
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DAE: DIFFUSION-ALIGNED EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduced DAE, which formulates dimensionality reduction as align-
ing diffusion processes between high- and low-dimensional spaces. By mini-
mizing the Path-KL divergence—which uniquely captures both transition prob-
abilities and waiting times of continuous-time random walks—we proved formal
bounds on generator and semigroup closeness, guaranteeing structure preserva-
tion across scales. Our optimization algorithm decomposes this objective into
attraction-repulsion terms with an unbiased gradient estimator, enabling efficient
parallel implementation. Experiments on single-cell RNA-seq datasets showed
DAE consistently preserves both local neighborhoods and global structure, while
our CUDA implementation scales to millions of cells with competitive runtime.
The Path-KL framework provides theoretical guarantees that complement exist-
ing diffusion-based methods. DAE will be made available with CPU and GPU
implementations.

1 INTRODUCTION

Scientists often rely on visualizations of dimension-reduced data to interpret high-dimensional mea-
surements. In single-cell biology, for example, two-dimensional embeddings are routinely employed
to validate clusters, assess batch correction, and illustrate developmental continua (Becht et al.,
2019; Lopez et al., 2018; La Manno et al., 2018), while in neuroscience they help characterize neural
population geometry and brain-state dynamics (Churchland et al., 2012; Cunningham & Yu, 2014;
Nieh et al., 2021). While undoubtedly useful, such visualizations can also fabricate clusters—either
by fracturing continuous processes or collapsing distinct populations—obscuring genuine relation-
ships (Kobak & Berens, 2019; Luecken & Theis, 2019; Huang et al., 2022) and misguiding scientific
inferences (Stringer et al., 2019; Ribeiro de Paula et al., 2021).

Reflecting these challenges, an established paradigm in manifold learning is to model the data as a
graph (Tenenbaum et al., 2000; Roweis & Saul, 2000; Belkin & Niyogi, 2003; van der Maaten &
Hinton, 2008; McInnes et al., 2018). Nodes represent data points while edges quantify pairwise sim-
ilarities, encoding both local neighborhoods and their global arrangement. Among graph methods,
diffusion-based approaches offer a principled way to model connectivity through random walks on
the graph, defining similarity via diffusion processes (Coifman & Lafon, 2006; Moon et al., 2019).

To illustrate this idea, imagine an ant wandering through the data graph, stepping from node to node
with probabilities determined by the nodes’ similarity.1 Over short durations, the ant repeatedly
revisits nearby nodes, reflecting local structure. Over longer durations, its walk spreads into denser
regions and eventually traverses the routes connecting distant parts of the graph, reflecting global
structure. For an embedding to be faithful, the ant should have the same experience whether navigat-
ing the original high-dimensional graph or the graph induced by the low-dimensional embedding.

A limitation of existing diffusion-based methods is that they require fixing a single diffusion
timescale t—determining how long the ant is allowed to proceed. For too small values of t, the
resulting embedding exaggerates local neighborhoods and misses global trends; for too large values,
the walk converges to its stationary distribution and collapses meaningful geometry. This creates a
central challenge: embeddings are often biased toward either local or global structure.

Rather than committing to a fixed t, we aim to preserve diffusion behavior across all timescales. To
this end, we define alignment along three key dimensions: (i) which nodes are visited, (ii) how often

1In the spirit of the “ant on a garden hose” metaphor, first noted (to our knowledge) by Duff (1984).
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they are visited, and (iii) how long it takes to travel between them. Discrete-time random walks can
capture the first two, but they lack a natural treatment of travel times between nodes. Continuous-
time Markov chains (CTMCs) unify all three: their generatorQ specifies both transition probabilities
and waiting times. This makes CTMCs a natural tool for modeling path distributions, and thus the
ideal foundation for an embedding objective that preserves structure consistently across scales.

Building on these insights, we introduce Diffusion-Aligned Embeddings (DAE), a framework that
aligns the path distributions of the high-dimensional and embedding-induced CTMCs. Our Path-KL
objective provides formal guarantees of multiscale fidelity, admits an efficient GPU implementa-
tion, and consistently yields embeddings that preserve both local and global structure across a wide
range of datasets. The remainder of the paper develops the theoretical framework (§2), presents the
optimization algorithm (§3), and reports empirical evaluations (§4).

1.1 RELATED WORK

Most existing approaches to manifold learning are designed to favor either local or global struc-
ture. For example, t-SNE van der Maaten & Hinton (2008) and UMAP McInnes et al. (2018) excel
at preserving local neighborhoods—ensuring that nearby points in high-dimensional space remain
close in the embedding. However, these methods often distort global relationships, causing dis-
tant clusters to appear artificially close Kobak & Berens (2019). Conversely, classical techniques
such as PCA Jolliffe (2002) and multidimensional scaling Borg & Groenen (2005) prioritize global
structure by preserving variance or pairwise distances, yet frequently fail to capture the fine-grained
local relationships that delineate cluster boundaries and smooth transitions Tenenbaum et al. (2000);
Roweis & Saul (2000). More recent methods, including TriMAP Amid & Warmuth (2019) and
PaCMAP Wang et al. (2021), attempt to balance local and global preservation, but rely on complex
multi-term objectives and sensitive hyperparameters, and lack GPU implementations. Our work
builds on these advances, seeking a unified framework that captures local and global structure while
remaining amenable to large-scale datasets.

2 PATH DISTRIBUTIONS FOR LOW DIMENSIONAL EMBEDDINGS

Originally, diffusion models were introduced to mathematically characterize how heat propagates
through a solid over time, tracing back to the seminal work of Baron de Fourier (1822).2 The
evolution of heat encodes information about the surface connectivity, curvature, and geometry. By
analogy, the diffusion of probability on a data graph reveals fine-grained neighborhood structure at
short timescales and global connectivity at longer ones.

2.1 FORMAL SETTING

To translate this geometric intuition of diffusion into a data-analytic setting, we represent a high-
dimensional dataset as a weighted graph G = (V,E,W ), where nodes V correspond to datapoints
and edges E encode neighborhood similarity. Diffusion processes on G generalize the notion of
heat flow: probability mass initiated at one node spreads to its neighbors at rates proportional to
edge weights.

In continuous time, these dynamics are described by a generator matrix Q ∈ Rn×n. This matrix
specifies both how quickly the process leaves each node and how likely it is to jump to each neighbor.
Formally,Qij ≥ 0 for j ̸= i, andQii = −

∑
j ̸=iQij so that rows sum to zero. The negative diagonal

entries Qii encode the exit rate from node i, while the normalized off-diagonal entries Qij/(−Qii)
give the probabilities of choosing the next neighbor.

From the generatorQ, one can construct a family of transition matrices that describe the distribution
of the diffusion at a future time t. Specifically, the dynamics are governed by the semi-group of
diffusion operators

Pt = etQ, t ≥ 0, (1)

2This line of research was later extended by Fick (1995), who formulated what is now known as Fick’s law,
and by Einstein (1905), who established connections to Brownian motion.
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where Pt(i, j) is the probability of being at node j after time t when starting at i. The collection
Ptt≥0 is called a semigroup of diffusion operators: it satisfies the composition rule

PsPt = Ps+t (2)
which formalizes the idea that running the diffusion for time s and then t is equivalent to running it
for s+ t directly.

In this way, the generator Q completely determines the stochastic dynamics of diffusion on the
graph: it encodes both where the process moves next and how long it lingers at each node.

While Pt captures state probabilities at a fixed time t, it does not describe how paths evolve across
time. To faithfully capture both local exploration and global mixing, we must consider the path
distribution (Xt)0≤t≤T . It is described by a sequence

(i0, τ0), ..., (im, τm), (3)
where ik is the visited state and τk ∼ exp(λik) is the waiting time before moving to the next state,
and the choice of next state is governed by conditional probabilities pij = Qij/λi.

Thus, a path encodes both (i) the visited states (via pij), and (ii) the length of a visit (via waiting
times). Path distributions therefore provided richer descriptor of geometry compared to single-time
marginals.

2.2 PATH-KL EMBEDDING

Intuitively, we would like the diffusion paths on the original high-dimensional graph and on the
embedded graph to resemble one another. To formalize this, we require a way to compare two dif-
fusion processes, specified by their respective generators. When comparing two diffusion processes
with generatorsQ and Q̃, a natural measure of discrepancy is the Kullback–Leibler (KL) divergence
between their path distributions over a time horizon T :

KL
(
PQ,[0,T ] | PQ̃,[0,T ]

)
:= EPQ,[0,T ]

[
log

dPQ,[0,T ]

dPQ̃,[0,T ]

]
, (4)

where PQ,[0,T ] denotes the law of the trajectory (Xt)0≤t≤T under generator Q.

However, this KL divergence grows linearly in T . We therefore consider the average divergence per
unit time, i.e. the relative entropy rate:

E(Q ∥ Q̃) ≡ lim
T→∞

1

T
DKL(PQ,[0,T ] ∥PQ̃,[0,T ]). (5)

Intuitively, E(Q | Q̃) quantifies the long-run inefficiency (per unit time) of representing trajectories
generated by Q using the dynamics of Q̃.

Decomposition of the Path-KL The relative entropy rate between two continuous-time Markov
chains admits a natural decomposition into interpretable terms. Let λi = −Qii and λ̃i = −Q̃ii

denote the exit rates from state i, and pij = Qij/λi, p̃ij = Q̃ij/λ̃i the corresponding conditional
transition probabilities. Then, we have the following decomposition.
Lemma 2.1 (Path-KL Decomposition). Let Q and Q̃ be irreducible generator matrices on n states
with stationary distribution πQ. Then the relative entropy rate is given by

E(Q | Q̃) =
∑
i,j ̸=i

πQ,iQij log
Qij

Q̃ij

+
∑
i

πQ,i

(
λQ̃,i − λQ,i

)
. (6)

Equivalently, it can be written as

E(Q | Q̃) =
∑
i

πQ,iλi

 KL
(
pi | p̃i

)︸ ︷︷ ︸
choice of next state

+KL
(
exp(λi) | exp(λ̃i)

)︸ ︷︷ ︸
waiting time

 , (7)

where λi = −Qii and λ̃i = −Q̃ii are exit rates, and pij = Qij/λi, p̃ij = Q̃ij/λ̃i are conditional
transition probabilities.

The proof is provided in Appendix A.
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Interpretation This decomposition highlights two complementary aspects of diffusion alignment.
The term KL(pi | p̃i) measures discrepancies in the choice of the next state, reflecting how well
local neighborhood transitions are preserved in the embedding. The term KL(exp(λi) | exp(λ̃i))
measures discrepancies in the waiting time distributions, reflecting how long the process lingers at
each node. Since waiting times depend on node degrees, this term encodes both local density and,
when aggregated over time, global mixing behavior.

Thus, our goal is to minimize the Path-KL divergence. By doing so, we will simultaneously align
the direction of diffusion (which neighbors are chosen) and its how long the process dwells at each
node, thereby obtaining embeddings that faithfully preserve structure across scales.

2.3 PATH-KL DIVERGENCE AS AN EMBEDDING OBJECTIVE

The decomposition in Lemma 2.1 provides a natural recipe for constructing an embedding objective.
Given an embedding {yi}ni=1 ⊂ Rd, we define a similarity kernel K : R≥ 0 → R> 0 and specify
the embedded generator by

Q̃ij(y) = K
(
∥yi − yj∥2

)
, i ̸= j, (8)

Q̃ii(y) = −
∑
j ̸=i

Q̃ij(y). (9)

This construction guarantees that Q̃(y) is a valid generator matrix, from which we obtain exit rates
λ̃i(y) and conditional transition probabilities p̃ij(y) in the low-dimensional space.

Substituting Q̃(y) into the decomposition of the relative entropy rate yields the Path-KL embedding
objective:

L(y) =
∑
i

πQ,iλi

[
KL (pi ∥ p̃i(y)) + KL

(
exp(λi) ∥ exp(λ̃i(y))

) ]
. (10)

Minimizing this objective enforces the alignment of diffusion dynamics between the original high-
dimensional graphQ and the embedding-induced graph Q̃(y). The first term penalizes discrepancies
in the choice of neighbors, promoting preservation of local neighborhood structure. The second term
penalizes discrepancies in the waiting times, encouraging embeddings that capture node degrees and
global mixing behavior. Taken together, these two components ensure that the embedding preserves
both fine-grained local geometry and large-scale global organization.

Moreover, unlike previous approaches, minimizing this objective provides formal guarantees on the
fidelity with which the data structure is preserved, as we further discuss in the next section.

2.4 MULTISCALE PRESERVATION GUARANTEES

A notable property of the objective in Equation 10 is that minimizing it provides a formal guarantee
of structural preservation. Moreover, it yields a practically verifiable criterion for assessing how
well the low-dimensional embedding reflects the original data geometry. The central idea is the
following: if the relative entropy rate between Q and Q̃ is small, then the corresponding diffusion
operators remain close across all timescales. We formalize this intuition in the following theorems.

Theorem 2.2 (Generator Closeness). Let Q and Q̃ be irreducible generators with stationary distri-
bution π = πQ and average exit rate λ̄ =

∑
i πiλi. If E(Q | Q̃) ≤ ϵ, then

∥Q− Q̃∥1,π ≤ C1

√
λ̄ ϵ, (11)

for an absolute constant C1.

This result shows that small Path-KL divergence guarantees the generators themselves are close.
Since the generator encodes both the probabilities of transitioning to neighbors and the waiting
times, this bound ensures that the embedding preserves the local rules governing the diffusion dy-
namics.
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Theorem 2.3 (Semi-group Closeness). Under the same assumptions, the diffusion semi-groups
{Pt = etQ} and {P̃t = etQ̃} satisfy

∥Pt − P̃t∥∞→1,π ≤ C2

√
λ̄ ϵ ·min(t, C3), (12)

for all t ≥ 0, where C2, C3 are absolute constants.

The second theorem extends generator closeness to the full diffusion dynamics. At short times, the
discrepancy between Pt and P̃t grows at most linearly in t, ensuring faithful preservation of fine-
scale neighborhoods. At long times, the discrepancy saturates, guaranteeing that global connectivity
and mixing structure are retained.

Together, these bounds formalize the intuition that minimizing the Path-KL divergence enforces
preservation of diffusion dynamics across all scales.

In contrast to heuristic objectives that balance local and global terms separately, our framework guar-
antees both simultaneously from a single probabilistic principle. This provides a unified foundation
for dimensionality reduction: embeddings that minimize the Path-KL objective necessarily preserve
both local geometry and global organization.

Proofs of both theorems are provided in Appendix B.

3 OPTIMIZATION ALGORITHM

Having established theoretical guarantees on the Path-KL divergence objective, we now turn to the
practical challenge of minimizing equation 6 for large scale datasets. The generator Q in equation 6
is generally a dense n× n matrix, requiring O(n2) storage and updates. To make optimization fea-
sible, we instead restrict the class of admissible generators Q constructed from sparse neighborhood
graphs.

This design choice is inspired by results in manifold learning showing that k-nearest-neighbor
graphs, when properly normalized, converge to the Laplace–Beltrami operator in the limit (Belkin
& Niyogi, 2003; Hein et al., 2005; Coifman & Lafon, 2006; Von Luxburg et al., 2008). In other
words, as the sample size increases, the discrete diffusion defined on the graph converges to the
continuous diffusion on the underlying manifold, ensuring that local graph structure consistently
reflects the manifold’s geometry. While these results are asymptotic and rely on specific scaling
conditions, they motivate relying on local neighborhoods to capture diffusion geometry. This sparse
construction therefore reduces complexity to practically O(nk) edges in most cases while retaining
the essential structure of the data.

3.1 GRAPH CONSTRUCTION IN THE HIGH DIMENSIONAL SPACE

A naive algorithm optimizing the relative entropy rate in Equation 6 has a runtime of O(|E|) per
iteration. Therefore, the first step to to construct a sparse graph that adequately captures the local
geometry of the data while keeping the number of edges |E| manageable.

3.2 PARALLEL OPTIMIZATION

We cast the Path-KL objective into a per-pair decomposition that supports simple, parallel stochas-
tic updates. This decomposition separates an attractive term (− log Q̃ij), which pulls neighboring
points together, from a repulsive term (+Q̃ij), which pushes points apart. This structure further en-
ables an importance-weighted edge scheduler that prioritizes updates on the most influential pairs.

As we show in Theorem 3.1, the resulting estimator is unbiased and highly scalable. Concretely, the
relative entropy rate we aim to minimize is proportional to

J (Y ) =
∑
i ̸=j

πi,QQij − log Q̃ij(Y )︸ ︷︷ ︸
attraction (pulls i, j together)

+
∑
i ̸=j

πi,Q α Q̃ij(Y )︸ ︷︷ ︸
repulsion (pushes i, j apart)

, (13)

where each edge (i, j) contributes an attraction term weighted by πi,QQij and a repulsion term
weighted by πiα. This edge-wise decomposition suggests the following sampling scheme.
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Sampling Scheme. Edges (i, j) are sampled via importance sampling with probability wij =
πi,QQij/Pmax, where Pmax := maxu,v πQ,uQuv , and thus (i, j) is sampled probability wij . When
(i, j) is drawn, we apply the attraction gradient −∇ log Q̃ij . To obtain an unbiased estimator of the
repulsion term for the node i, ∑

j ̸=i

πi,Q α Q̃ij(Y ),

we additionally sample nneg destination nodes k1, . . . , knneg i.i.d uniformly from {1, . . . , n} \ {i}.

For each sampled pair (i, kℓ) we apply the repulsion gradient ∇Q̃ikℓ
(Y ), multiplied by a per-source

scaling factor, so that in expectation the total repulsive contribution equals the true term above. The
full algorithm is summarized in Algorithm 1.
Theorem 3.1 (Unbiased estimator). Let wij = πi,QQij/Pmax. Suppose each positive edge (i, j)

is sampled with frequency wij and, when drawn, the attraction gradient −∇ log Q̃ij(Y ) is applied.
For each positive edge anchored at i, additionally draw nneg uniform destinations j ̸= i and apply
the repulsion gradient +∇Q̃ij(Y ), multiplied by

ρi = πi,Q
α

Pmax

n− 1

nneg
∑

k: (i,k)∈E wik
.

Then, conditional on Y , the expected update satisfies

E[∆Y | Y ] = 1
Pmax

∇J (Y ),

i.e. the stochastic updates are unbiased for the full gradient of J up to the global constant 1
Pmax

which can be absorbed into the learning rate.

Proof sketch. The key insight is that the scaling factor ρi exactly compensates for the non-uniform
sampling frequencies. When positive edge (i, j) is sampled with frequency wij = πi,QQij/Pmax,
the expected positive contribution becomes proportional to πi,QQij∇ log Q̃ij(Y ). Similarly, the
careful choice of ρi ensures that each negative pair (i, j) contributes απi,Q∇Q̃ij(Y ) in expectation,
despite being sampled uniformly rather than according to the true distribution. The factors involving
nneg, n − 1, and

∑
k wik cancel exactly, yielding an unbiased estimator of the full gradient. The

complete proof is given in Appendix C.

Parallel Implementation. In parallel SGD, when multiple workers attempt to update the same em-
bedding vector yi simultaneously, locking mechanisms are typically used to ensure consistency—a
worker must acquire an exclusive lock on yi before modifying it, forcing other workers to wait. This
serialization creates computational bottlenecks, especially for high-degree nodes.

Lock-Free Edge-SGD and Collision Rate Because each stochastic update touches at most two
node parameters—the endpoints of a sampled edge—workers can run without locks in the spirit of
HOGWILD! (Recht et al., 2011). Let q be a fixed distribution over edges E from which each worker
samples independently, and let W denote the number of concurrent workers. We say two concurrent
updates collide if they attempt to write the same node parameter yi.

If we view the W in-flight updates as W i.i.d. edges e1, . . . , eW ∼ q, the expected number of
colliding pairs in one update step is

ΛW (q) =

(
W

2

)
ρ(q), ρ(q) = Pr

e,e′∼q
[ e ∩ e′ ̸= ∅ ] =

∑
v∈V

(∑
e∋v

q(e)
)2
−
∑
e∈E

q(e)2.

Hence, by a union bound, the probability that any collision occurs in a step is at most
(
W
2

)
ρ(q).

Under uniform edge sampling (q(e) = 1/m with m = |E|) this simplifies to

ρ(q) =

∑
v∈V d

2
v −m

m2
,

6
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Algorithm 1: Diffusion-aligned embedding with unbiased row-normalized negatives
Data: Dataset X , parameters k,K, α, d, T,B, nneg
Result: Embedding Y
Graph: (E,Q, π)← build graph(X, k,K);

Weights: wij ←
πi,QQij

Pmax
where Pmax = max(u,v)∈E πu,QQuv;

Repulsion scales: ρi ← πi
α

Pmax

n− 1

nneg
∑

k wik
;

Init: Y ← init embedding(X,E,Q, d);
for t = 1 to T do

σ ← stride permute(E); {Bb} ← partition blocks(σ,B);
// To maximize cache hits
foreach b in parallel do

foreach (i, j) ∈ Bb do
if should fire(wij , t) then

s← s(yi, yj)
g ← attraction grad(s,Qij);
atomic yi ← yi − ηt g; ;

atomic yj ← yj + ηt g;
for m = 1 to nneg do

j− ← sample uniform dest(n, exclude i)
s− ← s(yi, yj−); r ← repulsion grad(s−)
atomic yi ← yi − ηt ρi r;

atomic yj− ← yj− + ηt ρi r;

return Y ;

so for sparse graphs with bounded degree second moment (i.e.,
∑

v d
2
v = Θ(n) and m = Θ(n)) we

obtain ρ(q) = Θ(1/n) and thus

Pr(collision in a step) = O

(
W 2

n

)
.

Consequently, as long asW ≪
√
n, collisions are rare and the bias introduced by stale or lost writes

is negligible (cf. Recht et al., 2011).3

On CPU, where the number of workers W is modest, this Hogwild assumption is reasonable and
provides excellent speedups without synchronization overhead. On GPU, however, thousands of
threads update concurrently and the O(W 2/n) collision probability is no longer negligible. In that
setting our implementation employs hardware-supported atomicAdd operations to accumulate in-
crements safely, ensuring correctness while still exploiting massive parallelism.

4 EXPERIMENTS

Having established that minimizing the Path-KL objective provides formal guarantees on multiscale
structure preservation, we now investigate whether these theoretical advantages translate to practical
improvements. We ask: (1) Does jointly optimizing transition probabilities and waiting times out-
perform methods focused on pairwise similarities? (2) How robust is our approach across biological
contexts and neighborhood scales? (3) Can Path-KL effectively balance local and global structure?

To comprehensively answer these questions, we benchmark DAE against popular embedding
methods including UMAP (McInnes et al., 2018), t-SNE (van der Maaten & Hinton, 2008),

3In graphs with hubs (e.g., stars),
∑

v d
2
v can be large and ρ(q) need not vanish under uniform sampling;

our expression makes this dependence explicit and also applies to non-uniform q. See Appendix A for a proof
and for scheduling variants.
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PaCMAP (Wang et al., 2021), PHATE (Moon et al., 2019), and TriMAP (Amid & Warmuth,
2019). We selected five diverse single-cell RNA-seq datasets representing key biological use-cases:
(1) simulated trajectory data with known ground-truth branching structure (chronocellsim) (Fang
et al., 2025); (2) perturbation responses in peripheral blood mononuclear cells (PBMC) treated
with interferon-β, capturing subtle biological variations (kang dataset) (Kobak & Berens, 2019);
(3) monocyte response to drug perturbations (monocytedrug), reflecting challenging pharmacolog-
ically induced changes (Resztak et al., 2023); (4) a canonical reference PBMC dataset widely used
for benchmarking local cell-type structure (pbmc3k) (Chari & Gorin, 2023); and (5) developmental
single-cell data (vu) capturing clear global differentiation trajectories (Vu et al., 2022).

To assess robustness, we systematically vary the neighborhood parameter k ∈
{15, 25, 30, 40, 50, 60, 75} and assess 18 metrics capturing local and global structure via the
ZADU framework (Jeon et al., 2023). Among these, we focus on three complementary metrics:
trustworthiness quantifies local neighborhood preservation (whether embedding neighbors were
truly close in the original space), while steadiness and cohesiveness measure inter-cluster reli-
ability—steadiness detects false groups (distinct clusters artificially merged) and cohesiveness
identifies missing groups (true clusters becoming fragmented). Together, these metrics assess
whether embeddings preserve both fine-grained cell relationships and population-level organization
critical for biological interpretation.

Experimental Design We harmonize hyperparameters so that each method operates on compa-
rable neighborhoods: UMAP (n neighbors = k), t-SNE (perplexity = k/3), TriMAP
(n inliers = k/5 and n outliers = k/10), and DAE using the same k-NN graph. While
our implementation largely follows the default settings of each method, we ensure that neighborhood
sizes remain consistent across techniques to allow for a fair comparison. We show comprehensive
results across all datasets and metrics in Figure 1, with additional qualitative and quantitative ex-
periments on synthetic datasets and detailed embeddings provided in the Appendix. We train all
methods for the same number of iterations, using spectral initialization and no tuning. U less other-
wise specified we use a student−t kernel function.

Scalability of CUDA implementation We verified that our CUDA implementation can scale to
large datasets. We filtered the CELLxGENE single-cell RNA-seq census to human, healthy samples
generated with the 10x Genomics 3′ v3 assay (Program et al., 2025). We then grouped cells by
tissue and selected the largest dataset, which corresponded to brain. After standard preprocessing
(see Appendix D for details), we retained 9̃.5M cells and 5,000 genes. We corrected for batch effects
(dataset id and donor id) using scVI (Lopez et al., 2018) with 50 latent dimensions. We then
computed both UMAP (see cuML, Raschka et al., 2020) and DAE embeddings on scVI’s latent
space. Runtimes were comparable: UMAP ran in 65s, DAE in 225s on an NVIDIA H100 GPU.
Both Figure 9 plots the DAE embeddings, while UMAP embeddings are shown in Appendix D.

5 CONCLUSION

This paper introduced DAE, which formulates dimensionality reduction as aligning diffusion pro-
cesses between high- and low-dimensional spaces. By minimizing the Path-KL divergence—which
uniquely captures both transition probabilities and waiting times of continuous-time random
walks—we proved formal bounds on generator and semigroup closeness, guaranteeing structure
preservation across scales. Our optimization algorithm decomposes this objective into attraction-
repulsion terms with an unbiased gradient estimator, enabling efficient parallel implementation. Ex-
periments on single-cell RNA-seq datasets showed DAE consistently preserves both local neigh-
borhoods and global structure, while our CUDA implementation scales to millions of cells with
competitive runtime. The Path-KL framework provides theoretical guarantees that complement ex-
isting diffusion-based methods. The code for DAE would be released publicly available with CPU
and GPU.
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Figure 1: Relative embedding quality across methods and datasets. We evaluate DAE against
UMAP, t-SNE, PaCMAP, PHATE, and TriMAP using three complementary metrics: Trustworthi-
ness (local neighborhood preservation), Steadiness (avoiding false groups where distinct clusters
merge), and Cohesiveness (avoiding missing groups where true clusters fragment). Results shown
across varying neighborhood sizes (k ∈ {15, 25, 30, 40, 50, 60, 75}) demonstrate that DAE consis-
tently achieves strong performance in preserving both local structure and inter-cluster relationships,
validating that our Path-KL objective’s theoretical guarantees translate to practical improvements in
biological embeddings.
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A PROOF OF LEMMA 2.1

lim
T→∞

1

T
KL(PQ,[0,T ]||PQ̃,[0,T ]) =

∑
j ̸=i

πQ,iQij log
Qij

Q̃ij

+
∑
i

πQ,i(λQ̃,i − λQ,i) (14)

=
∑
j ̸=i

πQ,iλQ,ipij log
λQ,ipQ,ij

λQ̃,ipQ̃,ij

+
∑
i

πQ,i(λQ̃,i − λQ,i) (15)

=
∑
j ̸=i

πQ,iλQ,ipQ,ij log
pQ,ij

pQ̃,ij

+
∑
i

πQ,i

(
λQ,i log

λQ,i

λQ̃,i

− (λQ̃,i − λQ,i)

)
(16)

=
∑
i

πQ,iλQ,i

∑
j ̸=i

pQ,ij log
pQ,ij

p ˜Q,ij︸ ︷︷ ︸
KL(pQ,i||pQ̃,i)

+
∑
i

πQ,iλQ,i

(
log

λQ,i

λQ̃,i

−
(λQ̃,i − λQ,i)

λQ,i

)
︸ ︷︷ ︸

KL(Exp(λQ,i)||Exp(λQ̃,i))

(17)

=
∑
i

πQ,iλQ,i

KL(pQ,i||pQ̃,i)︸ ︷︷ ︸
Choice of next state

+KL(Exp(λQ,i||λQ̃,i)︸ ︷︷ ︸
waiting times

 (18)

B FROM PATHWISE KL TO GENERATOR AND SEMIGROUP CLOSENESS

Let S be a finite state space. LetQ and Q̃ be CTMC generators on S with jump rates λi = −Qii > 0
and post-jump kernels pij = Qij/λi for j ̸= i (and likewise λ̃i, p̃i for Q̃). Assume Q is irreducible
and let π = πQ be its stationary distribution. Define

λ̄ =
∑
i

πiλi, ψ(x) = x− 1− log x, x > 0.

Assume support inclusion so that ϵ <∞:

ϵ ≡ lim
T→∞

1

T
DKL

(
PQ,[0,T ] ∥PQ̃,[0,T ]

)
=
∑
i

πiλi

[
ψ

(
λ̃i
λi

)
+DKL(pi∥p̃i)

]
. (A.1)

Lemma B.1 (A sharp elementary inequality). For all x > 0,

(x− 1)2 ≤ 2(x+ 1)ψ(x), ψ(x) = x− 1− log x.

Proof. Let g(x) = 2(x+1)ψ(x)−(x−1)2. Then g(1) = g′(1) = 0 and g′′(x) = 2
(
1− 1

x+
1
x2

)
> 0

for all x > 0. Hence g(x) ≥ 0.

Theorem B.2 (Rate closeness). Let S =
∑

i πi|λi − λ̃i|. Then

S ≤ ϵ+
√
ϵ2 + 4ϵλ̄ ≤ 2ϵ+ 2

√
ϵλ̄ ≤ 4

√
ϵλ̄ if ϵ ≤ λ̄.

Proof. By Lemma B.1 with x = λ̃i/λi,

|λi − λ̃i| ≤ λi

√
2
(
1 +

λ̃i
λi

)
ψ
( λ̃i
λi

)
.

Summing with weights πi and applying Cauchy–Schwarz,

S ≤
√
2
(∑

i

πiλiψ
( λ̃i
λi

))1/2(∑
i

πi(λi + λ̃i)
)1/2

.

By equation A.1,
∑

i πiλiψ(λ̃i/λi) ≤ ϵ. Also,
∑

i πi(λi+λ̃i) ≤ 2λ̄+S. Hence S ≤
√
2ϵ
√

2λ̄+ S,
which is equivalent to S2 − 2ϵS − 4ϵλ̄ ≤ 0. The claimed bounds follow.
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Lemma B.3 (Pinsker and the jump kernels). Let T =
∑

i πiλiTV(pi, p̃i), where TV(·, ·) = 1
2∥·−·∥1.

Then
T ≤ 1√

2

√
λ̄ ϵ.

Proof. Pinsker gives TV(pi, p̃i) ≤
√
DKL(pi∥p̃i)/2. By Cauchy–Schwarz,

T ≤
∑
i

πiλi

√
1
2DKL(pi∥p̃i) ≤

1√
2

√(∑
i

πiλi

)(∑
i

πiλiDKL(pi∥p̃i)
)
,

and the second factor is ≤ ϵ by equation A.1.

Definition B.4 (Weighted operator norm). For a linear operator G on functions f : S → R set

∥G∥∞→1,π = sup
∥f∥∞≤1

∑
i

πi |(Gf)i|.

Lemma B.5 (Mixing of the skeleton and dQ(s)). Fix α ≥ maxi λi and set R = I + α−1Q. If R is
irreducible and aperiodic, there exists ρ ∈ [0, 1) with

sup
f⊥1

∥Rkf∥2,π
∥f∥2,π

≤ ρk.

Consequently, with λ = α(1− ρ),

dQ(s) := sup
i

TV
(
Ps(i, ·), π

)
≤ 1

2

√
1

πmin
− 1 e−λs, s ≥ 0.

Proof. Standard Perron–Frobenius/spectral arguments for finite chains imply ρ < 1. Using ∥f∥22,π−
∥Rf∥22,π =

∑
j πjVarR(j,·)(f) ≥ 0, equality forces f to be constant on the strongly connected

graph, hence a scalar multiple of 1. The TV bound follows from Jensen and the L2(π) contraction
together with Ps = E[RNs ] with Ns ∼ Poisson(αs).

Proposition B.6 (Generator closeness). With S, T as above,

∥Q− Q̃∥∞→1,π ≤ 2S + 2T.

Consequently, if ϵ ≤ λ̄ then

∥Q− Q̃∥∞→1,π ≤
(
8 +
√
2
)√

λ̄ ϵ.

Proof. For f with ∥f∥∞ ≤ 1,∑
i

πi
∣∣(Q− Q̃)f(i)

∣∣ ≤∑
i

πi|λi − λ̃i| |f(i)|+
∑
i̸=j

πi
∣∣λipij − λ̃ip̃ij∣∣ |f(j)|

≤
∑
i

πi|λi − λ̃i|+
∑
i ̸=j

πiλi|pij − p̃ij |+
∑
i ̸=j

πip̃ij |λi − λ̃i|

≤ 2
∑
i

πi|λi − λ̃i|+ 2
∑
i

πiλiTV(pi, p̃i).

Take the supremum over ∥f∥∞ ≤ 1. Combine with Theorems B.2 and Lemma B.3.

Theorem B.7 (Semigroup closeness). For all t ≥ 0,

∥Pt−P̃t∥∞→1,π ≤ 2 ∥Q−Q̃∥∞→1,π

∫ t

0

dQ̃(s) ds ≤ ∥Q−Q̃∥∞→1,π min

{
t,

1

λ

√
1

πmin
− 1

}
.

In particular, if ϵ ≤ λ̄ then

∥Pt − P̃t∥∞→1,π ≤ (8 +
√
2)
√
λ̄ ϵ ·min

{
t,

1

λ

√
1

πmin
− 1

}
.

Proof. Duhamel’s formula gives Pt − P̃t =
∫ t

0
Pt−s(Q − Q̃)(P̃s − Π̃) ds, since (Q − Q̃)Π̃ = 0.

Using ∥Pt−s∥1→1,π ≤ 1, ∥P̃s− Π̃∥∞→∞ = 2 dQ̃(s), and Proposition B.6 yields the first inequality.

The second follows from Lemma B.5 and the trivial bound
∫ t

0
dQ̃(s) ds ≤ t.
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C PROOF OF THEOREM 3.1

Proof. Let (G,E,Q) be the high-dimensional data graph. If we sample a positive edge (i, j) ∈ E
with frequency wij and apply the attraction gradient −∇ log Q̃ij(Y ) to the embedding, then in
expectation the positive contribution is

E[∆Y(i,j),pos] = wij

(
−∇ log Q̃ij(Y )

)
=

1

Pmax
πi,QQij

(
−∇ log Q̃ij(Y )

)
,

since wij = πiQij/Pmax.

For the repulsive component, fix a source node i ∈ [n]. Each positive update anchored at i triggers
nneg uniform draws j ∈ {1, . . . , n} \ {i}. Thus a particular destination j is selected with frequency

nneg

n− 1

∑
k: (i,k)∈E

wik.

Multiplying the repulsion gradient∇Q̃ij(Y ) by the scaling factor

ρi = πi,Q
α

Pmax

n− 1

nneg
∑

k: (i,k)∈E wik

yields

E[∆Y(i,j),neg] = ρi ·
(

nneg

n−1

∑
k: (i,k)∈E

wik

)
· ∇Q̃ij(Y )

=
α

Pmax
πi,Q · ∇Q̃ij(Y ),

where the factors (n− 1), nneg, and
∑

k: (i,k)∈E wik cancel exactly.

Summing the terms over all i and j ̸= i gives

E[∆Y | Y ] =
∑
i,j ̸=i

(
E[∆Y(i,j),pos] + E[∆Y(i,j),neg]

)
(19)

= −
∑
i,j ̸=i

1

Pmax
πi,QQij

(
∇ log Q̃ij(Y )

)
+
∑
i,j ̸=i

α

Pmax
πi,Q · ∇Q̃ij(Y ) (20)

=
1

Pmax

− ∑
(i,j)∈E

πi,QQij∇ log Q̃ij +
∑
i,j ̸=i

α πi,Q ∇Q̃ij(Y )

 (21)

= 1
Pmax

∇J (Y ). (22)

D ADDITIONAL EXPERIMENTAL DETAILS
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D.1 ADDITIONAL QUALITATIVE AND BENCHMARK EXPERIMENTS ON TOY DATASETS

Here we provide qualitative visualizations on standard synthetic manifold learning benchmarks with
known ground-truth structure. These toy datasets allow us to directly assess each method’s ability
to preserve topology, handle non-convex geometries, and unfold complex manifolds where the true
structure is known a priori.

Figure 2: Comprehensive 2D embedding comparisons across methods. We visualize embeddings
produced by DAE/, UMAP, t-SNE, and TriMAP on each dataset, demonstrating qualitative differ-
ences in structure preservation. DAE consistently maintains both local neighborhood relationships
and global topology across diverse biological contexts.

D.2 SCALING-LAWS AND RUNTIME

We analyze the computational efficiency and scaling behavior of DAE compared to existing meth-
ods. The computational time increases and is extremely close linear runtime as seen in figure ??

15
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Figure 3: Quantitative performance metrics across all 18 ZADU evaluation criteria. Extended results
showing mean and standard deviation across five random seeds for each method-dataset combina-
tion. Bold values indicate best performance, with DAE achieving top scores in metrics that balance
local and global structure preservation.

D.3 CUDA LARGE-SCALE EXPERIMENT

We constructed the benchmarking dataset by filtering the CELLxGENE corpus with the follow-
ing parameters: species = Homo sapiens, disease = normal, and assay = 10x
3′ v3. After filtering, datasets were grouped by tissue general and ranked by cell count.
We then selected the largest dataset, corresponding to brain. Cells were further filtered to retain only
those with n raw > 300. We selected 5,000 highly variable genes.

We trained a scVI model with the following settings. Model initialization used n hidden=512,
n latent=50, n layers=2 and gene likelihood="nb". Training was performed with
max epochs=100, train size=0.9, and batch size=50,000. The optimizer plan was
set with lr=1e-4 and n epochs kl warmup=20.

All training and embedding runs used a compute node equipped with an NVIDIA H100 GPU, 100
GB of RAM, and 24 CPU cores (CUDA 12.2).
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Figure 4: Synthetic manifold learning benchmark using Swiss roll with hole dataset. This chal-
lenging topology tests each method’s ability to (a) preserve the continuous manifold structure, (b)
maintain the hole (avoiding spurious connections), and (c) correctly unfold the spiral. DAE’s Path-
KL objective naturally respects the manifold’s geometry by modeling diffusion paths rather than
forcing Euclidean distances. The ablation shows how different embedding change just by virtue of
increasing/decreasing the number of dataspoints.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

%
20

 o
f T

ot
al

t-SNE UMAP TriMap PaCMAP LocalMAP DAE

%
40

 o
f T

ot
al

%
60

 o
f T

ot
al

%
80

 o
f T

ot
al

%
10

0 
of

 To
ta

l

Figure 7: Synthetic manifold learning benchmark using Swiss roll with hole dataset. This chal-
lenging topology tests each method’s ability to (a) preserve the continuous manifold structure, (b)
maintain the hole (avoiding spurious connections), and (c) correctly unfold the spiral. DAE’s Path-
KL objective naturally respects the manifold’s geometry by modeling diffusion paths rather than
forcing Euclidean distances. The ablation shows how different embedding change just by virtue of
increasing/decreasing the number of dataspoints.
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Figure 8: UMAP embeddings of 9.5M brain datasets from the CELLxGENE corpus.
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Figure 9: DAE embeddings of 9.5M brain cells from healthy human tissue (CELLxGENE). Our
CUDA implementation scales efficiently to datasets of this size.
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