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Abstract

This study explores current limitations of001
learned image captioning evaluation metrics,002
specifically the lack of granular assessment for003
individual word misalignments within captions,004
and the reliance on single-point quality005
estimates without considering uncertainty.006
To address these limitations, we propose a007
simple yet effective strategy for generating008
and calibrating CLIPScore distributions.009
Leveraging a model-agnostic conformal risk010
control framework, we calibrate CLIPScore011
values for task-specific control variables, to012
tackle the aforementioned two limitations.013
Experimental results demonstrate that using014
conformal risk control, over the distributions015
produced with simple methods such as input016
masking, can achieve competitive performance017
compared to more complex approaches. Our018
method effectively detects misaligned words,019
while providing formal guarantees aligned020
with desired risk levels, and improving the021
correlation between uncertainty estimations022
and prediction errors, thus enhancing the023
overall reliability of caption evaluation metrics.024

1 Introduction025

Image Captioning (IC) evaluation is a crucial task026

in vision-and-language research, aiming to assess027

how accurately textual descriptions represent visual028

contents. Reference-free metrics such as CLIP-029

Score (Hessel et al., 2021; Gomes et al., 2025),030

which measure quality by computing the cosine031

similarity between image and text embeddings,032

have been shown to correlate strongly with human033

judgments. However, simply scoring captions is034

often insufficient, as these quality assessments can035

be hard to interpret or unreliable.036

In many cases, effective evaluation requires not037

only an overall score of caption quality, but also038

the detection of specific errors within the caption.039

Without this granular information, the assessment040

can seem incomplete or less useful. Beyond the041

lack of granularity, existing metrics provide IC 042

quality assessments relying on single-point esti- 043

mates, without incorporating any indication of con- 044

fidence over their predictions. This absence of un- 045

certainty quantification can be problematic, as even 046

high-performing models may produce erroneous 047

and misleading scores, reducing user trust. 048

To address these challenges, we propose a con- 049

formal risk control framework, to obtain task- 050

specific, calibrated predictions, in conjunction with 051

a simple yet effective strategy for generating distri- 052

butions over CLIPScore predictions. This provides 053

us with a principled way to adapt IC evaluation 054

both to fine-grained analysis for each caption, and 055

to a broader view of performance over a dataset, 056

allowing for user-defined criteria to determine risk. 057

First, we enhance interpretability by detecting 058

misalignments between images and texts, identify- 059

ing specific words that are incorrect. Second, we 060

overcome the limitations of single-point evaluation 061

by introducing well-calibrated intervals, providing 062

a trustworthy measure of caption reliability. 063

Experimental findings demonstrate that using 064

conformal risk control, over the distributions pro- 065

duced with simple methods for expressing uncer- 066

tainty, such as masking parts of the input, can 067

achieve competitive performance on word error de- 068

tection compared to more complex and specialized 069

approaches. Conformal risk control can also pro- 070

vide improvements in correlation between uncer- 071

tainty estimations and prediction errors, enhancing 072

the overall reliability of the caption evaluation met- 073

rics. Furthermore, we emphasize that other existing 074

state-of-the-art methods can also benefit from our 075

conformal calibration framework, gaining formal 076

guarantees over their results. The proposed method- 077

ology is model-agnostic, and our work underscores 078

risk control’s adaptability and broad applicability, 079

offering a compelling case for its integration into 080

vision and language research. 081
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2 Related Work082

Recently, there has been a paradigm shift toward083

the use of reference-free evaluation metrics for084

assessing image captioning models. One of the085

pioneering metrics in this new approach is CLIP-086

Score (Hessel et al., 2021), which evaluates cap-087

tions without ground-truth references. Built on the088

Contrastive Language-Image Pretraining (CLIP)089

model (Radford et al., 2021), CLIPScore calcu-090

lates a modified cosine similarity between rep-091

resentations of the image and the caption under092

evaluation. This approach has shown high corre-093

lation with human judgments, outperforming es-094

tablished reference-based metrics like BLEU and095

CIDEr (Vedantam et al., 2015). CLIPScore has096

become a widely adopted metric for image caption097

evaluation, inspiring the development of numer-098

ous new learned evaluation metrics that build on099

CLIP (Sarto et al., 2023; Hu et al., 2023; Kim et al.,100

2022; Gomes et al., 2025).101

However, scoring alone is insufficient for com-102

prehensive evaluation, leading to an increasing103

amount of recent studies focused on identifying104

specific misalignments between images and texts.105

Shekhar et al. (2017) introduced the FOIL-it bench-106

mark, featuring data with misalignments by replac-107

ing nouns in MS-COCO (Lin et al., 2014) captions108

with semantically similar alternatives. Building109

on this foundation, ALOHa (Petryk et al., 2024)110

expanded the scope by addressing misalignments111

involving a broader range of objects, particularly112

visual concepts under-represented in training data113

for captioning models (Agrawal et al., 2019).114

In terms of recent methods for detecting misal-115

ingments, Rich-HF (Liang et al., 2024) employs116

human-annotated datasets of mismatched keywords117

and implausible image regions, to train a multi-118

modal language model capable of providing dense119

alignment feedback. In turn, Nam et al. (2024) in-120

troduced a novel approach for detecting dense mis-121

alignments using pre-trained CLIP models. Their122

method refines gradient-based attribution compu-123

tations, leveraging negative gradients of individual124

text tokens as indicators of misalignment.125

3 From Point Estimates to Distributions126

Recent studies with similar goals in other fields,127

such as machine translation evaluation, have em-128

ployed techniques like deep ensembles or Monte129

Carlo (MC) dropout to construct output distribu-130

tions using instance regressor systems (Lakshmi-131

Figure 1: Violin plots of the CLIPScore distributions.

narayanan et al., 2017; Kendall and Gal, 2017; 132

Glushkova et al., 2021; Zhan et al., 2023). Unfortu- 133

nately, neither approach is fully model-agnostic or 134

fits our specific objectives. Deep ensembles are un- 135

suitable since we aim to measure the uncertainty of 136

individual publicly available models, without fur- 137

ther training, and MC dropout is impractical since 138

CLIP models generally lack dropout layers. 139

We propose an alternative strategy for producing 140

score distributions that express uncertainty, lever- 141

aging the attention masks of the CLIP vision and 142

text encoders to generate output distributions by 143

randomly masking portions of the input data. We 144

create I samples for images by randomly mask- 145

ing ξi% of the attention patches. For captions, we 146

generate T samples by randomly masking ξt% of 147

the attention tokens, corresponding to specific parts 148

of speech, namely nouns, proper nouns, numerals, 149

verbs, adjectives, and adverbs. This strategy allows 150

us to produce I image embeddings and T text em- 151

beddings, which can be combined to compute I×T 152

different CLIPScore values, following the proce- 153

dure outlined in Appendix A. Figure 1 presents 154

violin plots illustrating the CLIPScore distributions 155

for three cases from the VICR dataset: a random 156

image-caption pair, a high-variance instance iden- 157

tified by our method, and a low-variance instance 158

according to our method. 159

4 Conformal Detection of Caption Errors 160

In this section, we describe the application of con- 161

formal risk control for detecting caption errors in 162

misaligned image-text pairs. Leveraging the atten- 163

tion mask sampling method described in Section 164
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3, we can calibrate a control variable λ that acts as165

a threshold to identify wrong words in the caption.166

Empirical results show that this method provides a167

good performance across several well-established168

benchmarks in the field (Shekhar et al., 2017;169

Petryk et al., 2024; Liang et al., 2024). Further-170

more, we compare the results of our simple yet ro-171

bust and well-calibrated method, against more com-172

plex, specialized, and state-of-the-art approaches,173

underscoring its advantages and effectiveness.174

4.1 Deriving Per-Word Error Estimates175

The proposed attention mask sampling method gen-176

erates the CLIPScore distribution output by system-177

atically masking parts of the input. This process178

inherently facilitates the evaluation of each word’s179

contribution to the overall CLIPScore value.180

First we perform T iterations of the text encoder181

mask sampling process. For each iteration, we182

mask a set of words in the caption, Wt, using the183

attention mask in the text encoder to produce a text184

mask embedding (EM
t ). For each masked word185

wj we keep track of its index j in the original186

caption. We define EC as the text embedding187

of the original caption. Then, we compute the188

CLIPScore difference between the resulting text189

mask embedding and the original caption text190

embedding, with respect to I image embeddings191

generated by randomly masking patches of the192

image (EM
i ) (see Section 3). The degree of193

contribution of Wt to the original CLIPScore can194

be quantified as the average of this difference over195

the I images, as formally described in Equation 1.196

vt =
1
I

I∑
i=1

(
CLIPS(EM

t , EM
i )− CLIPS(EC , E

M
i )

)
(1)197

Note that a positive difference indicates that the198

masked words negatively contributed to the CLIP-199

Score value in the original caption. Consequently,200

these words are more likely to act as misaligned201

words, which diminish the overall relevance or co-202

herence of the caption in relation to the image.203

Next, we aggregate the results of Equation 1 over204

the indexes j of the masked words, obtaining the205

average error scores V [j], as follows:206

V [j] =
1∑T

t 1{wj∈Wt}

T∑
t

vt · 1{wj∈Wt}. (2)207

To create the error score vector fv, we apply a208

sigmoid transformation, σ(·), to V , such that209

fv[j] = σ(V [j]). (3)210

While the application of the sigmoid function 211

does not enhance performance, it confines the error 212

scores to a finite range, facilitating the implementa- 213

tion of the conformal risk control framework. 214

4.2 Risk Control on Word Error Detection 215

Our aforementioned method can already help iden- 216

tify the most likely inadequate word, as the one 217

with the highest score in fv from Equation 3. How- 218

ever, the approach of simply taking the word with 219

the highest score falls short in two scenarios: multi- 220

class cases where captions may contain no errors 221

and multi-label cases where captions may have 222

multiple inadequate words. To address this, we 223

introduce a threshold-based approach to determine 224

which words should be classified as errors. Specif- 225

ically, we aim to obtain prediction sets Sλ(x) of 226

misaligned words, defined as follows: 227

Sλ(x) = {x : fv(x) > λ}, (4) 228

where the control variable λ acts as a threshold. 229

Ideally, we aim to optimize the selection of λ so 230

that our prediction sets meet specific user require- 231

ments regarding caption quality and error detection. 232

For example, in some tasks, we may prioritize min- 233

imizing the false positive rate to ensure that only 234

highly reliable captions are included, while in oth- 235

ers, we may focus on reducing the false negative 236

rate to avoid missing potentially useful captions. 237

The choice of λ can alternatively be calibrated to 238

strike the right balance between precision and re- 239

call, depending on the task’s objectives. To be 240

able to account for these requirements, we rely 241

on conformal risk control (Angelopoulos et al., 242

2022), since it allows control over different per- 243

formance criteria, providing statistical guarantees 244

on their bounds. Specifically, let us assume R(λ) is 245

a non-increasing and monotonic function of λ, cor- 246

responding to our preferred quality criteria. This 247

function serves as a performance metric for Sλ, 248

offering an interpretable assessment of its quality. 249

We can then use a calibration set to get the opti- 250

mal parameter λ̂ while ensuring formal guarantees 251

about the risk level. Specifically, for a user-defined 252

risk tolerance α and error rate δ, we aim to satisfy: 253

P
(
R(λ̂) < α

)
≥ 1− δ. (5) 254

The procedure that we use to find λ̂, in order 255

to satisfy the Inequality 5, assumes that we have 256

access to a pointwise Upper Confidence Bound 257
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(UCB) for the risk function for each value of λ:258

P
(
R(λ) ≤ R̂+(λ)︸ ︷︷ ︸

UCB

)
≥ 1− δ. (6)259

We can then choose λ̂ as the smallest value of λ260

such that the entire confidence region to the right261

of λ̂ falls below the target risk tolerance α:262

λ̂ = inf
{
λ ∈ Λ : R̂+(λ) ≤ α, ∀λ′ ≥ λ

}
. (7)263

As mentioned by Bates et al. (2021), the bound264

guarantees that act as foundations to obtain the265

conformal risk-controlling prediction sets, work as266

long as we have access to a concentration result. In267

other words, they work as long as we have a math-268

ematical guarantee that the risk is tightly bounded269

(controlled), and does not deviate too much from270

its expected value. Therefore, we can construct the271

UCB for the risk using concentration inequalities.272

This approach leverages the empirical risk, which273

is computed by averaging the loss of the set-valued274

predictor Sλ over a calibration set. The empirical275

risk is defined as:276

R̂(λ) =
1

n

n∑
i=1

L(Yi,Sλ(Xi)), (8)277

where n is the size of the calibration set,278

L(Yi,Sλ(Xi)) represents the loss for each pair279

(Yi, Xi), and Sλ(Xi) is the prediction generated280

by the set-valued predictor for input Xi.281

A concentration inequality provides bounds on282

the tail probabilities of a random variable, and it is283

typically expressed in the following form:284

P
(
|R̂(λ)−R(λ)| ≥ ϵ

)
≤ h(ϵ;R(λ)), (9)285

where h(ϵ;R(λ)) is a non-increasing function of286

ϵ > 0 and depends on the parameter R(λ). By287

appropriately rearranging this inequality, we can288

control either the lower or upper tail probability.289

In general, a UCB can be obtained if the lower290

tail probability for R̂(λ) of the concentration in-291

equality can be controlled in the following sense:292

Proposition 1. Suppose g(t;R) is a non-293

decreasing function in t ∈ R for every R:294

P
(
R̂(λ) ≤ t

)
≤ g(t;R(λ)). (10)295

Then, R̂+(λ) = sup
{
R : g(R̂(λ);R) ≥ δ

}
sat-296

isfies the Inequality 6. The proof of Proposition 1297

can be found in Appendix B.298

There are numerous concentration inequalities 299

to choose from. In this work, we opted for a combi- 300

nation of Hoeffding and Bentkus bounds (Bentkus, 301

2004)1. We can obtain a tighter lower tail probabil- 302

ity bound for R̂(λ), combining Propositions 2 and 303

3, described in Appendix C. We thus have 304

gHB(t;R(λ)) = min
(
gH(t;R(λ)), gB(t;R(λ))

)
, 305

where gH(t;R(λ)) and gB(t;R(λ)) refer to the 306

Hoeffding and Bentkus lower tail probability 307

bounds, respectfully. 308

Applying Proposition 1, we obtain a (1 − δ) 309

upper confidence bound for R(λ) as: 310

R̂+
HB(λ) = sup

{
R : gHB(R̂(λ);R) ≥ δ

}
. 311

We can now determine the optimal threshold λ̂ 312

for calibrating the prediction sets Sλ(x), as defined 313

in Equation 4, by using the upper bound risk from 314

R̂+
HB(λ) and applying it in Equation 7. This se- 315

lection for the control variable ensures a formal 316

guarantee that the user-defined risk remains con- 317

trolled within the specified tolerance, as described 318

in Equation 5, even if the test data deviates slightly 319

from the calibration distribution. However, this 320

guarantee holds only as long as the distribution 321

shift is not too severe, preserving the validity of the 322

concentration result assumption. 323

4.3 Experimental Results 324

This section presents the datasets, the evaluation 325

metrics, and the results for misaligned word recog- 326

nition using the proposed method. For all experi- 327

ments, we apply our methods on the multilingual 328

LAION ViT-B/32 and LAION ViT-H/14 models 329

as they have shown robust performance on English 330

data (Schuhmann et al., 2022; Gomes et al., 2025). 331

4.3.1 Datasets and Evaluation Metrics 332

To ensure a fair and comprehensive evaluation, we 333

used three well-established test benchmarks: 334

• FOIL-it: 198, 960 pairs (Shekhar et al., 335

2017); 336

• FOIL-nocaps: 5, 000 pairs (Petryk et al., 337

2024); 338

• Rich-HF: 955 pairs (Liang et al., 2024). 339

1Exploring other alternatives could lead to the discovery
of even tighter bounds for this use case, but it was considered
out of scope for this work.
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4.3.2 Datasets and Evaluation Metrics340

The three datasets associate images with either cor-341

rect captions or captions containing intentional er-342

rors. Among them, FOIL-it and FOIL-nocaps are343

constructed using the same underlying methodol-344

ogy: one object is replaced by a conceptually simi-345

lar word (i.e., dog can be replaced by cat). FOIL-346

nocaps, built on the nocaps dataset (Agrawal et al.,347

2019), includes a broader range of visual concepts348

not typically found in standard training or evalua-349

tion datasets, which are often limited to the object350

classes defined in MS-COCO (Lin et al., 2014). It351

combines in-domain and out-of-domain captions,352

with the latter containing novel-class words that353

captioning models are unlikely to encounter in con-354

ventional evaluation datasets, testing our method’s355

ability to generalize beyond familiar concepts.356

Since the aforementioned datasets are word-level357

multi-class benchmarks primarily focused on ob-358

jects, errors are restricted to nouns. We use the359

Rich-HF dataset to broaden our evaluation to in-360

clude multi-label scenarios and a more diverse361

range of word-level errors. This dataset comprises362

both AI-generated and human-written prompts re-363

sembling captions, collected from the Pick-a-Pic364

dataset (Kirstain et al., 2023). The creators of Rich-365

HF carefully selected photo-realistic images for366

their broader applicability while ensuring a bal-367

anced representation across image categories.368

Based on these three datasets, we conduct two369

types of assessments across two different classifica-370

tion tasks: a multi-class task and a multi-label task371

for detecting misaligned words in captions. The372

assessments are as follows:373

Caption Classification – Determining whether374

a caption is misaligned. We evaluate this task using375

average precision (AP) and instance-level F1 score.376

Word Error Detection – Identifying specific377

misaligned words within a caption. For multi-class378

benchmarks, we measure location accuracy (LA),379

while for multi-label tasks, we use word-level pre-380

cision, recall, and F1 score.381

To calibrate the threshold in Equation 7, we must382

define the risk function. Our goal is to detect mis-383

aligned words without resorting to trivial solutions384

of over-detecting most words as misaligned. To385

achieve this, we control the False Discovery Rate386

(FDR) for multi-class tasks, and the False Positive387

Rate (FPR) for multilabel scenarios. In Appendix388

D, a more detailed explanation of each metric is389

provided. Those metrics serve as the target risk,390

All Instances Foil Only
Calib. Set Test Set Test Set

α FDR F1 FDR AP F1 LA LASet

10% 9, 69 61, 74 10, 10 60, 75 61, 93 33, 68 34, 39

15% 14, 62 63, 12 15, 02 60, 34 63, 31 37, 33 38, 53

20% 19, 58 63, 55 20, 20 59, 68 63, 76 40, 15 41, 92

25% 24, 55 63, 21 25, 13 58, 92 63, 56 42, 33 44, 69

30% 29, 52 62, 77 30, 24 58, 04 62, 81 44, 07 47, 06

35% 34, 50 61, 90 35, 25 57, 24 61, 81 45, 60 49, 31

40% 39, 49 60, 65 40, 16 56, 44 60, 49 46, 82 51, 18

45% 44, 48 58, 86 45, 11 55, 58 58, 76 47, 88 53, 11

50% 49, 47 56, 72 50, 27 54, 71 56, 68 48, 81 54, 88

Table 1: Calibration results for risk control using the
multilingual LAION ViT-B/32 CLIP model, with the
FOIL-it dataset as the calibration and test set. The high-
lighted row corresponds to the best calibration F1 score.

enabling us to effectively evaluate the performance 391

of the prediction sets Sλ in Equation 7. 392

4.3.3 Assessing Multi-Class Guarantees 393

To assess conformal guarantees on the word level 394

multi-class task, we calibrate the threshold λ using 395

10% of the FOIL-it validation set and evaluate per- 396

formance on the FOIL-it and FOIL-nocaps bench- 397

marks. Table 1 presents results for different risk 398

tolerance levels. The findings show that the pro- 399

posed inequality bounds are able to efficiently align 400

the user-defined tolerance with the observed values 401

for the chosen quality metric (i.e., the FDR), which 402

are consistently below but close to the chosen α. 403

Increasing the risk tolerance level makes the 404

method more permissive, classifying more words 405

as errors. This improves word-level accuracy but 406

reduces instance-level average precision, as more 407

instances are classified as misaligned. To balance 408

the trade-off between instance-level precision and 409

recall, we rely on the best F1 score, on the cali- 410

bration set, to select a proper risk tolerance, thus 411

selecting α = 20%. We then use the calibrated 412

outputs at the selected α to compare against state- 413

of-the-art methods for both FOIL-it and the more 414

challenging FOIL-nocaps benchmarks in Table 2. 415

Note that for this table, we only calibrate on FOIL- 416

it (but not FOIL-nocaps) data. By evaluating on 417

benchmarks with different data distributions, we 418

can also assess the validity of the concentration 419

result assumption. 420

Indeed, empirical results on the FOIL-nocaps 421

dataset indicate a more conservative estimation, as 422

there is a slight deviation between the controlled 423

metric (i.e., the FDR) and the desired tolerance (Ta- 424

ble 2). We attribute this to distribution differences 425

between the calibration and test sets. Nevertheless, 426
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FOIL-nocaps
FOIL-it Overall In Domain Near Domain Out Domain

Model FDR AP LA FDR AP LA FDR AP LA FDR AP LA FDR AP LA
CHAIR (Rohrbach et al., 2018) − 92, 5 79 − 58, 3 14, 4 − 57, 8 13, 5 − 59, 1 17, 6 − 58, 1 12, 2

Aloha (Petryk et al., 2024) − 61, 4 40 − 69, 5 45, 2 − 71, 8 47, 4 − 66, 7 47, 3 − 70, 9 48, 8

GAE_B (Nam et al., 2024) − 71, 4 73, 2 − 69, 0 60, 3 − 67, 3 54, 7 − 68, 4 59, 7 − 71, 3 63, 2

GAE_H (Nam et al., 2024) − 80, 6 83, 6 − 79, 4 71, 6 − 78, 9 66, 1 − 79, 3 70, 8 − 80, 2 74, 8

Our Method with ML LAION ViT-B/32 20, 2 59, 7 40, 2 18, 6 64, 4 54, 9 20, 4 70, 0 53, 5 19, 6 72, 2 56, 3 16, 2 74, 4 52, 6

Our Method with ML LAION ViT-H/14 19, 8 63, 4 51, 4 19, 1 65, 7 60, 3 19, 2 70, 4 56, 7 19, 4 72, 5 63, 0 18, 5 74, 0 56, 2

Table 2: Results of the calibrated sampling method on the FOIL-it and FOIL-nocaps benchmarks.

Calib. Set Test Set
α FPR F1 FPR AP F1 PREC REC F1

10% 8, 09 56, 87 7, 13 78, 22 52, 95 21, 03 39, 29 27, 40

15% 12, 65 59, 68 10, 74 79, 29 58, 97 26, 14 43, 76 32, 73

20% 17, 41 61, 40 16, 92 80, 73 65, 42 30, 43 50, 49 37, 97

25% 22, 16 61, 24 24, 03 80, 44 66, 02 31, 02 56, 80 40, 12

30% 27, 02 58, 75 31, 42 80, 41 66, 76 31, 22 62, 55 41, 65

35% 31, 85 56, 66 36, 84 80, 06 66, 40 31, 15 66, 47 42, 42

40% 36, 74 56, 30 40, 04 79, 48 65, 28 31, 76 69, 41 43, 58

45% 41, 75 55, 07 45, 02 78, 95 64, 15 31, 84 72, 86 44, 32

50% 46, 67 54, 17 48, 64 78, 25 62, 37 31, 80 76, 00 44, 84

Table 3: Results for risk control using the multilingual
LAION ViT-B/32 model, with the Rich-HF validation
set for calibration and the test set for evaluation. High-
lighted row corresponds to the best calibration F1 score.

our method successfully controls the risk, suggest-427

ing that the distribution shift is not too severe, and428

that the concentration result assumption remains429

valid. Additionally, our approach achieves perfor-430

mance comparable to ALOHa (Petryk et al., 2024)431

on the FOIL-it benchmark, and both ALOHa and432

CHAIR (Rohrbach et al., 2018), on FOIL-nocaps.433

Notably, both CHAIR and ALOHa are more com-434

plex methods, with ALOHa leveraging large lan-435

guage models to detect erroneous words.436

Although our method falls short compared to437

the recent approach by Nam et al. (2024), which438

employs a sophisticated gradient-based attribution439

technique where the negative gradient of individual440

text tokens signals misalignments, we emphasize441

the simplicity of our attention sampling method to442

produce CLIPScore distributions, and the model-443

agnostic nature of our calibration framework. Un-444

like these more complex approaches that rely on445

specific architectures or gradient-based computa-446

tions, our method can be applied to a wide range of447

models, including the current state-of-the-art sys-448

tems for further calibration to user-requirements449

and formal guarantee assessments. Appendix F pro-450

vides additional qualitative analyses for the FOIL-it451

and FOIL-nocaps benchmarks.452

4.3.4 Assessing Multi-Label Guarantees453

To evaluate conformal guarantees in the word-level454

multi-label task, we calibrate our system on the val-455

idation set of Rich-HF, and assess its performance456

Model ft. PREC REC F1

ALOHa (Petryk et al., 2024) 34, 4 31, 1 38, 5

Rich-HF (MH) (Liang et al., 2024) ✓ 43, 3 62, 9 33, 0

Rich-HF (AP) (Liang et al., 2024) ✓ 43, 9 61, 3 34, 1

GAE_B (Nam et al., 2024) 39, 8 32, 8 50, 4

GAE_H (Nam et al., 2024) 42, 7 36, 5 51, 6

Our Method with ML LAION ViT-B/32 31, 2 62, 6 41, 7

Our Method with ML LAION ViT-H/14 32.0 64.2 42.7

Table 4: Results of the calibrated sampling method on
the Rich-HF benchmark.

on the corresponding test set. 457

Table 3 presents results over increasing risk tol- 458

erance levels. Similarly to the multi-class results, 459

we consistently control the risk to align with the 460

target tolerance level in the calibration set. How- 461

ever, a notable discrepancy emerges between the 462

tolerance level and the risk metric (i.e., the false 463

positive rate) on the calibration set. This discrep- 464

ancy arises primarily due to the limited size of the 465

Rich-HF calibration set, which contains only 955 466

samples. The small sample size increases the mar- 467

gin of error for the upper confidence bound, which 468

is an intentional overestimation in order to achieve 469

more general and robust guarantees of risk control, 470

leading to more conservative threshold estimates. 471

Variability in caption characteristics further af- 472

fects the applicability of the thresholds. For in- 473

stance, calibrating on datasets with longer cap- 474

tions but testing on shorter ones will lead to higher 475

thresholds, giving rise to an undesired strict be- 476

haviour when classifying misaligned words. In 477

turn, the reverse scenario, i.e., calibrating on shorter 478

captions and testing on longer ones, can produce 479

overly lenient thresholds. Together, these factors 480

influence the ability to reliably control risk across 481

diverse scenarios. Appendix E presents a visual- 482

ization highlighting the differences between the 483

calibration and test sets of Rich-HF, supporting a 484

better understanding of these differences. 485

Table 4 compares our calibrated method with 486

current state-of-the-art systems. Despite its sim- 487

plicity and general-purpose design, our method out- 488

performs both the LLM-based ALOHa approach 489

and the specialized fine-tuned model used in the 490
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Rich-HF benchmark, achieving superior F1 perfor-491

mance. Similarly to the multi-class experiments,492

our simple method achieved lower F1 scores than493

the more complex and recent approach by Nam494

et al. (2024), although in this case we achieved495

significantly higher recall.496

5 Conformalized Intervals for CLIPScore497

We now test a second application of risk con-498

trol over CLIPScore, to address the limitations of499

single-point evaluation metrics in IC assessments500

to get reliable and interpretable confidence inter-501

vals for each IC score. Leveraging the uncertainty502

quantification method described in Section 3, we503

fit a truncated Gaussian distribution to construct504

intervals. These intervals help quantify model un-505

certainty more effectively, providing a nuanced and506

trustworthy assessment of caption quality.507

The choice of truncated Gaussian distributions is508

motivated by CLIPScore being inherently bounded,509

as it is defined as a modified cosine similarity. In510

addition, it allows us to define a more meaningful511

rescaling of initially estimated uncertainties, effec-512

tively reordering confidence intervals to align with513

the deviation from ground truth, as described in the514

following sections.515

5.1 Risk Control on Human Correlation516

Calibrating confidence intervals for CLIPScore517

assessments is particularly challenging because518

CLIPScore was not trained to predict human519

judgment scores, but rather to correlate with them.520

As a result, we cannot rely on typical risk functions521

such as coverage (Zerva and Martins, 2024), which522

measures the proportion of times the ground truth523

falls within the computed confidence intervals. A524

suitable risk function must account for this indirect525

relationship, ensuring meaningful calibration.526

We propose a new risk function to calibrate our527

intervals that does not depend on the match of scale528

between the output distributions and the ground529

truth, specifically defined as follows:530

R(λ) = 1− ReLU(r(|µ̂(λ)− y|, σ̂(λ)). (11)531

This risk function leverages the Uncertainty532

Pearson Score (UPS), denoted as:533

UPS = r(|µ̂(λ)− y|, σ̂(λ)), (12)534

where r is the Pearson correlation coefficient and535

y the ground truth (human score) (Glushkova et al.,536

2021). This metric quantifies the correlation be- 537

tween prediction errors and uncertainty estimates. 538

The values µ̂(λ) and σ̂(λ) are derived by fitting a 539

truncated Gaussian distribution, using the original 540

mean µ, and scaled standard deviation λσ. The 541

values for µ and σ are obtained empirically from 542

the CLIPScore distribution obtained via masking. 543

Notably, the risk function is not monotonically 544

non-increasing. The direct application of the frame- 545

work described in Section 4 involves the assump- 546

tion of monotonicity of the risk function, otherwise 547

we cannot extend the pointwise convergence re- 548

sult, from Equation 7, into a result on the validity 549

of a data-driven choice of λ. To address this, we 550

propose a strategy based on the Learn Then Test 551

(LTT) technique (Angelopoulos and Bates, 2021), 552

which leverages the duality between tail probability 553

bounds in concentration inequalities and conserva- 554

tive p-values. This approach enables us to identify 555

λ̂ that satisfies Equation 5, extending the concentra- 556

tion result assumption to more general and complex 557

risks. The procedure outputs a subset Λ̂ ⊆ Λ, en- 558

suring all selected sets Λ̂ of λ values control the 559

user-defined risk. We describe the process below. 560

Step 1: We first define the risk tolerance α. Our 561

objective is to calibrate λ such that the resulting 562

risk level is lower than the initial one. Looking at 563

Equation 11, this implies maximizing a positive 564

correlation between estimated uncertainties and 565

deviation from the ground truth which naturally 566

leads to more reliable and interpretable uncertain- 567

ties. Thus, we set α as the risk R(λ) at λ = 1: 568

α = 1− ReLU(r(|µ̂(1)− y|, σ̂(1)). (13) 569

Step 2: For each λ ∈ Λ, in which Λ refers to 570

the set of acceptable values, we associate the null 571

hypothesis Hλ : R(λ) > α. Note that rejecting Hλ 572

means the selection of a value for λ that controls 573

the user-defined risk. 574

Step 3: As noted by Bates et al. (2021), the 575

upper bound g(R̂(λ);R), derived from Proposi- 576

tion 1, can be interpreted as a conservative p- 577

value for testing the one-sided null hypothesis H0 : 578

R(λ) > R. Therefore, for each null hypothesis Hλ, 579

we can compute conservative p-values pλ using 580

g(R̂(λ);α) to test the hypothesis Hλ : R(λ) > α. 581

Step 4: Return Λ̂ = A({pλ}λ∈Λ), where A 582

is an algorithm designed to control the Family- 583

Wise Error Rate (FWER). This is important be- 584

cause, when conducting multiple hypothesis tests, 585

the probability of making at least one Type I error 586
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increases as the number of tests grows. Each in-587

dividual test has a small chance of being a false588

positive (e.g., pλ < 0.05), but as more tests are589

performed, these small probabilities accumulate,590

raising the overall risk of an error. For the case591

where Λ = {λ : pλ < δ}, the FWER is given by:592

FWER(Λ) = 1− (1− δ)|Λ|. (14)593

We will use throughout the experiments the Bonfer-594

roni correction, which tests each hypothesis at level595

δ/|Λ|, ensuring that the probability of at least one596

failed test is no greater than δ by the union bound.597

Λ̂ = {λ : pλ <
δ

|Λ|
}. (15)598

Step 5: With the set Λ̂ containing all the λ val-599

ues that successfully control the user-defined risk600

with statistical significance, we can further refine601

the selection using other specific metrics on the602

calibration set. In this case, we aim to identify λ̂,603

which maximizes the UPS. Given our chosen risk604

(Equation 11), this corresponds naturally to the λ605

value with the lowest p-value.606

5.2 Experimental Results607

This section presents the datasets, the evaluation608

metrics, and the results for conformalizing CLIP-609

Score intervals using the proposed method.610

5.2.1 Datasets and Evaluation Metrics611

To ensure a fair and comprehensive evaluation,612

we used four well-established datasets designed613

to evaluate the correlation between vision-and-614

language model outputs and human judgments:615

• VICR: 3, 161 instances (Narins et al., 2024);616

• Polaris: 8, 726 instances (Narins et al., 2024);617

• Ex-8k: 5, 664 instances (Hodosh et al., 2013);618

• COM: 13, 146 instances (Aditya et al., 2015).619

We will use the validation set of VICR to cali-620

brate the CLIPScore confidence intervals described621

in the previous section and assess both the human622

judgment correlation (Kendal-τC), and the correla-623

tion between prediction errors and uncertainty es-624

timates (UPS). As mentioned in Section 5.1, to cal-625

ibrate the scaling factor of the standard deviation,626

we use the Uncertainty Pearson Risk (UPR) func-627

tion shown in Equation 11. To evaluate our results,628

we use UPS and Accuracy. In Appendix D, we629

provide a more detailed explanation of each metric.630

VICR Polaris EX-8K COM
Method UPS τc UPS τc UPS τc UPS τc

B-PRE 22, 1 63, 1 38, 1 50, 1 2, 8 53, 1 18, 3 47, 2

B-POS 36, 4 61, 5 44, 1 49, 4 13, 4 51, 9 26, 1 46, 9

H-PRE 42, 6 67, 8 60, 2 51, 0 24, 0 56, 9 18, 3 54, 6

H-POS 49, 6 66, 4 70, 1 50, 6 23, 1 55, 8 27, 1 53, 6

Table 5: Performance before (PRE) and after (POS)
calibration of the CLIPScore confidence intervals across
two model sizes: B (ViT-B/32) and H (ViT-H/14).

5.2.2 Guarantees on Maximal Correlation 631

In this section, we evaluate the performance gains 632

achieved through the risk control calibration pro- 633

cess applied to CLIPScore distributions obtained 634

by fitting a truncated Gaussian to the output dis- 635

tributions of the attention sampling method. Our 636

primary objective is to improve the correlation be- 637

tween prediction errors and uncertainty estimates 638

(i.e., the standard deviation), which is measured 639

by the UPS metric, while preserving overall sys- 640

tem performance on external metrics, specifically 641

by maintaining a strong correlation between the 642

interval’s mean value and human judgments. 643

Table 5 presents results before (PRE) and after 644

(POS) calibration of the CLIPScore confidence 645

intervals. For both model sizes, we achieve 646

a significant improvement in performance in 647

terms of UPS across all datasets without sig- 648

nificantly compromising the correlation with 649

human ratings. Hence, our findings align with 650

our original objective, providing a lightweight, 651

model-agnostic methodology for obtaining more 652

reliable confidence intervals over caption scores. 653

6 Conclusions 654

We proposed a method for producing and calibrat- 655

ing distributions on CLIPScore assessments, en- 656

abling granular caption evaluation and uncertainty 657

representation. We leverage conformal risk control 658

to address word-level misalignment detection and 659

confidence estimation, allowing for flexible, task- 660

specific risk-control with formal guarantees. The 661

experimental results demonstrate competitive per- 662

formance against more complex models on several 663

well-established benchmarks while allowing for a 664

more controllable and trustworthy performance in 665

detecting misaligned words and improved correla- 666

tion between uncertainty estimates and prediction 667

errors without compromising human rating align- 668

ment. Our work highlights the potential of confor- 669

mal calibration in enhancing the robustness and re- 670

liability of vision-and-language evaluation metrics. 671
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Limitations and Ethical Considerations672

The research reported on this paper aims to enhance673

transparency and explainability, given that we ad-674

vanced methods that can shed new light into the675

evaluation process of image captioning models.676

Our research aimed to enhance the transparency677

and explainability of image captioning model eval-678

uations by introducing methods that offer uncer-679

tainty intervals and identify misaligned words680

within captions. It is nonetheless important to no-681

tice that our research does not specifically tackle682

potential biases in the CLIPScore evaluation met-683

ric (or biases existing in the popular benchmark684

datasets that also supported our experiments), nei-685

ther does it address specific known limitations as-686

sociated to CLIP models. Additionally, our experi-687

ments were conducted exclusively in English, leav-688

ing open questions about the generalizability of our689

conformal risk control framework and word-level690

assessment to other languages, especially those691

with distinct morphological structures or syntactic692

complexities. Previous work has shown that uncer-693

tainty quantification methods are broadly applica-694

ble across languages, but often require language-695

specific calibration to ensure fair, balanced perfor-696

mance (Zerva and Martins, 2024). Expanding our697

approach to linguistically diverse datasets is an im-698

portant direction for future work.699

While our method improves interpretability and700

provides well-calibrated CLIPScore intervals, hu-701

man evaluation remains indispensable for ensur-702

ing the reliability of model assessments. Auto-703

mated metrics should complement, not replace, hu-704

man judgment, especially in sensitive applications,705

where misinterpretations can have significant con-706

sequences. Caution is essential when calibrating707

uncertainty, as miscalibrated intervals may foster708

unwarranted confidence, particularly in high-risk709

contexts. Future research should prioritize expand-710

ing linguistic diversity, refining uncertainty quan-711

tification techniques, and integrating large-scale712

human validation to improve the robustness and713

reliability of our approach.714

We also note that we used GitHub Copilot dur-715

ing the development of our research work, and we716

used ChatGPT for minor verifications during the717

preparation of this manuscript.718
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c, a re-scaling parameter is set as w = 2.5 and we879

compute the corresponding CLIPScore as follows:880

CLIPScore(c, v) = w ×max(cos(c, v), 0). (16)881

Since CLIPScore is derived from a modified co-
sine similarity, it naturally inherits its bounded na-
ture. As a result, CLIPScore values always fall
within the interval [0, 2.5].

Note that CLIPScore does not depend on the882

availability of underlying references for each of the883

images in an evaluation dataset, hence correspond-884

ing to a reference-free image captioning evaluation885

metric.886

B Proof of Proposition 1887

The proof for Proposition 1 uses the theorem of888

probability of subset events.889

Theorem 1. If A and B are events in a probability890

space such that A ⊆ B, then:891

P(A) ≤ P(B). (17)892

This is true because probability is additive over893

disjoint sets and satisfies:894

P(B) = P(A) + P(B\A), (18)895

where B\A represents the part of B not in A.896

Using the previous theorem, the proof of Propo-897

sition 1 will be divided in three steps, which we898

describe next.899

Step 1. Proof of the following equation:900

P
(
R(λ) > R̂+(λ)

)
≤ P

(
g(R̂(λ);R) < δ

)
.901

By construction, R(λ) > R̂+(λ) implies that902

g(R(λ);R) < δ, because R̂+(λ) was chosen as903

the supremum of R in the following set:904 {
R : g(R̂(λ);R(λ)) ≥ δ

}
.905

This establishes that the event R(λ) > R̂+(λ) nec-906

essarily leads to g(R(λ);R) < δ. However, the907

converse does not hold. In other words, the event908

R(λ) > R̂+(λ) is strictly contained within the909

event g(R(λ);R) < δ. Applying Theorem 1, we910

can conclude that:911

P
(
R(λ) > R̂+(λ)

)
≤ P

(
g(R̂(λ);R) < δ

)
.912

Next, let G be the CDF of R̂(λ):913

G(t) = P(R̂(λ) ≤ t). (19)914

This implies that G(t) ≤ g(t;R(λ)). 915

Step 2. Proof of the following equation: 916

P
(
g(R̂(λ);R) < δ

)
≤ P

(
G(R̂(λ)) < δ

)
. 917

By definition, g(t;R) serves as an upper bound 918

of G(t). Therefore, the event g(R̂(λ);R) < δ, 919

necessarily leads to G(R̂(λ)) < δ. However, the 920

converse does not hold. Applying Theorem 1, we 921

can conclude that: 922

P
(
g(R̂(λ);R) < δ

)
≤ P

(
G(R̂(λ)) < δ

)
. 923

Step 3. Proof of the following equation: 924

P
(
G(R̂(λ)) < δ

)
≤ P

(
R̂(λ) < G−1(δ)

)
. 925

By definition, G−1(λ) = sup
{
x : G(x) ≤ δ

}
, 926

which means that G−1(λ) is the highest value satis- 927

fying G(x) ≤ δ. Therefore, this will always imply 928

x ≤ G−1(λ). However, the converse is not always 929

guaranteed. Because the event G(R̂(λ)) < δ is 930

strictly contained within the event R̂(λ) < G−1(δ), 931

we can apply Theorem 1, proving: 932

P
(
G(R̂(λ)) < δ

)
≤ P

(
R̂(λ) < G−1(δ)

)
. 933

Finally, since the event R̂(λ) < G−1(δ) is strictly 934

contained in R̂(λ) ≤ G−1(δ), by applying Theo- 935

rem 1 we have: 936

P
(
R̂(λ) < G−1(δ)

)
≤ P

(
R̂(λ) ≤ G−1(δ)

)
. 937

Next, using the definition of G(x), we have that: 938

P
(
R̂(λ) ≤ G−1(δ)

)
= G(G−1(δ)), 939

which by definition leads to G(G−1(δ)) ≤ δ. 940

Combining all the inequalities proved in each 941

step, we have that: 942

P
(
R(λ) > R̂+(λ)

)
≤ δ. (20) 943

Inverting the probability expression yields: 944

P
(
R(λ) ≤ R̂+(λ)

)
≥ 1− δ, (21) 945

thus completing the proof. 946
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C Concentration Inequalities947

Concentration inequalities provide probabilistic948

bounds on the deviation of a random variable from949

its expected value, playing a crucial role in statisti-950

cal learning theory and probability analysis. This951

section presents key concentration inequalities, in-952

cluding Hoeffding’s and Bentkus’ inequalities.953

Proposition 2 (Hoeffding’s inequality, tighter ver-954

sion (Hoeffding, 1994)). Suppose that g(t;R) is a955

nondecreasing funtion in t ∈ R for every R. Then,956

for any t < R(λ), we have that:957

P
(
R̂(λ) ≤ t

)
≤ exp{−n · f(t;R(λ))},958

where:959

f(t;R) = t · log
(

t

R

)
+ (1− t) · log

(
1− t

1−R

)
.960

The weaker Hoeffding inequality is implied by961

Proposition 2, noting that f(t;R) ≥ 2(R− t)2.962

Proposition 3 (Bentkus inequality (Bentkus,963

2004)). Supposing the loss is bounded above by964

one, we have that:965

P
(
R̂(λ) ≤ t

)
≤ eP

(
Bi(n,R(λ)) ≤ ⌈nt⌉

)
,966

where Bi(n, p) denotes a binomial random variable967

with sample size n and success probability p.968

D Details on Metrics969

This section provides a detailed overview of the970

metrics used for calibrating the controlled variable971

and the evaluation metrics applied throughout the972

two different types of experiments.973

D.1 Metrics Used as Risks974

The following metrics were used to calibrate the975

threshold on the experiments regarding detecting976

misaligned words in the caption.977

False Discovery Rate (FDR): This metric is a978

statistical concept used to control the expected ratio979

of the number of False Positive classifications (FP)980

over the total number of positive classifications, in-981

cluding True Positives, (FP + TP). Mathematically,982

the False Discovery Rate is defined as:983

FDR =
FP

FP + TP
. (22)984

False Positive Rate (FPR): This metric is a sta-985

tistical measure used to evaluate the proportion of986

actual negative instances that are incorrectly clas- 987

sified as positive by a model. It represents the 988

likelihood of a false alarm, where the model pre- 989

dicts a positive outcome when the true outcome is 990

negative. Mathematically, the False Positive Rate 991

is defined as follows: 992

FPR =
FP

FP + TN
, (23) 993

where FP denotes the number of False Positives, 994

and TN represents the number of True Negatives. 995

D.2 Evaluation Metrics 996

The following metrics were applied throughout the 997

experiments to evaluate our methods. 998

F1-Score: The F1-score is a harmonic mean of 999

precision and recall, providing a single metric that 1000

balances both measures. It is particularly useful in 1001

scenarios where class imbalance exists, as it consid- 1002

ers both False Positives (FP) and False Negatives 1003

(FN). Mathematically, the F1-score is defined as: 1004

F1 = 2 · Precision · Recall
Precision + Recall

. (24) 1005

In turn, Precision is defined as TP/(TP + FP), and 1006

Recall is defined as TP/(TP + FN). The F1-score 1007

ranges from 0 to 1, where a higher value indicates 1008

better model performance in terms of balancing 1009

precision and recall. 1010

Average Precision (AP): The Average Precision 1011

is a metric commonly used in information retrieval 1012

and classification tasks, particularly for evaluat- 1013

ing models with imbalanced datasets. It summa- 1014

rizes the precision-recall curve by calculating the 1015

weighted mean of precision achieved at each recall 1016

threshold, with the increase in recall serving as the 1017

weight. Mathematically, it is defined as: 1018

AP =
∑
n

(Rn −Rn−1) · Pn, (25) 1019

where Pn and Rn are the precision and recall at the 1020

n-th threshold. Average Precision (AP) provides 1021

a single score that reflects the model’s ability to 1022

correctly rank positive instances, with values closer 1023

to 1 indicating better performance. 1024

Location Accuracy (LA): Localization Accu- 1025

racy measures the fraction of samples where we 1026

can correctly identify a hallucinated object, among 1027

samples that are known to contain hallucinated ob- 1028

jects. A sample receives LAset of 1 if at least one 1029

of the predicted hallucinated objects was correct, 1030
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and an LA of 1 if the minimum matching score was1031

a true hallucination.1032

Uncertainty Pearson Score (UPS): This metric1033

is a statistical measure used to evaluate the cor-1034

relation between the absolute error of predictions1035

and their associated uncertainty estimates. It quan-1036

tifies how well the model’s uncertainty estimates1037

aligns with the actual prediction errors, providing1038

insight into the reliability of the uncertainty quan-1039

tification. Mathematically, the Uncertainty Pearson1040

Score (UPS) is defined as follows:1041

UPS = PC (|µ(λ)− y|, σ(λ)) , (26)1042

where |µ(λ)− y| represents the absolute error be-1043

tween the predicted value µ(λ) and the true value1044

y, and σ(λ) is the estimated uncertainty. A higher1045

UPS indicates better calibration of uncertainty esti-1046

mates, as it reflects a stronger correlation between1047

prediction errors and uncertainty.1048

Kendall Tau C: Seeing each of our evaluation1049

datasets as a set of n observations with the form1050

(ŷ1, y1), . . . , (ŷn, yn), for predicted scores ŷi and1051

reference ratings yi, the Kendall Tau C correla-1052

tion coefficient assesses the strength of the ranking1053

association between the predicted scores and the1054

reference ratings. Unlike Kendall Tau B, which1055

accounts for ties, Kendall Tau C is specifically de-1056

signed to handle cases where the underlying scales1057

of the scores are different, such as when the num-1058

ber of possible ranks for the predicted scores and1059

the reference ratings differ.1060

A pair of observations (ŷi, yi) and (ŷj , yj),1061

where i < j, is considered concordant if the sort1062

order of the instances agrees (i.e., if either both1063

ŷi > ŷj and yi > yj hold, or both ŷi < ŷj and1064

yi < yj hold). Otherwise, the pair is discordant.1065

The Kendall Tau C coefficient is defined as:1066

τc =
nc − nd

n0
× n− 1

n
× m

m− 1
, (27)1067

where nc is the number of concordant pairs, nd1068

is the number of discordant pairs, n0 = n(n −1069

1)/2 is the total number of possible pairs, and m is1070

the number of distinct values in the ranking scale1071

for the reference ratings. The term m
m−1 adjusts1072

for the difference in scale between the predicted1073

scores and the reference ratings, making Kendall1074

Tau C particularly suitable for datasets that feature1075

unequal ranking scales in the predictions and the1076

references.1077

E Description of the Datasets 1078

The following datasets were used in the calibra- 1079

tion and evaluation of our method for detecting 1080

misaligned words in captions. 1081

• Foil-it (Shekhar et al., 2017): The Foil-it 1082

dataset is a synthetic hallucination dataset 1083

based on samples from the MS-COCO (Lin 1084

et al., 2014) dataset. In this dataset, for each 1085

candidate-image pair, a “foil" caption is cre- 1086

ated which swaps one of the objects (in the 1087

MS-COCO detection set), in the caption, with 1088

a different and closely related neighbour (cho- 1089

sen by hand to closely match, but aiming to be 1090

visually distinct). In our experiments, we used 1091

the test split of the Foil-it dataset, which in- 1092

cludes 198, 8814 unique image-caption pairs. 1093

For calibration, we used 10% of the valida- 1094

tion split, which comprises a total of 395, 300 1095

unique image-caption pairs. 1096

• Foil-nocaps (Petryk et al., 2024): The FOIL- 1097

nocaps dataset was introduced to address limi- 1098

tations of the FOIL-it dataset, which is overly 1099

biased towards object-classes present in the 1100

MS-COCO dataset. The FOIL-nocaps dataset 1101

is based on the nocaps dataset (Agrawal et al., 1102

2019), which consists of images from the 1103

OpenImages dataset annotated with captions 1104

in a style similar to MS-COCO. The no- 1105

caps dataset is divided into three subsets (i.e., 1106

in-domain, near-domain, and out-of-domain) 1107

based on the relationship of the objects in 1108

the images to those in the MS-COCO dataset. 1109

Compared to Foil-it, this new dataset aims to 1110

provide a more general benchmark for evalu- 1111

ating hallucination detection methods, by in- 1112

cluding a broader range of object categories 1113

and contexts. In our tests, we used the test 1114

split of the Foil-nocaps dataset, which in- 1115

cludes 5, 000 unique image-caption pairs. 1116

• Rich-HF (Liang et al., 2024): The Rich- 1117

HF dataset is a comprehensive benchmark for 1118

evaluating text-to-image alignment, compris- 1119

ing 18K image-text pairs with rich human 1120

feedback. It was constructed by selecting a 1121

diverse subset of machine generated photo- 1122

realistic images from the Pick-a-Pic (Kirstain 1123

et al., 2023) dataset, ensuring balanced use 1124

of categories such as ‘human’, ‘animal’, ‘ob- 1125

ject’, ‘indoor scene’, and ‘outdoor scene’. The 1126

dataset is annotated using the PaLI (Chen 1127
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Figure 2: Frequency of sequences, with a given length,
featuring words with valid parts of speech used for at-
tention mask sampling in the Rich-HF calibration set.

et al., 2022) visual question answering model1128

to extract basic features and ensure diver-1129

sity. Rich-HF includes 16K training samples,1130

955 validation samples, and 955 test samples,1131

with additional human feedback collected on1132

unique prompts and their corresponding im-1133

ages. The dataset provides word-level mis-1134

alignment annotations and overall alignment1135

scores, making it a valuable resource for eval-1136

uating fine-grained text-to-image alignment1137

and hallucination detection methods. Addi-1138

tionally, Rich-HF includes 955 prompt-image1139

pairs with detailed word-level misalignment1140

annotations, covering a wide range of caption1141

lengths, styles, and contents, due to its col-1142

lection from real users. In our tests, we used1143

the test split of the Rich-HF dataset, and for1144

calibration, we used the validation split.1145

While calibrating our methods using the Rich-1146

HF dataset, we observed a significant difference in1147

the distribution of the number of words per caption,1148

between the calibration and test sets. Specifically,1149

this disparity applies to words corresponding to1150

valid parts of speech used in our attention mask1151

sampling method, namely, nouns, proper nouns, nu-1152

merals, verbs, adjectives, and adverbs. As noted in1153

the main manuscript, this variation directly impacts1154

the applicability of the thresholds. Figures 2 and1155

3 show histograms illustrating the frequency of se-1156

quences, with a given length, featuring words with1157

valid parts of speech used for attention mask sam-1158

pling in the calibration and test sets, respectively.1159

The figures illustrate the significant differences.1160

The following datasets were used in the calibra-1161

tion and evaluation experiments that assessed the1162

Uncertainty Pearson Score (UPS), and correlation1163

with human judgments.1164

• Flickr8K-Expert (Hodosh et al., 2013): This1165

Figure 3: Frequency of sequences, with a given length,
featuring words with valid parts of speech used for at-
tention mask sampling in the Rich-HF test set.

dataset comprises 16, 992 expert human judg- 1166

ments for 5, 664 image-caption pairs from the 1167

Flickr8K dataset. Human assessors graded 1168

captions on a scale of 1 to 4, where 4 indi- 1169

cates a caption that accurately describes the 1170

image without errors, and 1 signifies a caption 1171

unrelated to the image. 1172

• Composite (Aditya et al., 2015): This dataset 1173

contains 13, 146 image-caption pairs taken 1174

from MS-COCO (2007 images), Flickr8K 1175

(997 images), and Flickr30K (991 images). 1176

Each image originally had five reference cap- 1177

tions. One of these references was chosen 1178

for human rating and subsequently removed 1179

from the reference set that is to be used when 1180

assessing evaluation metrics. 1181

• VICR (Narins et al., 2024): The Validated 1182

Image Caption Rating (VICR) dataset features 1183

68,217 ratings, collected through a gamified 1184

approach, for 15, 646 image-caption pairs in- 1185

volving 9, 990 distinct images. The authors of 1186

the dataset demonstrated that it exhibits a su- 1187

perior inter-rater agreement compared to other 1188

alternatives (e.g., an improvement of 19% in 1189

Fleiss’ κ when compared to the agreement 1190

for the Flickr8K-Expert dataset), and it fea- 1191

tures a more balanced distribution across vari- 1192

ous levels of caption quality. In our tests, we 1193

used the test split of the VICR dataset, which 1194

includes 3, 161 unique image-caption pairs, 1195

with 2, 000 images from the MS-COCO 2014 1196

validation dataset and 1, 161 images from the 1197

Flickr8K dataset. For calibration, we used 1198

the validation split, which comprises 2, 310 1199

unique image-caption pairs. 1200

• Polaris (Wada et al., 2024): The Polaris 1201

dataset comprises 131, 020 human judgments 1202

on image-caption pairs, collected from 550 1203
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evaluators. It surpasses existing datasets in1204

scale and diversity, offering an average of1205

eight evaluations per caption, significantly1206

more than Flickr8K (three) and CapEval1K1207

(five). Polaris includes captions generated by1208

ten standard image captioning models, cov-1209

ering both modern and older architectures to1210

ensure output diversity. In our tests, we used1211

the test split of the Polaris dataset, which in-1212

cludes 8, 726 unique image-caption pairs. For1213

calibration, we used the validation split, which1214

comprises 8, 738 unique image-caption pairs.1215

F Qualitative Results1216

We conducted a small qualitative study on the multi-1217

class classification task of detecting misaligned1218

words in the Foil-it (Figure 4) and Foil-nocaps1219

(Figure 5) benchmarks, as well as the multi-label1220

classification task using the Rich-HF benchmark1221

(Figure 6). Throughout these qualitative experi-1222

ments, captions associated with each image fol-1223

low a color-coded scheme to indicate model perfor-1224

mance in detecting misaligned words. Specifically,1225

green highlights true positives, where our model1226

correctly identified a misaligned word. Yellow in-1227

dicates false negatives, meaning the model failed to1228

detect an incorrect word. Lastly, red denotes false1229

positives, where the model mistakenly flagged a1230

word as misaligned when it was actually correct.1231

Captions without coloured words are entirely cor-1232

rect according to the respective benchmark. This1233

visual coding allows for an intuitive assessment1234

of our model’s strengths and weaknesses in the1235

different benchmarks.1236
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Figure 4: Qualitative results of the calibrated sampling method using the multilingual LAION ViT-H/14 model
on the Foil-it test set. For this results, our method was calibrated to 20% False Discovery Rate using the Foil-it
validation set for calibration.

Figure 5: Qualitative results of the calibrated sampling method using the multilingual LAION ViT-H/14 model on
the Foil-nocaps test set. For this results, our method was calibrated to 20% False Discovery Rate using the Foil-it
validation set for calibration.
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Figure 6: Qualitative results of the calibrated sampling method using the multilingual LAION ViT-H/14 model on
the Rich-HF test set. For this results, our method was calibrated to 20% False Discovery Rate using the Rich-HF
validation set for calibration.
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