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Abstract

Knowledge graphs are commonly used as
sources of information in question answer-
ing. Models often combine pre-trained text
encoders with a graph encoder to use this infor-
mation to increase accuracy. However, the way
that these two types of model interact is not
clear. Here we show that, when provided with
graph information for a random question, two
recent models exhibit no significant change in
performance. These models cannot therefore be
used to obtain graph-structured explanations, or
to compare the relevance of a particular knowl-
edge graph to a dataset. We perform two model
ablations and show that the resulting model is
more responsive to variation in graph input, and
so can be used for gathering explanations and
measuring KG-dataset fit. We also show that
uncontrollable nondeterminism can cause sig-
nificant changes in results, and highlight the
importance of statistical testing of these mod-
els.

1 Introduction

A question answering (QA) model must have ac-
cess to relevant information that it can manipulate
to provide an answer. A common approach is to
store latent representations of this in the parame-
ters of a Transformer model (Vaswani et al., 2017;
Devlin et al., 2019). However, these models are for
the most part uninterpretable.

Alternatively, this information can be stored sym-
bolically, for instance in a knowledge graph. Ap-
proaches of this type typically select a subset of the
graph, encode it, and combine it with an encoding
of the question text to get a final representation,
which is then used for selecting an answer (K M
et al., 2018; Mihaylov and Frank, 2018; Lin et al.,
2019; Feng et al., 2020; Yasunaga et al., 2021).
An advantage of explicitly stating facts is that they
provide a medium in which the model can output
explanations for questions. These can be obtained,

for example, by using graph-based interpretabil-
ity techniques (e.g. Schlichtkrull et al., 2020) with
models that use graph neural networks (GNNs) to
encode the graph. The result is a set of triples
which model developers can use to verify that only
plausible facts are used in the inference process.

MHGRN (Feng et al., 2020) and QA-GNN (Ya-
sunaga et al., 2021) are two contemporary models
that combine a GNN-based graph encoder with
a text encoder, which is usually instantiated as
Roberta-Large (Liu et al., 2019). Before the mod-
els are run, a relevant knowledge graph must be
identified and a subset extracted for use as input.
Bauer and Bansal (2021) propose a method for
choosing between different knowledge graphs for
a task. They provide BERT (Devlin et al., 2019)
with data from different graphs in addition to the
question context, and select the graph that gives the
highest performance.

In this paper we investigate the impact of using
pre-trained models like BERT as a component in
tasks involving knowledge graphs. We test MH-
GRN and QA-GNN under two input data condi-
tions to evaluate how much the graph encoder and
text encoder components contribute to question
answering accuracy. We find that, under normal
model conditions, swapping the graph input from
useful to unhelpful data results in no significant
change in performance. This result suggests that
the text encoder has a disproportionate influence
on model performance, which raises doubts about
the use of these models to obtain graph-based ex-
planations.

We further evaluate these models under two
model ablation conditions that are designed to re-
duce the capability of the language model to learn
the task. In this scenario unhelpful graph data
causes performance to drop, suggesting that the
performance of these models is more closely tied
to the quality of the graph input. Disentangling
graph-related performance from text encoder per-
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formance in this way can be seen to be more “fair’
to the KGs, and it is crucial when using graphs to
output explanations. For the goal of evaluating KG-
dataset fit fairly, we therefore prefer our analysis
method over the alternative provided by Bauer and
Bansal (2021).

Our contributions are as follows:

» Highlight flaws in existing methodology for
testing models with graph encoders;

* Describe model changes to make them suit-
able for use with explanation generation meth-
ods and for testing KG-dataset fit;

* Demonstrate the importance of multiple
model runs and statistical testing when using
GNNGs.

2 Background

2.1 Evaluating knowledge graphs

Bauer and Bansal (2021) propose a method to de-
cide which knowledge graph is the most useful
for a given multiple-choice question answering
dataset. They begin by identifying potentially rel-
evant triples from the knowledge graph based on
lexical overlap with a candidate answer and option-
ally also the question. One or more of these is then
concatenated with the question and answer, and the
resulting string passed through BERT to obtain a
score. The knowledge graph which has facts that
lead to the highest question answering accuracy
across all questions is selected as the most useful
graph for the dataset.

Although this experimental setup is successful
in finding the knowledge graph that is most useful
for a given dataset, it does so in the context of the
information held latent in the parameters of BERT.
The interaction between this information and the
facts in the input is unknown, and so drawing con-
clusions about a match between a knowledge graph
and a dataset in general is difficult. This approach
is also limited to measuring the impact of a small
number of facts simultaneously, due to input token
length limitations. It may be desirable to measure
the impact of multiple facts that are more useful
together than individually. This is likely to be more
important for scientific questions (where multiple
facts must be combined to reach an answer (Jansen
etal., 2016)) as opposed to factoid questions, where
typically one or two hops suffice.

"We release our code to facilitate future work.

2.2 Graph encoding QA models

We test the behaviour of two recent models that
combine text encoders and graph encoders: MH-
GRN (Feng et al., 2020) and QA-GNN (Yasunaga
et al., 2021). The high-level operation of both mod-
els is comparable. Text representing the question
context — a question with an answer candidate —
is used to extract a subgraph of up to 200 nodes
(called a schema graph) from the overall knowl-
edge graph. An encoding of the question context
is also obtained from a text encoder, which in both
cases is instantiated as Roberta-Large. Both mod-
els employ a message passing GNN as the graph
encoder, in which the embeddings for nodes are
initialised with pretrained embeddings.

MHGRN proposes a novel message passing
GNN that builds a representation for each node
by sampling paths from it. Each path is encoded
into a message, which are combined using the tex-
tual embedding for structured relational attention,
and then used to update the node embedding.

QA-GNN is a graph attention network
(Velickovi¢ et al., 2018), where at each layer of
the model the node embeddings are updated via
message passing to immediate neighbours. A
pseudo node is added to the graph to represent the
textual context, and its embedding is initialised
with the textual embedding. Through messages
from this node, the data in the text embedding is
spread across the graph, in contrast with MHGRN
where the only use of the text embedding is to
inform attention values.

Both models combine node embeddings via at-
tentive pooling using the textual embedding, and
calculate the representation for an answer candidate
by concatenating this with the textual embedding.

3 Methodology

We design methods to test how MHGRN and QA-
GNN use the schema graphs when scoring answers
in multiple choice question answering.

The model conditions consist of the base model,
plus two successive ablations: one where the tex-
tual embedding is completely removed from the
final embedding, and a further one where the text
encoder is not fine-tuned. Models are newly trained
for each ablation scenario. Our reasoning is that, if
we want to know how useful a graph is for a given
task or want to output an explanation using the
graph, the graph component of the network should
be the only part which influences the scores given



to each candidate. We reduce the ability of the
language model to contribute information to the
reasoning process almost completely by freezing
its parameters: in our experiments Roberta-Large
when not fine-tuned performs just above random.

We also test a scenario where the schema graphs
are disabled by shuffling them across questions, in
addition to the undisturbed scenario where each
question has its proper schema graph. In the shuf-
fled scenario we expect the schema graph to be
irrelevant for the new question it is now applied to.
As a result, if the models use the schema graph in a
sensible way then performance should decrease. If
not, the quality of explanations from these models
is immediately discounted.

We use the same training hyperparameters as
detailed by the respective authors, as detailed in
appendix A. We change the maximum number of
epochs to 70, and because we observed high vari-
ability within training across random seeds we use
an early stopping patience of 30. We use Con-
ceptNet (Speer et al., 2017) as the base knowledge
graph, and evaluate on CommonsenseQA (CSQA)
(Talmor et al., 2019) and Open Book Question An-
swering (OBQA) (Mihaylov et al., 2018), training
separate models for each. We use standard dataset
splits OBQA, and ‘in house’ splits for CSQA from
prior work (Lin et al., 2019). We use Roberta-Large
(Liu et al., 2019) as our text encoder, which we
also use to initialise node embeddings in the GNN
following Feng et al. (2020). We repeat each exper-
iment with 10 different random seeds and report
the mean accuracy.

4 Results

4.1 Text encoder influence

Table 1 gives our experimental results; supplemen-
tary details are provided in appendices B and C.
Following Reimers and Gurevych (2017), we use
the Kolmogorov-Smirnov test (Massey, 1951) to
check whether the test score distributions for each
pair of model-data setups are significantly different.

Schema graph shuffling We begin by investigat-
ing the impact of providing models with a schema
graph that was extracted for a different question.
We expect models that use the graphs in a mean-
ingful way to perform poorly. However, there is no
significant difference in performance for both MH-
GRN and QA-GNN when the model is provided
with a schema graph for a random question versus
the correct one. It is not clear therefore whether

CSQA OBQA

Reg. Shuf. Reg. Shuf.
QA-GNN 70.26  69.72 6298 65.24
— Embed. 64.68 60.68 5236 53.66
— Train TE. 3046 19.50 40.70 25.26
MHGRN 69.71 69.07 6598 65.50
— Embed. 24.66 19.64 4256 31.96
—Train TE. 2445 19.76 41.04 36.00

Table 1: Average accuracy (10 random seeds) in two
schema graph scenarios for each dataset: regular, where
schema graphs are correctly paired with questions, and
where the mapping is shuffled. ‘— Embed.’ is the model
ablation where the text encoder embedding is removed
from the final score calculation. ‘— Train TE.” addition-
ally freezes the text encoder weights.

or how the graph component of the model is used;
instead it is likely that it is the text encoder in both
architectures that is responsible for the relatively
high accuracies.

We suggest that an appropriate model to measure
the fit between a question answering dataset and a
knowledge graph should, as far as possible, only
score answer candidates based on the contents of
the graph. We therefore turn our attention to the
models without the text encoder embedding and
with the text encoder weights frozen. The change
in performance when using the different schema
graphs is significant in three of the four (model,
dataset) combinations (p < 2e—35, except the ab-
lated MHGRN on OBQA). The fact that there is a
significant difference between performance when
using schema graphs of varying relevance suggests
that this is an appropriate setup for investigating the
impact of graph selection on question answering
performance.

Model ablation impact For both models,
datasets, and schema graphs, removing the text
encoder embedding from final score calculation
causes a significant reduction in score in all eight
cases (p < 0.02). The reduction is larger for MH-
GRN, where performance drops to below random
on CSQA, than for QA-GNN, where performance
decreases by 7% on average. Considering only the
regular schema graph, this suggests either that MH-
GRN is unable to learn how to use the graph with
the text encoder embedding removed, or that the
schema graph does not contain useful information
for the task. However, because the model achieves
42.56% accuracy on OBQA in the same ablation
scenario, we conclude that the second case is more
likely.



The fact that QA-GNN performance drops less
than MHGRN when the text encoder embedding is
removed is likely explained by their different archi-
tectures. QA-GNN also includes the text encoder
embedding itself in its graph encoder, whereas MH-
GRN only uses it to inform attentive pooling. It is
therefore easier for the text encoder in the former
model to learn the task. The significant (p < 0.003)
change in accuracy for all four QA-GNN mod-
els when the text encoder weights are frozen ap-
pears to confirm that much of the performance is
attributable to the text encoder, not the graph en-
coder and by extension the graph.

There is one anomalous change in MHGRN’s
performance, where accuracy increases from
31.96% to 36.00% when freezing the text encoder
weights and using a shuffled schema graph on
OBQA. As there is unlikely to be a meaningful way
to combine nodes from a random schema graph for
a question, the training signal for the text encoder
as it performs attentive pooling is likely to be noisy.
When the text encoder is frozen the influence of
this noise is removed.

4.2 Uncontrollable nondeterminism

We perform additional experiments to investigate
the impact of nondeterminism when updating
sparse tensors using PyTorch Geometric (Fey and
Lenssen, 2019).2 This is due to float imprecision,
and is impractical to control.® This only affects
QA-GNN. We choose one random seed and run ten
models* on CSQA in each model ablation scenario.

Mean Min Max SD
QA-GNN 6995 6890 70.75 0.58
— Embed. 69.07 67.20 70.19 1.05
— Train TE. 3144 28.77 3272 1.24

Table 2: Nondeterministic variation in QA-GNN perfor-
mance on CSQA across 10 runs with the same random
seed.

In all three model settings in table 2, there is a

2PyTorch Geometric uses PyTorch Scatter for this purpose.
We use versions 1.6.0 and 2.0.8 respectively, with PyTorch
1.8.1, CUDA 11.4, and an Nvidia A100 GPU.

3See discussion https://github.com/rustyls/
pytorch_scatter/issues/226

*One of the original 10 models for ‘— Embed.” gave a sig-
nificantly anomalous test accuracy of 31.35%. Such situations
are easy to identify and remove, so we report statistics that
use a further run.

significant difference” (p < 0.03) between accuracy
of the best and worst performing models. When
comparing all pairs of models, in the — Train LM
ablation there are two significantly different pairs
(p < 0.05). This variation highlights the impor-
tance of completing multiple runs when using non-
deterministic operations.

Assuming that variability in the graph encoder
is roughly constant, the lower the standard devi-
ation of accuracy, the larger the influence of the
text encoder on the predictions, and therefore ac-
curacy. As such, the high standard deviation in
the — Train LM ablation provides further suggests
that this is an appropriate scenario for evaluating
knowledge graph-to-dataset match, at the expense
of requiring multiple runs.

5 Discussion

We have demonstrated that in MHGRN and QA-
GNN, as the ability of the pre-trained text encoder
to learn a task is curtailed, performance signifi-
cantly decreases, suggesting that it was this that
most contributed to high accuracy scores. This is
reinforced by the fact that providing the unmodified
models with graphs intended for other questions
has no significant impact on performance. Models
with this behaviour are unsuitable for use when
providing explanations for questions.

We propose that a model where the text encoder
weights are frozen, and the text embedding is not
part of the final representation, is suitable both
for providing explanations for questions and for
evaluating KG-dataset fit. This is because perfor-
mance is driven predominantly by the contents of
the graph, rather than the text encoder.

Our results emphasise the importance of repeat-
ing experiments, especially when using GNNs that
have uncontrollable nondeterminism, as this can
cause significant differences in results. Particularly
in light of this, it is crucial to perform statistical
tests between the results of two types of model.

Further work is required on schema graph selec-
tion methods. Our results on CSQA suggest that
the graphs obtained may be unsuitable, as the mod-
els which are driven most by graph contents do not
perform well on this dataset. Extracting via just
two hops in the graph is unlikely to yield sufficient
data for science questions (Jansen et al., 2016).

SMonte Carlo permutation test with 1 million iterations.
®Bonferroni correction applied to account for 45 compar-
isons.
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A Hyperparameters

QA-GNN All parameters optimised with RAdam
(Liu et al., 2021). Batch size is 128. A maximum
of 128 tokens are input to the text encoder, which
is trained with learning rate le — 5 but frozen for
the first 4 epochs. The 5-layer GNN has 200 di-
mensional embeddings and is trained with learning
rate le — 3. Parameters have L2 weight decay of
0.01 applied.

MHGRN  All parameters optimised with RAdam.
Batch size is 32. A maximum of 128 tokens are
input to the text encoder, which is trained with
learning rate 1e — 5 but frozen for the first 3 epochs.
The 1-layer GNN has 100 dimensional embeddings
and is trained with learning rate 1e — 3. Each layer
performs 3-hop message passing. Parameters have
L2 weight decay of 0.01 applied.

B Additional results

Standard deviations on the test set for each exper-
iment are given in table 3, and development set
scores in table 4. The average run time of these
experiments on a Nvidia A100 GPU are shown in
table 5, which correspond to the number of optimi-
sation steps in table 6.

CSQA OBQA

Reg.  Shuf.  Reg.  Shuf.
QA-GNN 1.02 053 303 290
— Embed. 142 226 10.12 6.75
—TrainTE. 1.19 132 236 228
MHGRN 0.73 091 248 1.68
— Embed. 079 1.12 6.60 13.18
—TrainTE. 0.68 131 237 10.11

Table 3: Standard deviation of test set score across 10
runs, corresponding to table 1.

C Model-model comparison

We compare performance between QA-GNN and
MHGRN when using the regular schema graphs.
Both models differ mainly in their graph encoder

CSQA OBQA

Reg.  Shuf. Reg.  Shuf.
QA-GNN 76.11 75.82 65.36 68.08
— Embed. 74.13  70.76 56.78 59.02
— Train TE. 3349 2227 45.62 28.30
MHGRN 75.24 75.28 69.52 69.24
— Embed. 29.37 2244 47776 36.68
— Train TE. 29.07 2229 4482 42.08

Table 4: Average development set accuracy across 10
runs, used to select the test scores reported in table 1.

CSQA OBQA

Reg.  Shuf.  Reg. Shuf.
QA-GNN 329 292 212 207
— Embed. 421 4.06 196 2.07
—TrainTE. 141 156 097 1.01
MHGRN 223 223 185 1.72
— Embed. 2.02 290 125 1.50
—TrainTE. 2.04 272 127 145

Table 5: Average run time (in hours) for experiments in
table 1.

architecture, and the comparison made by the later
work (Yasunaga et al., 2021) involves using the
unmodified models. Here, we compare the models
along another dimension by isolating the graph
encoders.

When the text encoder is frozen and its em-
bedding removed, there is no significant differ-
ence in performance on OBQA. This suggests that
both models are able to use the information in the
schema graph equivalently. For CSQA, the dif-
ference between the score is significantly differ-
ent (p < 2e—5), although both models perform
just above random. Further research is required
to investigate the consistently lower performance
in CSQA compared with OBQA when freezing the
text encoder.
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CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 3524 3162 2769 2683
— Embed. 4509 4348 2582 2718
— Train TE. 2539 2827 2204 2293

MHGRN 10,906 10,826 10,881 10,168
— Embed. 9922 13,992 7487 8975
— Train TE. 10,028 13,273 7564 8634

Table 6: Average number of optimisation steps for ex-
periments in table 1.



