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ABSTRACT

Binary code analysis is the foundation of crucial tasks in the security domain;
thus building effective binary analysis techniques is more important than ever.
Large language models (LLMs) although have brought impressive improvement to
source code tasks, do not directly generalize to assembly code due to the unique
challenges of assembly: (1) the low information density of assembly and (2) the
diverse optimizations in assembly code. To overcome these challenges, this work
proposes a hierarchical attention mechanism that builds attention summaries to
capture the semantics more effectively, and designs contrastive learning objectives
to train LLMs to learn assembly optimization. Equipped with these techniques,
this work develops Nova, a generative LLM for assembly code. Nova outperforms
existing techniques on binary code decompilation by up to 14.84 – 21.58% (absolute
percentage point improvement) higher Pass@1 and Pass@10, and outperforms
the latest binary code similarity detection techniques by up to 6.17% Recall@1,
showing promising abilities on both assembly generation and understanding tasks.

1 INTRODUCTION

Binary code plays an irreplaceable role in the security domain, being the foundation of crucial tasks
including vulnerability detection (Güler et al., 2019; Duan et al., 2020; Chen et al., 2022b), malware
detection (Spensky et al., 2016; Aonzo et al., 2023; Xu et al., 2014), binary recovery (Su et al., 2024;
Zhang et al., 2021; Chen et al., 2022c), and legacy software maintenance (Carbone et al., 2009;
Carlini et al., 2015; Martin et al., 2010). For example, when performing tasks such as identifying
attacks and malware, security analysts often only have access to assembly, i.e., the human-readable
representation of binary code, which is extremely difficult to understand (Su et al., 2024; Zhang
et al., 2021; Chen et al., 2022c). Thus, combined with the increasing sophistication of cybercrime
that poses significant threats worldwide (e.g., cybercrime is predicted to cost the world $10.5 trillion
annually by 2025 (Sausalito, 2020)), effective binary analysis techniques are in high demand.

0:    endbr64 
4:    push   %rbp
5:    mov    %rsp,%rbp
8:    mov    %rdi,-0x8(%rbp)
c:    mov    %rsi,-0x10(%rbp)
10:   mov    -0x8(%rbp),%rax
14:   mov    (%rax),%edx
16:   mov    -0x10(%rbp),%rax
1a:   mov    (%rax),%eax
1c:   cmp    %eax,%edx
...

(b) Assembly (O0-Optimized) (c) Assembly (O1-Optimized)(a) Source Code Function

0:    endbr64 
4:    mov    (%rdi),%ecx
6:    mov    (%rsi),%edx
8:    mov    $0xffffffff,%eax
d:    cmp    %edx,%ecx
f:    jl     17
11:   setg   %al
14:   movzbl %al,%eax
17:   retq

#include <stdio.h>
#include <math.h>

int compare(int *x, int *y) {
    if (*(int*)x < *(int*)y)
        return -1;
    if (*(int*)x > *(int*)y)
        return 1;
    return 0;
}

Figure 1: Example that shows the semantics and diverse optimizations of assembly code.

Large language models pre-trained on source code have brought improvement in various software
development domains (Chen et al., 2022a; Liu et al., 2023a; Chen et al., 2023; Le et al., 2022;
Jiang et al., 2023; Xia et al., 2023). However, these LLMs are not designed for or trained with
assembly corpus, not achieving their full potential on binary code analysis tasks such as binary code
similarity (Wang et al., 2022; Xu et al., 2023a), malware detection (Su et al., 2024), and binary code
decompilation (Tan et al., 2024; Armengol-Estapé et al., 2024; Hosseini & Dolan-Gavitt, 2022).
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Existing work applying LLMs on assembly code mainly piggybacks on encoder-style LLMs (Wang
et al., 2022; Su et al., 2024; Xu et al., 2023a), unable to benefit from the more extensive pre-training,
updated architectures, scaling of state-of-the-art generative LLMs. Other work using generative
LLMs for decompilation shows a low unit test passing rate of the decompiled programs (Tan et al.,
2024; Armengol-Estapé et al., 2024).

The challenges of leveraging generative LLMs for assembly code are twofold. First, compared to
source code, assembly code has a lower information density. A short source-code sequence maps
to an assembly-code sequence that is often several times longer. Thus, assembly semantics span
across a long sequence of tokens. Figure 1 (a) shows an example of a source code function that
compares two integers, while Figure 1 (b) shows its corresponding assembly code optimized with
O0 flag. In the O0-optimized assembly code, the five instructions from 10: mov -0x8(%rbp),%rax
to 1c: cmp %eax,%edx perform the checking whether the value of x is smaller than the value of y
(correspond to if (*(int*)x < *(int*)y) in the source code). A single assembly instruction alone
represents little meaningful semantics in the source code. It is the combinations of many instructions
and the dependencies between them represent the semantics. Such combinations of instructions are
long, which is hard for LLMs to learn.

Second, assembly code is diverse due to compiler optimization. The assembly code of the same
source code function looks dramatically different with different compiler optimization. Figure 1
(c) shows the assembly of the same function compiled with O1 and O0 flags, which consists of a
significantly different set of instructions. Such syntax diversity is hard for LLMs to learn, preventing
LLMs from obtaining consistently good performances on differently optimized assembly code.

In this work, we develop Nova, a generative foundation LLM pre-trained for assembly code with
two key novelties. First, to address the low-information-density and long-sequence challenge, we
design a hierarchical self-attention, which contains three categories of attention at different levels of
granularity: intra-instruction attention, preceding-instruction attention, and inter-instruction attention.
The key insight is to build attention summaries, i.e., we create per-statement attention labels, which
act as the summary of a statement. We then use preceding-instruction attention to capture semantics
between a token and its preceding instruction label and use inter-instruction attention for long
dependencies. Besides, we design functionality contrastive learning and optimization contrastive
learning objectives to train Nova to learn the semantics behind the diverse syntax of assembly.

This work makes the following contributions:

• We propose a novel hierarchical attention mechanism that captures the assembly’s low-density
semantics at three granularity levels.

• We design contrastive learning objectives to train LLMs to learn assembly with diverse optimiza-
tions and encode assembly more efficiently.

• We develop Nova, a generative foundation LLM with hierarchical attention and contrastive learning
for assembly. Nova outperforms state-of-the-art on binary decompilation by up to 14.84 – 21.58%
higher Pass@k and on binary similarity detection by up to 6.17% Recall@1.

2 RELATED WORK

2.1 BINARY MODELS

Machine learning models are widely used in binary program analysis tasks. However, these models
are typically designed for specific tasks such as binary code similarity detection (Pei et al., 2020; Xu
et al., 2023a; Wang et al., 2022; Xu et al., 2017; Ding et al., 2019), variable name prediction (Chen
et al., 2022c; Xu et al., 2023b; Zhang et al., 2021; He et al., 2018; Lacomis et al., 2020), binary
code type inference (Pei et al., 2021), and so on Chen et al. (2022d); Liu et al. (2023b); Hosseini &
Dolan-Gavitt (2022).

Recent techniques have started to pre-train foundation LLMs for binaries. CodeArt (Su et al., 2024)
pre-trains encoder-style LLMs with a regularized attention design to better encode assembly code
semantics. SLaDe (Armengol-Estapé et al., 2024) trains BART (Lewis et al., 2019) models on
assembly. Meta LLMCompiler (Cummins et al., 2024) train CodeLlama models on LLVM IR to
optimize binary code. LLM4Decompile (Tan et al., 2024) trains DeepSeekCoder with assembly
for binary code decompilation. However, CodeArt does not generalize to generation tasks due to
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its encoder architecture. LLMCompiler trained on LLVM IR cannot be effectively transferred to
assembly code. SLaDe and LLM4Decompile are limited in performance due to a lack of special
designs for assembly. In contrast, Nova proposes hierarchical attention and contrastive learning
objectives, outperforming existing techniques on both understanding (binary code similarity detection)
and generation (binary code decompilation) tasks.

2.2 LARGE SOURCE-CODE MODELS

LLMs demonstrate promising results on many code-related tasks, such as code generation (Chen
et al., 2022a; Liu et al., 2023a; Chen et al., 2023; Le et al., 2022; Yue et al., 2021; Chen et al.,
2021; Nijkamp et al., 2022; Fried et al., 2023; Rozière et al., 2023; Guo et al., 2024; Lozhkov
et al., 2024; Hui et al., 2024), bug fixing (Jiang et al., 2023; Xia et al., 2023) and vulnerability
fixing (Wu et al., 2023; Steenhoek et al., 2023; He & Vechev, 2023). The advances in using LLMs
are attributed to the knowledge learned from massive source code and natural language text in their
training datasets (Touvron et al., 2023; OpenAI, 2023). Nova is designed and trained for assembly,
which has unique challenges such as low information density and diverse optimization.

2.3 ATTENTION MECHANISM

Standard self-attention is widely used in transformer architecture (Vaswani et al., 2017) to capture soft
dependencies between tokens in the input. Many special attention mechanisms have been designed
for better learning in various scenarios (Yang et al., 2016; Huang et al., 2024). LongCoder (Guo et al.,
2023) combines window attention and global attention (attention sink (Xiao et al., 2024)) to handle
long input of source code. We have shown that LongCoder’s window attention is less effective than
Nova’s on assembly code.

CAST (Shi et al., 2021) is a new neural architecture that splits the abstract syntax tree (AST) of source
code into subtrees, encodes the subtrees, and aggregates to the final encoding. PA-former (Chai & Li,
2024) is a new neural architecture that constructs source code as pyramid input based on their AST
structure and contains a pyramid attention mechanism to calculate the features in a hierarchical way.
HierarchyNet (Nguyen et al., 2023) is a neural architecture that considers source code AST, data flow,
and control flow graphs. Similarly, it cannot be applied to assembly code. Different from CAST,
PA-former, and HierarchiyNet, Nova’s attention design is for assembly code, is more lightweight and
can be plugged into any pre-trained generative LLM.

3 APPROACH

Figure 2 presents the overall approach of Nova. We build Nova on top of foundation models for
source code (Guo et al., 2024) to utilize their source code and natural language generation ability. We
first collect large assembly corpora (Section 3.1). Section 3.2 describes Nova’s hierarchical attention
design. With the collected assembly corpora, we then pretrain Nova with language modeling and
contrastive learning objectives (Section 3.3). Then, we fine-tune Nova on two important downstream
tasks, binary code decompilation, and binary code similarity detection (Sections 3.4 and 3.5), to
prove Nova’s effectiveness and benefits to the binary research domain.

Data

Language
Modeling

Functional Contrastive
Learning

Optimization
Contrastive Learning

Pre-Trained LLM

Hierarchical Attention

Nova

Figure 2: Overview of developing Nova

Table 1: Statistics (number of C and X86-64 as-
sembly functions) of the pre-training datasets.

Origin C Functions O0 O1 O2 O3 Total

AnghaBench 757.1K 743.1K 726.4K 718.7K 717.8K 3.7M
The-Stack 138.8K 125.1K 119.7K 116.9K 108.8K 609.3K

3.1 DATA COLLECTION

In this work, we focus on X86-64 assembly functions for C programs. Yet, Nova’s approach is
generalizable to other assembly languages such as ARM assembly.

We derive our X86-64 assembly functions dataset from two source code corpora: C functions in
The-Stack (Li et al., 2023) and AnghaBench (da Silva et al., 2021). We compile the C programs into
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executables using gcc with different optimization levels (i.e., O0, O1, O2 and O3), strip the executables
to remove debug information, and disassemble them into X86-64 assembly code using objdump. We
treat every function as a separate data point. Table 1 shows the number of C functions in the two
original datasets, and the number of X86-64 assembly functions we collected from them.

We perform certain normalization on the assembly functions: (1) removing all the “%” and comments,
(2) adding whitespace around “,”, “(”, “)”, (3) converting all the hexadecimal numbers to decimal
numbers, and (4) replacing the address of each instruction with special labels (e.g., replacing “0” and
“4” in Figure 1 (b) with “[INST-1]” and “[INST-2]”) placing at the end of each instruction. More
details are in Appendix A.1.

3.2 HIERARCHICAL SELF-ATTENTION

Nova uses hierarchical self-attention that is specially designed to learn the low-information-density
semantics in the long sequence of assembly code. Specifically, Nova learns the assembly code in
an hierarchical way by providing a modified attention mask. Different from standard token-level
attentions (Vaswani et al., 2017; Radford & Narasimhan, 2018; Radford et al., 2019; Brown et al.,
2020), our hierarchical self-attention contains three categories at different levels of granularity.

mov eax , $1

mov ebx , $2

mov ecx , eax

add ecx , ebx

(b) Tokenized Assembly Code with Attention Illustration

(a) Assembly Code Hierarchical Attention Mask

# This is the assembly code:
mov eax , $1
mov ebx , $2
mov ecx , eax
add ecx , ebx
What is the source code?

mov e ax , $ 1 [INST-1]

mov e bx , $ 2

mov ec x , e ax

add ec x , e bx

[INST-2]

[INST-3]

[INST-4]

mov e ax , $ 1 [INST-1]

intra-instruction
attention

preceding-
instruction attention

inter-instruction
attention

(c) Assembly Code Attention Compatible with Standard Attention

Figure 3: Design of Nova’s hierarchical attention for assembly code

(1) Intra-Instruction Attention: Due to the low information density in assembly, intra-instruction
attention is designed to capture the summary of every instruction, which is the standard causal
attention but limited to tokens of each instruction (the yellow part in Figures 3) (a) and (b). Tokens
in different instructions have no attention weights. The “[INST]” label at the end of the instruction has
attention to all the tokens in the instruction and thus captures the semantics of the entire instruction
(e.g., “[INST-1]” captures the semantics of “mov eax, $1”).

(2) Preceding-Instruction Attention: In addition to the local semantics of each instruction, the use
of assembly instructions (such as the choice of registers) depends on the context. For example, after
the first instruction “mov eax, $1”, the second instruction should not reuse “eax” to store another value
“$2” immediately. To capture such context, the preceding-instruction attention enables each token in
an instruction to have attention to the “[INST]” label of the preceding instruction (the light green
part in Figures 3 (a) and (b)).

(3) Inter-Instruction Attention: To understand function semantics (i.e., functionality), which lies
in the dependencies across different instructions, the inter-instruction attention is designed to let
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the “[INST]” label of each instruction have attention to all the labels of previous instructions. For
example, “[INST-4]” has attention to “[INST-1]”, “[INST-2]”, and “[INST-3]” (the dark green part
in Figures 3 (a) and (b)). The inter-instruction attention is only enabled for “[INST]” labels, as they
represent the semantics of each instruction.

To sum up, the hierarchical self-attention splits assembly code semantics into three levels: intra-
instruction attention captures instruction summaries, preceding-instruction attention provides context
from the preceding instruction, and inter-instruction attention models long dependencies across
instructions using “[INST]” tokens that contain the instruction summary. Figure 3 (c) highlights the
compatibility of Nova’s hierarchical attention with standard self-attention for text and source code.
Leveraging the proven performance of standard self-attention in existing LLMs, we retain the causal
attention mask within and across chunks of text or source code (shown in light grey in Figure 3
(c)). Cross-attention between text, source code, and assembly is restricted to “[INST]” tokens, which
encapsulate assembly instruction summaries.

3.3 CONTRASTIVE LEARNING

The syntax gap between assembly code and source code, and syntax diversity between differently-
optimized assembly code make LLMs struggle to distinguish the semantics behind the syntax. Nova
adopts contrastive learning technique (Gao et al., 2021) during pre-training to train LLMs to encode
assembly code meaningfully w.r.t semantics. The standard pre-training objective is language modeling
by minimizing the negative likelihood of code in the pre-training corpus (Radford & Narasimhan,
2018), notated as Llm. In addition, Nova is pre-trained with two new objectives, Lfcl for functionality
contrastive learning and Locl for optimization contrastive learning.

O01

src1

src2

src3

src4

O02 O03 O04

func1 <cmp>

func2 <sort>

func3 <min>

func4 <max>
similar

different

compile & disassemble

distance matrix Ddifferent functions

O0

src

O0

O1

O1 O2 O3

similar

different

distance matrix D

(b) Design of Functionality CL (d) Design of Optimization CL

func <cmp>

src

O0 asm

O1 asm

cmp

sort

(a) CL Across Functionalities

d(e*
cmp, e*

cmp)

src

O0 asm

O1 asm

d(e*
sort, e

*
sort)

d(e*
cmp, e*

sort)

src

O0 asm

O1 asm

O2 asm

O3 asm

(c) CL Across Optimizations

Figure 4: Design of functionality and optimization contrastive learning (CL). “asm” denotes assembly.

Functionality CL: Functionality CL trains Nova to focus more on the functionalities of assembly
code rather than the syntax. Code with the same functionality (assemblies from the same source
code), should be encoded closer in the latent space. For instance, in Figure 4 (a), embeddings of
source and assembly code of function “cmp” are closer to each other, and the same for function “sort”.
Nova is designed and implemented on decoder-only generative LLM, and we refer the hidden states
from the last transformer layer as embedding. For source code, we use the average of each token’s
embedding as the source code function’s embedding. For assembly, we use the average of all the
“[INST]” tokens’ embedding as the embedding of the assembly function, as each “[INST]” token is
supposed to capture the semantics of that instruction by the design of hierarchical self-attention.

Let esf be the embedding of function f in s form (s = −1 for source code, and s ∈ [0, 1, 2, 3] for O0
to O3 optimized assembly). For simplicity, let S = [−1, 0, 1, 2, 3] be the domain of s. Functionality
CL optimizes Nova’s embeddings to satisfy the constraint:

∀fi ∈ F, max
s,t∈S

(d(e
s
fi , e

t
fi)) < min

s,t∈S
fj ̸=fi∈F

(d(e
s
fi , e

t
fj ))

, where d calculates the l2 distance between two embeddings and F is the full set of functions in the
training corpus.

The embeddings of a batch of functions, each represented in two different forms, can be optimized to
satisfy these constraints. For the example in Figure 4 (b), there are two forms (source code and O0
assembly) of four functions. Once Nova encodes the batch of source code and assembly functions,
we calculate the distance matrix {Dij}fi,fj∈F = {d(esfi , e

t
fj
)}, and minimize the loss:
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Lfcl = − log
∑
s,t∈S

∑
fi∈F

1−
exp

(
d(esfi , e

t
fi
)
)∑

fj∈F exp
(
d(esfi , e

t
fj
)
)


This objective minimizes the distance between the embeddings of the same function, which is the
diagonal in the distance matrix. In practice, this loss is computed and back-propagated for each batch
of functions. Given a batch size of 64, F represents a set of 64 unique functions in the batch.

Optimization CL: LLMs can be confused if being asked to directly connect a source code function
to its O3-optimized assembly, due to their dramatically different syntax. Such a huge gap can be filled
by learning how the source code is transformed to O0, O1, O2 and eventually to O3 assembly, as the
optimization levels are ordered.

Higher-level optimization applies a super-set of optimization rules compared to lower-level optimiza-
tion. Nova learns such order with the optimization CL objective, encoding differently-optimized
assembly code orderly. Optimization CL optimizes Nova with the constraint: the more optimizations
applied, the larger the difference between embeddings of optimized and unoptimized code. For
instance, Figure 4 (c) and (d) illustrate that for the same function “cmp”, the distance between source
code and assembly increases when the optimization level increases. Formally, optimization CL
minimizes the following loss:

Locl =
∑
f∈F

∑
s<t1<t2∈S

max
(
0, d(esf , e

t1
f )− d(esf , e

t2
f )

)
Overall, the final training loss combines the three: L = Llm + λ(Lfcl + Locl), where λ is set to 0.1 to
balance the losses in this work.

3.4 TASK 1: BINARY CODE DECOMPILATION

Binary code decompilation (BCD) helps developers to understand binary code by recovering binary
code into more readable high-level source code (e.g., C programs) (Fu et al., 2019; Liang et al., 2021;
Armengol-Estapé et al., 2024; Tan et al., 2024). The input to the model for BCD is formatted as an
instruction prompt (notated by p): # This is the assembly code with {opt} optimization: {asm},
where “opt” is the optimization-level applied to the assembly and “asm” is the assembly code to
decompile. Nova is fine-tuned to generate the expected source code function src following the
instruction prompt. The fine-tuning objective is minimizing the loss: Lbcd = − log P (src|p).

3.5 TASK 2: BINARY CODE SIMILARITY DETECTION

Binary code similarity detection (BCSD) aims to measure the similarity between two binary code
snippets (Wang et al., 2022; Su et al., 2024), which is the foundation of various applications such as
plagiarism detection (Luo et al., 2014; Sæbjørnsen et al., 2009) and vulnerability detection (David &
Yahav, 2014; David et al., 2018; 2017; 2016).

A widely used setting is taking a query assembly of the function fq that is compiled with one
optimization level (denoted by s), and a pool of candidate assembly of K (e.g., 50, 100, etc.)
functions (notated by fp

i , 1 ≤ i ≤ K) compiled with a different optimization level (denoted by
t ̸= s). There exists a unique candidate assembly coming from the same source code as the query
(∃!1 ≤ i ≤ K, fp

i = fq , called the positive candidate). Nova is fine-tuned to encode these binaries, so
that the positive candidate has the highest similarity with the query assembly among the pool. The
learning objective is as follows:

LBCSD = − log

fq :=f
p
i∑

1≤i≤K

1−
exp

(
d(e

s
fq , etfp

i
)
)

∑
1≤j≤K exp

(
d(esfq , etfp

j
)
)


We follow previous work (Su et al., 2024) to let s be O0-assembly and t be O3-assembly, which is the
hardest setting.
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4 EXPERIMENTAL SETUP

This section describes the setup of pre-training and fine-tuning of Nova, as well as the existing
baselines we compare Nova with, and the evaluation metrics we used in the two downstream tasks.
Appendix A.2 contains additional details such as training hyper-parameters.

4.1 PRE-TRAINING

We use the C and X86-64 assembly functions collected from AnghaBench and The-Stack for pre-
training. We pre-train Nova starting from DeepSeek-Coder (Guo et al., 2024), and the hierarchical
attention is applied on half of the attention heads to balance between its effectiveness and the existing
knowledge in the standard attention layers (Justified in Appendix A.3). Nova is pre-trained with
language modeling for one epoch, followed by contrastive learning objectives for another epoch.

4.2 FINE-TUNING FOR BINARY CODE DECOMPILATION

Training Data: We sample (due to computation resource limitation) 2.16M assembly-to-source-code
pairs (0.338B tokens) from the pre-training corpus to build the BCD fine-tuning data.

Test Data: We use HumanEval-Decompile (Tan et al., 2024) as the test benchmark, which was
not used in training. HumanEval-Decompile is derived from the C language adaptation of the
HumanEval (Chen et al., 2021) benchmark and contains 164 C functions, each compiled with O0 – O3
optimization flags and disassembled into X86-64 assembly.

Baselines: Nova is compared with existing SOTA LLM4Decompile (Tan et al., 2024), Meta LLM-
Compiler (Cummins et al., 2024), other open-sourced general code LLMs (Rozière et al., 2023;
Lozhkov et al., 2024; Guo et al., 2024; Hui et al., 2024; Mishra et al., 2024; Guo et al., 2023), and
commercial LLMs GPT-3.5-Turbo and GPT-4o). LLM4Decompile trains DeepSeekCoder using the
same AnghaBench corpus for binary decompilation. Meta LLMCompiler trains CodeLlama models
using LLVM IRs, X86, and ARM assembly code to optimize and translate binary code.

Evaluation: We let each model sample 20 decompilations per assembly function, using the temper-
ature of 0.2 and top p of 0.95 (Chen et al., 2021). Except for LLM4Decompile and Nova that are
fine-tuned for binary code decompilation, we provide all other baselines with three-shot examples for
few-shot learning (Brown et al., 2020). The decompilations are executed with the test cases to verify
the functional correctness. Finally, Pass@1 and Pass@10 (Chen et al., 2021) are reported.

4.3 FINE-TUNING FOR BINARY CODE SIMILARITY DETECTION

Training Data: To compare Nova with existing works on BCSD fairly (Wang et al., 2022; Su et al.,
2024), we use the same dataset, BinaryCorp-3M (Wang et al., 2022), as the fine-tuning data for
BCSD, which contains the O0 and O3 assembly of 224,606 functions.

Test Data: Following existing work (Su et al., 2024; Xu et al., 2023a), we use real-world benchmarks,
Binutils, Curl, ImageMagick, SQLite, OpenSSL, and Putty, as the test benchmarks, which are
nonexistent in the training data.

Baselines: Nova is compared with jTrans (Wang et al., 2022), DiEmph (Xu et al., 2023a) and
CodeArt (Su et al., 2024). jTrans is a Transformer (Vaswani et al., 2017) encoder trained on
binaries with masked token prediction and jump target prediction tasks. DiEmph uses an instruction
deemphasis technique to prevent the model from learning instruction distribution biases introduced by
compilers. CodeArt proposes a regularized attention mask for encoder models to capture instructional
semantics and data dependencies.

Evaluation: We randomly sample K = 50, 100, 200, 500 source code functions from each project,
compile them into binaries with O0 and O3 optimization flags, and disassemble them into X86-64
assemblies. BCSD techniques encode these assemblies into embeddings (Nova uses the average
last-layer hidden states of all the “[INST]” tokens in an assembly as its embedding). Then each O0
assembly is used as the query to calculate their similarity with the K O3 candidate assemblies. Metric
Recall@1 is reported as the ratio of queries for which the candidate from the same source code has
the highest similarity among all the candidates. Additional details are in Appendix A.6.
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5 RESULTS

5.1 BINARY CODE DECOMPILATION

Comparison with SOTA Techniques: Table 2 shows the Pass@1 and Pass@10 of the decompiled
code from assemblies on HumanEval-Decompile. The results are grouped by optimization level (i.e.,
the benchmark contains 164 assemblies of each optimization level), and the average is also reported.

Table 2: Nova’s Pass@K and comparison with existing techniques on HumanEval-Decompile.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

CodeLlama-7B 6.95 3.81 4.54 3.78 4.77 8.53 5.97 7.34 5.17 6.75
StarCoder2-7B 6.31 4.33 5.64 5.95 5.56 8.77 5.18 6.09 7.17 6.80
DeepSeekCoder-7B 9.63 7.56 7.41 6.68 7.82 13.60 11.38 11.52 9.44 11.49
Qwen-2.5-Coder-7B 4.76 5.79 5.58 5.27 5.35 6.34 7.69 6.56 5.79 6.60
LLMCompiler-7B 5.95 5.85 5.55 5.82 5.79 7.01 7.31 7.47 7.01 7.20
GPT-3.5-Turbo 7.41 6.13 4.33 3.90 5.44 9.56 8.38 6.23 5.12 7.32
GPT-4o 21.34 18.29 14.48 13.05 16.79 29.94 26.74 21.42 19.88 24.50

LLM4Decompile-1B 15.30 8.26 9.36 8.38 10.33 21.79 15.23 16.17 13.70 16.72
Nova-1B 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

LLM4Decompile-6B 29.97 19.05 20.46 18.32 21.95 40.40 27.75 28.85 28.51 31.38
Nova-6B 48.78 30.58 30.85 27.23 34.36 57.47 47.45 43.03 39.68 46.91

Overall, Nova’s Pass@1 and Pass@10 are higher than all SOTA binary decompilation techniques
and general LLMs with even smaller model sizes. Specifically, for each optimization level, Nova
consistently decompiles more assemblies into source code correctly than the rest of the compared
techniques. Note that Meta LLMCompiler is mainly designed for LLVM IR optimization, and thus is
still incapable of assembly code decompilation.

With the same model size, Nova-1B outperforms LLM4Decompile-1B with a 14.84% higher averaged
Pass@1, and a 21.58% higher Pass@10. Nova-6B outperforms LLM4Decompile-6B with a 12.41%
higher averaged Pass@1, and a 15.53% higher Pass@10. When compared with GPT-4o, an order of
magnitude larger model, Nova-1B produces an 8.38% higher Pass@1 and 13.80% higher Pass@10.
Examples of Nova’s correct decompilation are provided in Appendix A.5.

Comparison with Techniques Handling Long Input: Nova’s hierarchical attention design targets
to address the low information density and long input challenge of assembly code. There are other
techniques that handles long input challenges in text and source code, with Granite-3B-Code-Base-
128K and LongCoder being the most related ones. Granite trains LLM on repository-level long
inputs, which is an orthogonal approach with Nova’s approach (hierarchical attention and contrastive
learning). We train Granite-3B-Code-128K with Nova’s approach, and Table 3 shows that Nova’s
approach brings improvement to Granite over standard fine-tuning even if it has already been trained
with long code data.

Table 3: Nova’s approach brings improvement to LLM that has been trained with long input data.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Granite (3B-Code-128K) 5.91 3.78 5.09 5.52 5.08 8.19 5.16 6.56 7.15 6.76
Granite + Standard Fine-Tuning 20.88 13.54 11.37 10.09 13.97 30.05 19.77 18.31 15.77 20.98
Granite + Nova’s Approaches 31.04 14.57 14.70 13.66 18.49 39.57 21.23 21.77 19.82 25.60

Table 4: Nova’s hierarchical attention is more effective on assembly code.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Nova-1B (using LongCoder’s Attention) 34.59 19.07 19.72 17.34 22.68 42.19 32.37 32.86 29.04 34.12
Nova-1B 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

LongCoder combines window attention and global attention to learn long code input. We compare
LongCoder’s attention design with Nova’s hierarchical attention design by replacing the hierarchical

8
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Table 5: Ablation study of Nova-1B on HumanEval-Decompile.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

LLM4Decompile-1B 15.30 8.26 9.36 8.38 10.33 21.79 15.23 16.17 13.70 16.72

Nova−CL−HA 20.73 16.16 15.03 11.19 15.78 33.55 28.12 26.96 21.01 27.41
Nova−HA 30.58 19.88 20.58 16.40 21.86 44.75 33.13 33.31 29.82 35.25
Nova 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

attention of Nova-1B with LongCoder’s attention design. Table 4 shows that Nova’s hierarchical
attention is more effective in learning assembly code. Nova’s attention design considers the instruction-
level local semantics and dependencies between different instructions, which fits better than fix-sized
window attention to assembly code.

Ablation Study: We conduct an ablation study by comparing Nova-1B with the following models to
show the effectiveness of contrastive learning objectives and hierarchical attention design:

• Nova−CL−HA: Removing contrastive learning and hierarchical self-attention. This is simply
training DeepSeekCoder-1.3B on the assembly corpus using language modeling. This can be
viewed as our reproduction (retrain) of LLM4Decompile-1B using the same amount of data.

• Nova−HA: Removing the hierarchical self-attention, training DeepSeekCoder-1.3B on the assem-
bly corpus using both the language modeling and contrastive learning objectives.

Table 5 shows the results of the ablation study. Nova−CL−HA produces an average Pass@1 of
15.78% and Pass@10 of 27.41%. With additional contrastive learning objectives, Nova−HA improves
the Pass@1 on all optimization levels over Nova−CL−HA, showing a higher averaged Pass@1 and
Pass@10. Further applying the hierarchical self-attention on Nova−HA boosts the overall Pass@1
from 21.86% to 25.17%, and Pass@10 from 35.25% to 38.30%.

Table 6: Recall@1 on BCSD with K = 50

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.68 0.80 0.84 0.87 0.89
Curl 0.72 0.84 0.86 0.89 0.94
ImageMagick 0.53 0.71 0.78 0.86 0.90
SQLite 0.73 0.79 0.78 0.77 0.78
OpenSSL 0.70 0.83 0.88 0.90 0.92
Putty 0.63

::
0.72 0.69

::
0.72 0.71

Avg. 0.67 0.78 0.81 0.84 0.86

Table 7: Recall@1 on BCSD with K = 100

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.60 0.63 0.81 0.79 0.79
Curl 0.63 0.80 0.82 0.86 0.88
ImageMagick 0.54 0.71 0.76 0.79 0.81
SQLite 0.62 0.72 0.74 0.73 0.72
OpenSSL 0.60 0.80 0.87 0.88 0.90
Putty 0.58 0.64 0.64 0.65 0.64

Avg. 0.60 0.72 0.77 0.78 0.79

Table 8: Recall@1 on BCSD with K = 200

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.51 0.64 0.74 0.73 0.73
Curl 0.57 0.77 0.78 0.83 0.84
ImageMagick 0.39 0.51 0.67 0.73 0.75
SQLite 0.56 0.65

::
0.68

::
0.68 0.69

OpenSSL 0.54 0.71 0.82 0.84 0.88
Putty 0.49 0.58 0.55 0.55 0.58

Avg. 0.51 0.64 0.71 0.73 0.75

Table 9: Recall@1 on BCSD with K = 500

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.40 0.57 0.70 0.65 0.67
Curl 0.43 0.62 0.69 0.73 0.76
ImageMagick 0.25 0.42 0.58 0.61 0.65
SQLite 0.43 0.59 0.62 0.59 0.62
OpenSSL 0.43 0.61 0.76 0.78 0.82
Putty 0.38 0.50 0.49 0.47 0.51

Avg. 0.39 0.55 0.64 0.64 0.67

5.2 BINARY CODE SIMILARITY DETECTION

Tables 6, 7, 8 and 9 show the Recall@1 of Nova and existing BCSD techniques with pool size K of
50, 100, 200 and 500 on the six benchmarks. Underline indicates the best in each benchmark, while
::::
wave denotes the tied best (we only mark Nova-1B for clearer illustration).

Overall, Tables 6, 7, 8 and 9 show that on average, Nova-1B and Nova-6B achieve the highest
Recall@1 (in bold) under all four settings of K. Nova-6B further outperforms Nova-1B and achieves
the highest averaged Recall@1 under all four settings, ranking the ground-truth of 5%, 2%, 4%, and
3% more queries the most similar correspondingly compared to CodeArt. Nova-1B consistently
outperforms existing techniques with higher Recall@1 when K is 50, 100, and 200, meaning it

9
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correctly ranks ground-truth of 3%, 1%, and 2% more queries as the most similar. Under the setting
of K = 500, Nova-1B ties with CodeArt with the same highest Recall@1. When looking into each
individual benchmark, Nova-1B always wins on the most benchmarks under different settings of pool
size K. For instance, Nova-1B wins on four benchmarks while DiEmph only wins on SQLite when
K = 50. We also conduct an ablation study on BCSD in Appendix A.7.

5.3 ANALYTIC EXPERIMENTS: HOW ARE NOVA’S EMBEDDINGS BETTER?

We use the widely-used t-SNE (van der Maaten & Hinton, 2008) to analyze and visualize high-
dimensional embeddings. We randomly sample seven coding problems from HumenEval-Decompile
(task id 19, 32, 34, 63, 119, 128, 143), encode the O0 – O3 assemblies by Nova−CL−HA and Nova-
1B. Figure 5 shows the embeddings that are visualized under the first two principal components. Each
color represents one task, and O0 – O3 assemblies are marked by ⃝, ▽, △, and □.

Compared with Nova−CL−HA (Figure 5 (a)), Nova−HA (Figure 5 (b)) including contrastive learning
objectives in the pre-training, can separate the embeddings of assemblies with different functionalities
better. Nova−HA clearly encode “Task 143” (orange points) away from the others. Yet, Nova’s
(Figure 5 (c)) embeddings group the assemblies by functionalities more precisely than Nova−HA,
suggesting that hierarchical attention enhances the training of contrastive learning objectives to learn
more effective encoding. Visualization using a different approach, PCA, is shown in Appendix A.8.
Analytic experiments on Nova’s hierarchical attention is shown in Appendix A.9.

O0 assemblies
O1 assemblies
O2 assemblies
O3 assemblies

Task 34

Task 143
Task 63

Task 19

Task 119

Task 128

Task 32

Task 143

(c) Nova's Embeddings(a) Nova-CL-HA's Embeddings (b) Nova-HA's Embeddings

Figure 5: t-SNE analysis of embeddings calculated by Nova−CL−HA, Nova−HA, and Nova.

6 LIMITATIONS

One limitation is that Nova is X86-specific, as we only collect X86 assembly corpus for pre-training.
This design choice is mainly affected by two facts: (1) X86 assembly is used and explored in a
wide range of binary tasks (Wang et al., 2022; Su et al., 2024; Xu et al., 2023a; Chen et al., 2022c)
compared to other assembly languages, and (2) computation limitations. However, the proposed
techniques are independent of X86 assembly. Low information density and compiler optimization are
the common challenges of most assembly languages such as X86, ARM, and MIPS. The proposed
techniques can be applied to the future development of multi-lingual assembly LLMs. Another
potential limitation is the scale of models. We develop Nova-1B and Nova-6B. These two LLMs
show impressive ability in assembly code decompilation and encoding. There might be a potential
benefit of developing larger Nova models. However, due to the computing resources limitation, we
are unable to explore that in this work.

7 CONCLUSION

This work develops Nova, a generative foundation LLM for assembly code, which incorporates
two key novelties (hierarchical attention and contrastive learning objectives) to address the unique
challenges of assembly code. Evaluation on downstream tasks shows the effectiveness of Nova, which
outperforms existing techniques on binary code decompilation by up to 146.54% and outperforms
the latest binary code similarity detection techniques by up to 6.17%. We expect our hierarchical
attention and contrastive learning techniques to benefit source code and natural language foundation
models, which remains as future work.
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Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
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A APPENDIX

A.1 DATA COLLECTION

This section provides additional details of the data collection. To collect assemblies from The-Stack,
we attempt to compile 4 million C programs, of which 138.8K is compiled successfully. We do not
collect more due to the computation resource limitations.

For the 757.1K and 138.8K source code that successfully compiled into executables (using gcc)
from AnghaBench and The-Stack, we disassemble them using objdump. objdump was not able to
successfully disassemble all the executables, resulting in some empty assembly code. Thus, the
number of O0 – O1 we obtain from each corpus is different and smaller than the number of source
codes as shown in Table 1.

Note that there might be alternative ways of collecting assembly code, for example, using gcc -S to
directly dump the assembly code without producing executables. However, a key difference is that
the assembly generated by gcc -S does not undergo the linking step. In practical scenarios, binary
decompilation and analysis are typically performed on executable or linked assembly code, as it
includes linker modifications and reflects the final binary structure. Our data collection aligns better
with the practical usage scenarios. Nevertheless, Nova’s approaches are theoretically generalizable
to assembly code obtained using different approach, but the concrete experiments remains as future
work.

Figure 6 shows an example of preprocessing the raw assembly code as described in Section 3.1.

0:    endbr64 
4:    push   %rbp
5:    mov    %rsp,%rbp
8:    mov    %rdi,-0x8(%rbp)
c:    mov    %rsi,-0x10(%rbp)
10:   mov    -0x8(%rbp),%rax
14:   mov    (%rax),%edx
16:   mov    -0x10(%rbp),%rax
1a:   mov    (%rax),%eax
1c:   cmp    %eax,%edx
...

endbr64                 [INST-0] 
push rbp                [INST-1]
mov  rsp , rbp          [INST-2]
mov  rdi , -8 ( rbp )   [INST-3]
mov  rsi , -16 ( rbp )  [INST-4]
mov  -8 ( rbp ) , rax   [INST-5]
mov  ( rax ) , edx      [INST-6]
mov  -16 ( rbp ) , rax  [INST-7]
mov  ( rax ) , eax      [INST-8]
cmp  eax , edx          [INST-9]
...

(a) Raw Assembly (b) Normalized Assembly

Figure 6: Example of assembly code preprocessing

A.2 TRAINING DETAILS

This section provides additional details of training. We pre-train Nova starting from DeepSeek-Coder,
using the language modeling objective (Llm) for one epoch on the C functions and assembly functions
collected from AnghaBench and The-Stack corpora. This step uses a batch size of 128, with the input
truncated by a 1,024 tokens limit. The model weights are updated using the AdamW optimizer. The
learning rate is 5e−5, using 1000 steps of warm-up and a cosine decay to adjust the learning rate.

17

https://aclanthology.org/N16-1174


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 10: Comparison with applying hierarchical attention on all attention heads, using 1B models.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Nova−HA 30.58 19.88 20.58 16.40 21.86 44.75 33.13 33.31 29.82 35.25
Nova (hierarchical on all heads) 32.38 18.87 20.56 16.34 22.04 45.95 32.19 32.78 29.01 34.98
Nova 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

Then, the model is further pre-trained with the combination of language modeling and contrastive
learning objectives (L = Llm + λ(Lfcl + Locl)), with λ set to 0.1. To train with the functionality
contrastive learning objective, we discard any source code that misses any one of O0 – O3 assemblies
and also discard the source code whose O2 assembly is the same as its O3 assembly. As a result,
this step is only trained for 0.36M data samples for one epoch. The batch size is 64, with the input
truncated by a 1,024 tokens limit. The learning rate is 2e−5 using the AdamW optimizer.

The fine-tuning of both BCD and BCSD uses a batch size of 64, with the input truncated by a
2,048 token limit. Similarly, the learning rate is 2e−5 using the AdamW optimizer, and the model
is fine-tuned for one epoch. During the training using the contrastive learning objectives, and the
fine-tuning of BCSD, we use the average of [INST] tokens’ last layer hidden states to represent the
embedding of a binary function.

Infrastructure The training are conducted on eight NVIDIA RTX A100 GPUs, each with 40GB
memory. Our implementation is based on Huggingface’s implementation of DeepSeek-Coder 1,
PyTorch 2, and DeepSpeed 3.

A.3 APPLYING HIERARCHICAL ATTENTION ON HALF ATTENTION HEADS

The hierarchical attention mask is always applied on half of the attention heads at each layer in
Nova. This ensures the LLM balances the hierarchical knowledge of assembly code and pre-trained
knowledge learned by full self-attention.

We conducted experiments applying hierarchical attention to all the attention heads. Results in
Table 10 show that when applying hierarchical attention to all the attention heads of transformer
layers, the performance does not improve enough and even drops under some settings. This implies
that the standard full self-attention mechanism indeed learns knowledge that may not be captured by
hierarchical attention. Thus, we only apply hierarchical attention to half of the attention heads in each
transformer layer of Nova to balance the knowledge learned by standard and hierarchical attention.

Table 11: Ablation study of Nova-1B on HumanEval-Decompile.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Nova−CL−HA 20.73 16.16 15.03 11.19 15.78 33.55 28.12 26.96 21.01 27.41
Nova−FCL−HA 22.38 16.20 16.37 13.25 17.05 36.13 29.48 30.02 23.76 29.85
Nova−OCL−HA 28.44 18.87 18.53 15.76 20.40 40.28 32.33 31.80 27.05 32.87
Nova−HA 30.58 19.88 20.58 16.40 21.86 44.75 33.13 33.31 29.82 35.25
Nova 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

A.4 ADDITIONAL ABLATION STUDY ON BINARY CODE DECOMPILATION

We provide additional ablation studies on studying the impact of each individual contrastive learning
objective. We study two more models:

• Nova−FCL−HA: Removing functional contrastive learning and hierarchical self-attention.
• Nova−OCL−HA: Removing optimization contrastive learning and hierarchical self-attention.

Table 11 shows that each component of the contrastive learning brings certain improvements to the
Pass@1 and Pass@10 on HumanEval-Decompile, and we find the impact of function contrastive

1https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base
2https://pytorch.org/get-started/locally/
3https://github.com/microsoft/DeepSpeed
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learning (FCL) is larger than the impact of optimization contrastive learning (OCL), suggesting that
aligning the model’s embeddings for assembly code with the same functionality is more useful.

<func0>:
0:   endbr64
4:   test   %esi, %esi
6:   jle    48 <func0+0x48>
8:   lea    -0x1(%rsi), %ecx
b:   add    $0x1, %rcx
f:   mov    $0x1, %edx
14:  movss  0x0(%rip), %xmm3
1b:  00
1c:  cmp    %rcx, %rdx
1f:  je     4e <func0+0x4e>
21:  movss  -0x4(%rdi, %rdx, 4), %xmm2
27:  mov    %rdx,%rax
2a:  movaps %xmm2, %xmm1
2d:  subss  (%rdi, %rax, 4), %xmm1
32:  andps  %xmm3, %xmm1
35:  comiss %xmm1, %xmm0
38:  ja     54 <func0+0x54>
3a:  add    $0x1, %rax
3e:  cmp    %eax, %esi
40:  jg     2a <func0+0x2a>
42:  add    $0x1, %rdx
46:  jmp    1c <func0+0x1c>
48:  mov    $0x0, %eax
4d:  retq
4e:  mov    $0x0, %eax
53:  retq
54:  mov    $0x1, %eax
59:  retq

int func0(float *arr, int n) {
  for (int i = 1; i < n; i++) {
    for (int j = 0; j < i; j++) {
      if (fabs(arr[i] - arr[j]) < 1.0f)
        return 1;
      }
  }
  return 0;
}

int func0(float *a, int n, float e) {
  int i, j;
  for (i = 0; i < n; i++)
    for (j = i + 1; j < n; j++)
      if (fabs(a[i] - a[j]) < e)
        return 1;
  return 0;
}O1 Assembly Code

Nova's Correct
Decompilation

GPT-4's Incorrect
Decompilation

int func0(const float *x, int n) {
  int i;
  float diff = 1.0f;
  for (i = 1; i < n; i++) {
    if (fabs(x[i] - x[i-1]) > diff)
      return 0;
  return 1;
} LLM4Decompile's Incorrect

Decompilation

Figure 7: Nova-1B correctly decompiles HumanEval-Decompile task 0.

<func0>:
0:      endbr64
4:      movss  (%rdi), %xmm0
8:      movss  %xmm0, (%rdx)
c:      movss  0x4(%rdi), %xmm1
11:     movss  %xmm1, 0x4(%rdx)
16:     test   %esi, %esi
18:     jle    8b <func0+0x8b>
1a:     lea    -0x1(%rsi), %r9d
1e:     mov    $0x1, %r8d
24:     mov    %rdi, %rcx
27:     movss  0x0(%rip), %xmm2
2e:     00
2f:     add    $0x1, %r9
33:     movss  0x0(%rip), %xmm3
3a:     00
3b:     cmp    %r8, %r9
3e:     je     82 <func0+0x82>
40:     mov    %r8, %rax
43:     nopl   0x0(%rax, %rax, 1)
48:     movss  (%rcx), %xmm1
4c:     movaps %xmm1, %xmm0
4f:     subss  (%rdi, %rax, 4), %xmm0
54:     andps  %xmm3, %xmm0
57:     comiss %xmm0, %xmm2
5a:     jbe    6d <func0+0x6d>
5c:     movss  %xmm1, (%rdx)
60:     movss  (%rdi, %rax, 4), %xmm1
65:     movaps %xmm0, %xmm2
68:     movss  %xmm1, 0x4(%rdx)
6d:     add    $0x1, %rax
71:     cmp    %eax, %esi
73:     jg     48 <func0+0x48>
75:     add    $0x1, %r8
79:     add    $0x4, %rcx
...
99:     retq

void func0(float *a, int n, float
*minmax) {
  minmax[0] = a[0];
  minmax[1] = a[1];

  for (int i = 0; i < n; i++) {
    for (int j = i + 1; j < n; j++) {
      float diff = fabs(a[i] - a[j]);
      if (diff < minmax[1] - minmax[0])
      {
        minmax[0] = a[i];
        minmax[1] = a[j];
      }
    }
  }

  if (minmax[0] > minmax[1]) {
    float temp = minmax[0];
    minmax[0] = minmax[1];
    minmax[1] = temp;
  }
}

void func0(float *a, int n, float *b) {
  int i, j;
  float min, max;

  min = max = a[0];
  for (i = 1; i < n; i++) {
    if (a[i] < min)
      min = a[i];
    else if (a[i] > max)
      max = a[i];
  }
  b[0] = min;
  b[1] = max;
}

O2 Assembly Code
Nova's Correct
Decompilation

LLM4Decompile's Incorrect
Decompilation

Figure 8: Nova-1B correctly decompiles HumanEval-Decompile task 20.
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A.5 BINARY CODE DECOMPILATION CASE STUDIES

Figure 7 shows an example from HumanEval-Decompile (task id 0). Given the O1-optimized
assembly code, GPT-4 fails to figure out the number of function arguments correctly, missing one
important argument “float e”, and thus produces wrong functionality in the decompiled code.
LLM4Decompile-1B makes similar mistakes and also misses the inner nested for loop. Nova-1B
correctly decompiles the assembly into source code, where the ground truth is checking if any two
elements in the given list *a (with size n) are close to each other than a given threshold e.

Figure 8 shows another more complex example, HumanEval-Decompile task id 20. Nova-1B
correctly decompiles the source code, successfully figuring that the function is trying to find the two
elements that are closest to each other in the given array *a, with the result stored in minmax.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.86 0.88 0.87
Curl 0.84 0.87 0.89
ImageMagick 0.79 0.80 0.86
SQLite 0.80 0.83 0.77
OpenSSL 0.90 0.92 0.90
Putty 0.68 0.66 0.72

Avg. 0.81 0.83 0.84

Table 12: Ablation study with K = 50.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.80 0.82 0.79
Curl 0.84 0.84 0.86
ImageMagick 0.70 0.72 0.79
SQLite 0.74 0.78 0.73
OpenSSL

::
0.89

:::
0.89 0.88

Putty 0.59 0.60 0.65

Avg. 0.76
:::
0.78

::
0.78

Table 13: Ablation study with K = 100.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.71 0.74 0.73
Curl 0.80 0.73 0.83
ImageMagick 0.61 0.63 0.73
SQLite 0.68 0.71 0.68
OpenSSL 0.85 0.87 0.84
Putty 0.53 0.53 0.55

Avg. 0.70 0.70 0.73

Table 14: Ablation study with K = 200.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.62
:::
0.65

::
0.65

Curl 0.67 0.71 0.73
ImageMagick 0.46 0.51 0.61
SQLite 0.61 0.62 0.59
OpenSSL 0.77 0.79 0.78
Putty 0.46 0.46 0.47

Avg. 0.60 0.62 0.64

Table 15: Ablation study with K = 500.

A.6 ADDITIONAL DETAILS OF BINARY CODE SIMILARITY DETECTION EVALUATION

We reuse the framework provided by CodeArt Su et al. (2024) to evaluate the binary code similarity
detection results once Nova produces the embeddings for functions in the test dataset. For each one
of the K function, the O0 assembly function is used as the query to calculate the cosine similarity
between its embedding and the embeddings of all the K O3 assembly functions.

Note that Nova does not normalize the embeddings of assembly functions during training and use l2
distance to calculate the LBCSD, which optimize Nova to embed the O0 and O3 assembly functions
from the same source code have the smallest l2 distances. When using CodeArt’s framework for
evaluation which rank the similarity using the cosine similarity, we normalize Nova’s embedding for
each assembly function since l2 distance after normalization keeps the same order as cosine similarity
(smaller l2 distance means higher cosine similarity).

A.7 BINARY CODE SIMILARITY DETECTION ABLATION STUDY

Table 12, 13, 14, 15 show the detailed ablation study results of BCSD. Nova wins on the most
benchmarks when K = 100 or 500, and ties with Nova−HA when K = 50, or 200.

A.8 ADDITIONAL ANALYSIS OF EMBEDDING

Figure 9 shows the results of PCA of embeddings provided by Nova−CL−HA, Nova−HA, and
Nova, on randomly sampled seven examples, where Nova’s embeddings are consistently more
distinguishable by functionalities.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Task 34

Task 32
Task 128

Task 63

Task 143

Task 119

Task 19

(c) Nova's Embeddings(a) Nova-CL-HA's Embeddings (b) Nova-HA's Embeddings

Task 143

O0 assemblies
O1 assemblies
O2 assemblies
O3 assemblies

Figure 9: PCA of embeddings calculated by Nova−CL−HA, Nova−HA, and Nova.

Figure 10: Comparison of attention distribution among standard and hierarchical heads.
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A.9 ADDITIONAL ANALYSIS OF ATTENTION

Figure 11: Learned per-instruction soft attention observed in the lower layers

Figure 10 shows the visualizations of attention weights in the final transformer layer of two select
heads with standard attention and two heads with learned hierarchical attention. Standard attention
exhibits two typical patterns, namely diagonal attention (i.e. tokens attending to themselves or nearby
tokens, shown in Figure 10 (a)), and broad attention (i.e. a single token attending broadly to the entire
sequence, shown in Figure 10 (b)). In contrast, in Nova’s hierarchical attention, attention weights are
allocated among distinct segments, each corresponding to an instruction (shown in Figure 10 (c)),
that focus on tokens comprising that instruction (e.g. opcodes and operands, shown in Figure 10 (d),
attentions are paid to “push”, “mov”, etc.).

Quantitatively, we have determined broad attention accounts for as much as 30% of all attention in
standard heads, especially in layers 1-8 (consistent with the findings of (Clark et al., 2019)), whereas
in Nova’s hierarchical attention, no more than 5% or all attention is allocated to each instruction
segment. This validates our goal of learning instruction-aware hierarchical attention in Nova.

In addition, in lower layers, we have observed attention weights to be softly distributed among tokens
comprising each instruction (Figure 11), which suggests Nova initially models cross-relations among
operation codes and operands in the first few layers, and later pools their summary representation
into the [INST] token in the later layers.
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