpec 1664 0.004 62 0.006 67 0.014 04 0.038 34 0.076 48
FNO128modes16-SpaSpec 6656 0.003 48 0.004 55 0.008 01 0.019 73 0.052 08

U-Netmod64 1664 0.000 72 0.001 11 0.002 16 0.006 22 0.028 05
U-Netmod64 6656 0.000 40 0.000 61 0.001 15 0.003 25 0.015 60

U-Netmod64-AdaGN 1664 0.000 59 0.000 90 0.001 77 0.005 68 0.029 89
U-Netmod64-AdaGN 6656 0.000 31 0.000 50 0.001 00 0.003 00 0.016 32

U-Netatt64 1664 0.000 82 0.001 22 0.002 34 0.006 30 0.028 46
U-Netatt64 6656 0.000 46 0.000 69 0.001 30 0.003 56 0.016 75

U-Netatt64-AdaGN 1664 0.000 65 0.001 01 0.001 95 0.005 97 0.031 60
U-Netatt64-AdaGN 6656 0.000 35 0.000 55 0.001 06 0.003 10 0.017 03

U-F1Netmodes16 1664 0.001 38 0.001 80 0.002 75 0.006 45 0.024 97
U-F1Netmodes16 6656 0.000 54 0.000 78 0.001 33 0.003 38 0.015 04

U-F1Netmodes16-SpaSpec 1664 0.000 76 0.001 16 0.002 42 0.007 70 0.034 95
U-F1Netmodes16-SpaSpec 6656 0.000 40 0.000 61 0.001 16 0.003 39 0.017 54

U-F1Netatt,modes16 1664 0.001 42 0.002 05 0.003 33 0.007 62 0.027 95
U-F1Netatt,modes16 6656 0.000 62 0.000 86 0.001 46 0.003 58 0.015 79

U-F1Netatt,modes16-SpaSpec 1664 0.000 95 0.001 51 0.002 74 0.007 67 0.031 93
U-F1Netatt,modes16-SpaSpec 6656 0.000 46 0.000 72 0.001 32 0.003 72 0.017 86
U-F1Netatt,modes16-AdaGN 1664 0.001 51 0.002 00 0.003 11 0.007 48 0.028 79
U-F1Netatt,modes16-AdaGN 6656 0.000 61 0.000 86 0.001 37 0.003 47 0.015 96

U-F1Netmodes16-AdaGN 1664 0.001 61 0.002 12 0.003 30 0.007 58 0.027 69
U-F1Netmodes16-AdaGN 6656 0.000 55 0.000 77 0.001 32 0.003 38 0.015 64

U-F2Netmodes16,8 1664 0.001 78 0.002 40 0.003 57 0.008 50 0.033 46
U-F2Netmodes16,8 6656 0.000 93 0.001 16 0.001 68 0.003 76 0.015 64

U-F2Netmodes16,8-SpaSpec 1664 0.000 71 0.001 18 0.002 33 0.007 26 0.032 87
U-F2Netmodes16,8-SpaSpec 6656 0.000 39 0.000 64 0.001 22 0.003 68 0.018 62
U-F2Netmodes16,8-AdaGN 1664 0.001 86 0.002 89 0.004 82 0.013 07 0.047 67
U-F2Netmodes16,8-AdaGN 6656 0.000 98 0.001 24 0.001 85 0.004 18 0.018 09

U-F2Netatt,modes16,8 1664 0.001 97 0.002 91 0.004 64 0.011 29 0.038 10
U-F2Netatt,modes16,8 6656 0.001 16 0.001 53 0.002 25 0.004 90 0.018 88

U-F2Netatt,modes16,8-SpaSpec 1664 0.000 82 0.001 35 0.002 78 0.008 43 0.034 90
U-F2Netatt,modes16,8-SpaSpec 6656 0.000 44 0.000 71 0.001 37 0.004 04 0.018 96
U-F2Netatt,modes16,8-AdaGN 1664 0.001 96 0.002 81 0.004 29 0.010 19 0.036 73
U-F2Netatt,modes16,8-AdaGN 6656 0.000 91 0.001 21 0.001 79 0.004 14 0.017 05

44

	Introduction
	Preliminaries
	PDE Surrogates
	Operator learning

	Experiments
	Conclusion
	Related work
	Experiments
	Experimental details
	Additional model details
	ResNet
	Dilated ResNet
	FNO
	U-Net
	Parameter Conditioning
	Spatial-spectral parameter conditioning for Fourier layers

	Shallow water equations.
	Navier-Stokes equations.
	Parameter conditioning.

