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Abstract

Knowledge graphs are commonly used as001
sources of information in question answer-002
ing. Models often combine pre-trained text003
encoders with a graph encoder to use this infor-004
mation to increase accuracy. However, the way005
that these two types of model interact is not006
clear. Here we show that, when provided with007
graph information for a random question, two008
recent models exhibit no significant change in009
performance. These models cannot therefore be010
used to obtain graph-structured explanations, or011
to compare the relevance of a particular knowl-012
edge graph to a dataset. We perform two model013
ablations and show that the resulting model is014
more responsive to variation in graph input, and015
so can be used for gathering explanations and016
measuring KG-dataset fit. We also show that017
uncontrollable nondeterminism can cause sig-018
nificant changes in results, and highlight the019
importance of statistical testing of these mod-020
els.021

1 Introduction022

A question answering (QA) model must have ac-023

cess to relevant information that it can manipulate024

to provide an answer. A common approach is to025

store latent representations of this in the parame-026

ters of a Transformer model (Vaswani et al., 2017;027

Devlin et al., 2019). However, these models are for028

the most part uninterpretable.029

Alternatively, this information can be stored sym-030

bolically, for instance in a knowledge graph. Ap-031

proaches of this type typically select a subset of the032

graph, encode it, and combine it with an encoding033

of the question text to get a final representation,034

which is then used for selecting an answer (K M035

et al., 2018; Mihaylov and Frank, 2018; Lin et al.,036

2019; Feng et al., 2020; Yasunaga et al., 2021).037

An advantage of explicitly stating facts is that they038

provide a medium in which the model can output039

explanations for questions. These can be obtained,040

for example, by using graph-based interpretabil- 041

ity techniques (e.g. Schlichtkrull et al., 2020) with 042

models that use graph neural networks (GNNs) to 043

encode the graph. The result is a set of triples 044

which model developers can use to verify that only 045

plausible facts are used in the inference process. 046

MHGRN (Feng et al., 2020) and QA-GNN (Ya- 047

sunaga et al., 2021) are two contemporary models 048

that combine a GNN-based graph encoder with 049

a text encoder, which is usually instantiated as 050

Roberta-Large (Liu et al., 2019). Before the mod- 051

els are run, a relevant knowledge graph must be 052

identified and a subset extracted for use as input. 053

Bauer and Bansal (2021) propose a method for 054

choosing between different knowledge graphs for 055

a task. They provide BERT (Devlin et al., 2019) 056

with data from different graphs in addition to the 057

question context, and select the graph that gives the 058

highest performance. 059

In this paper we investigate the impact of using 060

pre-trained models like BERT as a component in 061

tasks involving knowledge graphs. We test MH- 062

GRN and QA-GNN under two input data condi- 063

tions to evaluate how much the graph encoder and 064

text encoder components contribute to question 065

answering accuracy. We find that, under normal 066

model conditions, swapping the graph input from 067

useful to unhelpful data results in no significant 068

change in performance. This result suggests that 069

the text encoder has a disproportionate influence 070

on model performance, which raises doubts about 071

the use of these models to obtain graph-based ex- 072

planations. 073

We further evaluate these models under two 074

model ablation conditions that are designed to re- 075

duce the capability of the language model to learn 076

the task. In this scenario unhelpful graph data 077

causes performance to drop, suggesting that the 078

performance of these models is more closely tied 079

to the quality of the graph input. Disentangling 080

graph-related performance from text encoder per- 081
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formance in this way can be seen to be more “fair”082

to the KGs, and it is crucial when using graphs to083

output explanations. For the goal of evaluating KG-084

dataset fit fairly, we therefore prefer our analysis085

method over the alternative provided by Bauer and086

Bansal (2021).087

Our contributions are as follows1:088

• Highlight flaws in existing methodology for089

testing models with graph encoders;090

• Describe model changes to make them suit-091

able for use with explanation generation meth-092

ods and for testing KG-dataset fit;093

• Demonstrate the importance of multiple094

model runs and statistical testing when using095

GNNs.096

2 Background097

2.1 Evaluating knowledge graphs098

Bauer and Bansal (2021) propose a method to de-099

cide which knowledge graph is the most useful100

for a given multiple-choice question answering101

dataset. They begin by identifying potentially rel-102

evant triples from the knowledge graph based on103

lexical overlap with a candidate answer and option-104

ally also the question. One or more of these is then105

concatenated with the question and answer, and the106

resulting string passed through BERT to obtain a107

score. The knowledge graph which has facts that108

lead to the highest question answering accuracy109

across all questions is selected as the most useful110

graph for the dataset.111

Although this experimental setup is successful112

in finding the knowledge graph that is most useful113

for a given dataset, it does so in the context of the114

information held latent in the parameters of BERT.115

The interaction between this information and the116

facts in the input is unknown, and so drawing con-117

clusions about a match between a knowledge graph118

and a dataset in general is difficult. This approach119

is also limited to measuring the impact of a small120

number of facts simultaneously, due to input token121

length limitations. It may be desirable to measure122

the impact of multiple facts that are more useful123

together than individually. This is likely to be more124

important for scientific questions (where multiple125

facts must be combined to reach an answer (Jansen126

et al., 2016)) as opposed to factoid questions, where127

typically one or two hops suffice.128

1We release our code to facilitate future work.

2.2 Graph encoding QA models 129

We test the behaviour of two recent models that 130

combine text encoders and graph encoders: MH- 131

GRN (Feng et al., 2020) and QA-GNN (Yasunaga 132

et al., 2021). The high-level operation of both mod- 133

els is comparable. Text representing the question 134

context – a question with an answer candidate – 135

is used to extract a subgraph of up to 200 nodes 136

(called a schema graph) from the overall knowl- 137

edge graph. An encoding of the question context 138

is also obtained from a text encoder, which in both 139

cases is instantiated as Roberta-Large. Both mod- 140

els employ a message passing GNN as the graph 141

encoder, in which the embeddings for nodes are 142

initialised with pretrained embeddings. 143

MHGRN proposes a novel message passing 144

GNN that builds a representation for each node 145

by sampling paths from it. Each path is encoded 146

into a message, which are combined using the tex- 147

tual embedding for structured relational attention, 148

and then used to update the node embedding. 149

QA-GNN is a graph attention network 150

(Veličković et al., 2018), where at each layer of 151

the model the node embeddings are updated via 152

message passing to immediate neighbours. A 153

pseudo node is added to the graph to represent the 154

textual context, and its embedding is initialised 155

with the textual embedding. Through messages 156

from this node, the data in the text embedding is 157

spread across the graph, in contrast with MHGRN 158

where the only use of the text embedding is to 159

inform attention values. 160

Both models combine node embeddings via at- 161

tentive pooling using the textual embedding, and 162

calculate the representation for an answer candidate 163

by concatenating this with the textual embedding. 164

3 Methodology 165

We design methods to test how MHGRN and QA- 166

GNN use the schema graphs when scoring answers 167

in multiple choice question answering. 168

The model conditions consist of the base model, 169

plus two successive ablations: one where the tex- 170

tual embedding is completely removed from the 171

final embedding, and a further one where the text 172

encoder is not fine-tuned. Models are newly trained 173

for each ablation scenario. Our reasoning is that, if 174

we want to know how useful a graph is for a given 175

task or want to output an explanation using the 176

graph, the graph component of the network should 177

be the only part which influences the scores given 178
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to each candidate. We reduce the ability of the179

language model to contribute information to the180

reasoning process almost completely by freezing181

its parameters: in our experiments Roberta-Large182

when not fine-tuned performs just above random.183

We also test a scenario where the schema graphs184

are disabled by shuffling them across questions, in185

addition to the undisturbed scenario where each186

question has its proper schema graph. In the shuf-187

fled scenario we expect the schema graph to be188

irrelevant for the new question it is now applied to.189

As a result, if the models use the schema graph in a190

sensible way then performance should decrease. If191

not, the quality of explanations from these models192

is immediately discounted.193

We use the same training hyperparameters as194

detailed by the respective authors, as detailed in195

appendix A. We change the maximum number of196

epochs to 70, and because we observed high vari-197

ability within training across random seeds we use198

an early stopping patience of 30. We use Con-199

ceptNet (Speer et al., 2017) as the base knowledge200

graph, and evaluate on CommonsenseQA (CSQA)201

(Talmor et al., 2019) and Open Book Question An-202

swering (OBQA) (Mihaylov et al., 2018), training203

separate models for each. We use standard dataset204

splits OBQA, and ‘in house’ splits for CSQA from205

prior work (Lin et al., 2019). We use Roberta-Large206

(Liu et al., 2019) as our text encoder, which we207

also use to initialise node embeddings in the GNN208

following Feng et al. (2020). We repeat each exper-209

iment with 10 different random seeds and report210

the mean accuracy.211

4 Results212

4.1 Text encoder influence213

Table 1 gives our experimental results; supplemen-214

tary details are provided in appendices B and C.215

Following Reimers and Gurevych (2017), we use216

the Kolmogorov-Smirnov test (Massey, 1951) to217

check whether the test score distributions for each218

pair of model-data setups are significantly different.219

Schema graph shuffling We begin by investigat-220

ing the impact of providing models with a schema221

graph that was extracted for a different question.222

We expect models that use the graphs in a mean-223

ingful way to perform poorly. However, there is no224

significant difference in performance for both MH-225

GRN and QA-GNN when the model is provided226

with a schema graph for a random question versus227

the correct one. It is not clear therefore whether228

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 70.26 69.72 62.98 65.24
− Embed. 64.68 60.68 52.36 53.66
− Train TE. 30.46 19.50 40.70 25.26

MHGRN 69.71 69.07 65.98 65.50
− Embed. 24.66 19.64 42.56 31.96
− Train TE. 24.45 19.76 41.04 36.00

Table 1: Average accuracy (10 random seeds) in two
schema graph scenarios for each dataset: regular, where
schema graphs are correctly paired with questions, and
where the mapping is shuffled. ‘− Embed.’ is the model
ablation where the text encoder embedding is removed
from the final score calculation. ‘− Train TE.’ addition-
ally freezes the text encoder weights.

or how the graph component of the model is used; 229

instead it is likely that it is the text encoder in both 230

architectures that is responsible for the relatively 231

high accuracies. 232

We suggest that an appropriate model to measure 233

the fit between a question answering dataset and a 234

knowledge graph should, as far as possible, only 235

score answer candidates based on the contents of 236

the graph. We therefore turn our attention to the 237

models without the text encoder embedding and 238

with the text encoder weights frozen. The change 239

in performance when using the different schema 240

graphs is significant in three of the four (model, 241

dataset) combinations (p < 2e−5, except the ab- 242

lated MHGRN on OBQA). The fact that there is a 243

significant difference between performance when 244

using schema graphs of varying relevance suggests 245

that this is an appropriate setup for investigating the 246

impact of graph selection on question answering 247

performance. 248

Model ablation impact For both models, 249

datasets, and schema graphs, removing the text 250

encoder embedding from final score calculation 251

causes a significant reduction in score in all eight 252

cases (p < 0.02). The reduction is larger for MH- 253

GRN, where performance drops to below random 254

on CSQA, than for QA-GNN, where performance 255

decreases by 7% on average. Considering only the 256

regular schema graph, this suggests either that MH- 257

GRN is unable to learn how to use the graph with 258

the text encoder embedding removed, or that the 259

schema graph does not contain useful information 260

for the task. However, because the model achieves 261

42.56% accuracy on OBQA in the same ablation 262

scenario, we conclude that the second case is more 263

likely. 264
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The fact that QA-GNN performance drops less265

than MHGRN when the text encoder embedding is266

removed is likely explained by their different archi-267

tectures. QA-GNN also includes the text encoder268

embedding itself in its graph encoder, whereas MH-269

GRN only uses it to inform attentive pooling. It is270

therefore easier for the text encoder in the former271

model to learn the task. The significant (p < 0.003)272

change in accuracy for all four QA-GNN mod-273

els when the text encoder weights are frozen ap-274

pears to confirm that much of the performance is275

attributable to the text encoder, not the graph en-276

coder and by extension the graph.277

There is one anomalous change in MHGRN’s278

performance, where accuracy increases from279

31.96% to 36.00% when freezing the text encoder280

weights and using a shuffled schema graph on281

OBQA. As there is unlikely to be a meaningful way282

to combine nodes from a random schema graph for283

a question, the training signal for the text encoder284

as it performs attentive pooling is likely to be noisy.285

When the text encoder is frozen the influence of286

this noise is removed.287

4.2 Uncontrollable nondeterminism288

We perform additional experiments to investigate289

the impact of nondeterminism when updating290

sparse tensors using PyTorch Geometric (Fey and291

Lenssen, 2019).2 This is due to float imprecision,292

and is impractical to control.3 This only affects293

QA-GNN. We choose one random seed and run ten294

models4 on CSQA in each model ablation scenario.295

296

Mean Min Max SD

QA-GNN 69.95 68.90 70.75 0.58
− Embed. 69.07 67.20 70.19 1.05
− Train TE. 31.44 28.77 32.72 1.24

Table 2: Nondeterministic variation in QA-GNN perfor-
mance on CSQA across 10 runs with the same random
seed.

In all three model settings in table 2, there is a297

2PyTorch Geometric uses PyTorch Scatter for this purpose.
We use versions 1.6.0 and 2.0.8 respectively, with PyTorch
1.8.1, CUDA 11.4, and an Nvidia A100 GPU.

3See discussion https://github.com/rusty1s/
pytorch_scatter/issues/226

4One of the original 10 models for ‘− Embed.’ gave a sig-
nificantly anomalous test accuracy of 31.35%. Such situations
are easy to identify and remove, so we report statistics that
use a further run.

significant difference5 (p < 0.03) between accuracy 298

of the best and worst performing models. When 299

comparing all pairs of models, in the − Train LM 300

ablation there are two significantly different pairs 301

(p < 0.05).6 This variation highlights the impor- 302

tance of completing multiple runs when using non- 303

deterministic operations. 304

Assuming that variability in the graph encoder 305

is roughly constant, the lower the standard devi- 306

ation of accuracy, the larger the influence of the 307

text encoder on the predictions, and therefore ac- 308

curacy. As such, the high standard deviation in 309

the − Train LM ablation provides further suggests 310

that this is an appropriate scenario for evaluating 311

knowledge graph-to-dataset match, at the expense 312

of requiring multiple runs. 313

5 Discussion 314

We have demonstrated that in MHGRN and QA- 315

GNN, as the ability of the pre-trained text encoder 316

to learn a task is curtailed, performance signifi- 317

cantly decreases, suggesting that it was this that 318

most contributed to high accuracy scores. This is 319

reinforced by the fact that providing the unmodified 320

models with graphs intended for other questions 321

has no significant impact on performance. Models 322

with this behaviour are unsuitable for use when 323

providing explanations for questions. 324

We propose that a model where the text encoder 325

weights are frozen, and the text embedding is not 326

part of the final representation, is suitable both 327

for providing explanations for questions and for 328

evaluating KG-dataset fit. This is because perfor- 329

mance is driven predominantly by the contents of 330

the graph, rather than the text encoder. 331

Our results emphasise the importance of repeat- 332

ing experiments, especially when using GNNs that 333

have uncontrollable nondeterminism, as this can 334

cause significant differences in results. Particularly 335

in light of this, it is crucial to perform statistical 336

tests between the results of two types of model. 337

Further work is required on schema graph selec- 338

tion methods. Our results on CSQA suggest that 339

the graphs obtained may be unsuitable, as the mod- 340

els which are driven most by graph contents do not 341

perform well on this dataset. Extracting via just 342

two hops in the graph is unlikely to yield sufficient 343

data for science questions (Jansen et al., 2016). 344

5Monte Carlo permutation test with 1 million iterations.
6Bonferroni correction applied to account for 45 compar-

isons.
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A Hyperparameters464

QA-GNN All parameters optimised with RAdam465

(Liu et al., 2021). Batch size is 128. A maximum466

of 128 tokens are input to the text encoder, which467

is trained with learning rate 1e− 5 but frozen for468

the first 4 epochs. The 5-layer GNN has 200 di-469

mensional embeddings and is trained with learning470

rate 1e − 3. Parameters have L2 weight decay of471

0.01 applied.472

MHGRN All parameters optimised with RAdam.473

Batch size is 32. A maximum of 128 tokens are474

input to the text encoder, which is trained with475

learning rate 1e−5 but frozen for the first 3 epochs.476

The 1-layer GNN has 100 dimensional embeddings477

and is trained with learning rate 1e− 3. Each layer478

performs 3-hop message passing. Parameters have479

L2 weight decay of 0.01 applied.480

B Additional results481

Standard deviations on the test set for each exper-482

iment are given in table 3, and development set483

scores in table 4. The average run time of these484

experiments on a Nvidia A100 GPU are shown in485

table 5, which correspond to the number of optimi-486

sation steps in table 6.487

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 1.02 0.53 3.03 2.90
− Embed. 1.42 2.26 10.12 6.75
− Train TE. 1.19 1.32 2.36 2.28

MHGRN 0.73 0.91 2.48 1.68
− Embed. 0.79 1.12 6.60 13.18
− Train TE. 0.68 1.31 2.37 10.11

Table 3: Standard deviation of test set score across 10
runs, corresponding to table 1.

C Model-model comparison488

We compare performance between QA-GNN and489

MHGRN when using the regular schema graphs.490

Both models differ mainly in their graph encoder491

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 76.11 75.82 65.36 68.08
− Embed. 74.13 70.76 56.78 59.02
− Train TE. 33.49 22.27 45.62 28.30

MHGRN 75.24 75.28 69.52 69.24
− Embed. 29.37 22.44 47.76 36.68
− Train TE. 29.07 22.29 44.82 42.08

Table 4: Average development set accuracy across 10
runs, used to select the test scores reported in table 1.

CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 3.29 2.92 2.12 2.07
− Embed. 4.21 4.06 1.96 2.07
− Train TE. 1.41 1.56 0.97 1.01

MHGRN 2.23 2.23 1.85 1.72
− Embed. 2.02 2.90 1.25 1.50
− Train TE. 2.04 2.72 1.27 1.45

Table 5: Average run time (in hours) for experiments in
table 1.

architecture, and the comparison made by the later 492

work (Yasunaga et al., 2021) involves using the 493

unmodified models. Here, we compare the models 494

along another dimension by isolating the graph 495

encoders. 496

When the text encoder is frozen and its em- 497

bedding removed, there is no significant differ- 498

ence in performance on OBQA. This suggests that 499

both models are able to use the information in the 500

schema graph equivalently. For CSQA, the dif- 501

ference between the score is significantly differ- 502

ent (p < 2e−5), although both models perform 503

just above random. Further research is required 504

to investigate the consistently lower performance 505

in CSQA compared with OBQA when freezing the 506

text encoder. 507

6

https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45
https://doi.org/10.18653/v1/2021.naacl-main.45


CSQA OBQA
Reg. Shuf. Reg. Shuf.

QA-GNN 3524 3162 2769 2683
− Embed. 4509 4348 2582 2718
− Train TE. 2539 2827 2204 2293

MHGRN 10,906 10,826 10,881 10,168
− Embed. 9922 13,992 7487 8975
− Train TE. 10,028 13,273 7564 8634

Table 6: Average number of optimisation steps for ex-
periments in table 1.
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