Tree-Regularized Tabular Embeddings

Xuan Li Yun Wang Bo Li
Amazon Amazon Amazon
milanlx@amazon.com yunwng@amazon. com booli@amazon.com
Abstract

Tabular neural network (NN) has attracted remarkable attentions and its recent
advances have gradually narrowed the performance gap with respect to tree-based
models on many public datasets. While the mainstreams focus on calibrating NN
to fit tabular data, we emphasize the importance of homogeneous embeddings and
alternately concentrate on regularizing tabular inputs through supervised pretrain-
ing. Specifically, we extend a recent work coined as DeepTLF [5], and utilize
the structure of pretrained tree ensembles to transform raw variables into a single
vector (T2V), or an array of tokens (T2T). Without loss of space efficiency, these
binarized embeddings can be directly consumed by canonical tabular NN with
full-connected or attention-based building blocks. Through quantitative experi-
ments on 88 OpenML datasets with binary classification task, we validated that
the proposed tree-regularized representation not only tapers the difference with
respect to tree-based models, but also achieves on-par and better performance
when compared with advanced NN models. Most importantly, it possesses better
robustness and can be easily scaled and generalized as standalone encoder for
tabular modality.

1 Introduction

Neural Network has achieved exceptional breakthroughs in the unstructured data regimes including
image [11, 31], text [6, 33], video [27, 36] and speech [3, 42], whereas its performance is still capped
by tree-based approaches when applied to structured tabular datasets [19, 30]. As there are growing
demands on leveraging NN’s capability to incorporate tabular modality for broader use cases such as
multimodal learning [13, 14, 20, 35, 44], it is critical to further boost tabular NN to its upper limit to
better support these expansions.

Many recent works have attempted to bridge this gap by applying techniques that have demonstrated
superior performance on other modalities to tabular learning. For example, a majority of the ap-
proaches follow a model-centric paradigm of applying simple feature transformation yet sophisticated
customization on NN frameworks to fit tabular input. However, the underemphasis on feature quality
could overshadow the efficacy of NN. Essentially, unlike image, text and speech data which have basic
units (pixel, word, phoneme) that formulate a homogeneous representation space, tabular features are
heterogeneous in nature as the columns possess different data sources, scales and distributions [1, 16,
28]. Likewise, simple feature transformations such as min-max normalization might be incapable
to make tabular input homogeneous enough to be consumed by NN backbones. Subsequently, we
follow the data-centric scenario and seek data transformation strategies to acquire dedicated tabular
embeddings.

Precisely, in this work we revisit the underexplored rationale on calibrating tabular data to fit NN.
As visioned in Figure 1, we leverage supervised pretraining to learn tree-regularized representations
through an embedder module. In a snapshot, the proposed methodology exploits the structure of
pretrained tree ensembles to generate binarized embeddings through a pairwise comparison between
value in raw variable and the corresponding thresholds in tree node. Spanning the latent space of

Table Representation Learning Workshop at NeurIPS 2023

trees, the enriched representations can be fed into tabular NN directly and finetuned for different
downstream tasks. In terms of implementation, we optimized and extended DeepTLF [5], an
overlooked advancement in boosting tabular NN with tree-transformed vector, to make it scalable for
larger datasets and generalizable for vaster frameworks. On one hand, instead of transforming the
data and storing the vectors all at once, we deploy it on-the-fly for each mini-batch during model
training and inference, thus requesting no exhaustive memory usage. To compensate for the ensuing
time complexity, we reformulate the pairwise comparison with matrix manipulation, which maintains
the forward evaluation time at a similar scale. These two optimizations are essential for industrial
tabular applications where the datasets might contain hundreds of columns and millions of rows.
On the other hand, beyond generating embeddings as a single vector, we also treat each tree as
tokenizer and further support tree-level transformation to obtain embeddings as an array of tokens.
Essentially, it enables the representations to be compatible with attention-based models [22, 37] that
have received increasing attentions in the tabular learning communities. For evaluation, we leverage
the TabZilla framework [30] and compare with a variety of state-of-the-art (SOTA) methods on 88
OpenML datasets with binary classification tasks.

In summary, the contributions and novelties of this work are as follows:

* We approach tabular representation learning from a data-centric perspective. Through a
toy synthetic experiment, we reveal that simple NN model can always outperform well-
tuned tree-based model in a homogeneous space, and therefore highlight the desideratum of
tabular-specific transformations.

* We improve a recent approach, DeepTLF [5], and further implement scalable algorithms to
obtain tree-regularized tabular embeddings as a single vector (T2V), or an array of vectors
(T2T). In essence, the transformed representations can be directly integrated with advanced
tabular NN models with multi-layered perception (MLP) or multi-head attention (MHA) as
building blocks.

* We run comprehensive evaluations with a collection of 88 OpenML datasets on binary classi-
fication tasks. We validate that T2T with MHA backbones can narrow the performance gap
with respect to tree-based models and achieve comparable or better performance compared
to SOTA tabular NN models. More importantly, our methods show better robustness, and
support generalizations at scale.

= 3 &'
: "~
«’
B - % o

T T
Pre-training Fine-tuning

Figure 1: An overview of data-centric tabular learning

2 Related Work

Heterogeneity in tabular emebddings Unlike image, text and speech data that are composed of
homogeneous units such as pixel, character and spectral band, tabular data are usually gathered from
various information sources which made it heterogeneous by design. For example, tabular variables
have different distributions [28], locate in irregular spaces [28], and contain different types including
categorical, numerical and ordinal [1, 38] format. Although several researchers [16, 28] have pointed
out heterogeneity to be the fundamental blocker that restricts NN’s generalization on tabular data,
qualitative definitions and quantitative metrics are still missing for rigorous evaluations. However,

the t-SNE plots [40] can be utilized as a qualitative proxy to visualize the level of heterogeneity for
different tabular representations [5].

Tabular NN models and pretraining Inspired by the recent advance of NN in other fields, many
researchers have customized these techniques for tabular modality from two perspectives including
modeling architectures and pretraining frameworks.

In terms of modeling architectures, MLP [16, 18, 17, 23], MHA [7, 18, 17, 22, 37], CNN [45] and
GNN [12] have been modified and found effective to boost performance over tree models on different
public datasets. Although there is still no single option that dominates the rest, there are growing
interests of adapting MHA in recent progress such as multimodal learning [13] and reasoning with
language models [21]. Intuitively, the self-attention mechanism in MHA is designed to discover
relational pattern among the input features, i.e., understanding the context between words, which is
similar to the conditional split mechanism utilized in tree-based models.

Besides, unsupervised, self-supervised and supervised pretraining have been leveraged by many
works to obtain tabular-specific embeddings. For unsupervised scenario, quantile binning and periodic
activation have been explored to independently encode each feature without interactions [17]. For
self-supervised pretext tasks, contrastive learning [4, 8, 10, 20, 34, 37, 43] and masked reconstruction
[2, 22, 29, 34, 39, 43] are commonly adopted and the latter is reported to have better performance.
For the supervised counterpart, knowledge distillation from ensembles of pretrained NNs [26] or
boosting trees [5, 24, 41] are implemented and reported to outperform tree models. However, this
array of research is not well-explored, which is probably due to the concerns of overfitting [15] and
scalability.

3 Towards Data-Centric Tabular Learning

In contrast to model-centric approaches that focus on calibrating NN models to fit with tabular
data, we highlight the coupling effect between homogeneous features and NN models, and instead
leverage pretraining to regularize the input latent space. As showed in Figure 1, we first utilize an
embedder at pretraining stage to learn representations through supervised pretraining. Specifically,
we implement tree-to-vector (T2V) to support fully-connected encoders, and tree-to-tokens (T2T)
to support attention-based encoders. Before diving into the technical details, we first introduce a
synthetic experiment that motivates us towards doubling down on data-centric approaches.

notations Let R™ be the n-dimensional Euclidean space and ||-||2 be the Euclidean norm (L2 norm).
We denote the unit hypersphere in R? by S9! := {x e R? : ||x||o = 1}. We use fy(-) to denote
function {f(-) : R% — R¢} parameterized by 6. With loss of generality, we use x, x, X to represent

scalar, vector and matrix respectively. For matrix X, we use X f to index the element in the ¢-th row
and j-th column.

3.1 Synthetic Experiments

To validate the coupling effects between homogeneous latent space and neural models, we conduct a
toy experiment with synthetic data which simulates homogeneous feature spaces. For this homoge-
neous scenario, we generate balanced 100-dimensional data that are uniformly pinpointed on a unit
hypersphere around two central points ¢y and c;, where the two centers are diagonal to each other and
also are located on that unit hypersphere, i.e., ¢y = —c1. We use the term [to control the maximum
distance between a sample (x,y) and its central point, i.e., P(y =i | ||x — ci||2 < #) = 1. Intuitively, a
small § indicates the data are tightly clustered around centers, while a large (5 indicates patterned
overlapping on the boundaries. An illustrative visualization of the synthetic data in 2-dimensional
scenario can be found in Figure 3.

Through uniform sampling with rejection, we generate 10k balanced samples and split them into
training, validation and testing bucket with 60%, 20% and 20% in proportion. For comparison, we
train a two-layer MLP (100 — 100 — 2) as NN model, a XGBoost (XGB) with default hyperparameter,
and a XGB with well-tuned hyperparameter as tree-based models. We run 5 trials of experiment
per B and report the average of accuracy in Figure 2. By varying /3 between 1.85 and 2.20 with a
0.05 interval, we found that NN can always outperform the default as well as the well-tuned XGB in

this hyperspherical feature space. With different features regularized within the same scale, we posit
NN might have superiority over tree-based models in this homogeneous latent space, and therefore
introduce tree-regularized embeddings that are aligned with this observation.

100 XGB 1.0 e 0
XGB, tuned 1
— NN
90 /
0.5 4 5
/ o
X
> 80 ~ ¢
@ £ oot 8@
3 © .
8 Y
70 [N
-0.5 o v
o B
Co % Tl
60 ® Tl
-1.0 ® o coem
185 19 195 20 205 21 215 22 -1.0 -0.5 0.0 0.5 1.0
value of B dim 1

Figure 2: Comparison between MLP and XGB Figure 3: A visualization of the synthetic data in
with varying /3 in terms of accuracy 2D scenario

3.2 Tree-regularized Embedding

supervised tree-regularized embeddings As a realization of supervised pretraining, the tree-
regularized approach takes advantages of tree information from XGB to formulate new embeddings
with feature interactions. Ideally, this procedure will transform the heterogeneous tabular data into
homogeneous format by distilling knowledge from nodes of trained decision trees [5]. As showed in
Figure 4, it will firstly extracts node information - a tuple of variable index and threshold - from each
tree as a map, and then binarizes each data by comparing the corresponding variable value with respect
to the threshold given the index. Interested readers can refer to Figure 11 for an illustrative example.
To make the embedder compatible with different NN encoders and scalable with large datasets, we

extend this simple setup from work [5] and introduce T2V and T2T to support fully-connected and
attention-based models.

L O - GEEEEEE
g ®
§ ©d o =

Figure 4: Overview of tree-to-vector (T2V) embedding

T2V: With the embedding vectors extracted from each tree, we perform a preprocessing on the
collection of {variable_index : threshold} map to remove duplicated instances based on rounded
threshold, concatenate the vectors to form a single one-dimensional vector, and finally integrate the
embedding with MLP encoders during model training. To make the embedder scalable, we reformu-
late the pairwise ({value, threshold}) comparison with matrix manipulation, and only employ this
operation within each mini-batch on the fly, which we denote as in-batch transformation. Specifically,
assume we have a data matrix X € R™™ with n instances and m variables, and a corresponding
collection M € R¥2 with k pairs of the {variable_index, threshold} map extracted from tree en-
sembles (XGB). According to Eq (1), we can construct a matrix U € R”*¥ and a matrix V e R™**

composed of m stacked vector v (v € R, v; = M?), so that the operation of sign(XU - V) is
equivalent to the iterative pairwise comparison of {value, threshold}. Most importantly, the in-batch
transformation makes the algorithm generalizable to much larger datasets with hundreds of columns
and millions of rows. We provide the details in Algorithm (1) and a PyTorch-like pseudocode in
Figure 5.

i |1 Yie{l,2,..k} 1
ME 710, otherwise M
T2T: To make it compatible with MHA backbone, we treat the embeddings from each tree as token
and apply paddings to ensure every token are aligned in dimension. The final embeddings for each
data instance have a dimension of R%**_ where d is the number of tree ensembles in XGB and & is
the maximum number of nodes in these trees. Precisely, we pad 0.5 to non-splitting nodes (to make
tree complete) and —1.0 at the tail of the embedding vector to make it aligned with dimension k. To
ensure the semantics of token are consistent, we preserve the topological order of each tree through
level order traversal when extracting tree nodes. The details of these operations can be found in
Algorithm (2) and Figure 11a. Matrix manipulations and in-batch transformation are applied similarly
as T2V to account for scalability. Intuitively, the final output X (X € R™*%**) can be regarded as an
array of tokens and directly consumed by transformers with attention block.

iclass TreeToVectorSimple: transform_batch = transforms.Compose([TreeToVectorSimple(xgbTree)]) |
def _ init_ (self, xgbTree, dtype=torch.float, device='cpu'):

self.xgbTree = xgbTree # within each batch

self.dtype = dtype [X_train_batch = transform _batch(X_train_batch)

self.device = device

A

def _ call__ (self, tensor):
output = self.tree_encoder(tensor)

return output
def tree_encoder(self, tensor): @

fill nan with -1
tensor = torch.nan_to_num(tensor, nan=-1.0)
output = self.postprocessing(
tensor,
self.xgbTree.multiply matrix,
self.xgbTree.offset_vector)
return output

def postprocessing(self, x, multiply matrix, offset_vector):
x = torch.matmul(x, multiply matrix.to(self.device))

x -= offset_vector.to(self.device) . _
X T : (1) sign@xu-v)

x[x < 0] = 0.0
return x

Figure 5: Pseudocode of in-batch transformation for T2V in a PyTorch-like style. Step 1 replaces
pairwise comparison with matrix manipulation, while Step 2 showcases on-the-fly transformations
for mini-batch implemented through the tranforms.Compose module in PyTorch.

4 Experiments

4.1 Datasets, models, and training details

We leverage a subset of the benckmark datasets provided in TabZilla [30] repository to evaluate the
effectiveness, generalizability and scalability of the proposed methods. Specifically, we select 91
OpenML ! datasets with binary classification task and utilize the Area Under the Curve (AUC) in
percentage as evaluation metrics. We apply light preprocessing to fill missing value with zero and
convert categorical variables to ordinal values through label encoding.

We keep model framework consistent throughout the experiments. For T2V, we use two-layered
MLP with ReLU activation and fix the hidden dimensions as m — 256 — 128 — 2, where m is the
dimension of T2V embeddings. For T2T, we use MHA encoder configured with 2 identical building
blocks, where each block consists of 4 heads with embedding dimension as 8. An one-layered MLP
(m — 128 — 2) is connected with the concatenated output of MHA as classification head. For
comprehensive comparisons, we select CatBoost [32], XGBoost [9] and LightGBM [25] as tree-based
baselines. In addition, we use SAINT [37] and the ResNet-like model [18] as SOTA NN baselines

"https://www.openml.org/

given the rankings reported in [30]. Finally, we include a two-layered MLP (m — 128 — 2, denoted
as MLP) with min-max normalization applied on raw variables as a vanilla NN baseline.

For evaluation, we leverage the default 10 training/testing splits provided by OpenML and report the
mean AUC over the 10 runs for each dataset. Similar to TabZilla, for each split we further extract a
fixed validation set from the training set to make the training/validation/testing proportion as 80%,
10% and 10% respectively. Additionally, we fix the hyperparameters for each model with their default
values for generalization purpose. Specifically, for all NN-based models we apply Adam as default
optimizer with learning rate as 0.001 and batch size as 64. Early stopping with 10 epochs and 600
seconds timeout is applied to both tree-based and NN-based models. All experiments are run on an
A10G GPU with approximately 3 GPU days.

4.2 Performance Evaluation

We summarize the experiment results in this section. In terms of robustness, we find most of the
NN models cannot generalize to the entire datasets, and therefore compare models in full-scale and
partial-scale scenarios based on their dataset coverage. Precisely, we compare T2V, T2T, MLP with
tree-based models on 88 datasets as full-scale scenario. For partial-scale case, we compare T2V with
SAINT and ResNet on 59 and 73 datasets respectively. Also, we provide a heuristic analysis on the
time complexity of in-batch transformation by varying batch size and number of tree ensembles.

robustness We report the number of datasets that can be evaluated by each method in Table 1. In
general, we find tree-based models achieve the best robustness while NN models, such as SAINT
and ResNet, suffer from numerical and timeout issue on a variety of datasets. Notably, T2V and T2T
have better robustness as they can generalize to 88/91 of the cases.

CatBoost | XGBoost | LightGBM | T2V | T2T | MLP | SAINT | ResNet
9T | 91 | 91 | 8 |8 | 8 | 59 | 73

Table 1: Number of datasets can be evaluated by tree-based and NN-based models

full-scale comparison Given the availability of data coverage, we first compare T2V, T2T and the
vanilla MLP with respect to tree-based models. The results are reported in Table 2 where the methods
are ranked by the mean AUC taken over across the 88 overlapped datasets. The distribution of AUC
attained by different method is showed in Figure 9 in Appendix. Firstly, while T2T outperforms the
vanilla MLP, it still has a 3.43% gap in percentaged AUC with respect to the best tree-based model.
Second, T2V underperforms MLP, probably because a shallow NN backbone is not sufficient for
the high-dimensional embeddings. Moreover, we point out the diversity existed in the datasets as
each method can achieve the highest as well as the lowest ranking. This observation is aligned with
the results reported in TabZilla [30], where the authors found no single approach can consistently
dominate the rest and the difference in performance was insignificant in many of the cases.

Algorithm | Rank | | AUC (%) 1
\ min max mean median \ mean
CatBoost | 1 6 2.38 2 | 88.06
XGBoost | 1 6 2.83 2 | 87.70
LightGBM | 1 6 3.16 3 | 86.37
T2T | 1 6 4.07 4 | 84.63
MLP | 1 6 4.22 4 | 84.42
T2V ! 6 4.45 5 | 8315

Table 2: Comparison between T2V, T2T, MLP and tree-based models on 88 datasets

partial-scale comparison Given the results from full-scale comparison, we also conduct pairwise
comparison between T2T, SAINT and ResNet on the intersected datasets. For comparison, we check
the difference in percentaged AUC between two methods and define a win on a dataset if the former
method achieves a high AUC. The histogram of difference in AUC between {T2T, SAINT} and {T2T,
ResNet} are showed in Figure 6 and 7 respectively. Comparing T2T and SAINT, we find the former
win 39 out of 59 of the datasets (66.10%) and achieve a 3.74% absolute lift in percentaged AUC.
When compared with ResNet, however, we find T2T can win 36 of the 73 cases (49.31%) with a
0.13% difference in percentaged AUC on average. From the histogram it is found the majority of the
differences are within 0% — 10% range, and each method has generalization issue on several datasets.
The distribution of the AUC can be found in Figure 10.

15 15
10 10
€ =
e | o,
8 8 |
st | st
. |.II| | ‘III o 11 ||I‘ Hllll ‘II
=50 -40 -30 -20 -10 O 10 20 30 40 50 =50 —40 -30 -20 -10 0 10 20 30
AUC difference between T2T - SAINT AUC difference between T2T - ResNet

Figure 6: Histogram of difference in AUC be- Figure 7: Histogram of difference in AUC be-
tween T2T and SAINT tween T2T and ResNet

time complexity analysis As our methods made a trade-off between time and space complexity,
we further conduct an analysis to evaluate the computational overhead with the synthetic datasets
introduced in the previous section. Basically, we compare the forward-pass time between T2V
with MLP and vanilla MLP for mini-batch evaluations. The results are showed in Figure 8, where
the execution time is reported as the average over 10 runs per scenario. By varying the batch size
and number of tree ensembles, we find T2V scales well with respect to number of tree ensembles.
However, for each mini-batch it takes 3x - 5x evaluation time when compared to the vanilla MLP for
batch size up to 512.

35 N
-+~ base MLP /
3.0 T2V, 25 trees 7
| -~ T2V, 50 trees s
;o
g 55] T T2V, 75 trees / ///
@
£20 l/
= A/
g 15 /’: ,o/
B
d 10 e
gzziz== " e 4
0.5 e o
S
o-—===-= L
32 64 128 256 512 1024

batch size

Figure 8: Comparison of time complexity between T2V and vanilla MLP on synthetic datasets

5 Conclusions and Future Works

We follow a data-centric perspective and propose two methods to obtain tree-regularized embeddings
with efficient in-batch transformation. Our improved tabular embeddings, T2V and T2T, can be
simply consumed by many tabular NN frameworks with MLP and MHA as building block. Through
comprehensive evaluations on 88 OpenML datasets, we show strong robustness and on-par perfor-
mance with respect to SOTA NN models on binary classification tasks. These results demonstrate the
potential of generalizing and scaling our approaches as tabular encoder for broader applications that
require tabular modality.

We plan to explore several directions to further improve the effectiveness and scalability of the
proposed methods. Firstly, we will conduct architecture search to explore consonant NN designs
that works with tree-regularized embeddings. In addition, for T2T we will try to further encode each
tree as discrete token and utilize self-supervised pretraining to learn embeddings with customizable
dimension through contrastive or reconstruction task. Finally, we point out a lack of quantitative
metric on homogeneity and benchmark datasets at industrial scale, which are worth exploring in the
next sprint.

Acknowledgements

We would like to thank Ege Beyazit, Jonathan Kozaczuk, Mihir Pendse, Pankaj Rajak, Jiajian Lu and
Vanessa Wallace for valuable discussions, feedback and support.

References

[1] Rishabh Agarwal et al. “Neural additive models: Interpretable machine learning with neural
nets”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 4699—4711.

[2] Sercan O Arik and Tomas Pfister. “Tabnet: Attentive interpretable tabular learning”. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 8. 2021, pp. 6679-6687.

[3] Alexei Baevski et al. “wav2vec 2.0: A framework for self-supervised learning of speech
representations”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 12449—
12460.

[4] Dara Bahri et al. “Scarf: Self-supervised contrastive learning using random feature corruption”.
In: arXiv preprint arXiv:2106.15147 (2021).

[5] Vadim Borisov et al. “DeepTLF: robust deep neural networks for heterogeneous tabular data”.
In: International Journal of Data Science and Analytics (2022), pp. 1-16.

[6] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information
processing systems 33 (2020), pp. 1877-1901.

[7] Kuan-Yu Chen et al. “Trompt: Towards a Better Deep Neural Network for Tabular Data”. In:
arXiv preprint arXiv:2305.18446 (2023).

[8] Suiyao Chen et al. “ReConTab: Regularized Contrastive Representation Learning for Tabular
Data”. In: arXiv preprint arXiv:2310.18541 (2023).

[9] Tiangi Chen et al. “Xgboost: extreme gradient boosting”. In: R package version 0.4-2 1.4
(2015), pp. 1-4.

[10] Sajad Darabi et al. “Contrastive Mixup: Self-and Semi-Supervised learning for Tabular Do-
main”. In: arXiv preprint arXiv:2108.12296 (2021).

[11] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition
at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[12] Lun Du et al. “TabularNet: A neural network architecture for understanding semantic struc-
tures of tabular data”. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2021, pp. 322-331.

[13] Sayna Ebrahimi et al. “LANISTR: Multimodal Learning from Structured and Unstructured
Data”. In: arXiv preprint arXiv:2305.16556 (2023).

[14] Nick Erickson et al. “Multimodal automl for image, text and tabular data”. In: Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022,
pp- 4786-4787.

[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]
(28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

[39]

Yutong Feng et al. “Rethinking supervised pre-training for better downstream transferring”. In:
arXiv preprint arXiv:2110.06014 (2021).

James Fiedler. “Simple modifications to improve tabular neural networks”. In: arXiv preprint
arXiv:2108.03214 (2021).

Yury Gorishniy, Ivan Rubachev, and Artem Babenko. “On embeddings for numerical features
in tabular deep learning”. In: Advances in Neural Information Processing Systems 35 (2022),
pp. 24991-25004.

Yury Gorishniy et al. “Revisiting deep learning models for tabular data”. In: Advances in
Neural Information Processing Systems 34 (2021).

Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. “Why do tree-based models still
outperform deep learning on tabular data?” In: arXiv preprint arXiv:2207.08815 (2022).
Paul Hager, Martin J Menten, and Daniel Rueckert. “Best of Both Worlds: Multimodal
Contrastive Learning with Tabular and Imaging Data”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2023, pp. 23924-23935.

Stefan Hegselmann et al. “Tabllm: Few-shot classification of tabular data with large language
models”. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2023,
pp. 5549-5581.

Xin Huang et al. “Tabtransformer: Tabular data modeling using contextual embeddings”. In:
arXiv preprint arXiv:2012.06678 (2020).

Arlind Kadra et al. “Well-tuned simple nets excel on tabular datasets”. In: Advances in neural
information processing systems 34 (2021), pp. 23928-23941.

Guolin Ke et al. “DeepGBM: A deep learning framework distilled by GBDT for online
prediction tasks”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2019, pp. 384-394.

Guolin Ke et al. “Lightgbm: A highly efficient gradient boosting decision tree”. In: Advances
in neural information processing systems 30 (2017).

Chung-Wei Lee, Pavlos Anastasios Apostolopulos, and Igor L Markov. “Practical Knowledge
Distillation: Using DNNs to Beat DNNSs”. In: arXiv preprint arXiv:2302.12360 (2023).

Ze Liu et al. “Video swin transformer”. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2022, pp. 3202-3211.

Chao Ma et al. “VAEM: a deep generative model for heterogeneous mixed type data”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 11237-11247.

Kushal Majmundar et al. “Met: Masked encoding for tabular data”. In: arXiv preprint
arXiv:2206.08564 (2022).

Duncan McElfresh et al. “When Do Neural Nets Outperform Boosted Trees on Tabular Data?”
In: arXiv preprint arXiv:2305.02997 (2023).

Maxime Oquab et al. “DINOv2: Learning Robust Visual Features without Supervision”. In:
arXiv preprint arXiv:2304.07193 (2023).

Liudmila Prokhorenkova et al. “CatBoost: unbiased boosting with categorical features”. In:
Advances in neural information processing systems 31 (2018).

Alec Radford et al. “Learning transferable visual models from natural language supervision”.
In: International Conference on Machine Learning. PMLR. 2021, pp. 8748-8763.

Ivan Rubachev et al. “Revisiting pretraining objectives for tabular deep learning”. In: arXiv
preprint arXiv:2207.03208 (2022).

Xingjian Shi et al. “Benchmarking multimodal automl for tabular data with text fields”. In:
arXiv preprint arXiv:2111.02705 (2021).

Uriel Singer et al. “Make-a-video: Text-to-video generation without text-video data”. In: arXiv
preprint arXiv:2209.14792 (2022).

Gowthami Somepalli et al. “SAINT: Improved neural networks for tabular data via row
attention and contrastive pre-training”. In: arXiv preprint arXiv:2106.01342 (2021).
Matthew Tancik et al. “Fourier features let networks learn high frequency functions in low
dimensional domains”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 7537-7547.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. “Subtab: Subsetting features of
tabular data for self-supervised representation learning”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 18853—-18865.

[40]
[41]
[42]

[43]

[44]

[45]

Laurens Van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE.” In: Journal of
machine learning research 9.11 (2008).

Xiang Wang et al. “Tem: Tree-enhanced embedding model for explainable recommendation”.
In: Proceedings of the 2018 world wide web conference. 2018, pp. 1543—-1552.

Dongchao Yang et al. “UniAudio: An Audio Foundation Model Toward Universal Audio
Generation”. In: arXiv preprint arXiv:2310.00704 (2023).

Jinsung Yoon et al. “Vime: Extending the success of self-and semi-supervised learning to
tabular domain”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 11033—
11043.

Yiyuan Zhang et al. “Meta-transformer: A unified framework for multimodal learning”. In:
arXiv preprint arXiv:2307.10802 (2023).

Yitan Zhu et al. “Converting tabular data into images for deep learning with convolutional
neural networks”. In: Scientific reports 11.1 (2021), p. 11325.

10

Appendix

More Results on partial-scale comparisons between NN Models

We present the comparison of T2V, T2T, SAINT and ResNet on 59 intersected datasets in Table 3.
Similar to the observations reported in the partial-scale comparison, we find T2V outperforms SAINT
but slightly underperforms ResNet. As showed in Figure 10, T2T does not generalize well on several
datasets which limit its performance on average.

Algorithm | Rank | | AUC (%) 1
| min max mean median | mean
ResNet | 1 4 215 2 | 8487
T2T ‘ 1 4 2.29 2 ‘ 84.72
TV ‘ 1 4 2.61 3 ‘ 83.92
SAINT ‘ 1 4 3.01 3 ‘ 81.46

Table 3: Comparison between NN models on intersection datasets

90

80

70

AUC (%)

60

8 g
50 8 g 8 o o
o o
40
o
o
Catboost XGBoost LightGBM T2T MLP T2V

Figure 9: Distribution of AUC (%) for full-scale comparison

90 %0

80

70

AUC (%)

60

o
o 50 o

o

40 °

T2T ResNet T2T SAINT

Figure 10: Distribution of AUC (%) for partial-scale comparison

Tree-to-Vector algorithms

We introduce T2V and T2T in Algorithm 1 and 2 respectively. For T2V, we set € = 4, i.e., the
thresholds are rounded with 4 digit of decimals. For T2T, we set 7 = 0.5 and n = —1.0, where the

11

former is the default value to fill the complete tree and the later the default value to pad each token.
The flowchart of T2V with an illustrative example is showed in Figure 11.

Algorithm 1: Tree to Vector (T2V)

Input: xgb_trees, €

Qutput: emb_map

Init: emb_map = {}

for tree € xgb_trees do

for node € tree do
{var_key, var_val} = node;
var_val.round(e);
if {var_key, var_val} ¢ emb_map then

| emb_map[var_key].append(var_val);

end

end

end

Algorithm 2: Tree to Tokens (T2T)

Input: xgb_trees, 7, n
Output: emb_vec

Init: vec_len = 0, emb_vec =[]
for tree € xgb_trees do

[= tree.count_node() ;
vec_len = max(vec_len, 1)
end

for tree € xgb_trees do

vec = tree.to_vec(7);
vec.pad(vec_len, n);
emb_vec.append(vec);

end

tree to vector

o = BEREEE PN EEEEEE
/\ /@ 1 e})
& 06 ¢ MHEMEEE 4 5¢ o CEEREE
tree vector tree vector
(a) T2T: extract node. The nodes are traversed (b) T2T: binary encode. A pseudo node G is added to
in level order to maintain tree structure. make the tree complete and infilled with 0.5 by default.

Figure 11: An illustrative example of T2T embedding generation

OpenML Datasets

task id: 7592, 9946, 49, 3797, 168911, 190410, 14951, 168912, 146606, 9977, 125920, 146607,
3903, 24, 3735, 3891, 3711, 9971, 167141, 27, 10089, 9965, 146820, 145984, 3485, 146065, 10101,
146047, 146819, 10093, 168338, 9952, 167125, 3731, 3561, 189354, 3917, 43, 3602, 4, 167211, 48,
3954, 9976, 9978, 3779, 3543, 219, 3953, 50, 9957, 168335, 3904, 3620, 3647, 3913, 14954, 146210,
29, 3896, 37, 3739, 145847, 189356, 39, 42, 3902, 3950, 3889, 3918, 145799, 3540, 31, 9910, 9984,
168337, 168868, 167120, 34539, 25, 15, 146206, 14952, 3748, 3686, 3, 54, 190408, 14965, 146818,
168908.

12

	Introduction
	Related Work
	Towards Data-Centric Tabular Learning
	Synthetic Experiments
	Tree-regularized Embedding

	Experiments
	Datasets, models, and training details
	Performance Evaluation

	Conclusions and Future Works
	References

