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Abstract

We introduce Orthus, a unified multimodal model
that excels in generating interleaved images and
text from mixed-modality inputs by simultane-
ously handling discrete text tokens and continu-
ous image features under the AR modeling prin-
ciple. The continuous treatment of visual signals
minimizes the information loss while the fully AR
formulation renders the characterization of the
correlation between modalities straightforward.
Orthus leverages these advantages through its
modality-specific heads—one regular language
modeling (LM) head predicts discrete text to-
kens and one diffusion head generates continu-
ous image features. We devise an efficient strat-
egy for building Orthus—by substituting the Vec-
tor Quantization (VQ) operation in the existing
unified AR model with a soft alternative, intro-
ducing a diffusion head, and tuning the added
modules to reconstruct images, we can create an
Orthus-base model effortlessly (e.g., within 72
A100 GPU hours). Orthus-base can further em-
brace post-training to craft lengthy interleaved
image-text, reflecting the potential for handling
intricate real-world tasks. For visual understand-
ing and generation, Orthus achieves a GenEval
score of 0.58 and an MME-P score of 1265.8
using 7B parameters, outperforming competing
baselines including Show-o and Chameleon. Our
code is available at https://github.com/
zhijie-group/Orthus.
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1. Introduction
Multimodal models have shown promise in image-to-text
and/or text-to-image generation, with LLaVA (Liu et al.,
2024d;c), Emu2 (Sun et al., 2024c), and NExT-GPT (Wu
et al., 2013) as popular examples. These abilities are essen-
tial for handling complex real-world understanding and gen-
eration problems. Yet, existing approaches can suffer from
significant modeling redundancy due to the trivial combina-
tion of specialized large models (e.g., CLIP-ViT (Radford
et al., 2021), Stable Diffusion (Rombach et al., 2022), and
LlaMa (Touvron et al., 2023a;b)). Doing so also undermines
the benefits brought by cross-modal learning and introduces
considerable inefficiency for both training and inference.

There is ongoing interest in jointly modeling visual under-
standing and generation with a unified, compact model. One
strategy is to map both images and texts to discrete tokens
for simple autoregressive (AR) modeling (Liu et al., 2024f;
Team, 2024; Wang et al., 2024) (left of Figure 1). However,
the image tokenizer, often equipped with a vector quanti-
zation (VQ) bottleneck, can cause inevitable information
loss and easily lead to suboptimal performance on vision
tasks concerning high-frequency details (e.g., OCR and hu-
man face generation). Alternatively, recent works, including
Transfusion (Zhou et al., 2024) and Monoformer (Zhao
et al., 2024) (middle of Figure 1), propose to integrate AR
modeling on discrete text tokens and diffusion modeling
on continuous image features within a single transformer.
Nonetheless, the nature of diffusion modeling to process
noisy images (Ho et al., 2020) makes the joint modeling of
image-to-text, text-to-image, and more complicated inter-
leaved image-text challenging.

This paper proposes Orthus1 to bridge the gap. Orthus con-
joins lossless continuous image features and the unified,
cross-modal AR modeling by decoupling diffusion from
the transformer backbone. This circumvents the noise dis-
turbance and renders the characterization of the correlation
between modalities straightforward, making it more suitable
for interleaved image-text modeling. Specifically, Orthus

1Orthus is a loyal two-headed guard dog in Greek mythology.
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Figure 1. Comparison of existing unified multimodal models with Orthus. Left: Fully AR models (Liu et al., 2024f; Team, 2024;
Wang et al., 2024) convert visual signals to discrete image tokens via vector quantization for joint modeling with text tokens, but this
causes information loss. Middle: AR-diffusion mixed models (Zhou et al., 2024; Xie et al., 2024) perform next-token prediction for
text generation and image patch denoising for image generation, but the involved noise disturbance on images makes the concurrent
image-to-text and text-to-image generation challenging. Right: Orthus operates in a fully AR manner while circumventing vector
quantization and noise disturbance to preserve input information and modeling flexibility.

embeds both discrete text tokens (from an off-the-shelf to-
kenizer) and continuous patch-wise image features (from
a pre-trained variational autoencoder (Kingma & Welling,
2013)) into the same representation space, where an AR
transformer is then invoked to model the inter- and intra-
modality interdependence. On top of the backbone, Orthus
defines two modality-specific heads, with one as the regular
language modeling (LM) head to predict discrete text tokens
and the other as a novel diffusion head to craft continuous
image features. During inference, Orthus autoregressively
predicts the next text token or image patch according to the
indication of special transition tokens.

Notably, the investigation into diffusion head for superior
image generation draws a striking analogy to the recent
masked AR (MAR) approach (Li et al., 2024), yet with a
focus shift from image-only generation to mixed-modality
one. On the other hand, our Orthus differentiates from MAR
and its variant (Yang et al., 2024a) in that it characterizes
the correlation with fully AR formulation instead of mask-
based modeling, which avoids expensive hyperparameter
specification and eases the modeling of interleaved data.

The other important contribution of this work is a super-
efficient strategy to build Orthus. Inspired by that Orthus
differentiates from the representative token-based AR model
Chameleon (Team, 2024) only in the input embedding mod-
ules and output heads, we propose to substitute the VQ
operation with a soft alternative and augment the model
with an extra diffusion head to instantiate Orthus. We tune
only the embedding modules and diffusion head (with 0.3B
parameters in total) to reconstruct images on a 10k dataset
to effortlessly obtain an Orthus base model. Orthus-base
can further adopt post-training to bolster its ability to model
interleaved images and text.

We have performed extensive studies to evaluate Or-
thus. For mixed-modality understanding and generation,
Orthus outperforms the editing-specific model Instruct-
pix2pix (Brooks et al., 2023) and exhibits in-context learn-

ing capabilities for unseen tasks. Furthermore, Orthus
demonstrates a strong ability to generate logically coherent
interleaved image-text content with high relevance. For vi-
sual understanding and generation, Orthus is substantially
superior to Chameleon and Show-o (Xie et al., 2024) across
multimodal understanding and generation tasks. Notably,
Orthus achieves a GenEval (Ghosh et al., 2024) accuracy of
0.58 and a POPE score of 79.6, even surpassing specialized
text-to-image models SDXL (Podell et al., 2023) and the
performant InstructBLIP-13B (Dai et al., 2023).

To summarize, our contributions are as follows:

• We introduce Orthus for interleaved image-text genera-
tion. Orthus models the correlation between modalities
through AR principle and generates discrete text tokens
and continuous image features with dedicated heads.

• We propose an efficient strategy to build Orthus by ex-
ploiting its connection with existing unified AR models,
which reduces the cost to merely 72 A100 GPU hours.

• Compared to related works such as Chameleon (Team,
2024) and Show-o (Xie et al., 2024), Orthus outper-
forms them across various visual understanding and
generation benchmarks, while also demonstrating ex-
tra capabilities in mixed-modality understanding and
generation, positioning it as a promising approach for
unified multimodal modeling.

2. Related Work
Visual understanding. To enable multimodal large lan-
guage models (MLLMs) to comprehend modalities beyond
text, prior work has introduced methods that leverage pre-
trained, modality-specific encoders (Radford et al., 2021; Li
et al., 2022; Yu et al., 2022; Chen et al., 2024) to generate
latent representations for each modality. These representa-
tions are then projected into a pre-trained LLM’s input space
through trained adapters, allowing for multimodal informa-
tion alignment within the language model, understanding
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are handled within the transformer backbone (Liu et al.,
2024d; Zhu et al., 2023; Dai et al., 2023; Driess et al., 2023;
Chen et al., 2023b; Liu et al., 2024b; Lin et al., 2024). This
framework allows LLMs to perform complex multimodal
tasks while maintaining the language-based reasoning capa-
bilities inherent to their architecture.

Visual generation. The generation of visual content has
long been a central focus within the deep learning research
community (Kingma, 2013; Goodfellow et al., 2014; Karras
et al., 2019; Vahdat & Kautz, 2020). Over the past few years,
research in visual generation has focused on decomposing
visual signals in a more sophisticated manner and generat-
ing them iteratively. Diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020b; Dhariwal & Nichol,
2021; Rombach et al., 2022; Peebles & Xie, 2023; Esser
et al., 2024) transform generation into a reverse diffusion
process from noise to data, gradually refining an initial noise
input through a series of denoising steps. While another
line of work aims to emulate the success of AR modeling
from language modeling within the visual domain (Parmar
et al., 2018; Razavi et al., 2019; Ramesh et al., 2021; Yu
et al., 2023; Sun et al., 2024b). Specifically, images are first
transformed into a sequence of vector-quantized tokens (Van
Den Oord et al., 2017; Esser et al., 2021; Tian et al., 2024;
Yu et al., 2024), after which AR modeling is then performed
on the discrete-valued token space (Touvron et al., 2023a).
To mitigate generation quality degradation caused by in-
formation loss during the VQ process, MAR replaces the
per-token categorical distribution modeling with a diffusion
procedure (Li et al., 2024; Fan et al., 2024). Our proposed
method generalizes MAR to cross-modality generation.

Unified visual understanding and generation. To en-
able a model to possess both understanding and generation
capabilities, one kind of approach aims to connect LLMs
with multimodal adapters and diffusion decoders (Sun et al.,
2023; Ge et al., 2024; Ye et al., 2024). However, using mul-
tiple distinct components can lead to modeling redundancy.
Consequently, recent studies seek to leverage a single trans-
former for unified understanding and generation. A straight-
forward approach is to apply vector quantization to con-
tinuous visual signals to enable visual tokens, like discrete
text tokens, to be trained within a unified token space us-
ing cross-entropy loss. Representative works are LWM (Liu
et al., 2024e), Chameleon (Team, 2024), Anole (Chern et al.,
2024), and VILA-U (Wu et al., 2024b). Alternatively, some
works have explored combining AR with diffusion mod-
eling. Show-o (Xie et al., 2024) unifies AR and discrete
diffusion modeling for multimodal understanding and gen-
eration within one single transformer. Transfusion (Zhou
et al., 2024) trains one shared transformer for both discrete
text autoregression and continuous image diffusion. Our
proposed method circumvents the potential information loss
caused by quantization and noise disturbance.

3. Preliminary
Unified multimodal modeling aims to cope with a blend of
images and texts with a single compact model (Liu et al.,
2024f; Team, 2024; Wang et al., 2024; Zhou et al., 2024;
Xie et al., 2024). The model usually includes a vision au-
toencoder, specified with an encoder E and a decoder D, a
text tokenizer, and a transformer network (Vaswani, 2017).
The encoder E is used to map the input image to a se-
quence of patch-wise features V := [v1, . . . ,vn], vi ∈ Rdv

for effective information compression, where dv is the fea-
ture dimension and n is the number of patches. The text
tokenizer maps the input text into a sequence of text to-
kens U := [u1, . . . , um] with m as the sequence length.
The transformer is then asked to process U and V simul-
taneously to yield meaningful outputs, which can be then
detokenized as texts or decoded by D to produce images.
There are primarily two strategies for the learning of the
transformer, detailed as follows.

Fully AR models. Observing that the AR principle
excels in the generative modeling of discrete content,
seminal works, including LWM (Liu et al., 2024e) and
Chameleon (Team, 2024), propose to leverage the Vector
Quantization (VQ) (Van Den Oord et al., 2017) technique
to transform the continuous image features V as discrete
tokens to enable a fully AR modeling of the mixture of
images and texts. Specifically, VQ introduces a set of K
codes {cj ∈ Rdv}Kj=1 and solves the following problem for
continuous-to-discrete transformation:

ṽi = argmin
j∈{1,...,K}

d(vi, cj) for i = 1, . . . , n, (1)

where d(·, ·) is a distance metric.

Let Ṽ := [ṽ1, . . . , ṽn] denote the discrete image tokens. The
fully AR model embeds both Ṽ and U as de-dim features.
Specifically, the embedding corresponding to ṽi is

hi =
∑
j

wj1ṽi=j , (2)

where {wj ∈ Rde}Kj=1 refer to the embedding weights. The
embeddings for text tokens can be similarly gained, yet with
another set of embedding weights. The transformer then
processes these embeddings with causal attention, where
the output head naturally yields the prediction of the next
token. For training, the objective is simply the AR loss.

Despite being simple, the fully AR models can suffer from
information loss (Liu et al., 2024a; Team, 2024), because
VQ makes the transformer unable to directly look at the
image features vi.

AR-diffusion mixed models. Another line of unified multi-
modal models is AR-diffusion mixed models (Zhou et al.,
2024; Xie et al., 2024; Zhao et al., 2024), which integrates
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Figure 2. Architecture of Orthus. Orthus is composed of a text tokenizer, a vision autoencoder, two modality-specific embedding modules,
a transformer backbone, and two modality-specific heads. Orthus tokenizes texts into discrete text tokens and encodes images into
continuous patch-wise features. They are then embedded as a sequence of vectors and processed by the transformer backbone with causal
attention, generating a sequence of output vectors. The vectors are routed to modality-specific heads, with the LM head to predict the next
text token categorically and the diffusion head to predict the next image patch feature through conditional diffusion modeling.

diffusion modeling on images (Ho et al., 2020; Peebles
& Xie, 2023) and AR modeling on text within a shared
transformer. Take Transfusion (Zhou et al., 2024) for ex-
ample, its inputs are a noisy version of the image features
V , denoted as V̄ , and the text tokens U . To facilitate the
simultaneous processing of V̄ and U , the attention mask of
the transformer adopts a unique configuration—with a full-
attention structure among V̄ and a causal structure among U .
Then, the outputs from V̄ are directed to an output projector
to predict the noise on V̄ , whereas the outcomes linked to
U are channeled to an LM head for next-token prediction.
The training objective is the combination of AR loss and
denoising loss with a balancing factor. During inference,
the model operates as an AR model to generate texts and
as a diffusion model to craft images, with special tokens
indicating mode switching.

However, diffusion modeling inherently requires feeding
noisy inputs to the model, hindering joint modeling of vi-
sual understanding (requiring clean images) and generation
(requiring noisy ones). For example, Transfusion identifies
a nearly 15% performance drop in image captioning when
full-range noise is introduced during training.

4. Method
We introduce Orthus to address the issues of existing works.
This section begins with an overview of Orthus and then
elaborates on an efficient training recipe for Orthus. We will
also illustrate a post-training pipeline of Orthus.

4.1. Overview of Orthus

As shown in Figure 2, Orthus directly takes the continuous
image features V and discrete text tokens U as input, which

avoids the pathologies caused by the quantized image fea-
tures Ṽ or noisy image features V̄ . U and V are embedded
into the de-dim representation space with a differentiable
vision embedding module (detailed in the next subsection)
and the aforementioned discrete embedding module respec-
tively. Subsequently, the embeddings are fed into the trans-
former backbone with causal attention for the modeling of
both inter- and intra-modality interdependence. Given the
output states of such a backbone contain enough informa-
tion about the multimodal context, Orthus sends them to
two modality-specific heads—a diffusion head and an LM
head—to predict the next image patch or the next token.

Specifically, let fi denote the output state corresponding to
the input image feature vi and ϵθ denote the diffusion head
employed by Orthus with parameter θ. The goal of ϵθ is to
predict for the next patch feature vi+1 conditioning on fi.
According to common practice (Ho et al., 2020; Dhariwal &
Nichol, 2021), the learning objective for the diffusion head
can be formalized as:

Ldiff = Eϵ,t[∥ϵ− ϵθ(
√
αtvi+1 +

√
1− αtϵ, t,fi)∥22], (3)

where ϵ ∼ N (0, I) is a Gaussian noise and t is a randomly
sampled timestep. αt follows a pre-defined noise sched-
ule (Ho et al., 2020). In practice, ϵθ can be a shallow mul-
tilayer perception (MLP) with three inputs (the condition
fi, the scalar timestep t, and the noisy state). On the other
hand, the LM head remains the compact linear projection
followed by a softmax transformation to yield the predictive
probability of the next token over the entire vocabulary.

4.2. An Efficient Strategy for Constructing Orthus-base

The differences between Orthus and fully AR models exist
in the vision embedding module and the output head. Given

4



Orthus: Autoregressive Interleaved Image-Text Generation with Modality-Specific Heads

that pre-training a multimodal model from scratch can be
frustratingly costly but the fully AR models like LWM (Liu
et al., 2024e) and Chameleon (Team, 2024) are readily ac-
cessible from the open-source community, we are naturally
interested in deriving Orthus based on them at a minimal ex-
pense. This section elaborates on a hard-to-soft adaptation
trick and an efficient training strategy to enable this.

Differentiable vision embedding module. It is easy to note
that the embedding yielded by Equations 1 and 2 can be
equivalently obtained via a softmax-based transformation

hi =
∑
j

wj
e−d(vi,cj)/τ∑K
k=1 e

−d(vi,ck)/τ
, (4)

with τ → 0. Increasing τ gradually from 0 then naturally
lifts the information bottleneck from the image features vi

to the model outputs fi, while rendering the reuse of the
pre-trained weights and codes of fully AR models possible.
This way, the codes {cj}Kj=1 also become a part of the input
module, so we can leverage gradients to directly push them
to adapt to the multimodal learning tasks. This contradicts
fully AR models which froze the codes during training.

Training strategy. With the above trick, we start with a pre-
trained fully AR model, transform its input module into a
differentiable one, and introduce an output diffusion head to
initialize Orthus. These modifications primarily focus on the
visual part, thus we recommend fine-tuning the initialized
model on a collection of images. In particular, we input only
the image into Orthus to acquire the hidden states fi and
utilize the diffusion loss in Equation 3 to recover the next
patch to train the vision embedding module and diffusion
head. The temperature τ is set to 1 during training.

Initialized with the typical Chameleon-7B (Team, 2024),
Orthus can acquire image processing capabilities while pre-
serving the text generation capacity after 9-hour training
on 10k high-quality images (laion-coco aesthetic) using 8
A100 GPUs. We designate this model as Orthus-base, a
pre-trained model capable of generating continuous image
features and discrete text tokens.

Although the decoder in the VQ-VAE (Van Den Oord et al.,
2017) used by Chameleon can reconstruct the raw image
pixels given the patch-wise features V to some extent, it
can be suboptimal due to the quantization-aware training.
To address this, we advocate further tuning its decoder to
reconstruct high-quality images directly based on V . The
comparison between the capacity of the original VQ-VAE
and ours is exhibited in Appendix A.

4.3. Multimodal Post-training

Orthus-base can be further post-trained to unlock its poten-
tial for interleaved image-text modeling in complex down-
stream tasks. These include generating text (e.g., visual

question answering), images (e.g., image editing), or even
both images and text (e.g., storybook generation) from
mixed-modality inputs. For example, given [V,U ] as user
input and [V,U, V, U ] as model output, we surround image
features V with the embeddings of special tokens [BOI]
and [EOI] before the concatenation with U . A [SEP]
token is used to separate user input and model output in
each conversation.

Let Lar denote the AR loss on the text tokens. The entire
training objective of Orthus is then LOrthus = Lar + λLdiff,
where λ is a balancing coefficient. All parameters except
for those of the vision autoencoder are tuned. Hereinafter,
we will denote the model trained following this objective as
Orthus, distinguishing it from Orthus-base.

During inference, Orthus alternates between next-token pred-
ition and next-patch prediction to seamlessly generate inter-
leaved texts and images. When [BOI] is sampled during
the next-token prediction process, the algorithm moves to
next-patch prediction. Once a fixed number of n image
patches are generated, [EOI] is appended and the algo-
rithm switches back to next-token prediction.

5. Experiments
In this section, we evaluate Orthus’s performance in inter-
leaved image-text modeling as well as visual understanding
and generation. Both quantitative and qualitative results
demonstrate the effectiveness of Orthus.

5.1. Implementation Details

We implement the diffusion head as an MLP consisting of 3
residual blocks, each sequentially applying AdaLN (Peebles
& Xie, 2023), a linear layer (width of 1536 channels), SiLU
activation, and another linear layer. The condition vector
fi is added to the diffusion time embedding, which is then
incorporated through AdaLN. The diffusion noise schedule
is linear following (Rombach et al., 2022), with 1000
steps at training time. λ is set to 100 to balance the order
of magnitude between Ldiff and Lar during post-training.
During inference, we use greedy decoding to generate text.
For image generation, we adopt the DDIM (Song et al.,
2020a) sampler with 100 steps. We employ classifier-free
guidance (CFG) (Ho & Salimans, 2022) with the scale
set to 5 during sampling. All images are generated at
a resolution of 512×512. More training and evaluation
details are provided in Appendix B.

5.2. Interleaved Image-Text Generation

Compared to existing unified models, such as Janus-
series (Wu et al., 2024a; Ma et al., 2024), that focus ex-
clusively on visual understanding and generation, we inves-
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After shoveling, 
the man in the 
orange hat stood 
contentedly in the 
snowy landscape, 
his smile bright 
against the 
overcast sky.

George, was also 
out in the snowy 
landscape. He wore 
a red jacket, hat, 
and gloves, 
wondering if more 
snow was on the way.

After a while, 
George, decided to 
take a break and 
sat on the grass, 
enjoying the 
peaceful trees and 
the buildings.

One sunny morning, 
George the curious 
monkey and his friend 
decided to visit the 
bustling city park. 
They started their 
adventure by exploring 
a colorful playground.

Please continue this story:

Startled, George 
stood in the dark 
forest, his large, 
menacing shadow 
cast on the trees. 
His flashlight lay 
on the ground,
projecting the 
frightening 
silhouette.

On a snowy day, 
George, the small 
figure in red winter 
gear, was excited to 
help his friend, the 
man in the yellow hat 
and red scarf. They 
were outside their 
blue house.

Please continue this story:

But George was not 
one to be scared 
easily. 
He stood inside a 
lively cave, ready 
for an adventure. 
The hint of light 
peering behind him 
cast a soft glow, 
making his eyes 
sparkle with 
curiosity.

In the shadowy 
forest, George 
spotted a red ball. 
He quickly grabbed 
it, excited about 
his new find. Trees 
and bushes, 
illuminated by a 
light source, 
surrounded him.

With a smile on 
his face, George 
stood in the cave 
with his arms 
outstretched. He 
was enjoying his 
adventure, 
surrounded by 
stalactites and a 
glowing light.

Please continue this story:

     According to the 
following examples: 
input: 

output:

Generate an output 
for the input: 

In-context editingIn-domain editing

Out-of-domain editing

Add a rainbow. Make the suit red.

Remove the cat. Make it snow.

Figure 3. Qualitative results on mixed image-text understanding and generation of Orthus. Left: Image editing results after fine-tuned on
Instruct-Pix2Pix (Brooks et al., 2023). Notably, Orthus exhibits in-context learning capacity by performing image editing successfully
when provided with examples rather than explicit instructions, which is not included in the training dataset. Right: Interleaved storybook
creation results after finetuned on the StoryStream (Yang et al., 2024b) dataset. Results show that Orthus excels in generating logically
coherent interleaved image-text with high relevance.

Table 1. Comparisons of CLIP similarities (Ruiz et al., 2023; Gal
et al., 2022) between editing-specific diffusion models and Orthus
on the test dataset of Instruct-Pix2Pix.

Model -T↑ -I↑ -D↑
PnP (Tumanyan et al., 2023) 0.156 0.76 0.023
SDEdit (Meng et al.) 0.229 0.84 0.047
I-Pix2Pix (Brooks et al., 2023) 0.233 0.88 0.045
Orthus (Ours) 0.238 0.87 0.049

tigate Orthus’s flexibility and extensibility to model inter-
leaved images and text on two representative downstream
tasks: image editing and storybook generation.

Image-Text → Image. We compare the performance of
Orthus with an editing-specific diffusion model after train-
ing Orthus-base on the 400k Instruct-pix2pix (Brooks et al.,
2023) training dataset. Table 1 shows that the images edited
by Orthus align well with both the given instruction and the
input image, performing comparably to or even surpassing
the editing-specific diffusion model. Moreover, Figure 3 il-
lustrates Orthus’s strong generalization ability to edit images
in zero-shot real-image domains. Notably, Orthus exhibits
in-context learning capacity as a unified multimodal model:

when provided with examples instead of explicit instruc-
tions that do not match the formats seen during training, it
successfully completes the task. This highlights Orthus’s
strong capability for interleaved data modeling and its great
potential as a foundation multimodal model. More editing
examples and comparisons are provided in Appendix F.

Image-Text → Image-Text-Image-Text. To further vali-
date Orthus’s superiority in modeling interleaved data, we
fine-tune Orthus-base with the unified learning objective
on the StoryStream (Yang et al., 2024b) dataset, which in-
cludes a collection of images and corresponding narratives
from cartoon series. As shown in Figure 3, after training,
Orthus can generate contextually consistent scenes paired
with narrative text given an initial image-text pair and the
instruction “Please continue this story.” Notably, there is a
strong alignment between images and text (e.g., the smile
on the monkey’s face) as well as consistent detail across
images (e.g., the boy’s orange hat and red scarf). These re-
sults highlight Orthus’s ability to generate long sequences of
contextually relevant images and text. This capability opens
up potential applications such as report generation, educa-
tional content creation, and other tasks requiring seamless
mixed-modality content generation.
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Table 2. Evaluation on visual understanding benchmarks. Und. and Gen. denote “understanding” and “generation”, respectively.
Models using external pre-trained diffusion models are marked with * and Chameleon† is post-trained with the same dataset as Orthus.
The results in bold and underline are the best and second-best results, respectively. The results correspond to the exact match accuracy.

Type Model # Params POPE↑ MME-P↑ VQAv2↑ GQA↑ MMMU↑

Und. Only

LlaVa (Liu et al., 2024d) 7B 76.3 809.6 - - -
LlaVA-v1.5 (Liu et al., 2024b) 7B 85.9 1510.7 78.5 62.0 35.4
InstructBLIP (Dai et al., 2023) 7B - - - 49.2 -
Qwen-VL-Chat (Bai et al., 2023) 7B - 1487.5 78.2 57.5 -
Emu3-Chat (Wang et al., 2024) 8B 85.2 1243.8 75.1 60.3 31.6
InstructBLIP (Dai et al., 2023) 13B 78.9 1212.8 - 49.5 -

Und. and Gen.

Emu∗ (Sun et al., 2023) 13B - - 52.0 - -
NExT-GPT∗ (Wu et al., 2013) 13B - - 66.7 - -
Gemini-Nano-1 (Team et al., 2023) 1.8B - - 62.7 - 26.3
Show-o (Xie et al., 2024) 1.3B 73.8 948.4 59.3 48.7 25.1
LWM (Liu et al., 2024e) 7B 75.2 - 55.8 44.8 -
Chameleon† 7B 77.8 1056.9 57.8 49.6 26.7
Orthus (Ours) 7B 79.6 1265.8 63.2 52.8 28.2

5.3. Visual Understanding and Generation

In this section, we validate the effectiveness of Orthus on
visual understanding and generation by post-training Orthus-
base with a mixture of LlaVA-v1.5-665K (Liu et al., 2024d)
and high-quality text-to-image data (JourneyDB (Sun et al.,
2024a) and LAION-COCO-aesthetic (laion-coco aesthetic)
recaptioned from ShareGPT-4v (Chen et al., 2023a)). We
also fine-tune pre-trained Chameleon (Chern et al., 2024)
with the same mixed dataset as Orthus to provide an apple-
to-apple baseline.
Image → Text. Table 2 shows that: (i) Compared to
Chameleon post-trained with the same dataset, Orthus
consistently demonstrates superior performance across all
benchmarks. Besides, inspecting OCR-related tasks in
MME-P, we witness a significant superiority of Orthus over
Chameleon (with scores of 70 vs. 45). These results validate
the superiority of Orthus’s modeling by adopting lossless
representations for images. (ii) Orthus outperforms other
unified models using a single transformer like LWM and
Show-o across all benchmarks, highlighting its efficacy for
unified modeling. (iii) Compared to larger unified models
using an external diffusion model, such as NExT-GPT-13B,
Orthus achieves decent results on the VQAv2 benchmark.
It is reasonable to speculate that Orthus’s potential for mul-
timodal understanding problems can be further unleashed
by scaling up training compute and data.

Text → image. Table 3 shows that: (i) When compared
with strong competitors specialized for text-to-image gen-
erations such as DALL-E 2 and SDXL, Orthus achieves an
improvement of 0.06 and 0.03 on GenEval, respectively. (ii)
Compared to Chameleon and its post-trained version, Orthus
demonstrates significant superiority on both GenEval and

Table 3. Comparison with state-of-the-arts on visual generation
benchmarks. Model using external pre-trained diffusion model
is marked with * and Chameleon† is post-trained with the same
dataset as Orthus. The results in bold and underline are the best
and second-best results, respectively.

Type Model Res. GenEval HPS

Gen.
Only

SDv1.5 (Rombach et al., 2022) 512 0.43 27.0
SDv2.1 (Rombach et al., 2022) 512 0.50 27.2
DALL-E (Ramesh et al., 2022) 512 0.52 26.9
Emu3-Gen (Wang et al., 2024) 512 0.54 -
SDXL (Podell et al., 2023) 512 0.55 30.9
SD3(d=30) (Esser et al., 2024) 512 0.64 -

Und.
&

Gen.

SEED-X∗ (Ge et al., 2024) 448 0.49 -
LWM (Liu et al., 2024e) 256 0.47 26.1
Show-o (Xie et al., 2024) 256 0.53 27.3
Transfusion (Zhou et al., 2024) 256 0.63 -
Chameleon† 512 0.43 26.9
Orthus (Ours) 512 0.58 28.2

HPSv2. This advantage can be attributed to the utilization
of continuous image representations and diffusion-based
continuous modeling, which facilitates the generation of
high-quality images with richer detail and stronger align-
ment with human preferences. (iii) Compared with other
unified models such as SEED-X, LWM, and Show-o, Orthus
obtains significantly better performance, highlighting the ad-
vantages of its modeling strategy. (iv) Qualitative results in
Figure 4 showcases images generated by Orthus alongside
results from other unified models, including Chameleon and
Show-o. Results show that Orthus is capable of generat-
ing diverse, engaging, and realistic visual imagery at the
resolution of 512×512.
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Show-o Chameleon Orthus

A detailed ink illustration of a hedgehog.

Oil painting portrait of a young woman in a field of flowers
at sunset with mountains in the background.

A hyena fursona sits in a savannah sunset amidst the grass.

Figure 4. Left: Comparison between images generated by Show-o, Chameleon, and Orthus based on the same prompts. Samples produced
by Orthus contain more details. Right: Text-to-image gallery of Orthus.

Table 4. Comparisons of the performance of Orthus via separate
training and unified training across multimodal benchmarks.

Type Ldiff Lar POPE↑ MME-P↑ GQA↑ GenEval↑
Und. only ✗ ✓ 78.7 1244.2 51.9 -
Gen. only ✓ ✗ - - - 0.56
Und. & Gen. ✓ ✓ 79.6 1265.8 52.8 0.58

5.4. Ablation Studies

Separate training vs. unified training. To validate the effi-
cacy of Orthus for unified multimodal modeling, we com-
pare baselines using identical training data but with different
learning objectives: (i) a generation-only baseline focused
solely on text-to-image generation; (ii) an understanding-
only baseline dedicated to visual understanding tasks; and
(iii) a unified training objective, the default setting in Orthus.
Table 4 shows that unified training outperforms task-specific
training in both visual understanding and generation, high-
lighting the superiority of Orthus which facilitates informa-
tion gains from bidirectional cross-modal learning.

Impact of vision embedding modules on visual under-
standing tasks. In this section, we ablate the impact of
different choices of vision embedding modules to build Or-
thus from fully AR models on visual understanding. When
we retain the original embedding module in fully AR models
(“argmin” in Table 5), a performance drop is observed due
to the information loss. Moreover, replacing the embedding
module with a randomly initialized linear layer also leads to
suboptimal performance due to the significant distribution
shift between the embedded space and the transformer’s
input space. This misalignment may necessitate training
with more image-text pairs to mitigate.

Table 5. Ablation study on the choice of vision embedding modules
on visual understanding tasks.

Type POPE↑ MME-P↑ VQAv2↑ GQA↑ MMMU↑
softmax 78.7 1244.2 60.8 51.9 28.0
argmin 77.6 1064.8 57.9 50.1 26.7
linear 70.4 800.7 50.3 44.5 22.3

Loss design. To test the necessity of diffusion modeling for
the image features, we train the MLP head with straightfor-
ward Mean Squared Error (MSE) loss between predictions
and target features. As shown in Appendix C, the model
trained with MSE loss generates degraded samples that lack
details and exhibit limited color diversity. The reason is that
the deterministic nature of MSE loss leads to mode collapse.

6. Conclusion
In this paper, we propose Orthus, a unified multimodal
model for interleaved image-text understanding and genera-
tion. Orthus generates content across modalities by routing
outputs from a shared transformer backbone to modality-
specific heads. Its continuous treatment of visual signals pre-
serves input integrity and its unified AR modeling approach
for both discrete text tokens and continuous image features
enables superior performance across various multimodal
understanding and generation benchmarks. For future work,
we plan to scale Orthus by increasing its parameters and
leveraging larger, interleaved datasets to maximize its poten-
tial. We also aim to broaden its capabilities by incorporating
more modalities, including video and audio.

Limitations. The main limitations of this work are as fol-
lows. Orthus exhibits relatively high inference latency intro-
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duced by the need for multiple forward passes through the
diffusion head. Besides, Orthus is limited to 7B parameters
due to constrained computational resources.

Impact Statement
This work presents a challenge in machine learning and
proposes a solution, the potential negative consequences
are not apparent. While it is theoretically possible for any
technique to be misused, the likelihood of such misuse
occurring at the current stage is low.
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A. Comparison of Vision Autoencoder
To construct a vision autoencoder capable of decoding high-quality images based on continuous image features V , we
freeze the encoder of Chameleon’s VQ-VAE, drop the quantization step, and finetune the decoder only to reconstruct
images, transforming it into a conventional continuous autoencoder effectively. The decoder is trained on LAION-Aesthetic
dataset (laion-coco aesthetic)using a learning rate of 1e-5, a batch size of 256, and a total of 15,000 training steps. Table 6
shows that our vision autoencoder achieves better reconstruction quality compared to the original VQ-VAE. The evaluation
is conducted on a subset of the LAION-Aesthetic, consisting of 10,000 images that are excluded from the training dataset.

Table 6. Comparison of reconstruction quality for vision autoencoders: the discrete one is worse than the continuous variant.

Model PSNR↑ SSIM (Wang et al., 2004)↑
VQ-VAE (Team, 2024) 23.7 0.80
Ours 26.1 0.84

B. Training details
The images for training Orthus-base are the first 10k from laion-coco aesthetic. Both training and evaluation are carried out
on servers equipped with 8 NVIDIA A100 80GB GPUs.

Table 7. Training details for constructing Orthus-base and the instruction-tuned one for visual understanding and generation in 5.3.

Model Orthus-base Instruct-tuning

Optimizer AdamW (β1 = 0.9, β2 = 0.99)
Learning Rate 1e-4 1e-5
Batch Size 32 16
Training Steps 15,000 35,000

C. Diffusion Loss v.s. MSE Loss

Figure 5. Text-to-image results from models trained with MSE loss. The text prompt is “Generate an image of a snowman.”

D. Examples on Visual Generation
Figure 6 shows examples of images generated from Orthus post-trained in Section 5.3.

E. Examples on Visual Understanding
In addition to quantitatively evaluating Orthus in Section 5.3 on domain-specific tasks, we also assess its performance in
general chat scenarios in Figure 7.

F. Examples on Image Editing
Figure 8 shows random examples of image editing by Orthus-base post-trained on Instruct-Pix2Pix (Brooks et al., 2023).
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A photorealistic image of 
a giant floating glass 
sphere in a rocky 
landscape surrounded by 
a gentle mist.

Animals fashioned from 
gems, colorful and shapely, 
depicted in natural 
lighting, with a slight 
effervescence.

A portrait painting of a 
South Indian woman 
wearing a sari with 
intricate details and an 
eerie sense of horror, 
created in ultra-realistic 
style by artgerm.

A serene meadow with a 
tree, river, bridge, and 
mountains in the 
background under a 
slightly overcast 
sunrise sky.

Digital painting of a furry 
deer character on FurAffinity.

A stylized building in 
watercolor gouache, featuring 
interesting shapes and forms, 
located in a desolate 
landscape with a food stall in 
an Asian-style alleyway.

A painting of a Persian cat 
dressed as a Renaissance 
king, standing around a 
skyscraper overlooking a 
city.

A cobblestone street with a 
tree over the sea at sunset, 
illuminated by sun rays, in a 
colorful illustration by 
Peter Chan on Artstation.

A close-up oil painting of 
a littlest pet shop fuzzy 
skunk in a field.

A glowing dry tree stands 
alone under a starry sky in 
a detailed fantasy artwork

A girl looks out from the 
edge of a mountain onto a 
large city at night.

A gangster squirrel is 
counting his money in a 
low angle film still.

A neon-colored frog in a 
cyberpunk setting.

An anthropomorphic frog 
wizard wearing a cape and 
holding a wand.

Portrait of a monkey wearing 
an astronaut helmet.

Portrait of Archduke Franz 
Ferdinand by Charlotte 
Grimm, depicting his 
detailed face.

Figure 6. Generated 512 × 512 images from Orthus. Results demonstrate its ability to generate diverse, engaging, and realistic images.
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Figure 7. Examples of Orthus on visual understanding. Results demonstrate that Orthus exhibits strong instruction-following capabilities
and robust generalization abilities.

O
ri

gi
n

O
rt

hu
s

I-
pi

x2
pi

x

Have the animals be made of 
chocolate Add a lightning storm Change the house to a castle Make it more apocalyptic

Figure 8. Examples of Orthus on image editing. Compared to editing-specific diffusion models (Brooks et al., 2023), Orthus demonstrates
better fidelity to the original image in regions where no editing is required.
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