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Abstract

Object-centric learning aims to decompose an input im-001
age into a set of meaningful object files (slots). These la-002
tent object representations enable a variety of downstream003
tasks. Yet, object-centric learning struggles on real-world004
datasets, which contain multiple objects of complex textures005
and shapes in natural everyday scenes. To address this, we006
introduce Guided Latent Slot Diffusion (GLASS), a novel007
slot attention model that learns in the space of generated008
images and uses semantic and instance guidance modules to009
learn better slot embeddings for various downstream tasks.010
Our experiments show that GLASS surpasses state-of-the-art011
slot attention methods by a wide margin on tasks such as012
(zero-shot) object discovery and conditional image genera-013
tion for real-world scenes. Moreover, GLASS enables the014
first application of slot attention to compositional generation015
of complex, realistic scenes.*016

1. Introduction017

Humans perceive a scene as a collection of objects [35].018
Such a decomposition of the scene into objects makes hu-019
mans capable of higher cognitive tasks like control, reason-020
ing, and the ability to generalize to unseen experiences [25].021
Building on these ideas, object-centric learning (OCL) aims022
to decompose a scene into compositional and modular sym-023
bolic components. OCL methods bind these components024
to latent (neural) representations, enabling such models to025
be applied to tasks like causal inference [59], reasoning [2],026
control [4], and out-of-distribution generalization [15].027

Slot attention models [45], a popular class of OCL meth-028
ods, decompose an image into a set of latent representations029
where each element, called slot, competes to represent a030
certain part of the image. Slot attention methods can be cate-031
gorized as form of representation learning, where the repre-032
sentation (slots) facilitates various downstream tasks such as033
property prediction [15], image reconstruction [32], image034
editing [71], and object discovery [60]. However, numerous035

*The code will be published upon the acceptance of the paper.

Figure 1. (top) High-level architecture of GLASS. GLASS em-
ploys semantic and instance guidance modules to generate a se-
mantic guidance signal using the decoder network and a instance
guidance signal using the encoder features. This helps our method
to learn superior slot embeddings for various downstream tasks
compared to existing slot attention methods. (bottom) GLASS can
perform multiple tasks using the learned slot embeddings, such as
object discovery, compositional generation, conditional generation
(reconstruction), and instance-level property prediction.

promising slot attention methods [45, 62, 63] have remained 036
limited to synthetic and simple datasets [16, 26, 33, 37]. 037
Some recent methods [32, 36, 60, 71] use powerful modern 038
encoder [7, 51] and decoder networks [56] to scale to com- 039
plex real-world imagery [21, 44]. Yet, these models remain 040
restricted to object discovery, lacking the versatility to re- 041
construct or perform compositional generation of realistic 042
images. Moreover, the quality of the obtained slot represen- 043
tations remains limited as witnessed by both qualitative and 044
quantitative results, which show the slots to suffer from the 045
issue of over-segmentation (segmenting an object into multi- 046
ple slots), under-segmentation (segmenting multiple objects 047
into one slot), or imprecise object boundaries. This over- and 048
under-segmentation issue is also known as the part-whole 049
hierarchy ambiguity [29–31]. 050
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To overcome the above issues, we propose Guided-Latent051
Slot Diffusion (GLASS), a slot attention-based model that052
uses a pre-trained diffusion decoder for reconstructing the053
input image and an MLP decoder for reconstructing the en-054
coder features. GLASS relies on two key observations: (1)055
Learning in the space of images generated using diffusion056
models allows to generalize well to real images because the057
distribution of the generated images mimics the real data058
distribution very well [23, 58, 64, 66], and (2) learning with059
generated images allows us to use a pre-trained diffusion060
model, such as Stable Diffusion [56], as a pseudo ground-061
truth generation engine. To this end, GLASS relies on a062
novel semantic guidance module, which uses the diffusion063
decoder to generate the pseudo-semantic mask. The seman-064
tic guidance module helps GLASS solve over-segmentation065
issues and obtain precise boundaries.066

However, using semantic guidance alone biases the slots067
to semantic classes instead of instances in an image, caus-068
ing under-segmentation. To resolve this issue, we propose069
an instance module in the form of an MLP decoder, which070
reconstructs the encoder features to counteract slots drift-071
ing towards semantic classes, and instead guides them to072
be instance focused. This enables the slots to learn better073
slot embeddings, which are more instance centric. GLASS’s074
use of semantic and instance guidance modules coupled075
with a diffusion decoder enables it to faithfully reconstruct /076
conditionally generate the input image. More importantly,077
GLASS for the first time enables the compositional genera-078
tion of complex real-world scenes with slot-attention meth-079
ods. Fig. 1 illustrates the high-level architecture and the080
downstream tasks our model supports.081

Through our experiments, we show that GLASS outper-082
forms existing SotA OCL methods [32, 36, 60, 71], signifi-083
cantly improving instance-level object discovery (ca. +9%084
mIoUi on VOC [21] and +5% mIoUi on COCO [44]). Our085
method also outperforms SotA OCL methods on the task of086
(zero-shot) instance-level segmentation (on Object365 [61]087
and CLEVRTex [37] datasets). GLASS further establishes a088
new SotA FID score among OCL methods for conditional089
image generation tasks and shows that compositional gener-090
ation is possible with slot attention models for complex real-091
world scenes. Moreover, we find that our approach surpasses092
language-based methods [46, 54, 70, 77] for semantic-level093
object discovery. Finally, we show that GLASS outperforms094
weakly-supervised variant of a SotA OCL method [32] that095
rely on extra information like bounding box information or096
knowing the number of objects in a scene.097

2. Related work098

Object-centric learning decomposes a multi-object scene099
into a set of composable and meaningful entities using an100
autoencoding objective [5, 13, 18, 20, 24, 25, 34, 45, 63].101
OCL methods are object-level representation learning ap-102

Semantic-level OD methods OCL methods
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(1) iOD ✗ ✗ ✗ ✗ ✗ ✗ (✓) ✓ ✓ ✓ ✓
(2) sOD ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓ ✓ ✓ ✓
(3) Latent object file (PP) ✗ ✗ ✗ ✗ ✗ ✗ (✓) ✓ ✓ ✓ ✓
(4) Cond. Gen. (CG) ✗ ✗ ✗ ✗ ✗ ✗ (✓) ✗ ✗ ✓ ✓
(5) Comp. Gen. (CPG) ✗ ✗ ✗ ✗ ✗ ✗ (✓) ✗ ✗ (✓) ✓

Table 1. GLASS’s capabilities compared with prior work for
solving downstream tasks on real-world scenes. The rows indi-
cate if each method (1) can perform instance-level object discovery
(OD); (2) can perform semantic-level OD; (3) provide latents for
each object, which enables instance-level property prediction; (4)
can reconstruct the given image from its latents; and (5) can com-
positionally generate new scenes. (✓): limited performance.

proaches that can be employed for various downstream tasks 103
(cf . Tab. 1). Among OCL approaches, slot attention methods 104
have proven the most effective; they employ an architectural 105
inductive bias to learn object embeddings, so-called “slots”, 106
from the input image. Until recently, a major obstacle for 107
slot attention had been their poor performance on real-world 108
images [74]. This was partially alleviated using large-scale 109
pre-trained models as encoder [60] and decoder [32, 71], 110
which allowed to apply slot attention beyond synthetic im- 111
agery. Yet, these models still suffer from the part-whole 112
hierarchy ambiguity, hampering the quality of the learned 113
slot embedding, resulting in poor downstream performance. 114
Our method aims to solve this issue using our proposed 115
semantic and instance guidance modules. 116

Weakly-supervised object-centric learning. Several 117
works have tried to tackle the part-whole hierarchy ambi- 118
guity plaguing OCL with additional weak supervision sig- 119
nals. Video-based OCL methods used motion [41, 65] and 120
depth cues [17], while image-based OCL methods have used 121
position [40] and shape [16] information. Existing weakly- 122
supervised image-based OCL methods [16, 40] remain lim- 123
ited to synthetic datasets, while we focus on complex real- 124
world scenes. GLASS also uses auxiliary information in the 125
form of automatically generated captions. To show the effec- 126
tiveness of our method, we additionally compare GLASS to 127
a weakly-supervised variant of StableLSD [32] (since this 128
model is closest in capabilities to GLASS, see Tab. 1). 129

Semantic-level object discovery. Recently, there has been 130
a large interest in using pre-trained features from large-scale 131
foundational models [6, 51, 53, 56] for semantic segmenta- 132
tion. Some of these models [9, 14, 38, 39, 48, 50, 52, 54, 70, 133
73] rely on language cues like image-level labels or captions 134
to extract features, which are suitable for semantic segmen- 135
tation. Other methods like [12, 47, 49, 75] do not require 136
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any additional information and use clustering or graph cuts137
with pre-trained features for semantic segmentation. Unlike138
OCL methods, these approaches are specifically designed to139
perform semantic-level segmentation, i.e. they cannot distin-140
guish between objects of the same class. Also, these methods141
cannot generate images conditionally or compositionally, nor142
perform object-level reasoning (see Tab. 1). We compare143
such methods with a semantic-focused version of GLASS to144
show its efficacy on semantic-level object discovery.145

3. Preliminaries146

Slot attention [45] is an iterative refinement scheme based147
on a set S ∈ RO×dslots , composed of O slots of dimension148
dslots, which are initialized either randomly or via a learned149
function. Once initialized, the representations of the slots are150
updated iteratively using a GRU network [11] based on the151
feature matrix H ∈ RN×dinput of the encoded input image,152
containing N feature vectors of dimension dinput, and the153
previous state of the slots. Slot attention uses standard dot-154
product attention [67] for computing the attention matrix155
A ∈ RN×O, normalized across slots. This normalization156
causes the slots to compete with each other, leading to a157
meaningful decomposition of the input image. The slots are158
updated using a weighted combination of the input features159
H and the computed attention matrix A. Formally, this can160
be written as161

Ŝ =

(
Ai,j∑N
l=1 Al,j

)⊤

i,j

v(H)

with A(S,H) = softmax

(
k(H)q(S)⊤√

D

)
,

(1)162

where k, q, and v are learnable linear functions for mapping163
the slots and input features to the same D dimensions. The164
updated set of slots Ŝ is fed into a decoder model to recon-165
struct the input. The decoder model can be a simple MLP166
[69], a transformer [63], or a diffusion model [32, 71]. Slot167
attention methods are trained using the mean squared error168
loss between the input and reconstructed input signal.169

Latent diffusion models (LDM) [56] learn to generate an170
image by first iteratively destructing the image by adding171
Gaussian noise at each time step. This noising process is172
called the “forward process”. The “reverse process”, or gen-173
eration step, then involves learning a neural network ϵθ that174
predicts the noise added in each forward diffusion step and175
removes the noise from the noisy image at each time step.176
An additional conditioning signal, most commonly in the177
form of text, is provided to the diffusion model for enabling178
conditional generation from the diffusion model. The pa-179
rameters of ϵθ are learned by minimizing the mean squared180
error between the predicted and ground-truth noise added181
for each time step in the denoising process. Once trained, an182

image can be generated by sampling a random noise vector 183
and running the reverse process with a given conditional 184
signal. The most common choice for the denoising network 185
ϵθ is a U-Net [57] with layers of self- and cross-attention at 186
multiple resolutions. The cross-attention layers cross-attend 187
between the conditioning signal and the pixel features. 188

4. Guided Latent Slot Diffusion (GLASS) 189

GLASS is based on training a slot attention module on the 190
features of a DINOv2 [51] (encoder) model and uses a pre- 191
trained Stable Diffusion (SD) model [56] (decoder) to recon- 192
struct the image, as well as a small MLP model to reconstruct 193
the encoder features. GLASS leverages the diffusion decoder 194
and a pre-trained caption generation model [43] to create a 195
guidance signal (segmentation masks) to guide slots. 196

A key design choice in our proposed method is to learn 197
the slot attention module in the space of generated images 198
from a pre-trained diffusion model. This enables us to use 199
the cross-attention layers in the U-Net [57] of the diffusion 200
decoder for obtaining the semantic mask for the given image. 201
Let us now describe each step in detail. 202

Conditional image generation. Given an input image 203
Iinp, we first pass it through a caption generator (BLIP-2 204
[43]) to generate a caption Pcap that describes the input im- 205
age. We extract the nouns from the generated caption using 206
a part-of-speech (POS) tagger [3] and retain those nouns, 207
C = {c1, c2, . . . , ck}, that belong to the set of COCO’s class 208
labels. We then create a prompt, P = [Pcap; C], by concate- 209
nating the generated caption and the extracted class labels. 210
This prompt P is fed into a text embedder, here CLIP [53], to 211
obtain an embedding Y ∈ RU×dtoken , where U is the number 212
of tokens of dimension dtoken. We then generate an image 213
Igen by sampling random noise from N (0, I) and running 214
the “reverse process” on a pre-trained diffusion model with 215
Y as a conditioning signal. 216

Pseudo ground-truth generation module. For extract- 217
ing the cross-attention map at time t for layer l from the 218
diffusion model, we create a new prompt consisting of a 219
single token, namely one of the class tokens from C. The 220
cross-attention map for the target label can be computed 221
using standard dot-product attention between the linear pro- 222
jections of the ground-truth class label embedding and the 223
noisy image features in a common d-dimensional space. 224
This is done for each target class label in C. The final cross- 225
attention map ACA ∈ [0, 1]H×W×C is obtained by resizing 226
and averaging the extracted cross-attention maps across dif- 227
ferent time steps and resolutions. Here, H and W are the 228
sizes of the input embedding and C is the number of target 229
classes. The obtained cross-attention maps are often noisy 230
and require further refinement. Recently, several works have 231
addressed the problem of refining such cross-attention maps 232
[39, 50, 70]. We follow [50] and use self-attention maps for 233
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Figure 2. Network architecture of GLASS. 1 The input image Iinp is fed to a prompt generator for generating a prompt P , which is
obtained by concatenating the generated caption Pcap and the extracted class labels from Pcap. 2 A random noise vector, along with the
generated prompt P , is used to generate an image Igen using a pre-trained diffusion decoder module. 3 The cross-attention layers of the
diffusion model, along with self-attention layers, are used in the pseudo ground-truth generation module to generate the semantic mask Mgen

for Igen. 4 The generated image is passed through an encoder model (DINOv2) followed by a slot attention module to generate slots. 5 The
slots are matched with their corresponding object masks from Mgen using the Hungarian matcher module. 6 The slot attention module is
trained end-to-end using the mean squared error (LRecon) between the reconstructed (Irecon) and the generated (Igen) image, and our semantic
(LSemantic) and instance (LInstance) guidance losses. GLASS is trained on generated images only; the real image is used for prompt generation.

refining the cross-attention maps. In particular, the refined234
mask Mref is obtained by exponentiating the self-attention235
map ASA ∈ [0, 1]H×W×H×W and multiplying with the236
cross-attention map ACA as described in [50]. The final237
semantic mask Mgen is obtained by taking the pixel-wise238
argmax of Mref for all target class labels in C to find which239
class is responsible for a given pixel. Finally, a range-based240
thresholding is used to classify each pixel as foreground or241
background. See supplemental for details.242

Slot matching. Once the images Igen and their correspond-243
ing pseudo ground-truth semantic masks Mgen are generated,244
we can use these semantic masks to guide the slots. First,245
we pass the generated image Igen through the encoder and246
the slot attention module to obtain a slot decomposition. We247
extract the predicted masks for each slot using the attention248
matrix A(S,H) from Eq. (1) and resize them to the resolu-249
tion of the generated semantic mask Mgen. We then assign250
each predicted mask to the components of the generated251
semantic masks. This akin to solving a bipartite match-252
ing problem for which we use Hungarian matching [42].253
Formally, given O slots with their predicted masks and a254
semantic mask containing F segments, the binary matching255
matrix P ∈ {0, 1}O×F can be computed using the Hungar-256
ian algorithm that minimizes the cost ci,j of assigning slot257
oi to segment mj in the generated mask Mgen:258

min
P

O∑
i=1

F∑
j=1

−ci,jpi,j , (2)259

where pi,j ∈ {0, 1} indicates whether oi is matched with 260
segment mj . The optimization is constrained to assign each 261
slot to one and only one segment. The cost ci,j is calculated 262
using the mean Intersection over Union (IoU) between the 263
predicted mask of slot oi and segment mj of the generated 264
semantic mask Mgen. The optimal assignment is the one that 265
maximizes the overall mean IoU. 266

Loss function. Once the assignment is complete, our 267
guided slot attention model is trained end-to-end using 268
the mean squared error loss (LMSE) between the generated 269
image Igen and reconstructed image Irecon, as well as our 270
(semantic) guidance loss, i.e. a binary cross-entropy loss 271
(LBCE) between Mgen and the predicted mask from the slots 272
A(S,H). The binary cross-entropy loss is only computed 273
on the matched slots, according to the matching matrix 274
P = P(Mgen,A(S,H)). Simply using the image recon- 275
struction and semantic guidance loss would lead the slot 276
representation to drift towards semantic classes and not to 277
objects. We tackle this semantic drift problem by adding 278
a feature reconstruction loss, which we term instance guid- 279
ance loss. The instance guidance loss is given by the mean 280
squared error between the input (Finp) and reconstructed 281
(Frecon) features (see Fig. 2). Our full loss is given by 282

L = LMSE(Igen, Irecon)︸ ︷︷ ︸
Recon. Loss (LRecon)

+ λs LBCE(P(Mgen,A(S,H)))︸ ︷︷ ︸
Semantic Guidance (Lsemantic)

+ λi LMSE(Finp,Frecon)︸ ︷︷ ︸
Instance Guidance (Linstance)

. (3)
283
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The semantic guidance loss helps learn a slot representa-284
tion that adheres to object boundaries and does not split the285
object into multiple slots (i.e., avoids over-segmentation) but286
causes the slots to focus on semantics and not on instances.287
The feature reconstruction loss helps with the semantic drift288
problem as features from a pre-trained ViT model already ex-289
hibit instance-aware properties [19], but using them without290
semantic guidance results in over- and under-segmentation291
issues. Thus, when instance and semantic guidance are cou-292
pled, the slots are bound to the instances instead of semantics293
and avoid the part-whole ambiguity, cf . also Fig. 4.294

We separate the training process of GLASS into two295
phases: In phase-1, only the slot attention module and MLP296
decoder are trained. This helps in learning slot embeddings297
that bind to instances. In phase-2, we jointly train both the298
slot attention module with diffusion and MLP decoders. In299
this phase, we use a small learning rate for the slot attention300
and MLP decoder modules and a higher learning rate for301
the diffusion decoder. The second phase helps the diffusion302
decoder align to slot embeddings and produce high-fidelity303
images. Unless otherwise stated, we use λs = 0.7 and304
λi = 0.9 for all our experiments. Fig. 2 shows our full305
architecture and illustrates each step. Further details about306
the training and datasets are provided in the supplemental.307

5. Experiments308

The main focus of our work is to learn better representations309
of objects, i.e. slot embeddings. To assess the effectiveness310
of the learned representation, we test GLASS on various311
tasks such as object discovery, instance-level property pre-312
diction, reconstruction, and compositional generation. Our313
method uses generated captions from BLIPv2 [43], which is314
trained on image-caption pairs mined from the web; thus, our315
model can be considered very weakly (coincidentally) super-316
vised. Therefore, we test it against other weakly-supervised317
OCL methods. We also propose a variant of GLASS termed318
GLASS†, which uses ground-truth class labels associated319
with the input image instead of the generated caption to320
generate and extract the semantic guidance signal.321

5.1. Instance-aware object discovery322

The standard way to test how well the slots bind to an object323
is to evaluate on the object discovery task, i.e., producing a324
set of masks that cover the independent objects appearing325
in an image. We compare GLASS against existing SotA326
object-centric methods using the standard multi-object dis-327
covery metrics popular in the OCL literature [32, 60, 71].328
This includes (i) the mean Intersection over Union between329
the predicted masks from the slots, which are computed330
using the attention weights A(S,H) as defined in Eq. (1),331
and the ground-truth instance masks, mIoUi, (ii) the mean332
Best Overlap over instance-level masks, mBOi, and (iii) over333
class-level masks, mBOc. Please see the supplemental for334

Model COCO (in %, all ↑) VOC (in %, all ↑)

mIoUi mBOi mBOc mIoUi mBOi mBOc

SA∗ [45] NeurIPS’20 – 17.2 19.2 – 24.6 24.9
SLATE∗ [62] ICLR’22 – 29.1 33.6 – 35.9 41.5
DINOSAUR-MLP [60] ICLR’23 26.8 28.1 32.1 39.1 39.7 41.2
DINOSAUR-Trans. [60] ICLR’23 31.6 33.3 41.2 42.0 43.2 47.8
SPOT [36] CVPR’24 34.0 35.0 44.7 48.8 48.3 55.6
SlotDiffusion∗ [71] NeurIPS’23 – 31.0 35.0 – 50.4 55.3
StableLSD [32] NeurIPS’23 24.7 25.9 30.0 30.0 30.4 33.1
GLASS† (ours) 39.0

(+5.0)
40.8
(+5.8)

48.7
(+4.0)

57.8
(+9.0)

58.5
(+8.1)

61.5
(+5.9)

GLASS (ours) 38.9
(+4.9)

40.6
(+5.6)

48.5
(+3.8)

58.1
(+9.3)

58.9
(+8.5)

62.2
(+6.6)

Table 2. Comparison between OCL methods for instance-aware
object discovery. GLASS and GLASS† clearly outperform all
other SotA OCL methods on the multi-object discovery metrics.
The best value is highlighted in bold, the second best is underlined.
∗ numbers are taken from [36]. Values in parentheses denote the im-
provement of GLASS over the previous SotA method. Tab. 9 shows
additional info. about the methods e.g. pre-trained models used,
input modalities, and downstream capabilities for each method.

Model COCO (in %) VOC (in %)

SO (↑) PO (↓) GO (↓) SO (↑) PO (↓) GO (↓)

StableLSD [32] NeurIPS’23 10.2 87.3 1.6 6.7 91.6 0.40
DINOSAUR [60] ICLR’23 22.1 71.2 2.1 22.4 70.2 0.07
SPOT [36] CVPR’24 24.7 69.7 0.01 26.2 65.0 0.00
GLASS† 27.3 49.6 0.01 30.4 26.2 0.67
GLASS 25.2 45.9 0.00 26.7 42.3 0.01

Table 3. SO-PO-GO metrics. Our method has a higher % of slots
that bind to single object compared to baselines, while also being
less prone to over-segmentation and under-segmentation as seen by
PO and GO metrics. % of slots binding to background not shown.

details and additional results for the foreground adjusted 335
rand index, FG-ARI. Tab. 2 shows that GLASS outperforms 336
all previous OCL methods across mIoUi, mBOi, and mBOc 337
metrics by a wide margin. Fig. 3 shows qualitative results 338
for object discovery compared to DINOSAUR [60], Sta- 339
bleLSD [32], and SPOT [36]. They show that our method 340
decomposes a scene in a more instance-centric way with 341
sharper boundaries, no object splitting, and cleaner back- 342
ground segmentation. Importantly, unlike SPOT, our model 343
can correctly segment different instances of the same class 344
of objects, see Fig. 3. 345

SO-PO-GO metrics. A major reason for our method’s suc- 346
cess is because it reduces the over- and under-segmentation 347
(part-whole ambiguity) issues, which plague existing OCL 348
methods. To quantify this further, we evaluate the effec- 349
tiveness of GLASS in resolving these ambiguities using the 350
SO-PO-GO metric proposed by [22]. The metric reports the 351
percentage of slots that bind to a single object (SO), slots that 352
bind to part of an object (PO), and slots that bind to a group 353
of objects (GO). As seen in Tab. 3, our method has a much 354
higher percentage of slots that bind to a single object while 355
reducing the number of slots that bind to parts of objects 356
compared to SotA OCL methods. 357
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Input DINOSAUR
[60]

StableLSD
[32]

SPOT [36] GLASS
(ours)

GLASS†

(ours)
Input DINOSAUR

[60]
StableLSD

[32]
SPOT [36] GLASS

(ours)
GLASS†

(ours)

Figure 3. Qualitative comparison for object discovery. GLASS and GLASS† can decompose an image at an instance level and reduces
over and under-segmentation of objects. Our method also yields cleaner boundaries for objects compared to StableLSD and DINOSAUR.

Model CLEVRTex (in %, all ↑) Obj365 (in %, all ↑)

mIoUi mBOi mIoUi mBOi

StableLSD [32] NeurIPS’23 24.0 27.6 14.8 16.9
DINOSAUR [60] ICLR’23 30.2 35.1 16.2 18.9
SPOT [36] CVPR’24 39.5 43.7 18.0 20.7
GLASS† 47.2 52.3 19.6 22.4
GLASS 46.1 50.1 18.6 21.4

Table 4. Zero-shot object discovery. Our method outperforms the
baseline methods on the task of zero-shot object discovery.

Zero-shot learning. We next show that resolving the part-358
whole ambiguity also helps object discovery (OD) in a zero-359
shot manner. As the slots are now biased towards objects,360
they can better segment scenes compared to baseline meth-361
ods even when not trained on them. We take GLASS trained362
on the COCO dataset and report the zero-shot OD results on363
the CLEVRTex [37] and Obj365 [61] datasets, see Tab. 4.364
We obtained the masks for the Obj365 dataset by prompting365
SAMv2 [55] with ground-truth bounding boxes. We observe366
that our approach again outperforms SotA OCL methods.367

Comparison to weakly-supervised OCL. Our method368
can be considered (very) weakly supervised due to its de-369
pendence on the BLIP-2 [43] model for caption generation.370
We show that this form of (very) weak supervision performs371
much better than using more expensive weakly supervised372
signals, such as bounding boxes or knowing the number of373
objects in the scene. In particular, we compare our method374
against two weakly-supervised variants of StableLSD: (i)375
StableLSD-BBox, which uses the bounding-box informa-376
tion associated with each object for initializing the slots.377
This form of guidance has been previously used in [41]. (ii)378
StableLSD-Dynamic, which, instead of having a fixed num-379
ber of slots for each scene, dynamically assigns each scene380
the number of slots equal to the number of objects present.381
This technique was useful for addressing the issue of part-382
whole ambiguity, leading to better object discovery [78]. We383
choose StableLSD for comparison since it is closest to our384
model regarding the downstream tasks it can perform (see385
Tab. 1). As seen in Tab. 5, the weakly-supervised variants386
of StableLSD outperform StableLSD. Importantly, GLASS387
outperforms both weakly-supervised methods even though388

Model VOC (in %, all ↑)

mIoUi mBOi mBOc

StableLSD [32] NeurIPS’23 30.0 30.4 33.1
StableLSD-Bbox 30.5 37.8 42.2
StableLSD-Dynamic 30.8 38.2 43.4
GLASS† (ours) 57.8 58.5 61.5
GLASS (ours) 58.1 58.9 62.2

Table 5. Comparison with weakly-supervised baselines, i.e.
variants of StableLSD. GLASS clearly outperforms the weakly-
supervised variants of the StableLSD model even though it uses
weaker supervision than these variants.

it uses a weaker supervision signal. 389

Importance of semantic and instance guidance. Next, 390
we evaluate the contribution of the semantic and in- 391
stance guidance losses. Tab. 6a shows the mIoUi met- 392
rics with different combinations of our three loss functions 393
(LRecon, LSemantic, and LInstance). We observe that combin- 394
ing semantic and instance losses together produces much 395
better results than using them individually. More impor- 396
tantly, the qualitative results in Fig. 4 show that using only 397
the reconstruction loss results in a noisy segmentation (over- 398
and under-segmentation). Adding the semantic loss helps 399
in obtaining more precise boundaries, making the segmen- 400
tation much less noisy. However, just using the semantic 401
loss causes semantic drift and binds slots to semantic classes 402
(under-segmentation); adding the instance guidance breaks 403
the semantic drift problem and makes slots bind to objects 404
instead of semantic classes. Thus, utilizing both seman- 405
tic and instance guidance alleviates the over- and under- 406
segmentation issue, making the learned slot embeddings 407
more powerful for downstream tasks. 408

Performance with different encoder networks. We next 409
ablate the dependence of GLASS on the encoder architec- 410
ture. We benchmark the performance for three different 411
encoder models, namely Masked Auto Encoders (MAE) 412
[27], DINOv2 [51], and DINOv1 [8]. As seen in Tab. 6b, 413
our method is robust to the choice of the encoder model. 414
Moreover, it outperforms the model closest to our method re- 415
garding downstream capabilities (StableLSD) for all encoder 416
model architectures. 417
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Loss term mIoUi (in %, ↑)

COCO VOC

LRecon 30.0 34.4
LRecon + 0.7LSemantic 30.9 55.1
LRecon + 0.9LInstance 29.3 38.9
LRecon + 0.7LSemantic + 0.9LInstance 38.9 58.1

(a) Importance of semantic and instance guid-
ance losses. A combination of semantic and in-
stance loss terms performs the best.

Encoder mIoUi (in %, ↑)

COCO VOC

Baseline (StableLSD [32]) 24.7 30.0
GLASS w/ MAE [27] 30.0 41.1
GLASS w/ DINOv1 [7] 31.4 54.2
GLASS w/ DINOv2 [51] 38.9 58.1

(b) Effect of encoder network. GLASS is robust
to the encoder architecture and outperforms the
baseline even with weaker encoder networks.

Model mIoUi (in %, ↑)

COCO VOC

GLASS w/ SAMv2 30.4 42.1
GLASS† 31.1 58.6
GLASS 32.2 55.6

(c) Effectiveness of pseudo GT semantic mask.
Using masks from the decoder performs better
than masks obtained from SAMv2.

Table 6. Ablation study. (a) We study the impact of different loss terms on GLASS, (b) the impact of different encoder architectures, and (c)
the impact of using different guidance generation on the performance of our approach on the instance-level object discovery task.

LRecon LRecon + LSemantic LRecon + LInstance GLASS (ours)

Figure 4. Qualitative results showing the importance of joint
semantic and instance guidance. Using both guidances together
provides precise boundaries and biases the slots to object instances.

Model PSNR (in dB, ↑) SSIM (↑) LPIPS (↓) FID (↓)

StableLSD [32] NeurIPS’23 10.92 0.20 0.72 140.62
GLASS† (ours) 10.88 0.20 0.59 79.61
GLASS (ours) 10.93 0.21 0.59 71.30

Table 7. Conditional generation. Comparison between StableLSD
and our approach for the conditional generation / recon. task.

Importance of pseudo ground-truth generation module.418
A key advantage of our method is utilizing the decoder model419
for both decoding the slots and also as semantic guidance420
generator, resulting in no additional dependency for guidance421
generation. We next show that our method of obtaining the422
guidance signal is superior to obtaining the guidance signal423
from models such as SAMv2 [55]. To assess the impact424
of the semantic guidance signal, we set λi or the instance425
guidance loss to zero and λs = 1 for this experiment. As426
seen in Tab. 6c, our pseudo-ground truth signals lead to better427
performance of our method over using masks from SAMv2.428
This is because, without prompting, SAMv2 produces masks429
that are either over- or under-segmented compared to masks430
obtained with our method. To use SAMv2 effectively, we431
need an additional prompt, e.g. a bounding box, but this form432
of supervision is more expensive than generated captions or433
image-level labels.434

5.2. Generative capabilities435

Conditional generation/reconstruction. Using a diffusion-436
based decoder in GLASS enables our model to conditionally437

Original StableLSD [32] GLASS † (ours) GLASS (ours)

Figure 5. Qualitative comparison for conditional image gen-
eration. GLASS and GLASS† reconstruct the input scene more
faithfully with a high degree of detail as compared to StableLSD.

Model VOC COCO

Acc (in %, ↑) MSE (↓) Acc (in %, ↑) MSE (↓)

StableLSD [32] NeurIPS’23 55.1 0.039 16.4 0.062
GLASS (ours) 58.1 0.037 20.8 0.059

Table 8. Instance-level property prediction. Comparison between
StableLSD and GLASS for the property prediction task.

generate the input image back from the slots and, more im- 438
portantly, to be able to compositionally generate new scenes. 439
We benchmark GLASS against StableLSD for conditional 440
image generation, as this is the only OCL model to date to 441
be able to reconstruct complex real-world images. We report 442
the PSNR, SSIM [68], LPIPS [76], and FID [28] metrics. 443
Both quantitatively (see Tab. 7) and qualitatively (cf . Fig. 5), 444
our method outperforms StableLSD. The qualitative results 445
show that GLASS can reconstruct the input image more 446
faithfully and with higher fidelity. 447

Compositional generation. To the best of our knowledge, 448
GLASS is the first among slot attention-based methods to be 449
able to compositionally generate complex real-world scenes 450
with high fidelity. We show examples where objects can 451
be removed from an input scene by removing a slot, or 452
objects can be added to a scene by adding the slots from 453
a different scene. We show qualitative results in Fig. 6. 454
Compositional generation with StableLSD results in very 455
low-fidelity images, see supplemental for details. 456
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Remove item Original image Edited image

Add item Original image Edited image

Figure 6. Compositional generation. GLASS enables composi-
tional image generation of real-world complex scenes. Here, the
masked object (in red) is the slot to be removed from or added to
the original image. Please see supplemental for more results.

5.3. Property prediction457

Instance-level property prediction assesses the quality of458
the slot representation. In this task, we predict object proper-459
ties, such as class labels and object positions (centre of the460
object’s bounding box) in the input images from the learned461
slot embeddings. We compare the informativeness of the462
features learned by slots of GLASS and StableLSD. We re-463
port top-1 accuracy for label prediction and mean squared464
error for predicting the object’s center. As seen in Tab. 8,465
GLASS consistently outperforms StableLSD for both tasks,466
indicating that our learned slots contain more informative467
features about the object than StableLSD’s slot embeddings.468

5.4. Semantic-level object discovery469

Since our method makes use of large-scale pre-trained foun-470
dational models [7, 51, 56], we also compare it against other471
approaches [e.g., 12, 14, 46, 70] utilizing the features from472
these foundational models. However, these models are only473
able to perform semantic-level segmentation. Our method474
is designed for instance-level segmentation but can also be475
modified to enable semantic-level segmentation. We show476
results for a special case of our model (semantic-focused477
GLASS) where we purposefully make our model under-478
segment the image (one slot is responsible for multiple ob-479
jects belonging to the same class). For this, we set the480
instance guidance loss term to a low value (λi = 0.1) during481
training. For this task, we report the mIoUc metric com-482
puted between the predicted masks from the slots and the483
ground-truth semantic masks.484

Tab. 9 shows that our method outperforms not only all485
object-centric learning methods but also methods that rely on486
features from large-scale models for performing semantic-487
level object discovery. We attribute the improvement of488
GLASS over other methods that use foundational models to489
its careful interplay of features between the different founda-490
tional models: Our approach aggregates features from a foun-491
dation model (DINOv2 [51]) but this feature aggregation is492

Model Downstr.
tasks

Input Pre-trained
models

mIoUc (in %, ↑)

COCO VOC

MaskCLIP [77] ECCV’22 sOD I + C CLIP 20.6 38.8
SegCLIP [46] ICML’23 sOD I + C CLIP 26.5 52.6
CLIPPy [54] ICCV’23 sOD I + C CLIP 32.0 52.2
OVSeg [72] CVPR’23 sOD I + C CLIP 25.1 53.8
DeepSpectral [47] CVPR’22 sOD I DINO – 37.2
COMUS [75] ICLR’23 sOD I DINO – 50.0
DiffuMask [70] NeurIPS’23 sOD I + C SD + CLIP + [1] – 57.4
Dataset Diffusion [50]
NeurIPS’23

sOD I SD + BLIP-2 34.2 64.8

DiffCut [12] NeurIPS’24 sOD I SD 34.1 65.2
OVDiff [38] ECCV’24 sOD I + C SD + DINO + CLIP 34.6 66.3
EmerDiff [49] ICLR’24 sOD I SD 33.1 40.3

DINOSAUR-MLP [60]
ICLR’23

iOD + PP I DINO 31.7 41.0

DINOSAUR-
Transformer [60] ICLR’23

iOD + PP I DINO 40.6 47.5

SPOT [36] CVPR’24 iOD + PP I DINO 44.6 55.3
StableLSD [32] NeurIPS’23 OD + PP +

CG
I SD + DINOv2 29.5 32.9

GLASS (ours) iOD + PP +
CG + CPG

I SD + DINOv2 +
BLIP-2

46.7
(+2.1)

68.9
(+2.6)

Table 9. Comparison on semantic-level object discovery We
compare our method with baselines that use features from founda-
tional models for semantic-level object discovery. We divide the
baselines into training-based (top), training-free (middle), and OCL
methods (bottom). Downstream tasks denote a model’s capability
of solving the following tasks: iOD /sOD – instance-/semantic-
level object discovery, PP – instance-level property prediction, CG –
conditional generation, and CPG – compositional generation. Input
denotes the input signal the model itself trains on, where I – image,
C – captions, and L – image-level labels. Pre-trained models de-
note the underlying frozen foundation models used in the method.
Note: GLASS is not designed for sOD, but it is controllable and
can be tuned explicitly for either sOD or iOD task.

guided by our semantic guidance module, which helps it 493
achieve precise boundaries. This interpretation is supported 494
by the observation that GLASS outperforms models such as 495
Dataset Diffusion [50] even though, just like GLASS, they 496
use Stable Diffusion features for creating pseudo masks. 497

6. Conclusion 498

We present GLASS, a novel object-centric learning method 499
that learns in the space of generated images from a pre- 500
trained diffusion model. Our method makes use of semantic 501
and instance guidance in order to learn better instance-centric 502
representations. We clearly outperform previous SotA OCL 503
methods on various tasks: instance-level (zero-shot) object 504
discovery and conditional image generation. Our work also 505
surpasses SotA models that use large-scale pre-trained mod- 506
els for semantic-level object discovery, and learns better slot 507
representation for instance-level property prediction than 508
similarly versatile OCL methods. Notably, our method en- 509
ables the first application of compositional generation of 510
complex real-world scenes among OCL methods. 511
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