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ABSTRACT

In this work, we tackle the task of learning 3D human Gaussians from a single
image, focusing on recovering detailed appearance and geometry including unob-
served regions. We introduce a single-view generalizable Human Gaussian Model
(HGM), which employs a novel generate-then-refine pipeline with the guidance
from human body prior and diffusion prior. Our approach uses a ControlNet to
refine rendered back-view images from coarse predicted human Gaussians, then
uses the refined image along with the input image to reconstruct refined human
Gaussians. To mitigate the potential generation of unrealistic human poses and
shapes, we incorporate human priors from the SMPL-X model as a dual branch,
propagating image features from the SMPL-X volume to the image Gaussians
using sparse convolution and attention mechanisms. Given that the initial SMPL-
X estimation might be inaccurate, we gradually refine it with our HGM model.
We validate our approach on several publicly available datasets. Our method sur-
passes previous methods in both novel view synthesis and surface reconstruction.
Our approach also exhibits strong generalization for cross-dataset evaluation and
in-the-wild images.

1 INTRODUCTION

Automatic 3D human reconstruction from single image is crucial in augmented and virtual reality
(AR/VR), game industry, filmmaking, etc. Previous works rely on strong 3D supervision such as the
signed distance value or occupancy (Saito et al., 2019; 2020; Zhang et al., 2023c; Xiu et al., 2022;
2023; Zhang et al., 2024; Ho et al., 2024) and focus on surface reconstruction, neglecting novel
view synthesis quality, resulting in smoothed and blurred textures. With the development of neural
radiance fields (Mildenhall et al., 2020), novel view rendering quality has been greatly improved
with for human appearance modelling (Hu et al., 2023; Kwon et al., 2021; Gao et al., 2022). How-
ever, due to the ill-posed nature of single view reconstruction, the back and side views are always
blurry and lack details without additional prior. Furthermore, these methods needs large amounts
of query points sampled for volume rendering, which hinders practical real-time application in the
industries. Some other methods optimize underlying appearance and geometry from scratch by in-
troducing score distillation sampling during the optimizationTang et al. (2024b); Cao et al. (2024).
Although effective, these methods still suffer from long time optimization and over-saturation prob-
lems. Recent 3D Gaussians generation methods (Tang et al., 2024a; Yinghao et al., 2024) combine
multi-view diffusion models (Liu et al., 2023; Wang & Shi, 2023; Shi et al., 2023; Li et al., 2024;
Xu et al., 2023) with generalizable multi-view Gaussians prediction models to generate 3D Gaus-
sians with high quality and efficiency. We aim to extend this on human reconstruction. However,
directly employ such methods to human reconstruction with complex texture and poses gives un-
satisfying results due to: (1) Inconsistency across multiple views: The multi-view images generated
from diffusion model lacks consistency in appearance and pose across different viewpoints. This
inconsistency stems from the inherent complexity of human body structure and movement, which
leads to low-quality reconstruction results. (2) Quality loss in front view reconstruction: multi-view
diffusion process involves down-sampling and changing the original input image. This step results
in significant quality degradation when reconstructing the front view image, compromising the fi-
delity to the original input. 3) Estimating SMPL-X parameters from single view input is ill-posed,
directly applying initially estimated SMPL-X can lead to bending legs and wrong elevation issues
in previous methodXiu et al. (2022; 2023); Zhang et al. (2024); Ho et al. (2024).
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Figure 1: Our method reconstructs detailed and geometrically consistent human Gaussian models
from single view images, including loosing clothes, challenging pose and in-the-wild images.

To address the above-mentioned problems, we introduce a novel Human Gaussians Model (HGM),
which supports fast and high quality rendering from single view input, and generalize well to loos-
ing clothes, challenging poses and in-the-wild images as shown in Fig. 1. We do not use multi-view
diffusion models due to the multiview inconsistency and resolution degradation problem. Instead,
we propose a coarse-to-fine framework, where the diffusion model is adapted to refine back-view
images rendered from our predicted coarse human Gaussians. In this way, we can keep the reso-
lution and content of the original input image for high-fidelity reconstruction. In order to model
the complex structure of a human, we inject the human prior into the Gaussian prediction process.
Specifically, our model consists of two branches: 1) The first branch is a UNet to directly predict
Gaussians from the input image, as inspired by image splatter (Szymanowicz et al., 2024). 2) The
second branch uses learnable tokens attached to SMPL-X vertices for structural feature extraction
with attention layers, and then combined with UNet features with SparseConvGraham et al. (2018)
and a transformer for Gaussian enhancement. Recognizing the inaccurate estimate of SMPL-X from
the pre-trained model, during inference, we iteratively refine the initial SMPL-X parameters with our
HGM pre-trained with ground truth SMPL-X. Given the loss of details of the back view by directly
predicting the Gaussians from a single view, we further apply a ControlNet to refine the back view
with the control signal from the back-view image rendered from the coarse stage. We then input
the original front view and refined back view images to our HGM model to get the final refined
Gaussians. Meshes can be extracted from densely rendered depth map and TSDF fusion. Our model
can be trained with only posed multiview images without 3D supervision and generalizes well to
untrained datasets and in the wild images.

In summary, our contributions are:

• We introduce a generate-then-refine pipeline for single view human Gaussian reconstruc-
tion that leverages diffusion priors for back view refinement, avoiding the multi-view in-
consistencies commonly observed in multiview diffusion models.

• Our proposed dual-branch reconstruction pipeline incorporates human priors by attaching
learnable tokens to the SMPL-X vertices for structural feature extraction. We then fuse
these features from the SMPL-X branch with the U-Net branch using Sparse Convolution
and transformer.

• To address potential inaccuracies in initial SMPL-X estimations, we employ our Human
Gaussian Model (HGM) to iteratively refine the estimated SMPL-X parameters, resulting
in better alignment.

• Through extensive experimentation, we demonstrate the efficacy of our method in both
novel view synthesis and 3D reconstruction tasks. Our approach consistently achieves
state-of-the-art performance on various metrics and benchmarks.

2 RELATED WORKS

Single-view Human Reconstruction. PIFu (Saito et al., 2019), PIFuHD (Saito et al., 2020), PaMIR
(Zheng et al., 2021), and GTA (Zhang et al., 2023c) are capable of inferring full textures from a sin-
gle image. Techniques such as PHORHUM (Alldieck et al., 2022) and S3F (Corona et al., 2023)
go further by separating albedo and global illumination. However, these methods lack information
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from other views or prior knowledge, such as diffusion models, often resulting in unsatisfactory
textures. TeCH (Huang et al., 2024) utilizes diffusion-based models to visualize unseen areas, pro-
ducing realistic results. However, it requires time-intensive optimization per subject and is depen-
dent on accurate SMPL-X. The emergence of Neural Radiance Fields (NeRF) has led to methods
(Hu et al., 2023; Huang et al., 2023; Gao et al., 2022; Kwon et al., 2021) using videos or multi-
view images to optimize NeRF for the capture of human forms. Recent advancements like SHERF
(Hu et al., 2023) and ELICIT (Huang et al., 2023) aim to generate human NeRFs from single im-
ages. Although NeRF-based approaches are effective in creating high-quality images from various
perspectives, they often struggle with detailed 3D mesh generation from single images and require
extensive optimization time. More recently, SiTH (Ho et al., 2024) proposes to combine a back-view
hallucination model with an SDF-based mesh reconstruction model. Similarly, SIFU (Zhang et al.,
2024) employs a text-to-image diffusion-based prior to generating consistent textures for invisible
views. However, these methods require 3D annotations such as the SDF of the meshes and texture
maps as strong supervision and still fail to generate renderings with high fidelity due to the limited
3D training data and representation. In addition, these methods suffer from SMPL estimation errors,
leading to bending legs and wrong elevation of the reconstructed 3D humans. Compared to these
methods, our approach can be trained solely on multi-view images and achieves much better novel
view synthesis quality.

Human Gaussians. 3D Gaussians (Kerbl et al., 2023) and differentiable splatting (Szymanowicz
et al., 2024) have gained broad popularity due to their efficiency in reconstructing high-fidelity 3D
scenes from posed images using only a moderate number of 3D Gaussians. This representation has
been quickly adopted for various applications, including imag or text-conditioned 3D generation
and avatar reconstruction. Among these methods, Gauhuamn and HUGS (Hu & Liu, 2024; Kocabas
et al., 2024) are the first to propose optimizing human Guassians from monocular human videos.
However, they are not applicable to single static human images. GPS-Gaussian(Zheng et al., 2024)
propose a generalizable multi-view huaman Gaussian model with high quality rendering; however, it
needs dense views 16 or 8, which cannot be directly applied to single-view human images. Our hu-
man model achieves strong generalization in generating human Gaussians from single-view images,
complementing concurrent work such as Pan et al. (2024).

Generalizable Gaussians with Multi-view Diffusion. The Large Reconstruction Model (LRM)
(Hong et al., 2024) scales up both the model and the dataset to predict a neural radiance field (NeRF)
from single-view images. Although LRM is primarily a reconstruction model, it can be combined
with Diffusion Models (DMs) to achieve text-to-3D and image-to-3D generation as demonstrated
by extensions such as Zero123(Liu et al., 2023), Image Dream(Wang & Shi, 2023) Instant3D (Li
et al., 2024) and DMV3D (Xu et al., 2023). Our method also builds on a strong reconstruction model
and uses pre-trained 2D DMs to provide input images missing information in a feedforward manner.
Some concurrent works, such as LGM (Tang et al., 2024a), AGG (Xu et al., 2024), and Splatter
Image (Szymanowicz et al., 2024), also utilize 3D Gaussians in a feed-forward model. LGM (Tang
et al., 2024a) combines novel view generation diffusion models with generalizable Gaussians in a
feedforward manner, while GRM (Yinghao et al., 2024) replaces the U-Net architecture with a pure-
transformer one and scales up to large resolution. However, these methods face two main challenges
when using pre-trained diffusion models. Firstly, the generated input view image becomes blurry
compared to the original input, which affects the subsequent generalizable Gaussian model. Sec-
ondly, diffusion models can introduce multiview inconsistency, especially for human images with
different poses, making direct adaptation unfeasible. We solve these problems by using Control-
Net as the refinement tools without damaging the input image quality or introducing multi-view
inconsistency.

3 OUR METHOD

3.1 PRELIMINARIES

3D Gaussian Splatting (3DGS). Introduced by (Kerbl et al., 2023), 3D Gaussian splatting repre-
sents 3D assets or scenes using a collection of 3D Gaussians. Each Gaussian is characterized by its
center x ∈ R3, scaling factor s ∈ R3, rotation r ∈ R3, opacity α ∈ R, and color features c ∈ Rc.
View-dependent effects can be modeled with spherical harmonics. 3D scenes can be explicitly rep-
resented by a set of Gaussians G = {Gi}, where Gi = {xi, si, ri, αi, ci} represents the attributes for

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝒇𝒖

SMPL-X

Residual

Coarse

HGM

𝑮𝒄𝒐𝒂𝒓𝒔𝒆

Render
Control

Net

𝑰𝑩
𝒄 𝑰𝑩

𝒓

Fusion

HGM

Mesh

𝑮𝒓𝒆𝒇𝒊𝒏𝒆

Text Prompt

Attention

𝐓𝐫𝒎𝒊𝒙

Image Features

𝑺𝒗𝒐𝒍 
SPConv 𝝍

Learnable

 Tokens

𝒇𝒔

UNet

Render

𝑰𝑩
𝒓

Image 

Gaussians

Iterative 

Refine Refined
SMPL-X

SMPL-X 

Estimation 

output 

Gaussians𝑭𝒔
 

𝑭𝑰
′

Figure 2: Our framework and HGM model. (Top) Our framework consists of three steps: 1) Coarse
Gaussians prediction with iterative SMPL-X refinement. 2) Back view refinement with ControlNet.
3) Two view reconstruction to get the refined Grefine. (Bottom) Our HGM model consists of two
branches: Image Gaussians prediction by UNet and adding additional structural features extracted
from SMPL-X branch. fsmpl are sampled by the Gaussian centers from the SMPL-X volume Svol

and fused with fu to the fusion transformer Trmix to obtain the Gaussian output.

the i-th Gaussian. Compared with NeRF (Mildenhall et al., 2020), 3DGS performs fast rendering by
first projecting Gaussians onto the image plane as 2D Gaussians and performing alpha-blending for
each pixel in front-to-back depth order. Building on this, Image Splatter (Szymanowicz et al., 2024)
proposes predicting Gaussians from a single image through image-to-image translation. Specifi-
cally, each pixel is converted to a Gaussian with corresponding attributes, supervised by multi-view
images. Our model builds on this representation by directly predicting XYZ coordinates from the
image instead of the depth.

3.2 OVERVIEW

Fig. 2 shows an overview of our framework. Given a single input human image I , our aim is to
predict the corresponding human Gaussians, which can be further rendered for novel view synthesis
and mesh extraction. As shown in the upper part of Fig. 2, our proposed method consists of three
parts: 1) Coarse Gaussians prediction with SMPL-X refinement (cf. Sec. 3.3) 2) Back-view
refinement with ControNet(cf. Sec. 3.4). 3) Two-view reconstruction (cf. Sec. 3.5).

3.3 COARSE GAUSSIANS PREDICTION WITH SMPL-X REFINEMENT

3.3.1 OUR HGM MODEL

The lower part of Fig. 2 shows our proposed Human Gaussian Model (HGM). The direct prediction
of Gaussians from image pixels with UNet (Szymanowicz et al., 2024; Tang et al., 2024a) lacks
human shape and pose prior, thus leading to unsatisfactory results. We therefore introduce a dual
branch that utilizes SMPL-X to enforce human shape and pose prior into the Gaussian prediction
process. Specifically, for UNet branch, the collection of the RGB value and ray embedding for
each pixel are concatenated into a 9-channel feature map as the input FI = {ci, oi × di, di | i =
1, 2, ..., N}. Our HGM model predicts Gaussians from the U-Net as:

Gu = UNet(FI), (1)
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Figure 3: Left: Our SMPL-X refinement pipeline. Right: Our back-view refinement ControlNet.

We call it as Image Gaussians. For the SMPL-X branch, we attach learnable tokens to each of the
SMPL-X vertices and extract the patch features of the image, denoted F ′

I . We use cross-attention
between these learnable tokens and the patch features to obtain FS . This approach takes advantage
of the fact that SMPL-X vertices are defined in semantically similar areas across different identities.
Consequently, the learned tokens can memorize the mapping from the training dataset to unseen
identities during inference, effectively providing structural human priors. This mechanism enables
our model to capture and utilize semantic consistent features across diverse identities, enhancing its
ability to generalize to new subjects. We apply SparseConvNet (Graham et al., 2018) (SPConv Ψ)
to propagate the SMPL-X features to the predefined whole bounding box, and we denote this feature
as the SMPL-X volume feature: Svol = Ψ(FS), where FS are the SMPL-X features. The volume
feature reconstructed from the SMPL-X vertex feature provides geometric cues of the target human
body. The centers of the Image Gaussians from Gu are then used to sample the propagated SMPL-X
volume features, denoted as fs = Svol(Cu), where Cu are the centers of Gu. SMPL-X fs features
are then concatenated with the features of UNet fu for each Gaussian. This concatenated feature is
fed into a transformer Trmix to obtain the coarse Gaussians shown in Eq. 2. Specifically, we predict
the xyz coordinates residuals for the Image Gaussians and all the other updated Gaussian features.
Trmix is a transformer that contains multiple self-attention blocks among Gaussians to ensure that
each Gaussian is aware of the other.

Gcoarse = Trmix([fu, fs]). (2)

3.3.2 SMPL-X REFINEMENT

Given initial estimated SMPL-X is not accurate, we leverage our pre-trained HGM to iteratively
refine the SMPL-X parameters based on the mask and normal matching as shown in Fig. 3 left
part. Specifically, we use the initial estimated SMPL-X from pre-trained SMPL-X estimator to
reconstruct the initial Gaussians and rendered the side-view masks and normals. We minimize the
mask and normal difference between the Gaussian and SMPL-X renderings and back-propagate
the loss to SMPL-X parameters. Then we interatively input the updated SMPL-X to our HGM
model, so the Gaussian is also updated to give more accurate masks. For normal matching, we
use pre-trained normal estimator from Xiu et al. (2022) which also needs SMPL-X as input and
iteratively update the SMPL-X parameters. Specifically, we compute the LSMPL−X as shown in 3
and back propagate it to SMPL-X parameters. Lnormal, Lfront and Lside are L1 losses between the
rendered masks of SMPL-X model and coarse Gaussians by HGM. Lnormal is the L1 loss between
the rendered SMPLX normal and the pre-trained normal estimator (Xiu et al., 2022). Note that both
of the normal and side mask supervision are updated as the input of the HGM and normal estimator
also contains the updated SMPL-X in each iteration. The whole process takes 100 iterations. We
provide more analysis on our SMPL-X refinement in the appendix.

LSMPL−X = λfrontLmfront
+ λsideLmside

+ λnLnormal (3)
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Input       Coarse     Refined      SiTH Input       Coarse      Refined         SiTH Input       Coarse     Refined      SiTH

Figure 4: Our back-view refinement can generate more realistic back-view images, compared with
back-view hallucination of SiTH Ho et al. (2024).

3.4 BACK-VIEW REFINEMENT

Back-view hallucination poses a significant challenge in single-view human reconstruction. As
shown in Fig. 4, directly using diffusion models to generate a back-view image can result in incorrect
perspective projection with the front-view image as well as unrealistic texture by (Ho et al., 2024).
The reason is that their diffusion is conditioned on the back-view mask, and thus can only be applied
for orthogonal projection where back-view mask can be directly flipped with the front-view image.
However, the back-view mask is not available during our inference stage since our prediction is
based on perspective projection. To address this issue, we adopt a generate-then-refine strategy that
leverages the diffusion prior to produce a perspective-fitted and realistic back-view image that is
suitable for the subsequent two-view fusion stage. We train a ControlNet (Zhang et al., 2023b) to
enhances realistic details based on our coarse results as shown in Fig. 3 right part. Specifically,
we generate coarse back-view rendering by our HGM for the training dataset and only train the
ControlNet and keep the base Stable Diffusion model as fixed.

LCN = Ez0,t,ct,ϵt∼N (0,1)

[
∥ϵ− ϵθ(zt, t, ct,y)∥22

]
(4)

where y is the text prompt. We set it as ‘Best quality’ and the negtive prompt as ‘blur, bad anatomy,
bad hands, cropped, worst quality’ during inference, ct is the coarse back-view image from our
HGM rendering IcB , which is the ControlNet condition. We carefully design the reversing process
by adding small amout of noise to the VAE encoded latent of IcB to keep the original content as much
as possible. The sampling process takes around 2 seconds. In Fig. 4, we showcase our generated
and refined back-view results, comparing them with the back-view hallucination diffusion network
in SiTH (Zhang et al., 2024). Our results maintain high resolution and generate details such as the
hair for the first woman and the wrinkles in the clothes, whereas SiTH (Zhang et al., 2024) produces
artifacts and unrealistic hallucination results and are also not perspectively fitted to the input image.

3.5 TWO-VIEW RECONSTRUCTION

We combine the refined perspective-fitted back-view image IrB with the front-view image I and
input them into the fusion HGM model to get:

Grefine = HGM(I, IrB) . (5)

Specifically, our fusion HGM model retains the design of the coarse HGM model with the additional
refined back-view image as the input. The coarse HGM and fusion HGM models are trained sep-
arately with ground-truth one view and two views as input, as well as ground-truth SMPL-X. The
objective function for HGM training includes L2 color loss, Lrgb, VGG-based LPIPS perceptual
loss, Llpips (Zhang et al., 2018), and L2 background mask loss Lbg with ground truth masks. Each
of these losses has corresponding weights that are treated as hyperparameters:

LHGM = λrgbLrgb + λlpipsLlpips + λbgLbg, (6)

where λrgb = λlpips = λbg=1.0. LHGM is applied for coarse HGM and fusion HGM.
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Input      ECON      SIFU        SiTH           Ours         GT Input      ECON      SIFU          SiTH           Ours         GT

SIFU              Ours                                        GT 
 Figure 5: Levraging our HGM model, SMPL-X parameters are iteratively refined to mitigate the

issue of blended legs commonly seen in other approaches.

3.6 IMPLEMENTATION

Our model is trained on 4 NVIDIA RTX A6000 with batch size of 4 for 20 hours. Our input image
size is 512×512, and the number of Gaussians for each view is 256×256, totaling 65,536 Gaussians
per view. For SMPL-X estimation, we use PIXIE(Feng et al., 2021). Network structures and more
implementation details are in the appendix.

4 EXPERIMENTS

We conduct experiments on the publicly available 3D human datasets THuman2.0 (Yu et al., 2021),
CustomHumans(Ho et al., 2023) and HuMMan (Cai et al., 2022). Our method is compared with
state-of-the-art (SOTA) methods in both novel view synthesis and 3D mesh reconstruction. We train
our HGM on 500 human scans from THuman2.0 dataset following Zhang et al. (2024). We render
the images with resolution of 512×512 and using weak perspective camera on 12 fixed cameras
evenly distributed with the azimuths from 0 to 360 degree. During evaluation, all the methods are
tested without the ground truth SMPL-X. We follow the train and test list from SIFU (Zhang et al.,
2024) and SHERF (Hu et al., 2023) to evaluate our method on THuman2.0 and HuMMan dataset.
For CustomHumans dataset we use 45 scans for cross-dataset evaluation containing loosing clothes
and challenging poses. For novel view synthesis, We use PSNR, SSIM, LPIPS as evaluation metrics.
For 3D reconstruction, we use commonly used Chamfer Distance (CD), Point-to-Surface Distance
(P2S), and Normal Consistency as the evaluation metrics.

4.1 NOVEL VIEW SYNTHESIS

Table 1: Novel view synthesis comparison with SOTA methods.
THuman2.0 CustomHumans

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
GTA Zhang et al. (2023c) 19.09 0.882 0.113 19.59 0.887 0.125
SiTH Ho et al. (2024) 17.12 0.843 0.155 18.09 0.856 0.144
LGM Tang et al. (2024a) 18.34 0.856 0.134 19.87 0.877 0.132
SV3D Voleti et al. (2024) 19.11 0.892 0.117 20.86 0.902 0.112
SIFU Zhang et al. (2024) 22.10 0.924 0.0794 20.83 0.898 0.117
Ours 23.54 0.938 0.0524 23.84 0.944 0.0514

For novel view synthesis, we compare our method with mesh SOTA human reconstruction methods
GTA Zhang et al. (2023c), ECON Xiu et al. (2023), SIFU Zhang et al. (2024) and SiTH (Ho et al.,
2024), as well as multiview diffusion reconstruction method LGM(finetuned with the same training
data) Tang et al. (2024a) and video diffusion method SV3D Voleti et al. (2024) on THuman2.0 Yu
et al. (2021) and CustomHuman Ho et al. (2023). We also compare our method with state-of-the-art
HumanNeRF methods: SHERF (Hu et al., 2023), MPS-NeRF (Gao et al., 2022), and NHP (Kwon
et al., 2021) on the HuMMan dataset (Cai et al., 2022).
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As shown in the Tab. 1 and Tab. 2, our method significantly surpasses state-of-the-art single-view
human reconstruction methods in all evaluation metrics for the three datasets. As shown in Fig. 6,
LGM Tang et al. (2024a) generates incorrect blue color and inconsistent content. SiTH Ho et al.
(2024) fails to model loose clothes due to the high dependency of the SMPL-X model. Side views
are blurry and unrealistic in SIFU’s results. SV3D Voleti et al. (2024) generates strange colors
and wrong human pose. Compared with these methods, ours generates more realistic and consistent
rendering especially for the unseen regions such as clothes wrinkles and hair that are well-fitted to the
front views and more robust to initial SMPL-X estimation errors thanks to our iterative refinement.
We provide rendering videos in 360 degree comparison with other methods in the Appendix. We
also provide a visual comparison with the SOTA NeRF-based method SHERF Hu et al. (2023) on
the HuMMan dataset in the appendix.

Input     LGM                    SiTH                        SV3D 
 

SIFU                  Ours                                        GT 
 

Input     LGM                    SiTH                        SV3D 
 

SIFU                  Ours                                        GT 
 

Input     LGM                    SiTH                        SV3D 
 

SIFU                  Ours                                        GT 
 

Figure 6: Novel view synthesis comparison with other approaches on THuman2.0 and CustomHu-
mans dataset. The details are highlighted in the red boxes.

4.2 3D RECONSTRUCTION

For mesh reconstruction we extract the 3D mesh by densely rendering the depth map with Gaussian
render and using TSDFusion to extract the surface followed by a fast optimizaiton based on the nor-
mal map obtained in section3.3.2. We compare our results with SOTA human surface reconstruction
methods GTA (Zhang et al., 2023c), ECON (Xiu et al., 2023), SIFU (Zhang et al., 2024) and SiTH
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Table 2: Novel view synthesis comparison with SOTA HumanNeRF methods on HuMMan.
Method PSNR ↑ SSIM ↑ LPIPS ↓
NHP (Kwon et al., 2021) 18.99 0.845 0.182
MPS-NERF (Gao et al., 2022) 17.44 0.824 0.193
SHERF (Hu et al., 2023) 20.83 0.891 0.125
Ours 23.86 0.952 0.0591

Input  ECON     SIFU        SiTH          Ours        GT Input  ECON     SIFU        SiTH          Ours        GT

Figure 7: 3D reconstruction visualization compared with SOTA methods. Details are highlighted
in the red boxes.

Ho et al. (2024). Note that our method do not use the 3D ground truth for supervision, but can
also achieve best performance compared with all those fully supervised methods. Thanks to our
interative SMPL-X refinement. Our method alleviates commonly occurring problems of bent legs
and incorrect postures found in previous methods, as shown in Fig.5. Our HGM model reconstructs
more accurate geometry with the prior learned from our dual branch Gaussian reconstruction model
as well as our innovative SMPL-X refinement. We provide a qualitative 3D reconstruction compar-
ison in Fig.7. As shown in the figure, ECON and SIFU suffer from bending legs and wrong arms
problems. SiTH generates an over-smoothed surface and missing parts. Our method can reconstruct
more accurate poses while preserving geometric details.

Table 3: 3D reconstruction comparison with SOTA methods.
Only our method trained without 3D supervision.

THuman2.0 CustomHumans
Method Chamfer ↓ P2S ↓ Normal ↑Chamfer ↓ P2S ↓ NC ↑
ECON Xiu et al. (2023) 2.342 2.431 0.765 2.107 2.355 0.771
GTA Zhang et al. (2023c) 2.201 2.314 0.773 1.987 2.115 0.769
SiTH Ho et al. (2024) 2.519 2.442 0.786 2.223 2.584 0.785
SIFU Zhang et al. (2024) 2.063 2.205 0.792 1.864 1.976 0.778
Ours 2.134 2.118 0.823 1.729 1.835 0.834

4.3 ABLATION STUDIES

We conduct ablation studies to evaluate the effectiveness of our SMPL-X dual branch Gaussian pre-
diction model, coarse-to-fine refinement strategy, and back-view refine ControlNet, as well as our
SMPL-X refinement. We show the quantitative ablation results in Table 4. The performance de-
crease when any component is removed. SMPL-X dual branch plays an important role in adding
human priors through structural features to Image Gaussians predicted by UNet. We visualize the
rendered images using our model without SMPL-X dual branch as the guidance and those produced
by our full model, as shown in Fig. 8. Without SMPL-X dual branch as guidance, the side view im-
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ages exhibit significant artifacts, such as misaligned arms and unnatural shapes of clothes and heads,
highlighted in the red boxes. This demonstrates the effectiveness of our SMPL-X dual branch Gaus-
sian prediction design.The predicted Gaussians lack human shape and pose priors without SMPL-X
guidance, resulting in unnatural shapes and poses. The initial SMPL-X prediciton is not accurate, we
ablates the effectiveness of our iterative SMPL-X refinement with the 3D prior learned in our HGM
model. We also visualize the SMPL-X refinement in the appendix. Two-view refinement double the
number of the Gaussians to improve the reconstruction quality. Gaussians tend to concentrate more
on the front view without the two-view refinement strategy, leading to poorer rendering of the back
part. Additionally, the diffusion-based refinement is crucial for improving the novel view synthesis
quality, especially for the back-view images as shown in Fig. 4. The best performance is achieved
with all three components.

4.4 DISCUSSIONS

Our method improves upon previous approaches like ECON Xiu et al. (2023) and SIFU Zhang
et al. (2024) by leveraging our pre-trained HGM model to incorporate 3D priors, specifically side
view masks, for enhanced SMPL-X refinement. Unlike earlier techniques that only align 2D front-
view masks and normals, our approach achieves better reconstruction accuracy and alignment. The
refined SMPL-X also benefits our human Gaussians reconstruction by providing structural infor-
mation encoded in learnable tokens. Our 3D Gaussians-based method offers significant advantages
in rendering speed, achieving 300 FPS compared to NeRF-based methods like SHERF Hu et al.
(2023), which manages only 2 FPS. Furthermore, the mesh extracted from our 3D Gaussians with
normal refinement attains high 3D reconstruction quality. In summary, our method excels in both
high-quality rendering and accurate 3D reconstruction, offering a comprehensive solution.

Table 4: Ablation study for each component.
NVS 3D reconstruction

Components PSNR(↑) SSIM(↑) LPIPS(↓) Chamfer(↓) P2S(↓) NC(↑)
w/o SMPL-X dual branch 21.85 0.908 0769 2.421 2.543 0.776
w/o SMPL-X refine 22.86 0.921 0.656 2.245 2.346 0.798
w/o two-view refine 22.95 0.924 0.641 2.301 2.343 0.781
w/o Diffusion refine 23.11 0.921 0.637 2.145 2.176 0.812
Full model 23.54 0.938 0.524 2.134 2.118 0.823

Figure 8: Ablation studies in terms of SMPL-X dual branch guidance. For each pair of images, left
one is the results of our model w/o SMPL-X guidance. Details are highlighted in the red boxes.

5 CONCLUSION

In this paper, we introduce a novel generalizable single-view human Gaussian reconstruction frame-
work. By incorporating human priors through a SMPL-X dual branch Gaussian prediction and
diffusion priors using a refinement ControlNet, our method effectively handles invisible parts and
varying poses. By incorporating our pre-trained HGM, inaccurate SMPL-X is iteratively refined,
which benefits the Gaussian reconstruction quality. Combining all of these techniques, our method
can generalize well to unseen subjects for high-quality and view-consistent reconstruction. We val-
idate the proposed method on several benchmarks and demonstrate that it achieves state-of-the-art
performance in both novel view synthesis and 3D reconstruction.
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A APPENDIX

We introduce the following content in the appendix: SMPL-X optimization and mesh optimization
details, SMPL-X evaluation, back-view details and evaluation, additional comparison, experimental
environment, network structures, limitations, and more visualizations.

SMPL-X optimization and mesh optimization details During optimization, we render SMPL-X
side views and compute the side view mask loss and normal loss for a total of 45 iterations. SMPL-
X parameters are updated at each iteration. The updated SMPL-X parameters are fed into HGM to
update GS every 15 iterations (3 times in total), reducing the overall optimization time. The initial
SMPL-X are not input to HGM for GS prediction until after the first 15 iterations because poorly-
aligned SMPL-X can lead to degraded GS. For the front view, we utilize the original image mask
rather than the one rendered from GS to stabilize the process. We simultaneously render 12 views
(one front view and all the other views are considered as side views) to compute the mask loss. The
loss weights are set as follows: λfront = 10, λside = 1, and λn = 0.5. For the normal loss, we
only utilize the front and back views with a pre-trained normal estimator from ICON. Throughout
the optimization process, HGM remains fixed while only SMPL-X parameters are updated. The
elegance of our method lies in its iterative nature: GS refines SMPL-X and better-aligned SMPL-X
estimates feed back into the HGM model to generate improved 3D Gaussians, which in turn enhance
the reconstruction. We show the visualization of our side view mask rendered from iteratively recon-
structed Gaussisnas by HGM, initial SMPL-X, refined SMPL-X, and our finial-extracted meshes in
Fig. 11, as shown in the figure, the side view masks effectively help refine the initial SMPL-X error
for accurate reconstruction. For mesh refinement, we minimize the L1 loss between the predicted
normal map and the rendered normal map. We also add Laplacian loss for the preservation of the
local structure. The whole Gaussian reconstruction takes around 40s and the mesh optimization and
extraction takes another 30s.

Additional comparison with TeCH We compare our method with TeCH on Customhumans
dataset quantitatively in Tab. 5. TeCH needs 4-5 hours for each sample, so we use 10 samples
from CustomHumans dataset for comparison. TeCH Huang et al. (2024) has several obvious limita-
tions compared with us: (1) The geometry refinement from SDS is not stable and surface is broken
as shown in the left part of Fig 9 even though capturing more high-frequency geometric details. (2)
Long time optimization: it needs 4-5 hours optimization, while ours use only 85s. (3) The caption
guidance can sometimes be incorrect. For example, as shown in the left part of Fig 9, the wrong
caption of the gender resulting wrong face reconstruction. (4) SMPL-X error leading to bending legs
and wrong geometry, which is the same issue in SIFU, SiTH, ECON and GTA as shown in SIFU,
SiTH, ECON and GTA.

Table 5: Additional evaluation with TeCH.
PSNR(↑) SSIM(↑) LPIPS(↓) CD(↓) P2S(↓) NC(↑)

Ours 24.56 0.949 0.051 1.715 1.844 0.833
TeCH 23.87 0.927 0.079 2.232 2.432 0.778
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Input                 TeCH          Input                                 TeCH

Ours                                          Ours

Figure 9: Visual comparison with TeCH on loose cloth and challenging pose cases.

SMPL-X refinement evaluation We evaluated it using SMPL-X initializations from PyMAF-
X Zhang et al. (2023a) and PIXIE Feng et al. (2021). We calculated the MPJPE (mm) using the first
22 body joints defined in SMPL-X on both THuman2.0 Yu et al. (2021) and CustomHumans Ho et al.
(2023) datasets. In the Tab. 6, ‘Initial’ means the direct estimation from SMPL-X predictors. ‘w/o
side-views’ represents optimization without side-views mask loss. ‘ours’ refers to our optimization
with all the loss including side-views mask loss. From the table we can see, our method successfully
refines the initial SMPL-X estimates using side view priors from our HGM, which significantly
reduces the error compared with without using side-view masks. Although PyMAF-X provides
better initial SMPL-X estimates than PIXIE, both methods achieve comparable MPJPE scores after
optimization, as the side-view mask loss guides them toward similar convergence points. This also
demonstrates our method is robust to diverse SMPL-X initial estimators and can effectively improve
the initial SMPL-X estimation.

Table 6: SMPL-X refinement evaluation in terms of MPJPE.
PIXIE PyMAF-X

Dataset Initial(↓) w/o side-views(↓) Ours(↓) Initial(↓) w/o side-views(↓) Ours(↓)
CustomHumans 75.79 65.33 39.11 65.20 58.12 39.78
Thuman2.0 80.11 72.36 44.30 71.18 65.65 44.84

Backview refinement details and evaluation We apply original ControlNet architecture and ini-
tialized the ControlNet with ControlNet-tile model. ControlNet-tile is originally trained as a image
super-resolution model, we finetune the ControlNet part with our constructed data pair at learning
rate of 1e-5, with the base SD1.5 keep fixed.Data pair construction involves first training our HGM
using single-view input without full convergence. Subsequently, we perform inference, render the
back view and down-sample it. The resulting back-view renderings, intentionally designed to have
lower quality, served as conditioning inputs for our ControlNet training. In order to validate the
effectiveness of our proposed back-view refinement strategy, we do quantitative evaluation with
SiTH Ho et al. (2024) and Huang et al. (2024) for back-view quality on CustomHumans dataset.
We use SSIM, LPIPS and KID as evaluation metrics between the ground truth and generated back
view images. SiTH generates back-view using pure hallucination, which always generate unrealistic
image as shown in Fig. 4 and Tab. 7. TeCH use SDS loss to optimize the back view, however, the
back view always fits to wrong SMPL-X pose and imprecise text description, which leads to lower
generation quality.

Experimental environment We conduct all the experiments on NVIDIA RTX A6000 GPU. The
experimental environment is PyTorch 2.2.1 and CUDA 12.2.
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Table 7: Backview evaluation.
SSIM(↑) LPIPS(↓) KID(×10−3 ↓)

Ours 0.949 0.079 9.26
SiTH 0.855 0.123 29.8
TeCH 0.876 0.118 20.3

Network structures Our UNet model consists of 6 down blocks, 1 middle block and 5 up blocks,
with an input image size of 512×512 and an output Gaussian feature map size of 256×256. We use
2 input views, resulting in a total of 256×256×4 = 131,072 output Gaussians. Each block contains
several residual layers and an optional down-sample or up-sample layer. For the last 3 down blocks,
the middle block, and the first 3 up blocks, we insert cross-view self-attention layers after the residual
layers. The final feature maps are processed by a 1×1 convolution layer to produce 14-channel pixel-
wise Gaussian features. We adopt SiLU activation and group normalization for the UNet. Our Trmix

share the same structure, consisting of multiple self-attention blocks. Specifically, they each have 5
up blocks and 5 down blocks. The down-sample channels are [64, 128, 256, 512, 1024], and the up-
sample channels are [1024, 512, 256, 128, 64]. The input dimensions for Trmix is 256, respectively.
The output dimension for both is 14, which matches the dimension of the Gaussian features. For the
attention blocks, we use a memory-efficient attention implementation.

Ours

SHERF

GT

Input

Figure 10: Novel view synthesis comparison SHERF on HuMMan dataset.

Limitations Currently, our method is hard to generate high-quality hands and faces, which could
potentially be solved by utilizing the SMPL-X model and regional diffusion guidance such as SDS
loss for further refinement.

Additional results We provide visual comparison with the SOTA NeRF-based method: SHERF
Hu et al. (2023) shown in 10. While SHERF predicts blurry results and loses fidelity, our method
preserves high-frequency details and generates realistic back views such as wrinkles and hair that
fit well to the front views. We also provide more mesh reconstruction results in Fig. 12. We also
provide more visual comparison with other methods for loosing clothes in Fig. 13 and Fig. 14 and
extreme poses in Fig. 15. As shown in the figures, our method robustly recovers the realistic details
of the loosing clothes, while SiTH shrinks to the SMPL-X body. LGM generates unnatural colors.
SIFU and PIFu generate blurry rendering with artifacts.
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Initial                Refined              Side view mask    Final mesh Initial                Refined              Side view mask    Final mesh

Figure 11: SMPL-X refinment visualizaiton.

Figure 12: Mesh reconstruction visualization for THuman 2.1 data and in the wild images.
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Input           Ours                 SIFU              PIFu                  SiTH               LGM  

 

 

Figure 13: Novel view synthesis comparison for loosing clothes. The details are highlighted in
the red boxes.
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Input           Ours                 SIFU              PIFu                  SiTH               LGM   

 Figure 14: Novel view synthesis comparison for loosing clothes. The details are highlighted in
the red boxes.
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Figure 15: Novel view synthesis comparison for extreme poses from HuMMan dataset. The details
are highlighted in the red boxes.
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