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Abstract

Simulation modelling offers a flexible approach to constructing high-fidelity syn-
thetic representations of real-world complex systems. The appeal of such models
often lies in their ability to facilitate scenario exploration: exploring the different
possible futures that could manifest in a complex system. Using simulators for this
purpose requires efficient procedures for exploring the range of possible behaviours
the simulator can produce. In this paper, we propose and investigate a method to
efficiently explore, in an end-to-end parametric manner, the different behaviours
that can arise from stochastic, differentiable black-box simulators. Our approach
entails maximising the entropy of the marginal likelihood function induced by a
trainable proposal distribution over the model’s parameter space, computed using
direct entropy estimators of the simulated outputs. The method does not require the
simulators to have tractable likelihood functions, does not entail building entropy
surrogates or instantiating multiple different models, and can be easily parallelised.
We provide a proof-of-concept demonstration of the effectiveness of our proposed
method on an epidemic simulator commonly used in the literature.

1 Introduction

The growing availability of cheap computational power over recent decades has enabled widespread
use of simulation modelling to study complex systems across scientific domains such as applied
physics [Tompson et al., 2017, Moss et al., 2023], economics [Dyer et al., 2024, Wiese et al., 2024],
and epidemiology [Kerr et al., 2021]. Due to their high fidelity, simulators can be used to gain
insights into system dynamics, generate synthetic datasets, or identify effective intervention strategies
that can be deployed in the real world. However, model construction typically relies on strong
structural assumptions, geometric priors and domain expert knowledge. While this is useful, and
perhaps necessary, to reduce model complexity, it can lead to reduced understanding and intuition
of (parameterised) model behaviour, whilst potentially introducing undesirable modes and edge
cases. For this reason, it is useful to develop computational techniques for exploring the behaviour
of simulation models, to help practitioners (and users of these models) understand the range of
behaviours a simulation model can produce as its parameters are changed.

As a first attempt at model exploration, one may consider the naive approach of forward-simulating
using parameters drawn from a maximum entropy distribution. That is, to use parameters drawn
from a uniform distribution over the parameter domain. However, it is not guaranteed that generating
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simulations using parameters drawn from a uniform distribution will efficiently reveal the full range
of behaviours that a simulator can produce. For example, a diverse set of model behaviours may
only be observable through the use of parameters belonging to a small and concentrated region of
the parameter space. Correspondingly, large regions of the parameter space may produce relatively
similar or indistinguishable outputs. In such cases, a uniform distribution over model parameters
samples inefficiently from the full spectrum of behaviours that a model could produce.

In this paper, we propose a method for learning a distribution over simulators parameters that
induces the greatest diversity in behaviours. We choose as our measure of diversity the (differential)
entropy of the marginal likelihood function induced by this distribution over parameters. We learn
this proposal distribution in a variational manner by optimising a Kozachenko-Leonenko entropy
estimator [Kozachenko and Leonenko, 1987, Kraskov et al., 2004], constructed from sampled
data. Our approach requires that the simulator is differentiable, in the sense that the derivative of
simulated samples with respect to the input parameters can be defined and computed via automatic
differentiation. We demonstrate the effectiveness of the method for an example simulation model,
and discuss the benefits and caveats of the proposed method.

2 Simulators and Scenario Exploration

In this work, we consider a stochastic simulator characterised by a tuple (f, pu). The function
f : Θ×U → X describes how parameters θ ∈ Θ and noise u ∈ U are mapped to simulation outputs
x ∈ X ⊆ Rm, whilst pu describes the noise distribution over U implicitly defined by the simulator.
Forward-simulation with parameter θ corresponds to first sampling noise u ∼ pu and then evaluating
f(θ,u). Note that a simulator implicitly defines a likelihood function p(x | θ). For a proposal
distribution q over the parameter space Θ, the marginal likelihood function of the simulator is

p(x | q) =
∫
Θ

p(x | θ)q(θ)dθ.

Due to the complex nature of stochastic simulators, we assume that p(x | θ), and thus p(x | q),
cannot be tractably evaluated. In contrast, we assume throughout that the simulator is differentiable:
we assume that ∂f(θ,u)

∂θ is well-defined at all points (θ,u), or that suitable “surrogate gradients” [see
e.g. Maheswaranathan et al., 2019] can be constructed when this requirement is not satisfied.

Given a stochastic simulator (f, pu), our goal is to identify a proposal distribution q produces a
diverse range of outputs from the simulator. In other words, we seek a proposal distribution q that
ensures all observable outputs can be sampled with relatively high probability. This corresponds to
ensuring that the marginal likelihood distribution p(x | q) produces a diverse range of samples.

Note that entropy may be viewed as a natural measure of information diversity. Thus, maximising the
entropy of the marginal likelihood distribution associated with q forms a natural objective:

argmin
q

∫
X
p(x | q) log p(x | q)dx. (1)

As discussed, the marginal likelihood function p(x | q) cannot be tractably evaluated in general,
preventing direct empirical estimation of the entropy objective in Problem (1) through standard
Monte Carlo methods. Moreover, when the dimensionality of the output space X is high, optimising
over all possible proposal distributions rapidly becomes intractable. To address these issues, we
propose a variational optimisation approach based on the Kozachenko-Leonenko entropy estimator
[Kozachenko and Leonenko, 1987, Kraskov et al., 2004] in the next section.

3 Differentiable Entropy Estimation

In order to make Problem (1) tractable, we first restrict q to a variational family Q = {qϕ | ϕ ∈ Φ}
parameterised by ϕ ∈ Φ. We further assume that qϕ is differentiable with respect to ϕ. Many rich
variational families, such as those associated with normalising flows, satisfy this criterion. Note that
identifying the optimal proposal distribution q⋆ now corresponds to identifying the optimal parameter
values ϕ⋆. Given the differentiability of the simulator (f, pu) it is natural to consider a stochastic
gradient descent scheme to learn ϕ⋆:

ϕt+1 ← Update (ϕt, g(Dϕt
), η) (2)
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Figure 1: The marginal likelihood induced by
a uniform distribution over model parameters
for the SIR agent-based model. Colours show
k-means clustering results.
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Figure 2: The maximum entropy marginal likeli-
hood uncovered with our optimisation procedure
for the SIR agent-based model. Colours show
k-means clustering results.

where g is a Monte-Carlo gradient estimate computed using the stochastic batch Dϕt
= (xi)

n
i=1

sampled from the marginal likelihood p(· | qϕt
) through forward-simulation, η is the learning rate,

and Update is some procedure for updating the parameters of the proposal distribution using gradient
information. However, since the marginal likelihood p(x | qϕt) cannot be efficiently evaluated,
constructing a Monte-Carlo gradient estimate g is non-trivial.

To address this, we propose the use of the Kozachenko-Leonenko (KL) estimator [Kozachenko and
Leonenko, 1987, Kraskov et al., 2004]. Let xk

i denote the kth nearest neighbour by Euclidean distance
to output xi in the batch Dϕt . The Kozachenko-Leonenko entropy estimator Ĥ(Dϕt) is given by

Ĥ(Dϕt
) := −ψ(k) + ψ(n) + log(vm) +

m

n

n∑
i=1

log
(
2∥xi − xk

i ∥
)
, (3)

where ψ denotes the digamma function and vm denotes the volume of the Euclidean unit ball in
Rm. Note that Ĥ(Dϕt

) is differentiable with respect to ϕ when both the variational family Q and the
simulator (f, pu) are differentiable with respect to their parameters. By substituting Ĥ(Dϕt

) into
Problem (1) and applying a standard optimisation algorithm, e.g., AdamW [Loshchilov and Hutter,
2019], as the Update operator, we obtain a practical training scheme for ϕ using ∇ϕĤ(Dϕ)|ϕt

.

4 Experiments

Next, we present a proof-of-concept demonstration of our methodology using an agent-based
susceptible-infected-recovered (SIR) epidemic simulator. We define the variational family Q using a
normalising flow which is trained via the gradient scheme described in Section 3. Full details of the
flow architecture and simulator used in our experiments is provided in the supplementary material.

SIR Epidemic Simulation. We consider an SIR epidemic simulator consisting of a population of
individuals connected through a graph structure, amongst whom a simulated “virus” spreads. At each
time step t = 1, . . . , T , each susceptible agent i becomes infected with probability 1− (1− β)ni ,
where ni denotes the number of infected agents that neighbour i. Agents that are currently infected
recover spontaneously at each time step with probability γ. We use St, It and Rt to denote the
relative proportion of susceptible, infected and recovered agents on time step t. The model has three
parameters, θ = (I0, β, γ) ∈ [0, 1]3. A simulation output x = (ST , IT , RT ) describes the final
proportion of infected, susceptible and recovered individuals. Note that this model involves discrete
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randomness to determine the transitions of agents between discrete states. However, the model can
be made differentiable by adopting, for example, straight-through or Gumbel-Softmax surrogate
gradients [see, e.g., Bengio et al., 2013, Jang et al., 2016].

Figures 1 and 2 show 104 samples from the marginal likelihood function p(x | q) when q is, respec-
tively, a uniform distribution and the learned, entropy-maximising distribution over the parameter
space, obtained using the procedure we describe in Sections 2 and 3. Colours correspond to the
clustering labels found from running a k-means clustering [Lloyd, 1982] with 5 clusters. As is evident
from these plots, our proposed method for exploring the full range of behaviours the model is able to
generate has successfully teased out model behaviours that are indistinct or altogether unseen when
q is taken to be a uniform distribution. The most visually striking example is the cluster coloured
green in Figure 2, which captures model dynamics that lead to a final state consisting of a moderate
proportion of both susceptible and infected individuals, and low numbers of recovered individuals; it
is evident that such behaviour is entirely missed in Figure 1. Density plots for the obtained maximum
entropy prior distribution are included in Appendix A.3.

5 Related Work

Entropy Estimation. Entropy estimation is a longstanding statistical problem, and a vast range of
estimators have been proposed. These include plug-in estimators [Györfi and van der Meulen, 1987],
methods based on sample spacings [Tarasenko, 1968], and nearest neighbour approaches [Berrett
et al., 2019, Tsybakov and van der Meulen, 1996], such as the Kozachenko-Leonenko estimator
[Kozachenko and Leonenko, 1987]. We chose to adopt the Kozachenko-Leonenko estimator since
it is differentiable and, in contrast to many plug-in estimators, does not explicitly require density
estimation which may be costly as the dimensionality of the output space grows.

Exploration in RL. Our approach is closely related to maximum entropy exploration for rein-
forcement learning (RL) [Hazan et al., 2019, Tiapkin et al., 2023, Zahavy et al., 2024], wherein
the goal is to learn policies that induce highly uniform distributions over trajectories or state-action
pairs. More broadly, our work shares its motivation with reward-free exploration methods, such as
count-based exploration [Tang et al., 2017, Bellemare et al., 2016] and intrinsic RL [Chentanez et al.,
2004, Achiam and Sastry, 2017]. Whereas the aforementioned methods aim to learn randomised
policies for finite Markov decision processes, we aim to learned randomised parameters for arbitrary
differentiable stochastic simulators with potentially infinite output spaces.

Minimum Energy Design. Our problem setting is also closely related to both minimum energy
[Joseph et al., 2015] and maximin [Li et al., 2020] design, which attempt to identify a finite set of
design points that characterise the response surface of a deterministic simulator. In contrast, we
consider stochastic simulators, and aim to produce a distribution over simulation parameters that
induces a uniform distribution over possible outputs. Whilst the aforementioned design problems
require computationally expensive approaches such as genetic algorithms and simulated annealing,
we obtain a variational problem that can be efficiently solved via gradient ascent.

6 Conclusions and Future Directions

We have presented a new model exploration framework for differentiable simulators based on
maximisation of the differential entropy. As demonstrated empirically, our methodology can help
reveal simulator behaviours frequently missed by uniform sampling of the parameter space. With that
being said, there are many promising directions for future work. As entropy estimation generally
scales poorly with dimension, we chose to focus on low dimensional summary statistics in our
experiments. Generalising our approach to high dimensional outputs such as time series presents an
interesting direction for future work. Lastly note that a modeller may be interested in exploring the
distributional or aggregate quantities such as the average output associated with a given parameter
value. Generalising our approach to such a setting forms another interesting direction for future
research.

4



Acknowledgments and Disclosure of Funding

JD, NB, DJ, AC, and MW acknowledge funding from a UKRI AI World Leading Researcher
Fellowship awarded to Wooldridge (grant EP/W002949/1). MW and AC also acknowledge funding
from Trustworthy AI - Integrating Learning, Optimisation and Reasoning (TAILOR), a project funded
by European Union Horizon2020 research and innovation program under Grant Agreement 952215.
DJ, AC and MW acknowledge in part a grant from the Alan Turing Institute, London.

References
Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement

learning. arXiv preprint arXiv:1703.01732, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Thomas B Berrett, Richard J Samworth, and Ming Yuan. Efficient multivariate entropy estimation
via k-nearest neighbour distances. The Annals of Statistics, 47(1):288–318, 2019.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement
learning. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing
Systems, volume 17. MIT Press, 2004.

Joel Dyer, Patrick Cannon, J Doyne Farmer, and Sebastian M Schmon. Black-box bayesian inference
for agent-based models. Journal of Economic Dynamics and Control, 161:104827, 2024.

László Györfi and Edward C. van der Meulen. Density-free convergence properties of various
estimators of entropy. Computational Statistics & Data Analysis, 5(4):425–436, 1987. ISSN
0167-9473.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pages 2681–2691. PMLR, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2016.

V. Roshan Joseph, Tirthankar Dasgupta, Rui Tuo, and C. F. Jeff Wu. Sequential exploration of
complex surfaces using minimum energy designs. Technometrics, 57(1):64–74, 2015. ISSN
00401706, 15372723.

Cliff C Kerr, Robyn M Stuart, Dina Mistry, Romesh G Abeysuriya, Katherine Rosenfeld, Gregory R
Hart, Rafael C Núñez, Jamie A Cohen, Prashanth Selvaraj, Brittany Hagedorn, et al. Covasim: an
agent-based model of covid-19 dynamics and interventions. PLOS Computational Biology, 17(7):
e1009149, 2021.

Lyudmyla F Kozachenko and Nikolai N Leonenko. Sample estimate of the entropy of a random
vector. Problemy Peredachi Informatsii, 23(2):9–16, 1987.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004.

Wenlong Li, Min-Qian Liu, and Boxin Tang. A method of constructing maximin distance designs.
Biometrika, 108(4):845–855, 10 2020. ISSN 0006-3444. doi: 10.1093/biomet/asaa089.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations. PMLR, 2019.

5



Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein. Guided
evolutionary strategies: Augmenting random search with surrogate gradients. In International
Conference on Machine Learning, pages 4264–4273. PMLR, 2019.
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Figure 3: Prior density of parameters learned through entropy maximization.

A Further experimental details

A.1 Further details on the SIR agent-based model

In our experiments, we make use of the differentiable implementation of an agent-based SIR model
appearing in the BlackBIRDS software package [Quera-Bofarull et al., 2023]. In this model, all
agents have probability I0 of beginning in a state of infection, else they begin the simulation as
susceptible agents. The gradients of all Bernoulli random variables used to determine the discrete
transitions between agent states are constructed using the Gumbel-Softmax gradient trick [Jang et al.,
2016]. In every simulation, we simulate 200 agents for T = 1000 time steps on a Watts-Strogatz
random network [Watts and Strogatz, 1998] with 10 links per node and rewiring probability 0.1.

A.2 Variational proposal distribution details

As the variational proposal distribution in the entropy maximisation scheme, we use a normalising
flow [Rezende and Mohamed, 2015] consisting of 5 transforms, each of which consists of a Masked
Autoregressive layer [Papamakarios et al., 2017] with 2 blocks with 20 hidden features, followed by
a permutation layer. The flow was built using the normflows package [Stimper et al., 2023], and
trained using the AdamW optimiser [Loshchilov and Hutter, 2019] with a learning rate of 10−3 for a
maximum of 103 epochs. We cease training if the loss does not decrease for 100 consecutive epochs.

A.3 Learned Priors

We include here the prior density plots for the trained proposal distributions when maximising model
output entropy. Figure 3 shows the parameter densities obtained by maximising entropy of the model
output.
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