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ABSTRACT

Toddlers learn to recognize objects from different viewpoints with almost no su-
pervision. Recent works argue that toddlers develop this ability by mapping close-
in-time visual inputs to similar representations while interacting with objects.
High acuity vision is only available in the central visual field, which may explain
why toddlers (much like adults) constantly move around their gaze during such in-
teractions. It is unclear whether/how much toddlers curate their visual experience
through these eye movements to support their learning of object representations.
In this work, we explore whether a bio-inspired visual learning model can harness
toddlers’ gaze behavior during a play session to develop view-invariant object
recognition. Exploiting head-mounted eye tracking during dyadic play, we simu-
late toddlers’ central visual field experience by cropping image regions centered
on the gaze location. This visual stream feeds time-based self-supervised learn-
ing algorithms. Our experiments demonstrate that toddlers’ gaze strategy supports
the learning of invariant object representations. Our analysis also reveals that the
limited size of the central visual field where acuity is high is crucial for this. We
further find that toddlers’ visual experience elicits more robust representations
compared to adults’, mostly because toddlers look at objects they hold themselves
for longer bouts. Overall, our work reveals how toddlers’ gaze behavior supports
self-supervised learning of view-invariant object recognition.

1 INTRODUCTION

Toddlers learn visual representations that support the recognition of object instances observed from
different viewpoints within their first year of life (Kraebel & Gerhardstein, [2006; Ayzenberg &
Behrmann, [2024). This early emergence of view-invariant recognition and the ease with which
adults perform this skill hide the complexities of learning it. Images reaching the retina vary dras-
tically when objects are turned in depth. Even state-of-the-art machine learning methods still make
absurd recognition mistakes when faced with unusual viewpoints of objects (Dong et al., 2022 |Ab-
bas & Denyl, 2023} Ruan et al.,[2023)). This raises the question of what learning mechanisms support
such view-invariant recognition in humans.

One of the main theories posits that the development of view-invariant object recognition rests on
the brain’s ability to construct visual representations that slowly change over time (Foldiak, 1991}
L1 & DiCarlo, 2008} Miyashital [1988). The main idea is that learners abundantly manipulate (or
walk around) objects while watching them, giving access to different views of a single object over
a short period of time. By learning slowly changing representations, a learner discards rapidly
changing information from an image (here, information about the view) and naturally builds view-
invariant representations. Following this idea, recent computational studies proposed to simulate
humans’ visual experience by generating or curating large-scale temporal sequences of rotating
objects (Aubret et al.l 2022} [Schneider et al., 2021; |Yu et al., 2023); they confirm that learning
slowly changing representations induces view-invariant object recognition. However, it is currently
unclear if and how a toddler’s actual gaze behavior supports this learning mechanism.

The significance of active gaze behavior stems from the limited area of high-acuity vision in hu-
mans. This area, known as the central visual field, covers only a few degrees of visual angle, but it
dominates the extraction of semantic information in brain regions responsible for object recognition
(Quaia & Krauzlis,2024; Yu et al., 2015). However, such a small area of the visual field may be se-
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mantically unstable over time, as humans make three saccades per second on average. Then again,
toddlers curate their own visual experience; compared to adults, objects held by toddlers appear
bigger in the field of view due to their shorter arms (Bambach et al.l [2018]), select simpler stimuli
(Anderson et al.|[2024) and their visual inputs semantically change on a slower timescale (Sheybani
et al.| 2023). The latter point may be critical to make slowness-based learning operational.

In this paper, we explore whether a bio-inspired model of visual learning can utilize the actual eye-
tracking derived visual experience of toddlers to develop invariant object representations. For this,
we leverage a dataset of head-camera recordings and gaze tracking from toddlers and adults during
play sessions (Bambach et al}2018)). To simulate central visual experience, we crop image patches
centered on tracked gaze locations. Then, we train previously introduced time-based self-supervised
learning (SSL) models (Schneider et al., [2021)). Our analysis shows that: a) toddlers’ gaze strategy
boosts visual learning in comparison to several baselines; b) restricting learning to input from the
central visual field improves object representations; and c¢) visual input from toddlers yields better
representations than that from adults, which may be explained by toddlers looking longer at objects
while manipulating them. In sum, our main contributions are:

* We present the first ever study training SSL models on natural egocentric visual input de-
rived from eye tracking in toddlers during play sessions.

* We find that toddlers’ gaze strategy improves the learning of invariant object representa-
tions compared to several baselines.

* We show that toddlers’ visual experience is more suitable for learning object representa-
tions through time-based SSL than adults’.

2 RELATED WORK

Computational studies of visual learning with temporal slowness. Early computational studies
found that slowness-based learning can extract representations of simple patterns that are invariant
to position, size and rotation (Foldiakl (1991} Wiskott & Sejnowskil 2002)). Other works applied this
principle to learn view-invariant object recognition (Wallis & Baddeley, |1997; Franzius et al., [2011}
Einhauser et al., 2005 |Stringer et al., 2006). Recent advances in SSL allowed to scale the princi-
ple of temporal slowness to large sets of uncurated images of objects (Parthasarathy et al., [2022;
Aubret et al.| 2022; Schneider et al., 2021). This method was called SSL through time (SSLTT)
(Aubret et al.,|2022)). On the machine learning side, SSLTT can boost category recognition (Aubret
et al.,|2024b; 2022} Sanyal et al., 2023)), view-invariant object instance recognition (Schneider et al.,
2021) and the alignment with human representations (Parthasarathy et al.l 2023)). On the cogni-
tive modeling side, SSLTT can shape human-like inter-object semantic similarities (Aubret et al.,
2024a)) and combines well with visuo-language SSL to model object learning during dyadic play
(Schaumloffel et al., [2023). However, all these approaches use curated, synthetic, or third-person
data, leaving unclear whether the statistical structure of toddlers’ actual visual experience, combined
with temporal slowness, can indeed support object recognition. Another notable work studied the
learning of view-invariant object representations in impoverished visual environments through the
eyes of young chickens in a controlled rearing experiment (Pandey et al., 2024). In contrast, we
apply SSLTT on natural visual inputs extracted from head cameras carried by toddlers and/or adults
during play sessions.

Learning from egocentric videos. There is a recent surge in trained machine learning models
on egocentric video datasets, including models of temporal slowness. For instance, the large-scale
Ego4d dataset (Grauman et al.||2022)) has been used for training vision models (Nair et al., 2022; | Ma
et al.; Anderson et al.| [2022). However, egocentric videos for toddlers have been missing (Anderson
et al.| 2022)); this is a problem since existing research has found that the specific statistical structure
of toddlers’ visual experience supports their learning (Sheybani et al.| 2024} |Bambach et al., 2017;
Sheybani et al., 2023). The SAYcam dataset presents longitudinal recordings of 150 hours (on
average) from each of the three participating children (Sullivan et al., 2021). With SAYcam, compu-
tational studies have shown that SSL methods can learn category recognition, with/without temporal
slowness (Orhan et al., 2020;|Orhan & Lakel [2024;|Orhan et al., [2024). Another related work studies
whether the temporal and developmental structure of toddlers’ visual experience supports category
and action recognition, through temporal slowness (Sheybani et al.,2024). Yet, these computational
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studies neglect the gaze location and its associated behavioral strategy, as their datasets do not in-
clude the precise location of the individual’s gaze. We show in Section that this is critical for
learning good object representations.

Gaze-aware representation learning. Our work extends previous approaches that also leverage
the gaze location of a human to train vision models (Bambach et al., 2016} 2018). They also com-
pare the quality of representations trained with toddlers’ versus adults’ experiences. However, these
studies model the learning process with supervised learning, which is biologically implausible. This
is important as, unlike bio-inspired self-supervised models that learn slowly changing representa-
tions, they are agnostic to the temporal structure of the visual experience, e.g., if toddlers look at an
object for a long time before saccading to a different object.

3 METHOD

Our objective is to explore whether bio-inspired models of visual learning can utilize the actual eye-
tracking derived visual experience of toddlers to develop robust object representations. To mimic
toddlers’ central visual experience, we use an eye-tracking dataset recorded during toddlers’ play
sessions and extract parts of frames centered on the gaze location. For comparison, we also simulate
different visual experiences following alternative gaze strategies. Then, we train bio-inspired SSL
models based on temporal slowness.

3.1 TODDLER FIXATION DATASET

The (Bambach et al., 2018]) dataset contains head-camera videos recorded at 30 FPS and eye-tracking
data for 38 dyads of toddlers/caregivers. All dyads play with the same set of 24 toys for 12 minutes
on average. The children’s ages range from 12.3 to 24.3 months. For 30 dyads, a head-camera
resolution of 640 x 480 pixels was used, while four dyads were recorded at 720 x 480 pixels and
the remaining four at 320 x 240 pixels. The horizontal field of view covers 72 degrees. Figure [TA
shows an example video frame with the gaze location (Bambach et al, [2018)). In the following,
we explain how we simulate different gaze strategies by deriving several datasets from these play
sessions. Additionally, we include the anonymized information of all toddlers who participated in
the study in Appendix [C]

Toddler fixation dataset. This dataset aims to simulate the central visual experience of toddlers.
We cut out an image patch centered on the gaze point. For the cut out’s size, we choose 128 x 128
pixel as the default, which corresponds to 14° x 14° of visual angle. A typical temporal sequence
of this dataset is illustrated in Figure[T[B. If the gaze fixation point is too close to the image border,
the crop boundaries may extend beyond the image, making it impossible to extract a patch of the
desired size. In this case, we shift the gaze fixation point from the problematic border orthogonally
by the minimum number of pixels. This ensures that the cropping operation outputs an image with
the correct size. Note that the cropped area always contains the gaze fixation point. This dataset
contains 559,522 training images, and this number is consistent across all fixation datasets (see
below).

Adult fixation dataset. We want to investigate the differences between gaze fixation in adults and
toddlers and the consequences of these differences on learned representations. Thus, we also extract
image patches around adults’ gaze fixation points following the procedure of the Toddler fixation
dataset. Appendix [Alillustrates the gaze distributions of toddlers and adults.

Random fixation dataset. As a simple comparison dataset, we propose to simulate a completely
random gaze strategy. We crop each frame around a location that is sampled uniformly at random.
Unlike the Toddler/Adult fixation datasets, this dataset shows little spatio-temporal structure, and the
cropped images are unlikely to contain well-centered objects. Figure provides example frames
from the Random fixation dataset.

Centroid fixation dataset. We also propose a stronger comparison dataset that considers a human
moving their head but not their eyes. This is an important comparison because it distills the effect of
eye gaze. One possibility could be to always crop the center of the frames. However, we noticed that
the head-camera was often misaligned with respect to the stationary position of the eyes, resulting in
a mismatch between the center of the frames and the center of the camera wearer’s field of view (cf.
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Figure 1: Examples of visual sequences for each of our datasets. A. Raw frame from an egocentric
video with the locations of our different croppings. Purple, orange, and green boxes representing
gaze fixation, centroid fixation, and random fixation, respectively. The cross indicates the gaze
location given by the eye-tracker. B-F. Example sequences for B- the Toddler fixation dataset; C-
the Random fixation dataset; D- the Centroid fixation dataset; E the Objects fixation dataset and F-
the Plain background dataset. Note that datasets E-F have been manually curated to only contain
views of the target objects. This kind of oracle knowledge is not available to a naive learner.
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Figure 2: The number of images per object category in the Objects fixation dataset.

Appendix [A). Thus, we rather use the centroid of the gaze fixation points (one for each participant
video). To compute these centroids, we gather all gaze fixation points and calculate each video’s
mean of their horizontal and vertical coordinates. Note that, despite the centroid positions being
fixed, the continuous movement of the head changes the visible portions of the scene. Nevertheless,
compared to the Random fixation dataset, this set contains image patch sequences that are relatively
stable over time. Figure[T]D presents a temporal sequence of the Centroid fixation dataset.

We also consider “oracle” datasets that were constructed using the ground truth about an object’s
identity/location. Models trained on this dataset aim to upper-bound our model.

Objects fixation dataset. This dataset was collected from the same video frames used in the Toddler
fixation dataset. Images were manually filtered such that toddlers looked at one of the target objects.
From these frames crops with a 30-degree field of view around the gaze location were extracted,
containing the target object while minimizing background interference (Bambach et al.} 2018} Tsut-
2021). This dataset contains 271,754 images. Figure[IE displays examples of images. The
number of images per toy is depicted in Figure[2] which indicates that the dataset is imbalanced. We
conduct additional analysis on the class imbalance in Appendix B3]

Plain background dataset. The Plain background dataset contains 128 viewpoints, capturing each
object from various angles and distances for 1,536 images. Each image in this dataset displays a
complete object against a black background, ensuring visual isolation from external distractions.
Figure[IE shows an example toy from different viewpoints.
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Figure 3: Illustration of SimCLR-TT on the Toddler fixation dataset. By default the time interval
AT = %s corresponds to the inverse of the camera’s frame rate, but it can be increased to an integer
multiple of this value.

3.2 SELF-SUPERVISED LEARNING THROUGH TIME

To model the learning process of humans, we learn visual representations with a self-supervised
model of temporal slowness, namely SimCLR-TT 2021). This algorithm is based
on the state-of-the-art SimCLR method 2020). SimCLR-TT samples an image z; at
time ¢ and a temporally close image ;. A7 and computes their respective embeddings z;, 2+ AT
with a deep neural network (e.g. a ResNet). Unless stated otherwise, we set AT to the inverse of the
camera’s frame rate, i.e., AT = % seconds. In Sectionwe show additional results varying AT
Then, SImCLR-TT minimizes

exp (sim (z¢, ze4a1) /T)
21 EB, kAt [exp (sim (24, z) /7))

L (zt, zerar) = — log 5 (D

where B is a minibatch, sim(-) is the cosine similarity and 7 is the temperature hyper-parameter.
Here k # t but & = ¢t + AT is possible. Thus, SimCLR-TT maximizes the similarity between
temporally close representations (numerator) while keeping all representations dissimilar from each
other (denominator). Figure [3]illustrates the learning process of SInCLR-TT. In Appendix [B.T] we
also present results for BYOL-TT (Schneider et al.| 202T]).

3.3 TRAINING AND EVALUATION

We run three random seeds for all experiments. For each random seed, we split the 38 available
dyads into 30 train dyads and 8 test dyads. We train the models on train dyads for 100 epochs with
a ResNet18, the AdamW optimizer, and set the initial learning rate and weight decay to 10~2 and
10~4, respectively. We set the SimCLR temperature to 0.08 and the batch size to 256. Appendix
presents the results under various settings of hyper-parameters. We conduct all experiments on an
Nvidia GeForce RTX 3090 GPU with 24 GB memory.

We assess the quality of the learned representations by training a linear classifier on top of the learned
representation (right after the average pooling layer) in a supervised fashion (Chen et al), 2020).
Since our pre-training datasets do not have labeled images, we always train the linear classifier on
the train split of the Objects fixation dataset (same dyad’s train split as for pre-training) and evaluate
the object recognition accuracy on the test split of the Objects fixation dataset.

4 RESULTS

We aim to investigate whether toddlers’ gaze behavior during a play session supports learning view-
invariant object recognition. We also want to analyze the factors contributing to this.

4.1 TODDLERS’ CENTRAL VISUAL FIELD EXPERIENCE SUPPORTS THE LEARNING OF
INVARIANT OBJECT REPRESENTATIONS VIA TIME-BASED SSL

To test if a toddler’s gaze behavior supports the learning of strong object representations, we compare
the representations learned by SImCLR-TT when trained on the different datasets introduced in
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Linear object recognition accuracy of different fixation strategies
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Figure 4: Linear object recognition accuracy of training on individual participants and all partici-
pants. We use red and blue to represent the test results of the model trained on the relevant datasets
for toddlers and adults, respectively. The two gray bars represent the Oracles and indicate the test
results on the Plain background and Object fixation datasets. Specifically, in the experiment, Ora-
cles refers to the Objects fixation dataset and the Plain background dataset. For gaze fixation, we
compared the test results of the model trained on each participant and across all participants. Specif-
ically, the mean accuracy is shown, when trained with 38 dyads individually. For the all-participants
setting, 30 participants are randomly selected from the pool of 38 for the training set under each
random seed. The vertical bars represent the standard deviation over three random seeds.

Section (Figure . Results for BYOL-TT (Schneider et al.l [2021)) show a similar trend and are
given in Appendix We find that models trained with the Toddler fixation dataset outperform
those trained with the Random fixation dataset (toddler) or the Centroid fixation dataset (toddler).
This suggests that biologically inspired visual learning models like SimCLR-TT can leverage human
gaze behavior to learn invariant object representations.

We wondered whether the visual experience of only a single human during a play session suffices
to build good visual representations. To investigate this question, we train SImCLR-TT on the indi-
vidual ecordings of each toddler and adult separately and compute the average of linear accuracies.
We train the encoder (ResNetl8) using all fixation data from a single toddler/adult, followed by
training and testing the linear classifier with the Objects fixation data from the same and different
toddlers/adults. We control the training set to comprise 75% of the total data, ensuring that the test
set does not overlap with the training set. Figure 4] shows that the central visual experience of one
toddler leads to representations almost as good as those from the central visual experiences of all
toddlers. We show additional results with a larger ResNet50 in Appendix [B.2]

Finally, we assess whether toddlers’ visual experience produces better or worse representations than
that of adults. By comparing the object recognition accuracy of models trained on fixation datasets
from toddlers and adults, we see the same results. Toddlers’ experiences induce more robust rep-
resentations compared to adults when training with one toddler/adult trial, as well as when training
with the entire dataset. We conclude that, toddlers’ central visual experience supports more data-
efficient learning than adults. Overall, toddlers appear to successfully curate their gaze behavior to
permit the learning of robust object representations.

4.2 CONSTRAINING INPUT TO THE CENTRAL VISUAL FIELD IMPROVES LEARNING

Previous computational studies have neglected the importance of the constrained size of the central
visual field for learning visual representations (Orhan et al., [2020; Sheybani et al.||2024). Here, we
assess whether our simulated central visual experience leads to better/worse object representations
than a wide field of view. We vary the crop size applied to the datasets reported in Section In
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Table 1: Linear object recognition accuracy for different cropping sizes. We have bolded the main
results of gaze fixation, while the underlined results represent simulations that do not utilize actual
gaze fixation and consider only the egocentric visual experience.

64 x 64 128 x 128 240 x 240 480 x 480
. Toddler 0.831+£0.015 0.863 +£0.011 0.828 £0.014 0.805 + 0.018
Gaze fixation

Adult 0.826 £0.013 0.851 £0.028 0.816 +£0.013 0.791 +0.019
. Toddler 0.701 £0.011 0.736 £0.017 0.694 £ 0.025 0.589 + 0.036

Random fixation
Adult  0.716 £0.021 0.742 £0.022 0.685£0.023 0.576 =0.019
. . Toddler 0.822+0.016 0.838 £0.010 0.815+0.018 0.784 + 0.022

Centroid fixation
Adult 0.818 £0.012 0.829 £0.009 0.807 £0.014 0.763 £0.017

Table |1} we observe for both toddlers and adults that an image size of 128 x 128 (corresponding to
14° % 14° of visual angle) produces the best recognition accuracy for all gaze strategies. Importantly,
Toddler and Adult gaze fixations 128 x 128 present an accuracy boost of 8% compared to Centroid
gaze 480 x 480, which simulates head-camera recordings without an eye-tracker. We conclude
that accounting for the constrained size of the central visual field is crucial for learning powerful
object representations. We speculate that, this boost originates in the ability of a 128 x 128 gaze-
centered crop to frequently capture the complete structure of an object while minimizing irrelevant
background information.

4.3 TODDLERS’ GAZE BEHAVIOR FAVORS STRONGER EMPHASIS ON SLOWNESS

Previous work suggests that semantic aspects of the visual experience vary more slowly for toddlers
than for adults (Sheybani et al., 2023 and that extending the gap of time between two positive pairs
can improve the quality of object representations if visual inputs are sufficiently stable over time
(Aubret et al., |2022; Schneider et al.| 2021). Thus, we investigate whether amplifying the temporal
slowness of our representation intensifies the difference between toddlers’ and adults’ representa-
tions. To amplify temporal slowness, we increase the temporal gap AT between representations that
are made similar. As shown in Figure , AT ranges from % to 3.0 seconds, increasing contin-
uously by 0.5 seconds at each step. The models trained with the Toddler fixation dataset achieve
the highest recognition accuracy when AT = 1.5s. Conversely, Figure 5B shows that, for models
trained with the Adult fixation dataset, increasing the interval between positive pairs decreases the
quality of object representations. The results are consistent for both human fixations and centroid
fixations (“Fixation” and “Centroid”). We conclude that toddlers’ gaze behavior favors a stronger
emphasis on slowness (greater AT") than that of adults.

A 0.900 Accuracy of different AT for toddlers B 0.900 Accuracy of different AT for adults
Toddler fixation Adult fixation
0.875 Random fixation 0.875 Random fixation
—I— Centroid fixation —&— Centroid fixation
0.850 0.850
>0.825 >0.825
[} Q
c Y
5 0.800 5 0.800
[} o
1%} O
<0.775 <0.775
0.750 0.750
0.725 0.725
0.700 0.700
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
AT (s) AT (s)

Figure 5: The impact of different AT on recognition accuracy for toddlers (A) and adults (B).



Under review as a conference paper at ICLR 2025

Accuracy against average fixation durations Accuracy against average durations for object looking
Toddler: Correlation: 0.90, p-value: 5.65e-11 Toddler: Correlation: 0.53, p-value: 3.51e-03
0.88 Adult: Correlation: 0.87, p-value: 2.31e-09 0.88 Adult: Correlation: 0.60, p-value: 8.09e-04
0.86 0.86
> >
3084 © 0.84
s 5
S S
< <
0.82 0.82
0.80 0.80
0.78 0.78
200 300 400 500 600 700 0.75 1.00 1.25 1.50 1.75 2.00 225 2.50
Average fixation durations (ms) Average durations for object looking (s)
Accuracy against average durations for object looking and holding Accuracy against cumulative durations for object looking
Toddler: Correlation: 0.60, p-value: 8.16e-04 Toddler: Correlation: -0.02, p-value: 9.08e-01
0.88 Adult: Correlation: 0.28, p-value: 1.42e-01 0.88 Adult: Correlation: 0.37, p-value: 5.57e-02
0.86 0.86
> >
©0.84 @ 0.84
o o
3 3
3 3
< <
0.82 0.82
0.80 0.80
0.78 0.78
0.5 1.0 1..5 2.0 .2.5 3.9 35 4.9 4.5 100 150 200 250 300 350 400
Average durations for object looking and holding (s) Cumulative durations for object looking (s)

Figure 6: Correlation analysis between the linear recognition accuracy and the average fixation
duration (A), the average duration of object looking (B), the average duration of object looking
while holding the object (C), and the cumulative duration of object looking (D). Models were all
trained on individual Toddler and Adult fixation datasets. In each figure, the crosshairs represent the
mean and standard deviation of the data values over the two axes. The legends show the Pearson
correlation coefficients and their p-values.

4.4 TODDLERS’ LONG OBJECT INSPECTIONS RELATIVE TO ADULTS FACILITATE LEARNING

So far, we have shown that the egocentric visual experience of toddlers facilitates the self-supervised
learning of object representations relative to that of adults. However, the temporal properties respon-
sible for this effect remain unclear. Here, we further analyze the visual statistics of central visual
experiences. We focus on four metrics that characterize the temporal sequence of images: the av-
erage fixation duration before making a saccade, the average duration of object looking bouts, the
average duration of object looking when the camera-wearer holds the object, and the cumulative
duration of object looking in a recording. We explain how we detect saccades and compute average
fixation durations in Appendix [A] For other metrics, we leverage manually labeled timestamps (by
(Bambach et al., |2018)) about when toddlers and adults look at/hold an object. In the following,
we label “Object looking” when the gaze fixation points are located on an object while the camera-
wearer is not holding the object. We successfully extracted the data from 28 out of 38 toddlers and
conducted all subsequent experiments using these 28 toddlers. The remaining participants are ex-
cluded from this section due to the lack of data on fixation durations. Table[3|in Appendix [C|presents
the details of these specific 28 toddlers.

In Figure[6] we observe that object recognition accuracy is highly correlated with the three average
durations but only weakly correlated with the cumulative duration of object looking. This indicates
that long fixation bouts are important in explaining the relative quality of visual representations
trained on the Toddler vs. Adult fixation datasets.
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Figure 7: Comparison of average fixation duration (A), average duration of object looking (B),
average duration of object looking while holding (D) for toddlers and adults. Each panel includes
the frequency distribution for the given metric, along with a density curve. The t-test statistics and
p-values are given in the titles.

The data in Figure [0] also allow us to confirm that on average toddlers’ visual experience permits
learning better representations than that of adults (t-test p-value = 0.0053 < 0.05), confirming our
finding in Section {.1] with the given subset of dyads. To investigate which metric plays a crucial
role in the differences between toddlers and adults, Figure [/| presents the distributions of average
fixation duration for toddlers and adults. We observe that toddlers look longer at the object that
they are holding, in comparison with adults (t-test p-value = 0.003 < 0.05). Other metrics do not
present statistically significant differences between adults and toddlers. We conclude that, compared
to adults, toddlers’ longer periods of object observation when manipulating the object allow learning
better view-invariant object representations.

5 CONCLUSION

Current SSL approaches still struggle to learn robust human-like object representations and the rea-
sons for this remain unclear. Here, we investigated whether biologically inspired visual learning
models can take advantage of toddlers’ gaze behavior to develop robust object representations. We
cropped the toddlers’ gaze location from egocentric video recordings with eye-tracking during play
sessions. Then, we trained bio-inspired unsupervised models that drive visual representations to
slowly change. Our findings indicate that toddlers’ gaze strategies permit the learning of represen-
tations that support view-invariant object instance recognition within a single play session of 12
minutes. Results were weaker for adults’ gaze behavior. Our analysis shows that our approximated
central visual experience is crucial for learning object-oriented representations and that toddlers’
gaze behavior favors a stronger emphasis on slowness compared to adults. This is consistent with
toddlers looking longer at objects while holding them. During their relatively long holding periods,
toddlers may turn and move the object, giving access to high-quality sequences containing different
object views over a short period of time.

From a developmental perspective, our work provides strong evidence that the development of view-
invariant representations can originate from a slowness learning objective, a mechanism supported
by neuroscientifc studies (Li & DiCarlo, |2008; Miyashita, | 1988). We further demonstrate that tod-
dlers may curate their gaze behavior to enhance the quality of their visual representations. From a
machine learning perspective, we show that combining eye-tracking video data and SSL supports
unsupervised view-invariant recognition. This work marks a significant step towards learning strong
representations without hand-crafted image datasets (e.g., (Aubret et al.| 2022)).

We analyzed gaze behavior in toddlers with a minimum age of 12.3 months, meaning they had
substantial visual learning experience before the experiment, while our models learned from scratch.
Expanding to a wider variety of objects and participants, particularly younger toddlers with distinct
visual exploration patterns, could offer deeper insights into early visual representation development.
Studying how babies under one year engage with objects may reveal new aspects of gaze behavior
that contribute to visual learning (Maurer, |2017; [Sheybani et al., [2024). Moreover, refining our
approach to incorporate both central and peripheral vision could provide a more accurate simulation
of human perception (Wang et al.| 2021)).
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A ADDITIONAL DETAILS

Gaze location distribution. In section we explain that the center of the frames is misaligned
with respect to the stationary position of the eyes. To support this statement, Figure 8]and Figure
display the distribution of gaze locations for each toddler and adult, respectively. Brighter areas
indicate higher frequencies of gaze fixation at those locations. The results indicate that their average
gaze location is not centered with respect to the camera.
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Figure 8: Gaze distribution for all toddlers.

Extraction of saccade and fixations. In the study in section[d.4] we extracted fixation bouts. This
requires to detect saccades, as they bound the fixations bouts. To detect saccades in gaze movement,
we apply a velocity threshold-based method similar to (Raabe et al.,[2023). Consecutive gaze points
that exceed a threshold 77 are identified as a single saccade. To account for artifacts caused by low
frame rates, a second threshold 75, along with an angular criterion 6, allows the inclusion of the two
data points adjacent to the saccade initially detected. Any data points not classified as saccades are
considered fixations. For this study, we choose T} = 25°s~!, T, = 10°s~! and § = 45°.
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B COMPLEMENTARY ANALYSIS

B.1 RESULTS OF TRAINING BYOL-TT

In order to evaluate whether our conclusions also hold for different methods learning with temporal
slowness, we perform the same experiments described in Section .1 with BYOL-TT. Similar to
SimCLR-TT, BYOL-TT was originally considered to be used for contrastive learning through time

(Schneider et al}, 2027)). Its loss function is defined as

£9t7£t+AT =2-2-sim (qet (Zet) 7ZEt+AT)7 (2)

where gy, (20, ) is the prediction of the online network for one frame, z¢,. ., represents outputs from
the target network. Here, 6 corresponds to the weights of the online network, and £ represents the
weights of the target network. Again, we use the cosine similarity as the similarity function.

In Figure @A, we found, in line with (Schneider et al 2021) that BYOL-TT, as the backbone
model, extracts less effective representations from the different fixation strategy datasets compared
to SimCLR-TT. However, the relative relationships between the data remain unchanged. Overall,
the conclusion that toddler fixation contributes to the acquisition of more robust representations still
holds.
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Figure 10: Linear object recognition accuracy of different settings. A. Testing results of BYOL-TT
training on different datasets. B. Different backbone training on Toddler and Adult fixation dataset.
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Figure 11: Sampling on Objects fixation dataset. A. Undersampling; B. Oversampling; C. Compar-
ison of dataset sizes after using different sampling methods.

B.2 IMPACT OF CHANGING THE SELF-SUPERVISED LEARNING ENCODER

We compared the accuracy of BYOL-TT and SimCLR-TT using ResNet-18 and ResNet-50 as en-
coders on both the Toddler and Adult fixation datasets. As shown in Figure [[0B, introducing more
complex encoders resulted in a significant improvement in accuracy, with the gap between toddler
and adult performance narrowing. This suggests that a more sophisticated encoder can equalize dif-
ferent boosting sampling strategies, which may obscure the inherent differences in representations
between toddlers and adults. In contrast, a simpler encoder tends to profit more from toddler gaze
behavior compared to those from adults.

B.3 ANALYSIS OF THE CLASS IMBALANCE IN THE OBJECTS FIXATION DATASET

To investigate the impact of the imbalance in the Objects fixation dataset shown in Figure 2| we
adjusted the distribution of the Objects fixation dataset while keeping the original encoder training
results unchanged. The linear classifier was then trained and tested on the adjusted datasets. The
number of categories remained fixed at 24 throughout the experiments. We compared the results of
two types of sampling strategies:

Undersampling. We applied random undersampling to reduce the number of samples in the top
5 categories, making their quantities similar to those of the other categories. We do not intend to
equalize all classes. In real-world scenarios, toddlers naturally show preferences for certain toys,
and this behavior should be preserved. Our goal is to smooth the occurrence probabilities of other
objects relatively rather than enforce an artificial balance across all categories.

Oversampling. Similarly, we applied random oversampling to increase the number of samples in
the underrepresented categories to match the quantity of the top 5 categories. However, this method
will result in duplicate samples in the dataset.
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The data distributions after applying both sampling methods are shown in Figure[TT} We maintain
the experimental setup consistent with Section 4.1|and train a linear classifier on the undersampling
and oversampling object fixation datasets.

In Figure[I2] we observe that when the total sample size is reduced, the recognition accuracy of the
models trained on Toddler and Adult fixation datasets decreases, but the difference in their accuracy
continues to widen. However, with more complex or balanced training, the model’s generalization
capacity improves, and the performance across toddlers and adults tends to converge, reducing the
impact of differences in visual behaviors. Therefore, toddler gaze behavior might offer a greater
advantage under undersampling conditions.
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Figure 12: Linear object recognition accuracy and the difference in accuracy between undersampling
and oversampling. A. We compared the recognition accuracy under different sampling methods,
where “/” represents undersampling and ““\” represents oversampling. Additionally, we provide the
test results after training on one dyad versus all dyads; B. The difference in recognition accuracy
between toddlers and adults under different sampling methods. Here, we also compare the accuracy
differences of the model trained on one dyad versus all dyads.
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Figure 13: Some evidence highlights the differences between toddlers and adults. In (A-B), We
observe variations in the test accuracy of models training on the Toddler and Adult fixation datasets
under different AT. We attached fitted regression lines, and the shaded areas show the 95% confi-
dence interval. (C-E) illustrates box plots showing the data differences between toddlers and adults
across three metrics. The red line indicates the median value (Q2), and the gray dots represent out-
lier data exceeding the upper quartile (Q3).
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B.4 HIGHLIGHTS DIFFERENCES BETWEEN TODDLERS AND ADULTS

We provide additional evidence highlighting the differences between toddlers and adult. In Fig-
ure [T3]A and Figure [[3B, we compare the changes in recognition accuracy for both toddlers and
adults under different AT values. From the regression lines, the increasing AT amplifies the differ-
ence in recognition accuracy between training on toddlers’ and adults’ fixation datasets, consistent
with the findings in Section [£.3] Besides Figure[7] Figure [I3IC-E display the box plots for the three
corresponding metrics, revealing significant distinctions in the way toddlers and adults observe ob-
jects across all three metrics.
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Figure 14: Object recognition accuracy across different hyper-parameter settings.
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Figure 15: The impact of (A) average saccade duration and (B) toddler’s age on recognition accu-
racy.

B.5 ROBUSTNESS TESTING WITH VARYING HYPER-PARAMETERS

The learning rate (Ir), weight decay (wd), and temperature (tp) used in our main content were se-
lected as the best settings after fine-tuning. To assess the robustness of our method, we conducted
additional experiments where we fixed the Ir = 1072 and wd = 10~* and tp = 0.08 to and varying
another hyper-parameter individually. As shown in Figure[T4] changes in these hyper-parameters do
not affect the conclusions presented in Section[&1]
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B.6 STUDY OF SACCADE DURATION AND AGE

Here, we complement sectionf.4]and study two additional metrics that may impact the performance
of individual adults and toddlers, namely the average saccade duration and toddlers’ age. According
to Figure [T5] we observe no significant correlation between the recognition accuracy and both the
average saccade duration or toddlers’ age. However, the youngest toddlers in the study were older
than one year and we can not rule out that babies may induce different results.

C DETAILS OF ALL TOYS AND TODDLERS DATA

We provide information for all toys and toddlers participating in the study in Table [2] and Table [3]
The toddler ID represents an anonymized identifier for each toddler.
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Table 2: 24 toys were used for toddler interaction. Among them, “ Library ” refers to those toys that
were successfully recognized when the toddler calls any word from the corresponding row. However,
these columns are not within the scope of the current study’s discussion. The main focus is on the
colors, shapes, or textures of these 24 toys, which are more likely to help toddlers differentiate

between them.

Gazetag N g | ICONS | ID Library
helmet . 1 helmet, hat
house . 2 house, home
bluecar 3 car
rose E 4 rose, flower, plant
elephant %-{ 5 elephant
snowman 5 6 snowman
. ) .
rabbit . 7 rabbit, bunny
spongebob 8 spongebob, block
turtle . 9 turtle, tortoise
hammer , 10 hammer, tool, mallet
ladybug »* 11 bug, insect, ladybug, beetle
mantis »ﬂ 12 | bug, insect, praying mantis, mantis, grasshopper
greencar @ 13 car
saw ; 14 saw, tool
]
doll g 15 baby, baby doll, girl, doll
phone 16 phone, telephone
rubiks o block, rubiks cube, rubiks, cube
shovel w 18 rake, shovel, tool
bigwheels * 19 truck, jeep, bigwheel, car
whitecar m 20 car, policecar
ladybugstick 21 ladybug, bug
purpleblock 22 block, cube
bed @ 23 bed
clearblock 24 block, cube
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Table 3: Information for each toddler participating in the study (Anonymized). The Toddler IDs
marked with “ * ” indicate participants in the experiment in Section [4.4] while the Frame Count
refers to the total number of video frames used in the dataset. Video Length specifies the recorded
time interval of the video. Age refers to the toddler’s age at the time of participation in the study. In
the Gender column, M denotes male, and F denotes female. The Resolution specifies the recording
resolution of the video recorded by the head-mounted camera.

Toddler ID | Frame Count | Video Length | Age (months) | Gender | Resolution
16963 16440 9:07 20.7 M 720x480
17275 9120 5:04 18.2 F 720x480
17358 18930 10:31 18.8 M 720x480
17402 27636 15:21 19.2 M 640x480

17527* 15242 8:28 21.5 M 640x480
17565%* 14864 8:15 19.7 F 640x480
17592%* 16116 8:58 18.2 M 640x480
17608* 18059 10:02 21.8 F 640x480
17662* 14553 8:05 15.2 F 640x480
17718 11850 6:35 18.1 F 720x480
17757* 19661 10:55 21.7 F 640x480
17782%* 9035 5:01 22.1 F 640x480
17843 18209 10:07 19.6 F 640x480
17848* 21111 11:43 18.4 F 640x480
17874* 17429 9:41 17.8 M 640x480
17878* 20018 11:08 17.5 F 640x480
17919* 18596 10:20 22.1 M 640x480
17933* 14457 8:02 17.9 F 640x480
18068* 7976 4:26 17.9 M 640x480
18100* 14982 8:19 16.3 F 640x480
18419* 28253 15:41 17.3 M 640x480
18431%* 11575 6:26 22 M 640x480
18459* 7231 4:01 16.2 F 640x480
18625%* 18209 10:07 24.3 F 640x480
18742%* 19018 10:34 17.7 M 640x480
18796* 11672 6:30 242 M 640x480
18996 12466 6:56 159 F 320x240
19357* 8834 4:54 17.5 M 640x480
19505%* 18397 10:13 18.5 M 640x480
19536%* 18370 10:13 21.1 M 640x480
19544 9151 5:05 13.8 F 320x240
19615* 13351 7:25 14.1 M 640x480
19694 10801 6:00 15.2 M 320x240
19812* 9918 5:31 21.6 M 640x480
19859 7360 4:05 144 M 640x480
19954%* 9201 5:07 12.3 F 640x480
20510%* 11865 6:35 14.35 M 640x480
21015 9566 5:19 13 M 320x240
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