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Abstract

With the accumulation of high-quality data and advancements in visual pretrain-1

ing paradigms, recent Video Foundation Models (VFMs) have made significant2

progress, demonstrating remarkable performance on popular video understanding3

benchmarks. However, conventional benchmarks (e.g. Kinetics) and evaluation4

protocols are limited by their relatively poor diversity, high evaluation costs, and5

saturated performance metrics. In this work, we introduce a comprehensive bench-6

mark suite to address these issues, namely VideoEval. We establish the Video Task7

Adaption Benchmark (VidTAB) and the Video Embedding Benchmark (VidEB)8

from two perspectives: evaluating the task adaptability of VFMs under few-shot9

conditions and assessing their feature embedding’s direct applicability to down-10

stream tasks. With VideoEval, we conduct a large-scale study of 20 popular11

open-source vision foundation models. Our study reveals some insightful findings,12

1) overall, current VFMs exhibit weak generalization across diverse tasks, 2) in-13

creasing video data, whether labeled or in video-text pairs, does not necessarily14

improve task performance, 3) the effectiveness of some pre-training paradigms15

may not be fully validated in previous benchmarks, and 4) combining different pre-16

training paradigms can help develop models with better generalization capabilities.17

We believe this study serves as a important complement to the current evaluation18

methods for VFMs and offers valuable insights for future research directions.19

1 Introduction20

The field of deep learning is experiencing a significant paradigm shift due to the emergence of21

foundation models (FMs). These models, exemplified by BERT [1], GPT [2, 3, 4], CLIP [5] and22

Stable Diffusion [6], are trained on massive and diverse data at scale and demonstrate remarkable23

adaptability to a broad spectrum of downstream tasks.24

In the realm of video understanding, early researchers train backbone networks [7, 8, 9, 10] using25

visual classification tasks on large-scale labeled datasets like ImageNet [11] and Kinetics [12]. How-26

ever, the high cost associated with labeled data promotes the development of self-supervised learning27

methods that capitalize on unlabeled data for visual pre-training [13, 14, 15, 16, 17]. Furthermore,28

researchers delve into multimodal pre-training utilizing large-scale visual-text pairs [18, 19, 20, 21],29

thereby enhancing their models’ capabilities and demonstrating impressive zero-shot performance.30

Overall, fueled by the accumulation of high-quality image and video data and advancements in visual31

pre-training paradigms, Video Foundation Models (VFMs) witness remarkable progress in recent32

years. A new generation of VFMs [15, 16, 22, 23, 24, 25, 26] emerges, demonstrating outstanding33

performance on conventional video understanding benchmarks.34

The rapid development of VFMs raises the problem: How to evaluate a video foundation model?35

In image realm, Previous works assess the generalization capability of Image Foundation Models36
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Figure 1: Overview of VideoEval. We propose a novel, vision-centric evaluation method for video
foundation models that is comprehensive, challenging, indicative, and low-cost.

(IFMs) by evaluating their performance on numerous downstream visual tasks, encompassing diverse37

scenarios and evaluation protocols [27, 28, 29, 30, 31, 32, 33]. However, previous works primar-38

ily evaluates VFMs through benchmarks focusing on action recognition tasks [16, 23, 34]. Some39

studies [25, 26, 24] have also considered combining language models to evaluate performance on40

multimodal tasks. There are several problems with current evaluation methods: (1) Benchmarks41

like Kinetics [12], Something [35] and AVA [36], which focus on action recognition, overlook other42

video understanding scenarios (e.g., video quality assessment), limiting their applicability in evaluat-43

ing the generalization capabilities of visual foundation backbones across diverse video understanding44

applications. (2) The performance of VFMs on conventional benchmark [37] has reached a saturation45

point (90% Top-1 accuracy), making it challenging to differentiate between the true capabilities of46

different VFMs. (3) The high validation costs associated with conventional evaluation protocols,47

which often necessitate end-to-end training on the entire dataset, pose a significant challenge, particu-48

larly for large VFMs. (4) Incorporating language models may introduce bias when evaluating VFMs,49

as performance differences might stem from the language model rather than the VFMs itself.50

To tackle these problems, we build a comprehensive benchmark suite for evaluation of VFMs, namely51

VideoEval. As shown in Figure 1, our method has the following key features: Comprehensive:52

First, we created the Video Task Adaptation Benchmark (VidTAB) to evaluate the adaptability of53

VFMs to unseen tasks with limited samples. We collected public datasets from various video task54

domains, including action recognition in special scenarios, AI for science, video content moderation,55

video quality/aesthetic assess, and emotion analysis. From these domains, we constructed eight56

adaptation tasks and developed evaluation protocols and adaptation methods suitable for current57

VFMs. Additionally, to assess the capability of VFMs’ feature embedding for downstream applica-58

tions, we created the Video Embedding Benchmark (VidEB), which includes four tasks that evaluate59

embedding at different granularities. Challenging & Indicative: Due to the diversity of test data60

and the effectiveness of our evaluation protocols, our VideoEval can effectively distinguish between61

various VFMs that perform similarly on traditional benchmarks, providing deeper insights into their62

true capabilities. Low-cost: Thanks to our training-light few-shot evaluation and training-free feature63

embedding evaluation protocols, VideoEval requires significantly fewer training samples compared to64

previous benchmarks, while maintaining a comparable number of testing samples to ensure accurate65

and stable evaluations. Vision-centric: Our evaluation focuses solely on the Video FMs themselves,66

avoiding the introduction of biases that may arise from incorporating language models.67
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Based on VideoEval, we evaluate 20 open-source vision foundation models, including VFMs,68

Image Foundation Models (IFMs), and IFMs with image-to-video methods. Our main findings as69

following: First, current VFMs still struggle to adapt to unseen video tasks with limited training70

samples. Second, while more data and larger models generally improve performance, augmenting71

video training data can sometimes negatively affect certain tasks. Third, the effectiveness of certain72

pre-training paradigms, such as VideoMAEv2 [22], may not have been adequately validated in73

previous benchmarks. Finally, combining multiple pre-training paradigms can lead to models with74

better generalization capabilities, such as performing multimodal contrastive learning after unimodal75

visual self-supervised pre-training [21, 26].76

Table 1: Comparison of VFMs Benchmark. "Num. training" denotes number of training samples,
"Num. test" denotes number of test samples, and "Beyond Action" denotes the tasks in this benchmark
extend beyond action understanding. Compared to previous benchmarks, our VideoEval framework
achieves more comprehensive and reliable evaluations at a lower cost.

Benchmark Num. training Num. test Beyond Action Task Diversity Domain Diversity VFMs-specific protocol
Single-dataset Benchmarks

Kinetics-400 [37] 240,436 19,165 ✗ ✗ ✗ ✗
Sth-Sth V2 [38] 168,913 24,777 ✗ ✗ ✗ ✗

Moment-in-Time [39] 791,246 33,898 ✗ ✗ ✗ ✗
UCF101 [40] 9,537 3,783 ✗ ✗ ✗ ✗

Multi-dataset Benchmarks

SEVERE [41] 868,446 144,830 ✗ ✓ ✓ ✗
BEAR [42] 240,236 140,436 ✗ ✓ ✓ ✗

VideoGLUE [34] 1,896,621 239,011 ✗ ✓ ✓ ✓

VideoEval 5,704 20,497 ✓ ✓ ✓ ✓

2 Related work77

Video foundation models With the continuous growth of image [43, 44, 45] and video data [46,78

20, 47, 48, 49] and advancements in pre-training paradigms, research on Video Foundation Models79

(VFMs) has progressed rapidly. Current VFMs are primarily built around two pre-training paradigms:80

masked video modeling based on unimodal video data [15, 16, 22, 17, 50, 51, 52] and video-text81

contrastive learning based on multimodal visual-text pairs [18, 53, 19, 54, 20]. Some works [25,82

21, 24] combine these paradigms, enabling VFMs to extend further into multimodal understanding.83

Additionally, some studies introduce modalities like audio and speech on top of video and text [47,84

48, 26], further expanding the capabilities of VFMs. Recently, InternVideo2 [26] leverages mature85

pre-training paradigms and large-scale high-quality data to scale VFMs to 6 billion parameters,86

achieving remarkable performance improvements.87

Evaluation of VFMs Previous works primarily utilize action recognition benchmarks focused on88

appearance and motion [12, 38, 36] to evaluate VFMs. To enhance evaluation diversity, some studies89

explore richer domains and tasks [55, 42, 56], but they remain limited to action recognition tasks. The90

InternVideo series [25, 26] and VideoGLUE [34] attempt to provide a more comprehensive evaluation91

of VFMs by expanding the number of benchmarks and evaluation protocols. However, these efforts92

are still based on existing benchmarks and incurred high validation costs. In contrast, our work93

considers the characteristics and application scenarios of VFMs, offering a comprehensive and low-94

cost evaluation solution through task definition and evaluation protocols, aimed at rapidly verifying95

the generalization capabilities of VFMs—a crucial aspect currently lacking in the community’s96

development of these models.97

3 Building VideoEval98

We argue that a powerful video foundation model should possess two key capabilities: (1) strong task99

adaptation ability, i.e., the ability to adapt to diverse, unseen tasks with limited training samples, and100

(2) the capacity to extract feature embedding that retain and distill key information from videos, di-101

rectly supporting various downstream tasks. From these perspectives, we construct VideoEval, which102

includes the Video Task Adaptation Benchmark (VidTAB) and the Video Embedding Benchmark103

(VidEB). By creating diverse task scenarios and employing efficient evaluation methods, VideoEval104

can quickly and comprehensively assess the generalization ability of VFMs in video understanding. In105
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Figure 2: Illustration of building VideoEval.

Table 2: Task details of VideoEval. All videos are collected from the public datasets for building
tasks of VidTAB and VidEB.

Domain Task Source Task Description
Video Task Adaptation Benchmark (VidTAB)

Action Recognition
in Special Scenarios

Action Recognition ARID [57] Recognizing 11 distinct human actions in dark scenarios.
in Dark Scene e.g. Run / Walk / Drink

|-|-|- Action Recognition BreakFast [58] Classifying 10 types of long-duration cooking videos.
in Long Video e.g. Milk / Tea / Sandwich

AI for Science
Medical Surgery SurgicalActions160 [59] Classifying 16 surgical actions in gynecologic laparoscopy. e.g. Knotting / Suction / Injection

|-|-|- Animal Behavior Animal
Kingdom [60]

Classifying 12 behaviors of wild animals from diverse environmental footage.
e.g. Flying / Chirping / Preening

Video Content
Moderation

Fake Face FaceForensics++ [61] Determine whether the faces in the video have been tampered with by AI technology (such as DeepFake).
e.g. Origin video / Video with fake face

|-|-|- Harmful Content mob [62] Detecting 3 degrees of malicious content within videos.
e.g. Obscene / Indecent activity / Violent activity

Video Quality
Assessment Quality Assess DOVER [63] Evaluating videos from an aesthetic and technical perspective and categorizing them into low and high quality.

e.g. Low quality / High quality

Emotion Analysis Emotion Analysis CAER [64] Classifying 7 different human emotions in video.
e.g. Happy / Fear / Anger

Video Embedding Benchmark (VidEB)

Scene Understanding
in Temporal Contexts

Duplicate Scene
Retrieval FIVR5K [65] Retrieve Duplicate Scene Videos (DSV):

Videos captured by the same camera and sharing at least one scene (without considering any application transformations).
|-|-|- Complementary Scene

Retrieval FIVR5K [65] Retrieve Complementary Scene Videos (CSV):
Retrieve a portion of the same spatiotemporal segment captured from different perspectives.

|-|-|- Incident Scene
Retrieval FIVR5K [65] Retrieving Incident Scene Videos (ISV):

The same event is close in both space and time, but there are no overlapping videos.
|-|-|- Copy Detection DVSC23 [66] Detecting edited versions of the same source video.

Given a query inserted with one or more copied segments, detect the source video from the database.

this section, we present our VideoEval in detail. The construction pipeline for VideoEval is illustrated106

in Figure 2, and the evaluation tasks we ultimately constructed are presented in Table 2.107

3.1 Video Task Adaption Benchmark108

Collecting diverse dataset from public source. Previous benchmarks primarily focus on evaluating109

video models based on human actions, overlooking many other tasks requiring video understanding.110

Therefore, we consider five different application scenarios: 1) Action Recognition in Special Scenarios111

(Action): While previous benchmarks have extensively examined action recognition tasks, our focus112

here is to assess VFMs’ capabilities in recognizing actions within special scenarios. 2) AI for Science113

(Science): Referencing previous work [24], we classify tasks related to medicine and natural sciences114

as a category. 3) Video Content Moderation (Safety): We group tasks related to identifying harmful or115

misleading information in video content. 4) Video Quality Assessment (Quality): We categorize more116

subjective tasks into this group. The goal is to assess VFMs’ ability to learn low-level information117

and human aesthetic preferences. 5) Emotion Analysis (Emotion): We group tasks related to human118

emotion analysis into this category to evaluate VFMs’ ability to understand human emotions.119

Constructing the adaptation task based on the existing annotations. Classification tasks are120

straightforward and well-defined, with strong classification performance often indicating robust121

feature learning. Therefore, they are suitable for evaluating video foundation models. We construct122

adaptation classification tasks based on the collected data and annotations as follow: 1) Remove Low-123

Quality Video Datasets: We manually exclude datasets with videos that have low resolution (below124
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Table 3: Task difficulty assessment based on visual language models. For tasks with fewer
categories, such as Fake Face (n=2) and Quality Assess (n=2), random guessing can lead to high
accuracy, which may result in a lower apparent proportion of hard samples. Therefore, the zero-shot
classification accuracy of the models should also be considered when making task selection.

ratio % Dark Scene Long Video Medical Surgery Animal Behavior Fake Face Harmfull Content Quality Assess Emotion Analysis

Easy 18.45 24.57 0.00 19.18 39.06 28.78 53.04 7.21
Spatial 19.00 20.44 4.17 20.86 20.72 24.56 51.24 5.01
Temporal 20.09 22.39 19.79 23.90 4.89 22.76 13.26 27.06
Hard 36.90 26.28 62.50 35.58 9.00 20.17 3.04 47.15

240p), low frame rate (below 15fps), insufficient quantity (fewer than 150 videos per category), or125

low annotation accuracy (below 90%). 2) Select Discriminative Tasks: For task difficulty screening,126

we first evaluate zero-shot classification performance using CLIP-L [5], EVA-g [67], ViCLIP-L [20],127

and Internvideo2-1B [26]. We then classify samples as follows: Easy: Samples that are correctly128

classified by three or more models. Spatial: Samples that are correctly classified by both CLIP and129

EVA. Temporal: Samples that are correctly classified by at least one of ViCLIP or Internvideo2-1B,130

but not by CLIP and EVA. Hard: Samples that are incorrectly classified by all models. We use the131

zero-shot classification accuracy of the models and the aforementioned proportions as references for132

task selection. Based on this, we choose tasks with lower zero-shot classification accuracy, higher133

proportions of Hard and Temporal samples, and lower proportions of Easy samples. The proportions134

of each type of sample in the tasks we ultimately selected can be found in Table 3. 3) Control the135

Number of Categories: For datasets that originally include category labels, such as ARID [57] and136

Animal Kingdom [60], we select categories with sufficient samples to ensure evaluation accuracy137

and stability. We also control the final number of categories to avoid making the adaptation task138

overly difficult. We observed that both zero-shot testing and few-shot experiments based on current139

VFMs show that when the number of categories is too high, models often perform no better than140

random guessing. Although this issue may be mitigated as VFMs improve, we currently need to141

control the number of categories to effectively showcase differences between models. We select the142

main categories for each task and limit the number of categories to around 10 (based on few-shot143

experiments). 4) Handling Multi-label and Regression Tasks: For datasets that are not originally144

classification tasks, we transform the tasks into classification tasks. For example, for DOVER [63],145

which is used for video aesthetics and technical quality assessment (a regression task), we assume146

that videos with quality scores in the top 40% are "high-quality videos" and those with scores in the147

bottom 40% are "low-quality videos", thus converting the original task into a binary classification148

task. In total, we construct eight classification tasks to evaluate the adaptation capabilities of video149

foundation models.150

Determining the evaluation protocol. Previous studies [25, 26, 34] typically train video models151

using entire samples of training set, and most popular benchmarks have large training sample sizes.152

We argue that this evaluation method overlooks the examination of the adaptation capability of153

VFMs. As illustrated in Figure 3, under the scenario of using full training samples, the differences154

between VFMs are difficult to discern. However, under a low-sample protocol, different foundation155

models exhibit varying degrees of task adaptation capabilities. We observe that for tasks such as156

Action Recognition in Dark Scenes, which VFMs usually excel at, there are significant differences157

in adaptation capabilities among different models when training samples are extremely limited (4158

shot and 16 shot). As the number of samples gradually increases to 100 shot, these differences159

diminish. Conversely, for more challenging tasks like Emotion Analysis, the performances of160

different models are uniformly weak when training samples are extremely limited, showing no161

discernible differences until a certain number of training samples (100 shot) are reached, at which162

point different models begin to demonstrate distinct adaptation capabilities. Therefore, to account for163

the adaptation capabilities of models with different numbers of training samples, we define a task164

adaptation capability evaluation score (TA-score):165

TA− score =
Acc4s +Acc16s +Acc100s

3
(1)

Where Acc4s, Acc16s, Acc100s represent the model’s top-1 accuracy for 4-shot, 16-shot, and 100-166

shot classifications, respectively. Unless otherwise specified, we will use TA-score to denote the167

performance of various tasks in VidTAB.168
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Emotion Analysis
InternVideo2-1B w/ FT
InternVideo2-1B w/ AP
V-JEPA-H w/ FT
V-JEPA-H w/ AP
VideoMAEv2-g w/ FT
VideoMAEv2-g w/ AP

Figure 3: Performance comparison on different training data scales. We evaluate the performance
variation of multiple video foundation models across tasks from two different domains as the scale of
the training data changed. ’FT’ and ’AP’ denote full finetuning and attentive probe, respectively.

Table 4: Comparison of adaptation method All results are obtained using A100-80G with
PyTorch-builtin mixed precision, using a batch size of 4 to measure Cuda memory and training time.
"Dark" and "Emotion" denote the tasks of Action Recognition in Dark Scenes and Emotion Analysis,
respectively. We show the result of V-JEPA-H [23] here,

Adaptation
method

Tunable
Params (M)

Cuda
Memory (G)

Training
Time (h)

Dark
TA-score

Emotion
TA-score

full finetuning 663.7 52.1 1.0 68.8 25.3
adapter 52.6 45.0 1.0 62.4 24.7

attentive probe 19.7 6.4 0.4 54.7 23.8
linear probe 0.0 6.0 0.3 12.9 16.2

Identifying efficient adaptation method for evaluation. We also need to identify how to adapt169

the foundation models to the corresponding task. Previous work [68, 69, 70, 71, 72] has explored170

various strategies for efficient adapting the foundation models. Here, we consider several of the most171

common and popular methods: Full Finetuning: Fine-tuning all the parameters of the pre-trained172

model. Adapter: Freezing the pre-trained model and inserting learnable low-rank adapter [73]173

modules into each block of the pre-trained model for adaptation. Attentive Probe: Freezing the174

pre-trained model and adding an additional learnable cross-attention block at the end of the model to175

achieve attentive pooling, followed by a linear projection for classification. Linear Probe: Directly176

using the features from the pre-trained model, performing mean pooling, and then using a linear177

projection for classification. We evaluate the performance of these adaptation methods based on the178

V-JEPA-H model, as shown in Table 4. Full finetuning and adapter exhibited the best adaptation179

performance, but incurred high training costs. Linear probe was highly efficient but showed weak180

adaptation performance. Attentive probe offered a good trade-off between efficiency and adaptation181

performance. Therefore, in subsequent evaluation experiments, we employed attentive probe to adapt182

various vision foundation models.183

3.2 Video Embedding Benchmark184

The main application domains of video embeddings we considering include: Label-Level: Classifica-185

tion and Action Retrieval. Instance-Level: Retrieval, Copy Detection and Ranking. For label-level186

tasks, VidTAB has already provided a flexible way to evaluate models. Therefore, VidEB aims to187

assess existing models at a finer semantic level, focusing on instance-level tasks. Although ranking188

tasks are common in recommendation system scenarios, they are influenced by user information and189

interactions, in addition to video data. Based on prior research [74], using frozen embeddings for190

video features does not consistently improve recommendation tasks (resulting in minimal or even191

negative effects). Thus, we have narrowed the final dataset scope to instance-level retrieval and copy192

detection. Apart from the traditional classification tasks, the evaluation of representations typically193

involves standard benchmarks such as video action retrieval [75, 76, 77], which primarily rely on194

class labels. However, this approach often overlooks the overall scene context and exhibits an overlap195

with recognition tasks. In contrast, inspired by previous works [78, 66, 79, 80, 81], we establish more196

rigorous criteria for embedding evaluation in Table 2. Specifically, we require the model to determine197

the priority and retrieve individual samples based on the overall similarity, rather than solely relying198
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on class labels. This evaluation protocol provides a more comprehensive assessment of the model’s199

capability to encapsulate subtle visual information.200

Evaluation protocol. To facilitate fine-grained embedding evaluation, we incorporate two tasks201

for assessment: (1) Hierarchical Video Retrieval aims to retrieve videos from a database that202

closely matches the query video in terms of scene, viewpoint, and temporal context. According203

to previous work [65], videos related to the query are categorized into three levels based on their204

similarity to the query: Duplicate Scene Videos (DSVs), Complementary Scene Videos (CSVs), and205

Incident Scene Videos (ISVs), as shown in Table 2: Consequently, the retrieval tasks are structured206

into three hierarchical levels: Duplicate Scene Video Retrieval: only DSVs are positive instances.207

Complementary Scene Video Retrieval: both DSVs and CSVs are positive instances. Incident Scene208

Video Retrieval: DSVs, CSVs, and ISVs are all positive instances. For the evaluation metric, we209

follow [65] to utilize the mean Average Precision (mAP) to assess the quality of video ranking. (2)210

Video Copy Detection aims to detect edited copies of the query video. Instead of the ranking/retrieval211

task where all video pairs need to be sorted according to video embedding similarity, it is required212

to identify a set of video pairs that contain edited versions of the given query. Following [66], we213

consider the micro-AP (µAP) as our evaluation metric that operates on all queries jointly and takes214

the confidence scores into account.215

4 Benchmarking Video Foundation Models216

4.1 Targets and details of evaluation217

Evaluation targets We evaluate twenty open-source vision foundation models. Including: (1)218

twelve video foundation models, covering different pre-training paradigms, model scales, and219

training data scales, to analyze the impact of these factors on the generalization capability of220

foundation models. (2) five image foundation models to observe how much generalization capability221

trained on image data can exhibit in video understanding. (3) three image-to-video methods based222

on image foundation models to assess the effectiveness of current efficient transfer methods.223

Implementation details All models take 8 frames (16 frames if the model has temporal downsam-224

pling), with each frame being 224x224 in size as input. For VidTAB, to ensure fair comparison and225

efficient assessment, we train all models for the same number of epochs and made minor adjustments226

to the hyperparameters to ensure convergence. For VidEB, all models take 16 frames, with each frame227

being 224x224 in size as input. In hierarchical video retrieval, the similarity of video-level embedding228

determines the ranking of retrieval results. In video copy detection, each sample is segmented into 5229

clips. The detection confidence score for the entire video is derived from the maximum frame-wise230

similarity computed for each query-reference pair. See the Appendix for more details.231

4.2 Results on VidTAB232

Zero-shot evaluation To preliminarily assess the characteristics and difficulty of the dataset, we233

first evaluate the zero-shot performance of the eight tasks we created using two image language234

models and two video language models. As shown in the top section of Table 3, both image and235

video models demonstrated some level of performance for action-related tasks, with video models236

exhibiting relatively higher performance. For tasks involving low-level information understanding,237

such as Quality Assessment task, image models performed significantly better. In contrast, for other238

tasks involving scenarios typically unseen in training data, such as medical surgery videos or Safety239

Review tasks requiring complex semantic reasoning, all models exhibited almost no performance.240

Main results Table 5 presents the evaluation results on VidTAB. We summarize our findings as241

follows. On the whole, (1) Despite exhibiting a degree of generalization capability, current vision242

FMs still struggle to adapt to unseen video tasks with limited training samples. VFMs outperform243

IFMs, particularly in tasks related to action and behavior understanding. However, IFMs exhibit244

superior performance on more novel tasks, specifically in the domains of safety and quality, especially245

when combined with image-to-video adaptation techniques. (2) The adaptation performance of246

models generally increases with the growth of data and model size, as observed by the improvements247

observed from V-JEPA-L to V-JEPA-H (+1.5) and ViCLIP-L-10M to ViCLIP-L-200M (+1.3).248
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Table 5: Evaluating state-of-the-art FMs on the VidTAB. The best and second-best results of
foundation models are noted by blue and underline, respectively. ’I’, ’V’, and ’IV’ denote image
data, video data, and mixed image-video data, respectively. Data marked in gray indicates that
the model uses a model trained on that data as initialization. ’K710ft’ indicates that the model
was fine-tuned with supervision using the labeled action recognition dataset Kinetics-710 (0.66M).
Considering the random error in few-shot experiments, we conducted 3-fold experiments for both
4-shot and 16-shot settings, and used their mean as the final result. We also provide the results of full
finetuning in the appendix.
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Random - - 22.7 9.1 10.0 6.3 8.3 33.3 50.0 50.0 14.3
Zero-shot performance of visual language models
CLIP-L [5] 428 I-400M 35.7 29.2 34.6 12.5 32.9 42.1 56.3 65.5 12.9
EVA-CLIP-g [67] 1365 I-2B 36.0 32.8 37.2 9.4 28.5 39.6 52.8 69.5 17.9
ViCLIP-L [20] 428 I-400M+V-200M 33.6 26.2 37.5 8.3 29.3 32.1 52.2 53.9 29.0
InternVideo2stage2 [26] 1350 IV-1.1M+IV-25.5M 40.6 37.1 40.2 11.5 45.2 59.1 51.3 56.1 24.3
Image Foundation Model
CLIP-L [5] 316 I-400M 43.2 31.9 37.8 32.3 37.4 54.2 58.2 66.6 27.6
SigLiP-SO [82] 444 I-4.11B 43.3 27.6 38.4 36.5 35.8 53.3 58.5 67.8 28.5
EVA-g [83] 1035 I-2B 45.8 40.2 47.1 34.4 41.0 51.8 55.2 68.1 29.0
DINOv2-L [84] 317 I-142M 42.7 40.8 45.0 39.6 36.1 38.9 52.2 63.2 25.6
DINOv2-g [84] 1165 I-142M 44.4 37.8 46.4 42.7 36.0 48.5 53.2 64.3 26.3
Image Foundation Model with image-to-video adaptation method
ST-Adapter-CLIP-L [70] 328 I-400M 46.5 42.4 44.3 31.2 40.1 47.4 64.6 71.5 30.4
AIM-CLIP-L [71] 328 I-400M 48.8 41.5 50.0 38.5 40.2 46.4 69.5 73.7 30.6
ZeroI2V-CLIP-L [72] 303 I-400M 46.3 40.3 47.0 31.2 40.2 46.1 65.2 69.9 30.5
Video Foundation Model
ViCLIP-L-10M [20] 316 I-400M+V-10M 41.8 31.2 42.7 30.2 35.3 47.9 53.9 66.2 26.9
ViCLIP-L-200M [20] 316 I-400M+V-200M 43.3 38.2 44.6 30.2 37.9 47.4 54.9 65.9 27.5
VideoMAEv1-L [16] 316 V-0.24M 43.3 45.6 30.8 31.2 37.4 56.5 51.9 68.7 24.0
VideoMAEv1-H [16] 651 V-0.24M 44.7 45.5 31.0 35.4 38.6 55.8 51.8 70.5 29.1
VideoMAEv2-g [22] 1037 V-1.35M 37.8 35.2 18.3 18.8 33.7 59.6 50.9 64.7 21.6
VideoMAEv2-gk710pt [22] 1037 V-1.35M+K710ft 54.0 76.4 72.6 50.0 42.4 43.8 56.9 63.2 27.0
UMT-Lstage1 [21] 316 V-0.66M 40.6 34.3 35.4 30.0 34.2 45.6 53.6 64.7 27.0
UMT-Lstage2 [21] 316 V-0.66M+IV-25M 44.0 34.2 43.9 22.9 39.4 63.9 53.0 67.3 27.4
V-JEPA-L [23] 318 V-2M 43.5 50.4 34.3 39.6 39.7 43.9 51.7 66.7 21.4
V-JEPA-H [23] 653 V-2M 45.1 53.8 37.6 35.4 40.4 47.3 53.0 68.1 25.1
InternVideo2-1Bstage1 [26] 1037 IV-1.1M 46.1 45.2 50.3 33.3 38.7 52.3 53.5 65.9 29.3
InternVideo2-1Bstage1 [26] 1037 IV-1.1M+K710ft 56.7 75.6 77.5 53.1 45.4 47.2 55.5 66.2 33.2
InternVideo2-1Bstage2 [26] 1037 IV-1.1M+IV-25.5M 53.6 66.0 71.1 38.5 50.0 53.6 54.7 64.3 30.3

For the pre-training data, (3) While augmenting video training data is generally beneficial, it249

can negatively impact the performance on some tasks. For both VideoMAEv2-g and InternVideo2-250

1Bstage1, fine-tuning on Kinetics-710 data significantly enhances Action-related tasks, but consis-251

tently degrades certain Safety and Quality tasks. Similar findings are observed with ViCLIP-L,252

where post-pretraining on a large-scale video dataset improves Action-related tasks but diminishes253

performance in other domains (Science, Safety, Quality, Emotion). It could be attributed to the254

limited diversity of the current video training data. (4) For models trained on single-modal visual data,255

incorporating additional weak-supervised post-pretraining with visual-text data leads to significant256

improvements in adaptation capabilities. This is evident in the performance gains observed from257

UMT-Lstage1 to UMT-Lstage2 (+3.6) and from InternVideo2-1Bstage1 to InternVideo2-1Bstage2258

(+8.0). Interestingly, this finding contradicts previous conclusions drawn from commonly used action259

recognition benchmarks, suggesting that these benchmarks may introduce bias. For the pre-training260

paradigms of model, (5) The effectiveness of pre-training paradigms in scaling model size might not261

be adequately validated on popular action recognition benchmarks. While VideoMAEv2 successfully262

scaled a model to 1B parameters using the dual masking strategy [22], its adaptation performance263

(37.7 vs 44.4) significantly declined compared to VideoMAEv1-H. Interestingly, VideoMAEv2-g264

demonstrated remarkable performance after fine-tuning on Kinetics-710 (0.66M), suggesting that the265

abundant labeled data may have compensated for the shortcomings of its pre-training performance.266

(6) Single-modal self-supervised pre-training paradigms exhibit superior data efficiency compared to267

multimodal weakly-supervised pre-training paradigms. Notably, V-JEPA and VideoMAEv1, trained268

solely on relatively small-scale unlabeled video data via self-supervised pre-training, demonstrate269

comparable or even superior performance to ViCLIP, which is trained on a massive dataset of video-270
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Table 6: Evaluation of State-of-the-Art Foundation Models on the VidEB Dataset. "K400pt"
and "K400ft" denote that the model is pre-trained and fine-tuned, respectively, using the labeled
action recognition dataset Kinetics-400 (0.31M). MCL: Multi-modal Contrastive Learning, SCL:
Self-supervised Contrastive Learning, MVM: Masked Video Modeling, SFT: Supervised Fine-tuning.
Other notations are consistent with those in Table 5.

Scene
Pretrain Tasks # Pretrain Data Average Duplicate Complementary Incident Copyright

Image Foundation Model
CLIP-L [5] MCL I-400M 43.0 41.1 46.4 52.0 32.3
EVA-g [83] MCL I-2B 37.1 41.4 46.1 51.7 9.3
SigLiP-SO [82] MCL I-4.11B 38.6 40.6 45.5 51.5 16.9
DINOv2-L [84] SCL I-142M 45.6 49.0 53.5 54.3 25.6
DINOv2-g [84] SCL I-142M 48.6 50.5 55.1 56.0 32.8
Video Foundation Model
VideoMAEv1-L [16] MVM K400pt 12.9 14.5 15.1 13.2 8.8
VideoMAEv1-L-K400ft [16] MVM+SFT K400pt+ft 27.4 27.6 30.2 30.3 21.6
VideoMAEv2-g [22] MVM V-1.35M 11.6 14.8 15.4 13.4 2.8
VideoMAEv2-g-K710ft [22] MVM+SFT V-1.35M+K710ft 37.4 33.8 37.1 37.1 41.7
UMT-Lstage1 [21] MVM V-0.66M 41.1 42.2 46.6 49.6 25.7
UMT-Lstage1-K710ft [21] MVM+SFT V-0.66M+K710ft 29.0 26.4 29.4 30.3 30.0
UMT-Lstage2 [21] MVM+MCL V-0.66M+IV-25M 34.2 33.4 37.3 40.6 25.4
V-JEPA-L [23] MVM V-2M 19.7 21.3 23.9 21.7 12.0
V-JEPA-H [23] MVM V-2M 20.2 21.5 23.7 21.2 14.3
InternVideo2-1Bstage1 [26] MVM IV-1.1M 50.4 47.3 52.1 54.9 47.3
InternVideo2-1Bstage1-K710ft [26] MVM+SFT IV-1.1M+K710ft 33.9 30.5 34.2 34.1 36.9
InternVideo2-1Bstage2 [26] MVM+MCL IV-1.1M+IV-25.5M 34.6 32.4 36.8 39.9 29.3

text pairs. In addition, (7) Effective adaptation method for FMs is crucial. Three image-to-video271

methods based on CLIP-L achieved significant performance improvements compared to using an272

attentive probe directly. We believe this represents a promising avenue for future research.273

4.3 Results on VidEB274

The main results of VidEB are presented in Table 6. We evaluate the embedding performance using275

different pre-training paradigms for IFMs and VFMs as frozen feature extractors. Surprisingly, IFMs276

performs better than most VFMs, likely due to the existing gap in spatial modeling capabilities277

between VFMs and IFMs. For the pre-training paradigms of the model, (1) The contrastive learn-278

ing (CL) based approach consistently excels in embedding evaluation. Due to CL’s emphasis on the279

relationships between samples during training, DINOv2, which focuses solely on vision, outperforms280

vision-language contrastive methods like CLIP across multiple tasks. (2) The effectiveness of masked281

video modeling is closely tied to the targets it reconstructs or aligns with. With higher semantic282

richness, it shows progressive improvements in embedding quality for VideoMAE-L, V-JEPA-L, and283

UMT-Lstage1. (3) Vision-centric pretraining outperforms Multi-modal pretraining in vision-centric284

scenarios. Comparing UMT-Lstage1 and InternVideo2-1Bstage1 with their multi-modal counterparts285

UMT-Lstage2 and InternVideo2-1Bstage2, the introduction of visual-text pair data in multi-stage286

training does not enhance performance in vision-centric scenarios. This is also consistent with the287

performance differences observed between DINO and CLIP-style pre-training methods. Additionally,288

we assess the impact of fine-tuning on the embedding evaluation of these pre-trained models. (4)289

Labels bring new semantic information or disrupt existing finer-grained semantic information. The290

performance variations after fine-tuning differ based on the pre-training strategy. For UMT-Lstage1291

and InternVideo2-1Bstage1, fine-tuning leads to a significant drop in performance (-12.1 for UMT292

and -16.5 for InternVideo) due to the introduction of more singular label information, which causes293

catastrophic forgetting. In contrast, VideoMAE and VideoMAEv2 show substantial performance294

gains (+14.5 and +25.8, respectively) because the low-level semantics learned during pre-training are295

less abstract and benefit more from the addition of high-level label information.296

5 Conclusions297

We present VideoEval, a comprehensive benchmark suite for efficiently evaluating the VFMs. To this298

end, we establish VidTAB, which explores suitable evaluation tasks and protocols for VFMs from299

the perspective of assessing their adaptability to unknown tasks with limited samples. Additionally,300

we create VidEB to evaluate the capability of VFMs’ feature embedding in directly supporting301

downstream tasks. Utilizing VideoEval, we conduct a large-scale study involving 20 popular open-302

source vision foundation models, providing valuable insights for future research directions.303
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material?627
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Answer: [Yes]628
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Guidelines:630

• The answer NA means that paper does not include experiments requiring code.631

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/632

public/guides/CodeSubmissionPolicy) for more details.633

• While we encourage the release of code and data, we understand that this might not be634

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not635

including code, unless this is central to the contribution (e.g., for a new open-source636

benchmark).637

• The instructions should contain the exact command and environment needed to run to638

reproduce the results. See the NeurIPS code and data submission guidelines (https:639

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.640

• The authors should provide instructions on data access and preparation, including how641

to access the raw data, preprocessed data, intermediate data, and generated data, etc.642

• The authors should provide scripts to reproduce all experimental results for the new643

proposed method and baselines. If only a subset of experiments are reproducible, they644

should state which ones are omitted from the script and why.645

• At submission time, to preserve anonymity, the authors should release anonymized646

versions (if applicable).647

• Providing as much information as possible in supplemental material (appended to the648

paper) is recommended, but including URLs to data and code is permitted.649

6. Experimental setting/details650

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-651
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results?653

Answer: [Yes]654
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• The answer NA means that the paper does not include experiments.657
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material.661

7. Experiment statistical significance662
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Answer: [Yes]665
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• The answer NA means that the paper does not include experiments.669

• The authors should answer "Yes" if the results are accompanied by error bars, confi-670
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the main claims of the paper.672
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• The method for calculating the error bars should be explained (closed form formula,676

call to a library function, bootstrap, etc.)677
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• It should be clear whether the error bar is the standard deviation or the standard error679

of the mean.680

• It is OK to report 1-sigma error bars, but one should state it. The authors should681

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis682

of Normality of errors is not verified.683

• For asymmetric distributions, the authors should be careful not to show in tables or684

figures symmetric error bars that would yield results that are out of range (e.g. negative685

error rates).686

• If error bars are reported in tables or plots, The authors should explain in the text how687

they were calculated and reference the corresponding figures or tables in the text.688

8. Experiments compute resources689

Question: For each experiment, does the paper provide sufficient information on the com-690

puter resources (type of compute workers, memory, time of execution) needed to reproduce691

the experiments?692

Answer: [Yes]693

Justification: See https://github.com/MCG-NJU/VideoEval for training details.694

Guidelines:695

• The answer NA means that the paper does not include experiments.696

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,697

or cloud provider, including relevant memory and storage.698

• The paper should provide the amount of compute required for each of the individual699

experimental runs as well as estimate the total compute.700

• The paper should disclose whether the full research project required more compute701

than the experiments reported in the paper (e.g., preliminary or failed experiments that702

didn’t make it into the paper).703

9. Code of ethics704

Question: Does the research conducted in the paper conform, in every respect, with the705

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?706

Answer: [Yes]707

Justification: Our paper follows the NeurIPS Code of Ethics in every respect.708

Guidelines:709

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.710

• If the authors answer No, they should explain the special circumstances that require a711

deviation from the Code of Ethics.712

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-713

eration due to laws or regulations in their jurisdiction).714

10. Broader impacts715

Question: Does the paper discuss both potential positive societal impacts and negative716

societal impacts of the work performed?717

Answer: [Yes]718

Justification: See Appendix Section D.719

Guidelines:720

• The answer NA means that there is no societal impact of the work performed.721

• If the authors answer NA or No, they should explain why their work has no societal722

impact or why the paper does not address societal impact.723

• Examples of negative societal impacts include potential malicious or unintended uses724

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations725

(e.g., deployment of technologies that could make decisions that unfairly impact specific726

groups), privacy considerations, and security considerations.727
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• The conference expects that many papers will be foundational research and not tied728

to particular applications, let alone deployments. However, if there is a direct path to729

any negative applications, the authors should point it out. For example, it is legitimate730

to point out that an improvement in the quality of generative models could be used to731

generate deepfakes for disinformation. On the other hand, it is not needed to point out732

that a generic algorithm for optimizing neural networks could enable people to train733

models that generate Deepfakes faster.734

• The authors should consider possible harms that could arise when the technology is735

being used as intended and functioning correctly, harms that could arise when the736

technology is being used as intended but gives incorrect results, and harms following737

from (intentional or unintentional) misuse of the technology.738

• If there are negative societal impacts, the authors could also discuss possible mitigation739

strategies (e.g., gated release of models, providing defenses in addition to attacks,740

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from741

feedback over time, improving the efficiency and accessibility of ML).742

11. Safeguards743

Question: Does the paper describe safeguards that have been put in place for responsible744

release of data or models that have a high risk for misuse (e.g., pretrained language models,745

image generators, or scraped datasets)?746

Answer: [NA]747

Justification: We don’t provided new model.748

Guidelines:749

• The answer NA means that the paper poses no such risks.750

• Released models that have a high risk for misuse or dual-use should be released with751

necessary safeguards to allow for controlled use of the model, for example by requiring752

that users adhere to usage guidelines or restrictions to access the model or implementing753

safety filters.754

• Datasets that have been scraped from the Internet could pose safety risks. The authors755

should describe how they avoided releasing unsafe images.756

• We recognize that providing effective safeguards is challenging, and many papers do757

not require this, but we encourage authors to take this into account and make a best758

faith effort.759

12. Licenses for existing assets760

Question: Are the creators or original owners of assets (e.g., code, data, models), used in761

the paper, properly credited and are the license and terms of use explicitly mentioned and762

properly respected?763

Answer: [Yes]764

Justification: See Appendix.765

Guidelines:766

• The answer NA means that the paper does not use existing assets.767

• The authors should cite the original paper that produced the code package or dataset.768

• The authors should state which version of the asset is used and, if possible, include a769

URL.770

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.771

• For scraped data from a particular source (e.g., website), the copyright and terms of772

service of that source should be provided.773

• If assets are released, the license, copyright information, and terms of use in the774

package should be provided. For popular datasets, paperswithcode.com/datasets775

has curated licenses for some datasets. Their licensing guide can help determine the776

license of a dataset.777

• For existing datasets that are re-packaged, both the original license and the license of778

the derived asset (if it has changed) should be provided.779
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• If this information is not available online, the authors are encouraged to reach out to780

the asset’s creators.781

13. New assets782

Question: Are new assets introduced in the paper well documented and is the documentation783

provided alongside the assets?784

Answer: [Yes]785

Justification: See https://github.com/MCG-NJU/VideoEval, we provide our annota-786

tions here.787

Guidelines:788

• The answer NA means that the paper does not release new assets.789

• Researchers should communicate the details of the dataset/code/model as part of their790

submissions via structured templates. This includes details about training, license,791

limitations, etc.792

• The paper should discuss whether and how consent was obtained from people whose793

asset is used.794

• At submission time, remember to anonymize your assets (if applicable). You can either795

create an anonymized URL or include an anonymized zip file.796

14. Crowdsourcing and research with human subjects797

Question: For crowdsourcing experiments and research with human subjects, does the paper798

include the full text of instructions given to participants and screenshots, if applicable, as799

well as details about compensation (if any)?800

Answer: [NA]801

Justification: Our paper does not involve crowdsourcing nor research with human subjects802

Guidelines:803

• The answer NA means that the paper does not involve crowdsourcing nor research with804

human subjects.805

• Including this information in the supplemental material is fine, but if the main contribu-806

tion of the paper involves human subjects, then as much detail as possible should be807

included in the main paper.808

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,809

or other labor should be paid at least the minimum wage in the country of the data810

collector.811

15. Institutional review board (IRB) approvals or equivalent for research with human812

subjects813

Question: Does the paper describe potential risks incurred by study participants, whether814

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)815

approvals (or an equivalent approval/review based on the requirements of your country or816

institution) were obtained?817

Answer: [NA]818

Justification: Our paper does not involve crowdsourcing nor research with human subjects.819

Guidelines:820

• The answer NA means that the paper does not involve crowdsourcing nor research with821

human subjects.822

• Depending on the country in which research is conducted, IRB approval (or equivalent)823

may be required for any human subjects research. If you obtained IRB approval, you824

should clearly state this in the paper.825

• We recognize that the procedures for this may vary significantly between institutions826

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the827

guidelines for their institution.828

• For initial submissions, do not include any information that would break anonymity (if829

applicable), such as the institution conducting the review.830
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16. Declaration of LLM usage831

Question: Does the paper describe the usage of LLMs if it is an important, original, or832

non-standard component of the core methods in this research? Note that if the LLM is used833

only for writing, editing, or formatting purposes and does not impact the core methodology,834

scientific rigorousness, or originality of the research, declaration is not required.835

Answer: [NA]836

Justification: We only use LLM for simple work like writing.837

Guidelines:838

• The answer NA means that the core method development in this research does not839

involve LLMs as any important, original, or non-standard components.840

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)841

for what should or should not be described.842
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