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Abstract

In fully cooperative tasks, multi-agent credit assignment makes the value function1

approximation difficult, resulting in learning collaboration challenging in Multi-2

Agent Reinforcement learning (MARL). In contrast, Evolutionary Algorithm (EA),3

without requiring value function, has been demonstrated to achieve competitive4

performance with RL and further improve RL in single-agent settings. To develop5

the potential of EA to further improve MARL, we propose a novel learning frame-6

work called MARL with Representation Asymmetry and Collaboration Evolution7

(RACE). Besides the MARL team, RACE maintains an additional population of col-8

laborative teams. RACE decomposes the policies controlling the same member in9

different teams into the nonlinear shared observation representations and individual10

linear policy representations, i.e., Representation Asymmetry. The shared observa-11

tion representations convey useful knowledge to control specific members learned12

by all teams of the population collectively. Based on the shared representations,13

each team can be considered as a composition of different policy representations14

instead of different nonlinear policy networks, which constructs a favorable space15

for collaboration. To achieve effective collaboration, RACE evolves the population16

through evolutionary algorithm and provides diverse samples to the MARL team.17

The MARL team trains based on the diverse samples and injects the optimized team18

into the population to participate in the evolution. Besides, we design the novel19

agent-level crossover and mutation operations that can be performed to promote20

team exploration and individual exploration. The experiments in complex contin-21

uous control tasks Multi-Agent MuJoCo and discrete micromanipulation control22

tasks SMAC show that RACE can significantly improve the MARL algorithms.23

To our knowledge, RACE has demonstrated for the first time that EA can assist24

MARL in achieving better collaboration in complex collaborative tasks.25

1 Introduction26

Multi-Agent Reinforcement learning (MARL) shows the potential to solve complex real-world27

problems and has been applied in many practical domains such as Robot Control [6], Game AI [21],28

Transportation [9] and etc. In MARL, the agents interact with the environment and other agents to29

collect samples. With function approximation like deep neural networks, the agents can be optimized30

with gradient updates. However, agents often receive a team reward for all the agents, which makes it31

difficult to approximate a value function to determine the contribution of each agent to the overall32

team [17]. Moreover, the MARL algorithms suffer from the problem of non-stationarity [15], since33

the agents learn concurrently and continuously affect other agents, which stems from breaking34

the Markov assumption that governs most single-agent RL algorithms. One way to deal with the35

non-stationary problem is to train all agents in a centralized fashion like single-agent RL. However,36

this paradigm is not scalable as the number of agents increases [10]. To balance the challenges37
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imposed by non-stationarity and scalability, the Centralized Training with Decentralized Execution38

(CTDE) [10] paradigm is proposed. During centralized training, agents are granted access to other39

agents’ information and possibly the global state, while during decentralized execution, agents make40

decisions independently based on their individual policies. However, The problem of non-stationarity41

still remains. The above two issues make MARL learning collaboration challenging.42

Evolutionary Algorithm (EA) [3, 5] is a bionic algorithm that simulates the natural law of genetic43

evolution. EA is a class of heuristic algorithms that do not rely on gradient information for policy44

search and optimization. which has been demonstrated to be competitive with RL in single-agent45

settings. EA maintains a population of individuals and searches for favorable solutions by iteration.46

In each iteration, three operations need to be performed: evaluation operation, selection operation,47

and genetic operation. Specifically, each individual needs to interact with the environment to get its48

fitness according to the evaluation metrics. Subsequently, we selected individuals as parents by fitness49

based on selection mechanisms (e.g., Select individuals with the highest fitness). Finally, parents50

generate the next generation through inheritance and mutation. Different from MARL, EA is heuristic51

and offers several strengths: 1) EA does not require an approximation function but directly inherits52

and varies individuals of the population according to fitness. 2) EA does not require formalizing53

the problem as Markov decision process (MDP) and thus does not suffer from the non-stationarity54

problem [11]. 3) EA has strong exploration ability, robustness and stable convergence [8]. Despite55

the advantages, one major drawback of EA is the low sample efficiency in evaluating each individual56

of the population. This issue becomes more acute When solving high-dimensional complex tasks [8].57

Although there are many efforts to combine EA with RL under single-agent settings [8, 7, 4, 22], the58

potential of EA in MARL settings has not been fully exploited. In this paper, we propose a novel59

framework called MARL with Representation Asymmetry and Collaborative Evolution (RACE).60

Specifically, RACE introduces an additional population of teams besides the MARL team. However,61

maintaining and optimizing independent nonlinear policy networks for each team is very inefficient,62

neglecting to share the useful knowledge learned across teams. To solve the problem, we decompose63

the policies controlling the same member in different teams into a nonlinear shared observation64

representation and independent linear policy representations. We refer to the different representation65

scopes (shared/individual + observation/policy representation) of the policy construction as repre-66

sentation asymmetry. The observation representations responsible for sharing the useful knowledge67

of controlling different members across teams are optimized towards an integrated update direction68

derived from value function maximization regarding all the EA teams and the MARL team collec-69

tively. Building on the foundation of abundant shared knowledge, each team can be considered as70

a collection of policy representations and searches for superior collaboration in the linear policy71

representation space rather than in the nonlinear parameter space as the convention. To facilitate col-72

laboration through evolution, the EA teams with superior collaboration (i.e., high fitness) are selected73

to produce new teams, which explore better collaboration. Besides, the EA teams provide diverse74

samples generated during the evaluation phase for the MARL team, which optimizes based on the75

samples and injects the optimized team policy into the population periodically. To achieve effective76

evolution, we propose the novel agent-level crossover and mutation. The agent-level crossover only77

exchanges the corresponding policy representations in the two selected teams, which explores better78

team composition. The agent-level mutation perturbs the policy representation for the specific agent79

in the team, which facilitates individual exploration for discovering better collaboration. Importantly,80

RACE can be easily combined with most policy-based MARL algorithms. Our experiments show81

that RACE significantly accelerates the MARL algorithms, outperforming other baseline algorithms82

in continuous complex control tasks (Multi-Agent MuJoCo) and discrete micromanagement tasks83

(SMAC). We summarize our major contributions below:84

• We propose a novel framework RACE to further exploit the potential of EA in MARL.85

To effective sharing knowledge across teams, the policies controlling the same member86

are composed of the nonlinear shared observation representations and linear individual87

policy representations, i.e., Representation Asymmetry, making each team formed by a88

collection of policy representations and effectively search for collaboration in linear policy89

representation space.90

• To achieve collaboration by evolution, the EA teams with superior collaboration (i.e., high91

fitness) are retained and selected as parents to produce new teams, which can explore better92

collaboration. For effective evolution, we devise agent-level crossover and mutation: the93

agent-level crossover exchanges the policy in different teams, which can search for better94

team composition; the agent-level mutation adds perturbations for individual policies in the95

team to facilitate individual exploration.96
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• We empirically show that RACE significantly improves MARL algorithms and consistently97

outperforms related methods on both continuous control tasks MAMUJOCO and discrete98

control StarCraft II micromanagement environments.99

2 Background100

2.1 Preliminaries101

We consider a fully cooperative multi-agent task where a team of agents are situated in a stochastic,102

partially observable environment, it can be modeled as a decentralised partially observable Markov103

decision process (Dec-POMDP) [14], which can be defined as a tuple: ⟨N ,S,U ,O, T ,R, γ⟩. Here104

N = {1, · · · , N} denotes the set of N agents. In Dec-POMDP, the full state of the environment105

st ∈ S cannot be observed by agents at each time step t. Each agent i ∈ N can only observe its106

individual observation oit determined by observation function O(st, i), each agent i uses a stochastic107

policy πi to choose actions uit ∼ πi(·|oit) ∈ U i, yielding the joint action ut = {uit}Ni=1 ∈ U .108

After executing ut in state st, the environment transits to the next state st+1 according to transition109

function T (st, ut) and agents receive a common reward rt from R(st, ut), with a discount factor110

γ ∈ [0, 1). We denote the joint policy as π = (π1, · · · , πN ) ∈ Π, where Π is the joint policy space. In111

cooperative MARL, the collaborative team aims to find a joint policy to maximize the total expected112

discounted return, denoted by J(π) = Eπ [
∑∞
t=0 γ

trt]. For example, MADDPG [10]/MATD3 [1]113

learns a centralized value function Qψ(st, ut) to optimize the decentralized policies with Q-value114

maximization. To evaluate the agent’s contribution to the team, QMIX [17]/FACMAC [16] maintains115

a factored value function Qtot(st, {Qi}Ni=1) for credit assignment.116

In addition to the MARL approaches, we introduce some necessary knowledge about Policy-extended117

Value Function Approximator [20] (PeVFA) which we adopt in RACE. PeVFA can preserve the118

values of multiple policies with only one value function. Concretely, given some representation χπ of119

policy π, a PeVFA parameterized by θ takes as input χπ additionally, i.e., Qθ(s, a, χπ). Through the120

explicit policy representation χπ, one appealing characteristic of PeVFA is the value generalization121

among policies (or policy space).122

Evolutionary Algorithm (EA) [3, 5] is a class of population-based black-box optimization methods.123

where a population of policies P = {π1, · · · , πn} is maintained. EA performs policy search by124

iteration. In each iteration, all agents interact with the environment to obtain the estimates of policy125

fitness {f(π1), · · · , f(πn)} where the fitness can be defined as the Monte Carlo (MC) return for126

e episodes f(π) = 1
e

∑e
i=1[

∑T
t=0 rt | π] or other forms. With some selection criteria (e.g., select127

individuals with the highest fitness), the parents are selected from the population to produce the next128

generation in many ways such as genetic operators [13]. Specifically, the selected parents πi and πj129

produce offspring π′
i and π′

j by performing the crossover operator, i.e., π′
i, π

′
j = Crossover(πi, πj)130

or the mutation operator π′
i = Mutation(πi). General crossover and mutation operate on the131

parameters of policies. Typically, k-point crossover is randomly exchange segment-wise (network)132

parameters of parents while Gaussian mutation adds Gaussian noises to the parameters. With the133

diversity brought by abundant candidates and consistent variation, EA has strong exploration ability134

and is more robust to local optima compared to RL.135

2.2 Related Work136

Centralized Training & Decentralized Execution [10] (CTDE) is a popular paradigm in MARL,137

which has better scalability & deployability. In the training phase, the global information can138

be utilized for optimization. In the execution phase, the agents make decisions based on their139

policies. For example, MADDPG [10]/MATD3 [1] uses a centralized value function to optimize140

decentralized policies. VDN [19], QMIX [17] and FACMAC [16] achieve CTDE through value141

function factorization.142

Multi-Agent Evolutionary Reinforcement Learning (MERL) tries to introduce ERL into multi-143

agent settings. Specifically, ERL combines EA and RL to blend their complementary strengths in144

single-agent settings. ERL maintains a population and an RL agent. Individuals in the population145

interact with the environment to provide the RL with diverse samples, and the RL agent trains146

on the samples and periodically injects optimized policy into the population to participate in the147

evolution. ERL has better exploration ability, convergence and robustness than RL algorithms, and148

is not affected by deceptive and delayed rewards. Based on the interaction schema of ERL, MERL149
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Figure 1: The conceptual illustration of Representation-based Team Construction (RTC) in 3-Agent
Hopper task. All policies are composed of the nonlinear shared observation representation Zϕi

and
an individual linear policy representation W i

j where j denotes the team index and i denotes the agent
index in one team. RACE maintains a population of teams (denoted by green, red and yellow) and a
MARL team (grey). By sharing the observation representation, each team is composed of multiple
policy representations (denoted by hexagon, square and triangle). in the population, each row controls
the same member (joint) and each column constructs the team policy representations {W i

j}Ni=1.

investigates how to make full use of reward signals in a task where both sparse team reward and150

dense agent-specific reward exist. MERL optimizes sparse team reward by evolution and optimizes151

dense agent-specific reward by gradient optimization. However, agent-specific rewards do not exist152

in many tasks, which makes it difficult to apply MERL in practice. Moreover, MERL is evaluated153

in some simple environments and does not validate the effectiveness in complex control tasks and154

micromanipulation tasks.155

3 MARL with Representation Asymmetry and Collaborative Evolution156

This section introduces our framework Representation Asymmetry and Collaborative Evolution to157

improve cooperative MARL. We start by describing the concept of Representation Asymmetry for158

team construction. Then we detail how to optimize the team’s niche, i.e., the shared observation159

representations. Subsequently, we describe how to improve MARL with Collaborative Evolution.160

Finally, we introduce the overview of RACE framework.161

3.1 Team Construction with Representation Asymmetry162

Beyond the MARL team, RACE introduces an additional population of teams. The teams of the163

population and the MARL team explore superior collaboration through evolution and reinforcement,164

respectively. Typically, the teams in the population maintain individual policy networks for decision-165

making and optimization. However, independent team policy construction can prevent common166

knowledge from being shared across teams, resulting in inefficient learning. In the literature on167

Evolutionary Reinforcement learning, ERL-Re2 [2] decomposes the policy into the shared state168

representation and policy representations in single-agent settings. The shared state representation can169

convey common knowledge in populations. Taking this inspiration, we introduce the Representation-170

based Team Construction (RTC) to enable efficient knowledge sharing and thus avoid duplication171

of learning. The illustration of RTC is shown in Fig. 1. Specifically, the policies that control the172

same member in different teams are composed of a shared nonlinear observation representation173

zit = Zϕi
(oit) ∈ Rd (given a observation oit) and an individual linear policy representation W i

j ∈174

R(d+1)×|Ui|, where i donates agent index in one team and j denates the team index. The i-th agents175

in all teams share the same observation representations network Zϕi
(oit) and make decisions by176

combining the shared observation representation and the policy representation:177

πij(o
i
t) = act(Zϕi

(oit)
TW i

j,[1:d] +W i
j,[d+1]) ∈ R|Ui|,

where W i
j,[m(:n)] denotes the slice of matrix W i

j that consists of row m (to n) and act(·) denotes the178

activation function. On the foundation of shared observation representations, the team j is defined as179

Wj = {W i
j}Ni=1 and makes decisions by πj(st) = {π1

j (o
1
t ), · · · , πNj (oNt )}. Intuitively, we expect180

the shared observation representations to provide rich task-related and collaborative knowledge,181

which are favorable for all policies controlling the same member and not specific to any single policy.182

The shared observation representations determine the policy space for the member i denoted by Π(ϕi),183

where we conduct evolution and reinforcement. Formally, we summarize the team construction in184
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RACE below:185

Policy i in team j: πij(o
i
t) = act(Zϕi

(oit)
TW i

j,[1:d] +W i
j,[d+1])

Construction of team j: Wj = {W 1
j ,W

2
j , · · · ,WN

j }
Team policy of team j: πj(st) = {π1

j (o
1
t ), π

2
j (o

2
t ), · · · , πNj (oNt )}

Team Population: P = {W1,W2, · · · ,Wn}

(1)

3.2 Construct Shared Favorable Niches for All Teams186
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Figure 2: Optimization illustration of the shared observation
representations.

To effectively convey useful knowl-187

edge across teams, we learn the188

shared observation representations189

with value function maximization re-190

garding the corresponding policies in191

all teams. Specifically, we learn a cen-192

tralized PeVFA Qθ(s, u,Wj) based193

on the team policy representationsWj194

sampled from the population P; For195

the MARL team, we maintain a cen-196

tralized critic Qψ(s, u) as convention.197

The optimization of the shared obser-198

vation representations are illustrated in Fig. 2. The loss functions of Qθ and Qψ are formulated199

below:200

LQ(θ) = E(s,u,r,s′)∼D,Wj∼P

[
(r + γQθ′ (s′, πj(s′),Wj))−Qθ (s, u,Wj))

2
]
,

LQ(ψ) = E(s,u,r,s′)∼D

[
(r + γQψ′ (s′, π′

marl(s
′))−Qψ (s, u))

2
]
,

(2)

where D is the experience buffer collected by all teams, θ′, ψ′ denote the target networks of the201

PeVFA and the MARL critic, π′
marl denote the target actors.202

For each team in the population and MARL team, an individual update direction of the shared observa-203

tion representation to control a specific member Zϕi
is now ready to obtain by ∇ϕi

Qθ(s, πj(s),Wj)204

for anyWj ∈ P or ∇ϕi
Qψ(s, πmarl(s)) through πj and πmarl respectively. This is the value function205

maximization principle where we adjust Zϕi to induce superior policy (space) for the corresponding206

agents. Zϕi should not take either individual update direction solely; instead, the natural way is207

to take an integrated update direction regarding all the agents. Finally, the loss function of Zϕi
is208

defined:209

LZ(ϕi) = −Es∼D,Wj∼P

[
Qψ (s, πmarl (s)) +Qθ (s, πj (s) ,Wj)

]
, (3)

By minimizing Eq. 3, the shared observation representation Zϕi is optimized towards a superior210

policy space Πϕi
pertaining to all policies that control the same member iteratively.211

3.3 Improve MARL with Collaborative Evolution212

Based on the shared observation representations Zϕi
, all agents controlling the same member in213

different teams optimize their policy representations in the policy space Πϕi . The evolution and rein-214

forcement occur in the linear policy representation space, which leads to more efficient optimization.215

We detail how to improve MARL with collaborative evolution.216

Crossover

Team 2Team 1New Team New Teams

Mutation

Figure 3: Agent-level genetic operators in RACE
for team exploration and individual exploration.

For collaboration, RACE evolve the population217

with n teams with three phases: evaluation, se-218

lection and variation. 1): For evaluation, the219

teams interact with the environment for one220

episode to get the cumulative rewards as the221

fitness. 2): For selection, all teams will be di-222

vided into three categories: elite, winners, and223

discarders. The elite is the best performing team224

that participates in the construction of the next225

generation as a parent throughout. The elite will226

be completely preserved and will not participate227

5



in the subsequent mutation. The winners are selected among the remaining teams through a tourna-228

ment mechanism for the crossover with the elite to produce offspring. Specifically, the winners are229

the best-performing team of a random subset of the population. The winners will be involved in the230

subsequent mutation to increase exploration. The discarders are the teams that are not selected as the231

elite and winners and will be replaced by new teams. 3): For variation, we design the agent-level232

crossover and mutation for both team and individual exploration. For individual exploration, we ran-233

domly exchange the policy representations which control the same member in the two selected teams,234

which helps explore better team composition. For agent exploration, we randomly add parameter235

perturbation to some policy representations for the selected team, which facilitates the exploration of236

individuals in the team. Formally, we formulate the two operations below:237

(Wnew
i ,Wnew

j ) = ((Wi −W di
i ) ∪W di

j , (Wj −W
dj
j ) ∪W dj

i ) = Crossover(Wi,Wj),

Wnew
j = (Wj −W

dj
j ) ∪ P (W dj

j ) = Mutation(Wj),
(4)

where Wi and Wj are two selected teams, di, dj are the randomly sampled subsets of agents indices238

(from 1 toN ), P is the perturbation function which adds Gaussian noise to (or reset) some parameters.239

We use W d to denote the subset of the policy representations of the team with indices d. RACE240

discards poor teams in the population and rebuilds the entire population based on the elite team. The241

mutated population contains three categories: the elite team in the previous generation, the reunited242

elite teams and the mutated elite teams where some teammates are mutated. Based on our proposed243

agent-level operators, the population can achieve more effective and stable evolution, as well as more244

informative in the sense of teams’ and individuals’ semantics.245

Through our evolutionary operators, populations can fully explore the policy space to form collab-246

oration policies that can be directly used for deployment. Besides, the samples generated during247

population exploration can be provided to the MARL team for training. As to the learning of the248

MARL agent Wmarl, it resembles the conventional circumstance except done with respect to the249

linear policy representation and the shared replay buffer D. Taking MADDPG [10] for a typical250

example, the loss function of Wmarl is defined below, based on the centralized critic Qψ (learned by251

Eq. 2):252

LMARL(Wmarl) = −Es∼D

[
Qψi

(s, πmarl(s))
]
. (5)

The MARL team learn from the off-policy experience in the bufferD collected also by both the MARL253

team and the EA teams Meanwhile, the population incorporates the MARL policy representation254

Wmarl at the end of each iteration. By such an interaction, the MARL team policy can participate in255

the evolution of the population, which in turn assists the population in finding collaborative policies.256

3.4 The Algorithm Framework of RACE257

In principle, RACE is a general framework that can be implemented with different policy based258

algorithms. In this paper, we use MATD3 [1] and FACMAC [16] as the basic MARL algorithms. A259

general pseudo-code of RACE is shown in Algorithm 1. In each iteration, the algorithm proceeds260

across three phases (denoted by blue). First, each teams of the population and the MARL team interact261

with the environment and collect the experiences. The teams in the population P obtain the cumulative262

rewards of one episode as the fitness for evolution (Line 4-6). Next, evolution and reinforcement occur263

in the linear policy space offered by the current shared observation representations {Zϕ1
, · · · , ZϕN

}.264

The teams in the population P are optimized with the genetic operators (Line 9-16). The MARL265

team learns with additional off-policy experiences collected by the teams in P and periodically injects266

policies to P (Line 17-18). Finally, the shared observation representations are updated to provide267

superior policy space for the following iteration (Line 19-20).268

4 Experiments269

This section empirically evaluates RACE to answer the following research questions:270

RQ1 (Performance) Can RACE improve MARL and outperform other baselines in complex multi-271

agent cooperative tasks?272

RQ2 (Superior of Components) Does the shared observation representation optimized by the273

centralized PeVFA and Critic better than only using PeVFA/Critic? Are the agent-level crossover and274

mutation effective?275

RQ3 (Parameter Analysis) How much is RACE affected by the hyperparameter α?276
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Algorithm 1: Representation-based Collaborative Evolution (RACE)
1 Initialize: a replay buffer D, the shared observation representation function Zϕ1 , · · · , , ZϕN , the MARL

team Wmarl, the population P = {W1, · · · ,Wn} with the population size n, the MARL centralized critic
Qψ and the centralized PeVFA Qθ (target networks are omitted here)

2 repeat
3 # Rollout both the teams in the population P and MARL team with {Zϕ1 , · · · , ZϕN } and obtain the

fitness
4 Rollout each team in P for one episode and evaluate its fitness {f(W1), · · · , f(Wn)} by summing the

undiscounted reward f(Wi) =
∑T
t=0[rt | Wi].

5 Rollout the MARL team for one episode
6 Store the experiences generated by P and Wmarl to D
7 # Evolution and reinforcement in the linear policy space
8 Train PeVFA Qθ and MARL critic Qψ with D ▷ see Eq. 2
9 Optimize the population: perform the genetic operators (i.e., selection, crossover and mutation).

10 Based on fitness, the population P is divided into the elite, winners, and discarders.
11 while discarders is not completely replaced do
12 Randomly select a team from winners to crossover with the elite. Randomly swap teammates in

the teams to get a new composition team which replaces the team in discarders
13 for Team Wj in winners and discarders do
14 for Team member W i

j in the team Wj do
15 if random number < mutprob then
16 Add minor (90%), drastic (5%) Gaussian perturbations, or reset parameters (5%) to

randomly selected α parameters from W i
j

17 Optimize the MARL agent: update Wmarl (by e.g., MADDPG, MATD3) according to Qψ ▷ see Eq. 5
18 Inject MARL team policy representations to the population P periodically
19 # Improving the policy space through optimizing {Zϕ1 , · · · , ZϕN }
20 Update the shared observation representation: optimize Zϕi with an integrated gradient direction

derived from value function maximization regarding Qθ and Qψ ▷ see Eq. 3
21 until reaching maximum training steps;

4.1 Experimental Setups277

For a comprehensive comparative study, we evaluate RACE in tasks with both continuous and278

discrete action spaces. For continuous tasks, we integrate RACE with MATD3 [1] and evaluate the279

Multi-Agent MuJoCo benchmark [16] on eight cooperative continuous control tasks, where each280

agent can only observe its own joints’ information. For discrete tasks, we integrate RACE with281

FACMAC and evaluate it in the StarCraft II micromanagement environments [18] (SMAC) which282

has high complexity of control and requires learning policies in a large discrete action space. We283

compare RACE with the following baselines: MATD3 [1], FACMAC [16], MERL [12] and EA [13].284

We use the official implementation for these methods and implement our method RACE based on285

the codebase of FACMAC and MATD3 with all settings following the original paper. Note that only286

one team rewards are available for these tasks, and MERL cannot be applied to these tasks directly.287

Thus we make MERL optimize team reward through EA and MARL collectively. All statistics are288

obtained based on 5 independent runs. We report the average with 95% confidence regions. For the289

hyperparameters specific to RACE, we set the population size to 5 in all tasks and select α from290

[0.2, 0.5, 1.0] for Multi-Agent MuJoCo and α from [0.01, 0.05, 0.2] for SMAC. All implementation291

details are provided in Appendix A.292

4.2 Performance293

We first evaluate RACE (MATD3) and other baselines in Multi-Agent MuJoCo. In these tasks, agents294

need to cooperate in robot control and different agents control different joints. In our experimental295

setting, agents can not get and observe other agents’ information and global information of the robot,296

which is the most difficult setting in Multi-Agent MuJoCo. The results in Fig.4 show that RACE297

significantly improves MATD3 and outperforms other baselines in most tasks, which demonstrates298

the superior of RACE in challenging continuous control tasks.299

To further verify the generality of the method, we integrate RACE with FACMAC and evaluate it in300

SMAC. The results in Fig.5 show that RACE can further improve FACMAC and outperform other301

baselines, reaching convergence faster and achieving higher performance. Overall, the experiments302
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Figure 4: Performance comparison between RACE (MATD3) and baselines in Multi-Agent MuJoCo.

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

2s_vs_1sc

RACE
MERL
FACMAC
EA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 %

2c_vs_64zg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6) 1e6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Te
st

 w
in

 %

MMM2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

MMM

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

so_many_baneling

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

3s5z

0.2 0.4 0.6 0.8 1.0
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 w

in
 %

2s3z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time Steps (1e6) 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 %

3s_vs_3z

Figure 5: Performance comparison between RACE (FACMAC) and baselines in SMAC.

show that RACE is an effective and general framework that can be integrated with multiple MARL303

algorithms and provide significant improvement in both challenging continuous and discrete tasks.304

4.3 Superior of Components305

To answer RQ2, we first conduct analytical experiments about whether our proposed optimization306

approach for the shared observation representations is efficient. We considered three optimization307

ways: optimize with PeVFA and Critic (ours), optimize with Critic and optimize with PeVFA. The308

results in Fig. 6 show that optimizing the shared observation representations with PeVFA and Critic is309

more effective than only using PeVFA/Critic. The reason is that only optimizing with PeVFA/Critic310

only builds a policy space that is superior for EA teams or the MARL team, which does not take311

advantage of EA and even compromises the performance of the original MARL.312

To verify the superiority of the agent-level operators, we perform ablation experiments on crossover313

and mutation at the agent level and compare it with the normal operators, i.e., operate directly in314

parameter space. The results in Fig. 7 demonstrate that removing either agent-level crossover or315

agent-level mutation degrades performance. This illustrates the importance of team search and316
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Figure 6: Experiments about how to update the shared observation representation. Only using
Critic/PeVFA can not construct a superior policy space for all teams.
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Figure 7: Ablation study on agent-level crossover and mutation operators.
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Figure 8: Analysis on hyperparameter α.

individual search, since team search can help find a better team composition, and individual search317

can help further promote the discovery of effective individuals. Besides, our operators are more318

effective than normal operators, which can deliver more performance gains.319

4.4 Parameter Analysis320

We analyze the only hyperparameter α which controls the degree of variation. The results in Fig. 8321

show that the performance of different α is similar and proper adjustment of α can provide better322

results. For the continuous control tasks, i.e., Multi-Agent MuJoCo, α is chosen from [0.2, 0.7 =323

5, 1.0]. This is mainly because the tasks are generally insensitive to perturbations of the policies,324

and large perturbations are useful for exploration. For the micromanipulation task, i.e., SMAC, α is325

chosen from [0.01, 0.05, 0.2]. This is mainly because these micromanagement tasks are very sensitive326

to small changes in the policies, which can lead to large behavioral differences, so we set a smaller327

value.328

5 Conclusion329

To fully exploit the potential of EA in MARL, we propose a novel framework RACE. In RACE,330

we design the representation-based team construction for effective knowledge sharing. Specifically,331

the policies controlling the same member in different teams are composed of shared observation332

representations and individual policy representations. With the shared observation representations,333

knowledge can be efficiently conveyed across different teams, and collaboration is more easily formed334

in linear policy space. Moreover, the EA teams with superior collaboration (i.e., high performance)335

are selected as parents to produce new teams for collaboration exploration. To achieve effective336

evolution, the agent-level crossover and mutation are proposed to facilitate team policy (composition)337

exploration and individual exploration. Finally, we integrate RACE with different MARL algorithms338

and demonstrate that RACE can further improve MARL in a wide range of cooperative environments339

with both continuous action space and discrete action space. To the best of our knowledge, we show340

for the first time that EA can further improve MARL in complex tasks, i.e., continuous control tasks341

Multi-Agent MuJoCo and complex discrete micromanipulation tasks SMAC.342
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A Method Implementation Details448

All experiments are carried out on NVIDIA GTX 2080 Ti GPU with Intel(R) Xeon(R) CPU E5-2680449

v4 @ 2.40GHz.450

A.1 Implementation of Baselines451

For all baseline algorithms, we use the official implementation. In our paper, there are several452

baselines: MATD3, MERL1, EA2 and FACMAC3. We use the official implementation for comparison.453

MATD3 is a simple extension of the official TD34 implementation in the CTDE framework. To454

integrate with MATD3 and FACMAC, we implemented RACE on the official code and keep the455

other hyperparameters and processes unchanged. We fine-tuned all baselines to provide the best456

performance.457

A.2 Network Architecture458

This section details the architecture of the networks. For the EA process, we use the implementation in459

ERL5. All the processes remain the same. For structures specific to RACE, in Multi-Agent MuJoCo,460

the shared observation representation networks are constructed by two fully connected layers with461

400 and 300 units. The policy representation is the final layer which controls one agent’s actions. In462

SMAC, the shared observation representation networks use the first n-1 layers of policy networks in463

FACMAC. The policy representation is the final layer.464

In RACE (MATD3), PeVFA takes state, action and policy representation as inputs and maintains465

double Q networks which are similar to MATD3. The policy representation can be regarded as466

a combination of a matrix with shape [300, action_dim] (i.e., weights) and a vector with shape467

[action_dim] (i.e., biases) which can be concatenated as a matrix with shape [300+1, action_dim].468

We first encode each vector with shape [300 + 1] of the policy representations with 3 fully connected469

layers with units 64 and leaky_relu activation function. Thus we can get an embedding list with470

shape [64, action_dim] and get the final policy embedding with shape [64] by taking the mean471

value of the embedding list in the action dimension. With the policy embedding, we concatenate472

the policy embedding, states, and actions as the input to an MLP with 2 fully connected layers with473

units 400 and 300 and get the predicted value by PeVFA. The activation functions in PeVFA all use474

leaky_relu. We list structures in Table 1 and 2.475

In RACE (FACMAC), the overall process is the same as RACE (MATD3) except that we use the476

framework structure in FACMAC. FACMAC maintains a shared policy network and a shared critic477

network, in addition to a Qmix Net for credit assignments. We introduce an extra Critic network478

with policy representation inputs and an extra Qmixer network with policy representation inputs.479

The policy representation is processed in the same way as in Table. 2 and subsequently spliced with480

observation and action/Q value as inputs. To better confirm that the performance improvement is481

brought by RACE, we do not maintain a separate shared observation representation for each agent.482

To be consistent, MARL team uses a shared observation representation network and a shared policy483

representation for all agents. But for each EA team, RACE maintains different policy representations484

for each agent.485

Table 1: The structures of the shared observation representation network and policy representations
in MATD3.

Shared Observation Representation Network Policy Representation
(obs_dim, 400) (300, action_dim)

tanh tanh
(400,300)

tanh

1https://tinyurl.com/y6erclts
2https://github.com/ShawK91/Evolutionary-Reinforcement-Learning
3https://github.com/oxwhirl/facmac
4https://github.com/sfujim/TD3
5https://github.com/ShawK91/Evolutionary-Reinforcement-Learning
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Table 2: The structure of PeVFA in RACE (MATD3)

PeVFA
(state-action_dim+ 64, 400) (301, 64)

leaky_relu leaky_relu
(400, 300) (64, 64)
leaky_relu leaky_relu

(300, 1) (64, 64)

A.3 Hyperparameters486

This section details the hyperparameters across different tasks. Only one hyperparameter α need to487

tune across all tasks. Population size is 5 for both RACE (MATD3) and RACE (FACMAC). The488

synchronization period which controls the frequency of the RL policy injected into the population is489

set to 1. We list hyperparameters α which varied across tasks in Table 3 and Table 4.490

Table 3: Details of the hyperparameter α of RACE (MATD3) in Multi-Agent MuJoCo.

Env name α
2-Agent HalfCheetach 1.0
6-Agent HalfCheetach 0.5
2-Agent Ant 1.0
2-Agent Ant-v2 0.5
4-Agent Ant 0.2
3-Agent Hopper 1.0
2-Agent Humanoid 1.0
2-Agent HumanoidStandup 1.0

Table 4: Details of the hyperparameter α of RACE (FACMAC) in SMAC.

Env name α
2c_vs_64zg 0.2
2s_vs_1sc 0.2
MMM 0.2
MMM2 0.05
3s5z 0.05
2s3z 0.01
so_many_baneling 0.01
3s_vs_3z 0.01
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