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ABSTRACT

As deep generative models have progressed, recent work has shown them to
be capable of memorizing and reproducing training datapoints when deployed.
These findings call into question the usability of generative models, especially
in light of the legal and privacy risks brought about by memorization. To better
understand this phenomenon, we propose the manifold memorization hypothesis
(MMH), a geometric framework which leverages the manifold hypothesis into a
clear language in which to reason about memorization. We propose to analyze
memorization in terms of the relationship between the dimensionalities of (i) the
ground truth data manifold and (ii) the manifold learned by the model. This
framework provides a formal standard for “how memorized” a datapoint is and
systematically categorizes memorized data into two types: memorization driven
by overfitting and memorization driven by the underlying data distribution. By
analyzing prior work in the context of the MMH, we explain and unify assorted
observations in the literature. We empirically validate the MMH using synthetic
data and image datasets up to the scale of Stable Diffusion, developing new tools
for detecting and preventing generation of memorized samples in the process.

1 INTRODUCTION

Suppose {xi}ni=1 is a dataset in Rd drawn independently from a ground truth probability distribution
p∗(x). A deep generative model (DGM) is a probability distribution pθ(x) designed to capture p∗(x)
only from knowledge of {xi}ni=1. DGMs, and most famously, diffusion models (DMs; Sohl-Dickstein
et al., 2015; Ho et al., 2020), have led the “generative AI” boom with their ability to generate realistic
images from text prompts (Karras et al., 2019; Rombach et al., 2022). DMs are thus likely to be
deployed in an increasing number of public-facing or safety-critical applications. However, with
sufficient model capacity, DGMs are known to memorize some of their training data. Memorization
occurs at various degrees of specificity, including identities of brands, layouts of specific scenes, or
exact copies of images (Webster et al., 2021; Somepalli et al., 2023a; Carlini et al., 2023).

Memorization is undesirable for myriad reasons. Simply put, the more a model reproduces its training
data, the less useful it becomes. Memorization is a modelling failure under the DGM definition
provided above; if the underlying ground truth p∗(x) does not place positive probability mass on
individual datapoints, then a pθ(x) that memorizes any datapoint must be failing to generalize (Yoon
et al., 2023). But memorization’s risks go beyond mere utility. Training datasets may contain private
information which, if memorized, might be exposed in downstream applications. Copyright law
includes “substantial similarity” between generated and training data as a criterion in its definition of
infringement, meaning that reproduced training samples can open up model builders or users to legal
liability. For instance, the recent legal decision by Orrick (2023) hinged on this criterion.

The increasing dependence of society on generative models and resulting risks call for work to better
understand memorization. Recent empirical work has identified mechanistic causes of memorization
including but not limited to data complexity, duplication of training points, and highly specific
labels (Somepalli et al., 2023b; Gu et al., 2023). We group these insights under the umbrella
of “memorization phenomena”, a catch-all term for the various interesting memorization-related
observations we would like to understand better. Though useful in practice, these memorization
phenomena have yet to be unified and interpreted under a single theoretical framework. Meanwhile,
formal treatments of memorization have led to isolated usecases such as detection (Meehan et al.,
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(a) OD-Mem with LIDθ(x) = 0 (b) OD-Mem with LIDθ(x) = 1 (c) No memorization with LIDθ(x) = 2

(d) DD-Mem with LIDθ(x) = 0 (e) DD-Mem with LIDθ(x) = 1 (f) Poorly fit model, LIDs are irrelevant

Figure 1: An illustrative example of LID values for models with different quality of fit and degrees of memoriza-
tion. In these plots, the ground truth manifold M∗ is depicted in light blue, training samples {xi}ni=1 ⊂ M∗
are depicted as crosses, and the model manifolds Mθ are depicted in red. In (a) and (d), the model assigns
0-dimensional point masses around the three leftmost datapoints, indicating that it will reproduce them directly
at test time; however in the former case this is caused by overfitting (LIDθ(x) < LID∗(x)), while in the latter it
is caused by the ground truth data having small LID. The models in (b) and (e) are analoguous to (a) and (b),
respectively, and still memorize, but with an extra degree of freedom in the form of a 1-dimensional submanifold
containing the three points. Only the model in (c), which has learned a 2-dimensional manifold through its
full support, has generalized well enough and has learned a manifold of high enough dimension to avoid both
types of memorization. Finally, (f) shows a poorly fit model where LID and memorization are not meaningfully
related.

Figure 2: 8 images along a relatively low-dimensional manifold learned by Stable Diffusion v1.5. The first is a
real image from LAION (flagged as memorized by Webster (2023)), and the remainder were generated by the
model.

2020; Bhattacharjee et al., 2023) and prevention on a model level (Vyas et al., 2023), but have
provided little explanatory power for memorization phenomena. In addition to providing theoretical
insights, a unifying framework could yield more capabilities such as identifying whether a training
image has been memorized, altering the sampling process to reduce memorization, and detecting
memorized generations post hoc.

In this work, we introduce the manifold memorization hypothesis (MMH), a geometric framework to
explain memorization. In short, we propose that memorization occurs at a point x ∈ Rd when the
manifold learned by the generative model contains x but has too small a dimensionality at x. As
we will see, this understudied perspective is a natural take on memorization that leads to practical
insights and effectively explains memorization phenomena like those mentioned above. Although
we mainly focus on DMs, the most notorious memorizers, our geometric framework applies to any
DGM on a continuous data space Rd; indeed, we empirically validate it on generative adversarial
networks (GANs; Goodfellow et al., 2014; Karras et al., 2019) as well. Pidstrigach (2022) was the
first to show that DMs are capable of learning low-dimensional structure in Rd and that this manifold
learning capability is a driver of memorization; in this sense, our work extends this connection into a
general framework, grounds it in empirical findings, and connects it to recent work on memorization.

This paper is organized according to the following contributions.
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1. We advance the MMH in Section 2. After defining the key notions of the data manifold and
local intrinsic dimension (LID), we describe how LIDs correspond to memorization.

2. We demonstrate the explanatory power of the MMH in Section 3 by grounding it in prior
observations about the behaviour of models that memorize. As this section will show,
memorization phenomena observed in past work can be predicted and explained by the
MMH.

3. In Subsection 4.1, we empirically test the MMH, showing that it both accurately describes
reality and is useful in practice. As predicted by the MMH, estimates of LID are strongly
predictive of memorization at scales ranging from 2-dimensional synthetic data to Stable
Diffusion (Rombach et al., 2022).

4. Finally, inspired by the MMH, in Subsection 4.2 we devise scalable approaches to avert
memorization during sampling from Stable Diffusion and to identify tokens in the text
conditioning that contribute to memorization.

2 UNDERSTANDING MEMORIZATION THROUGH LID

Preliminaries Here we presume the manifold hypothesis: that data of interest lies on a manifold
M ⊂ Rd (Bengio et al., 2013). We take a generalized definition of manifold in which M is allowed to
have different dimensionalities in different regions,1 which is appropriate for realistic, heterogeneous
data with varying degrees of structure and complexity. In particular, we assume that both our ground
truth distribution p∗(x) and our model pθ(x) produce samples on manifolds, which we refer to as
M∗ and Mθ respectively. We direct readers to Loaiza-Ganem et al. (2024) for a justification and
formal mathematical treatment of both of these assumptions, which are especially valid when the
data is high-dimensional and the models are high-performing ones such as DMs and GANs.

Our framework for understanding memorization revolves around the notion of a point’s local intrinsic
dimension (LID). Given a manifold M and a point x ∈ M, we define the LID of x, LID(x), with
respect to M as the dimensionality of M at x. In this work, we will mainly consider the LIDs of
points x ∈ Rd with respect to two specific manifolds: M∗ and Mθ. We will refer to these quantities
as LID∗(x) and LIDθ(x), respectively.

Intuition and the Manifold Hypothesis Before discussing our framework, we review some
intuition relating the manifold hypothesis to practical datasets. Manifold structure M ⊂ Rd arises
from sets of constraints. These can range from very simple, like a set of linear constraints (M = {x |
Ax = b}), to highly complex (M = {x | x is an image of a face}). Locally at a point x ∈ M, each
constraint determines a direction one cannot move without leaving the manifold and violating the
structure of the dataset.2 Hence, a region governed by ℓ independent and active constraints will have
dimensionality LID(x) = d− ℓ. The value of LID(x) can be intuited as the number of degrees of
freedom – valid independent directions of movement in which the characteristics of the dataset are
preserved. Another connection is to complexity. For example, estimates of LID from algorithms like
FLIPD (Kamkari et al., 2024b) or the normal bundle (NB) method of Stanczuk et al. (2024) (which
we use in our experiments; see Appendix B for details) have been shown to correspond closely with
the complexity of an image; it is reasonable to expect that images with more complex features can
endure more changes (such as morphing, moving, or changing the colours of different parts of the
image) without losing coherence. The notions of constraints, degrees of freedom, and complexity
along with their relationship to LID will help us understand its connection to memorization in later
sections.

A Geometric Framework for Understanding Memorization In this section we formulate a
framework for understanding memorization based on comparisons between LIDθ(x) and LID∗(x).
As a motivating example, consider Figure 1, which depicts six possible models pθ(x) trained on
datasets {xi}ni=1 that each lie on a ground truth manifold M∗. In the first scenario, Figure 1a, the
model pθ(x) has precisely memorized some of the training data. This is a well-understood mode of

1Most authors define a manifold to have a constant dimension over the entire set. Under this common
definition, our assumption is referred to as the union of manifolds hypothesis (Brown et al., 2023). We use a
more general definition of manifold for brevity.

2This statement is captured formally by the regular level set theorem of differential geometry, and manifolds
can be modelled as such (Lee, 2012; Ross et al., 2023).
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memorization; training datapoints are exactly reproduced. To achieve this, the model has learned a
0-dimensional manifold around these datapoints. To our knowledge, Pidstrigach (2022) was the first
to point out that a model capable of learning 0-dimensional manifolds can memorize the training data.
From this example, we infer that x can be perfectly reproduced when LIDθ(x) = 0. This indicates
suboptimality in the model at the datapoints shown, for which LID∗(x) = 2.

However, memorization can be more complex than simply reproducing a datapoint. For example,
Somepalli et al. (2023a) identify instances where layouts, styles, or foreground or background objects
in training images are copied without copying the entire image, a phenomenon they refer to as
reconstructive memory. Webster (2023) surfaces more instances of the same phenomenon and refers
to them as template verbatims. See Figure 2 for an example. In the region of these points x ∈ Mθ,
the model is able to generate images with degrees of freedom in some attributes (e.g., colour or
texture), but is too constrained in other attributes (e.g., layout, style, or content). Geometrically, Mθ

is too constrained compared to the idealized ground truth manifold M∗; i.e., LIDθ(x) < LID∗(x).
We depict this situation in Figure 1b, wherein the model has erroneously assigned LIDθ(x) = 1 for
some of the training datapoints.

Two Types of Memorization We expect two types of memorization to be of interest. An academic
interested in designing DGMs that learn the ground truth distribution correctly will chiefly be
interested in avoiding the memorization scenario LIDθ(x) < LID∗(x). We refer to this first scenario
as overfitting-driven memorization (OD-Mem). This situation represents a modelling failure in that
pθ(x) is not generalizing correctly to p∗(x), and is illustrated in Figure 1a and Figure 1b.

However, an industry practitioner deploying a consumer-facing model might be more interested in
hypothetical values of LIDθ per se, irrespective of the values of LID∗. For any points x ∈ M∗
containing trademarked or private information, low values of LIDθ(x) will be of concern even if
LIDθ(x) = LID∗(x), as this information is likely to be revealed in samples generated from this region.
A practitioner would rightly refer to this situation as memorization despite the model generalizing
correctly. We refer to this second scenario as data-driven memorization (DD-Mem), and illustrate it
in Figure 1d and Figure 1e. This certainly happens in practice; for example, conditioning on the title
of a specific artwork (e.g. “The Great Wave off Kanagawa” by Katsushika Hokusai (Somepalli et al.,
2023a)) is a very strong constraint, leaving few degrees of freedom in the ground truth manifold
M∗, but reproducing specific artworks may be undesirable in a production model. Unlike OD-Mem,
DD-Mem is not overfitting in the classical sense, and a notable consequence is that it cannot be
detected by comparing training and test likelihoods. We refer to the conceptualization of how LIDs
relate to memorization through OD-Mem and DD-Mem as the manifold memorization hypothesis.

No memorization is present in Figure 1c, in which the model manifold Mθ matches the desired
ground truth manifold M∗. We highlight that the MMH assumes high-performing models whose
manifold Mθ is roughly aligned with the data manifold M∗; when this is not the case, as in Figure 1f,
LIDθ and its relationship to LID∗ become irrelevant to memorization.

Why is the MMH Useful? The MMH is a hypothesis about how memorization occurs in practice
for high-dimensional data. Its utility is best framed in contrast to past treatments of memorization.
First, while past theoretical frameworks for memorization have focused on probability mass, our
geometric perspective leads to more practical tools. For example, Bhattacharjee et al. (2023) propose
a purely probabilistic definition of memorization that can be detected only with access to the training
dataset and the ability to generate large numbers of samples, which are intractable requirements at the
scale of LAION-2B (Schuhmann et al., 2022) and Stable Diffusion. In contrast, the MMH suggests
that memorization can be detected through LIDθ(x), for which tractable estimators exist at scale. We
explore these estimators in Section 4.

Second, the MMH explains and quantifies the phenomenon depicted in Figure 2: reconstructive
memorization. While it has been studied in the past (Somepalli et al., 2023a; Webster, 2023; Wen
et al., 2023), it has been resistant to theoretical explanation in part because past work has defined
memorization based on distance to the memorized training point (see Appendix A for more discussion
on definitions). It is clear from Figure 2 that distance cannot capture reconstructive memorization;
the training datapoint on the left is far in pixel space from the Stable Diffusion-generated samples to
its right. Our framework overcomes this challenge by interpreting memorization in relation to the
model and data manifolds without reference to distances or any specific training datapoint.
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Third, the MMH distinguishes between OD-Mem and DD-Mem, while past analyses have not.
Bhattacharjee et al. (2023) would allow for OD-Mem but not DD-Mem under their definition of
memorization, while empirical work tends to ignore the effect of p∗(x) on pθ(x), thus subsuming
both OD-Mem and DD-Mem in spirit if not formally (Carlini et al., 2023; Yoon et al., 2023; Gu
et al., 2023). For further details, please see Appendix A, where we formally develop the relationship
between the MMH and definitions of memorization in related work.

Defining and distinguishing between OD-Mem and DD-Mem suggests immediate solutions to each.
DD-Mem indicates that the training distribution p∗(x) does not actually match the desired distribution
at inference time, and hence is a misalignment of data and objectives. It can be addressed by changing
p∗(x) itself, such as by altering the data collection, cleaning, and augmentation procedures. We
explore this point further in Section 3. Unlike OD-Mem, DD-Mem cannot be addressed by improving
the model to have better generalization. Both OD-Mem and DD-Mem can also in principle be
addressed by augmenting pθ(x) to generate higher-LID samples. In Section 4, we propose solutions
to alter the data-generating process with precisely this goal.

3 EXPLAINING MEMORIZATION PHENOMENA

In this section, we demonstrate the explanatory power of the MMH by showing how it explains
memorization phenomena in related work. In the process, this section demonstrates two advantages of
our geometric framework. First, it provides a unifying perspective on seemingly disparate observations
throughout the literature (nevertheless, this is not meant as a related work section — for that see
Section 5). Second, the MMH links memorization to the rich theoretical toolboxes of measure theory
and geometry, which we use in this section to establish formal connections to past work. Propositions,
theorems, and proofs in this section are presented informally for clarity. For full theorem statements
and proofs, please see Appendix E.

Duplicated Data and LID It has been broadly observed that memorization occurs when train-
ing points are duplicated (Nichol et al., 2022; Carlini et al., 2022; Somepalli et al., 2023a). In
Proposition 3.1, we show that duplicated datapoints lead to DD-Mem; duplicated points x0 indicate
LID∗(x0) = 0, so even a correctly fitted model will have LIDθ(x0) = 0 (as in Figure 1d).
Proposition 3.1 (Informal). Let {xi}ni=1 be a training dataset drawn independently from p∗(x).
Under some regularity conditions, the following hold:

1. If duplicates occur in {xi}ni=1 with positive probability, then they occur at a point x0 such
that LID∗(x0) = 0.

2. If LID∗(x0) = 0 and n is sufficiently large, then duplication will occur in {xi}ni=1 with
near-certainty.

Proof. See Appendix E for the formal statement of the theorem and proof. To understand both
conditions intuitively, it suffices to note first that duplicate samples are intuitively equivalent to p∗(x)
assigning positive probability to a point. Under mild regularity conditions on the nature of the p∗(x)
and M∗, positive probability at a point is equivalent to a 0-dimensional manifold at that point.
From this result, we gather that improving model generalization is not the solution to duplication.
Instead, one may need to add inductive biases that prevent pθ(x) from learning 0-dimensional points.
Of course, the more straightforward path is to change the data distribution p∗(x) by de-duplicating
the training dataset. We carry the same intuition forward to “near-duplicated content”, where similar
but non-identical points occur together in the dataset, in which case LID∗ would be low but nonzero
in the region of the near-duplicated content (as in Figure 1e).

Conditioning and LID Somepalli et al. (2023b) and Yoon et al. (2023) observe that conditioning
on highly specific prompts c encourages the generation of memorized samples. Here, we point out
that conditioning decreases LID, making models more likely to generate memorized samples.
Proposition 3.2 (Informal). Let x0 ∈ M∗, and let us denote by LID∗(x0 | c) the LID of x0 with
respect to the support of the conditional distribution p∗(x | c). We then have

LID∗(x0 | c) ≤ LID∗(x0). (1)

Proof. See Appendix E for the formal statement of the theorem and proof. Intuitively, conditioning
can be interpreted as adding additional constraints to M∗, which cannot increase its dimension.
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Conditioning on highly specific c can be linked to both DD-Mem and OD-Mem. Introducing strong
constraints greatly decreases LID∗, leading to DD-Mem. However, if a relatively low number of
training examples satisfy c, the model could overfit, leading to OD-Mem as well.

Complexity and LID For images, Somepalli et al. (2023b) also highlight low complexity as a factor
causing memorization. Using the understanding that LID corresponds to complexity as discussed in
Section 2, we infer that low-complexity datapoints x ∈ M∗ have low LID∗(x). This fact suggests
that, like with duplication, memorization of low-complexity datapoints is an example of DD-Mem.

Figure 3: CFG-adjusted scores vs CFG vectors for Stable
Diffusion with λ = 7.5 and t = 0.02 on 20 memorized
and 20 non-memorized images from LAION.

The Classifier-Free Guidance Norm and LID
Classifier-free guidance (CFG) is a way to improve the
quality of conditional generation. Whereas standard
conditional generation employs the score function
sθ(x; t, c), which refers to a neural estimate at time t
of the conditional score, CFG increases the strength of
conditioning by using the following modified score:

sCFG
θ (x; t, c)︸ ︷︷ ︸

CFG-adjusted score

= sθ(x; t, ∅) + λ(sθ(x; t, c)− sθ(x; t, ∅)︸ ︷︷ ︸
CFG vector

), (2)

where λ is a hyperparameter for “guidance strength” and
sθ(x; t, ∅) refers to conditioning on the empty string (here
we formulate DMs using stochastic differential equations
(Song et al., 2021)).

Wen et al. (2023) identify that specific conditioning inputs c lead to memorized samples when the
CFG vector has a large magnitude. We explain this observation using the MMH as follows. First, we
observe that a large CFG magnitude will generally result in a large magnitude of the CFG-adjusted
score sCFG

θ (x; t, c). We demonstrate this empirically in Figure 3. Furthermore, it is understood in the
literature that a large ∥sCFG

θ (x; t, c)∥, and its explosion as t → 0, is common for high-dimensional
data (Vahdat et al., 2021) and is necessary to generate samples from low-dimensional manifolds
(Pidstrigach, 2022; Lu et al., 2023). It has been empirically observed that this explosion occurs
faster as the dimensionality gap increases between the data manifold and the ambient data space
(Loaiza-Ganem et al., 2024), which is one reason that generative modelling on lower-dimensional
latent space tends to improves performance (Loaiza-Ganem et al., 2022). The largest ∥sCFG

θ (x; t, c)∥
values should thus generate points with the largest dimensionality difference from Rd; i.e., points
x with the smallest LIDθ(x | c).Hence we infer that reducing the CFG-adjusted score norm – or
equivalently the CFG vector norm – should increase LIDθ(x | c) and lessen memorization, a fact
confirmed empirically by Wen et al. (2023). Since this phenomenon corresponds to any x with small
LIDθ(x | c), it can indicate both OD-Mem and DD-Mem under the MMH.

4 EXPERIMENTS

4.1 VERIFYING THE MANIFOLD MEMORIZATION HYPOTHESIS

Figure 4: Training a diffusion model on
a von Mises mixture. (Top) Ground truth
manifold and the associated distribution.
(Bottom) Model-generated samples with
their LID estimates.

In this section, we empirically verify the geometric framework which
underpins the MMH. We analyze both LID∗ and LIDθ to study DD-
Mem and OD-Mem. Several algorithms exist to estimate LIDθ(x)
for diffusion models, including the normal bundle (NB) method
(Stanczuk et al., 2024), and more recently FLIPD (Kamkari et al.,
2024b). For GANs, we approximate LIDθ(x) of generated data by
computing the rank of the Jacobian of the generator. Additionally,
we use LPCA (Fukunaga & Olsen, 1971) to estimate LID∗ where
applicable; see Appendix B for details on these methods and Ap-
pendix C for their hyperparameter configurations. In general LIDθ

and LID∗ are unknown quantities that are approximated with the
aforementioned estimators, throughout this section we write their
respective estimates as L̂IDθ and L̂ID∗.

Diffusion Model on a von Mises Mixture In an illustrative exper-
iment, we study a mixture of a von Mises distribution, which sits on

6
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(a) (Left) Exact and (Middle) reconstructively memorized samples (Top) with their matched CIFAR10 datapoints (Bottom). (Right) Non-memorized samples with low
L̂IDθ , showing L̂IDθ can be partially confounded by complexity.

(b) L̂IDθ for StyleGAN samples. (c) L̂IDθ for iDDPM samples. (d) L̂ID∗ for CIFAR10 datapoints.

Figure 5: Visualizing OD-Mem and DD-Mem on StyleGAN2-ADA and iDDPM trained on CIFAR10.

a 1-dimensional circle, and a 0-dimensional point mass at the origin in 2-dimensional ambient space,
as depicted in Figure 4; every point x ∈ M∗ has either LID∗(x) = 0 or LID∗(x) = 1. From this dis-
tribution we sample 100 training points, and by chance a single point x0 sits isolated in a low-density
region of the circle. Next, we train a DM on this data. In Figure 4 we depict 100 generated samples,
colour-coded by their LID estimates, as estimated by FLIPD. Here, we see OD-Mem and DD-Mem in
action: the model overfits at x0, producing near-exact copies, with 0 ≈ L̂IDθ(x0) < LID∗(x0) = 1
(OD-Mem). The model faithfully produces copies of the circle’s center too, yet this is not caused by
a modelling error but by the low associated LIDs (DD-Mem).

CIFAR10 Memorization We analyze the higher-dimensional CIFAR10 dataset (Krizhevsky &
Hinton, 2009) and use two pre-trained generative models: iDDPM (Nichol & Dhariwal, 2021)
and StyleGAN2-ADA (Karras et al., 2020). We generate 50,000 images from each model. Since
StyleGAN2-ADA is class-conditioned, we generate an equal number of samples per class. We
then retrieve 600 images from the dataset using both (i) SSCD distance (Pizzi et al., 2022) and
(ii) calibrated ℓ2 distance (Carlini et al., 2023). We take the top 300 returned from each ranking,
producing a set of just under 600 images we can visually examine. We then label all of these instances
as either not memorized, exactly memorized, or reconstructively memorized (Somepalli et al., 2023a).
Images not appearing in the top 300 of either ranking are not labelled, and have a low chance of
being memorized. The first two panels in Figure 5a show our labels distinguish different types of
memorization as we display the generated images vs. the closest SSCD match in the training dataset.

Next, we estimate LIDθ for each iDDPM and StyleGAN2-ADA sample. For iDDPM, we use the
NB estimator. Figure 5b and Figure 5c show that L̂IDθ is generally smaller for memorized images
compared to non-memorized ones. As shown in Figure 5d, L̂ID∗ is considerably lower for exact
memorization cases within the training dataset, suggesting that exact memorization for both models
corresponds to DD-Mem. We also observe that in Figure 5b, reconstructively memorized samples
exhibit lower values of L̂IDθ as compared to not memorized samples, despite the corresponding
training data having comparable L̂ID∗ (Figure 5d): the LIDθ estimates enable us to still classify these
samples as memorized, showing a clear example of detecting OD-Mem.

We have shown that LID estimates are effective at detecting both OD-Mem and DD-Mem, supporting
the MMH hypothesis. However, while simpler images tend to be memorized more frequently, they
are not always memorized (see Figure 5a, right panel), leading to some overlap in estimated LIDθ

between memorized and not memorized samples in Figure 5b and Figure 5c. This overlap occurs
because image complexity serves as a confounding factor: images with simple backgrounds and
textures may be assigned low LIDθ values, not due to memorization, but simply because of their
inherent simplicity. We discuss this issue further, along with a partial solution, in Appendix C.2.

Stable Diffusion on Large-Scale Image Datasets Here, we set pθ(x) to Stable Diffusion v1.5
(Rombach et al., 2022). Taking inspiration from the benchmark of Wen et al. (2023), we retrieve
memorized LAION (Schuhmann et al., 2022) training images identified by Webster (2023). We focus
on the 86 memorized images categorized as “matching verbatim”, noting that the other categories of
Webster (2023) consist of large numbers of captions that generate samples matching a small set of
training images. For non-memorized images, we use a mix of 2000 images sampled from LAION
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(a) L̂IDθ . (b) L̂IDθ(· | c). (c) CFG vector norm.

Figure 6: Density histograms for each memorization metric across different datasets.

Aesthetics 6.5+, 2000 sampled from COCO (Lin et al., 2014), and all 251 images from the Tuxemon
dataset (Tuxemon Project, 2024; Hugging Face, 2024).

To our knowledge, no estimator of LID∗ scales to images at the size of Stable Diffusion; we thus omit
these from our analysis. FLIPD is the only LIDθ estimator that remains tractable at this scale, so we
use it for this analysis. Note that Stable Diffusion provides two model distributions: the unconditional
distribution pθ(x) and the conditional distribution pθ(x | c), where c is the image’s caption. Hence,
we compute both L̂IDθ and L̂IDθ(· | c) for each of the aforementioned images. Additionally, we
compute the norm of the CFG vector, which was proposed as a memorization detection method by
Wen et al. (2023) and which we argued varies inversely to LIDθ in Section 3. Our experiments thus
cover three proxies for local intrinsic dimension: L̂IDθ, L̂IDθ(· | c), and the CFG vector norm (see
Appendix C for details). The density histograms of all these values are depicted in Figure 6.3

We see that all proxies for LIDθ assign relatively small LID values to memorized images, further
validating the MMH. Due to the unavailability of LID∗ estimates, it is hard to distinguish between
DD-Mem and OD-Mem here. In Figure 6, low conditional or unconditional LID as well as high CFG
vector norms are all signals of memorization, strengthening our argument in Section 3. While the CFG
vector norm seemingly provides the strongest signal, the unconditional LID detects memorization
well despite the lack of caption information. Detecting memorized training images without the
corresponding captions is a novel capability, and notably cannot be done with the CFG vector norm
technique.

4.2 MITIGATING MEMORIZATION BY CONTROLLING LIDθ

In this section we study the problem of sample-time mitigation through the lens of the MMH.
Somepalli et al. (2023b) establish text-conditioning as a crucial driver of memorization in Stable
Diffusion, where specific tokens in the prompt often cause the model to generate replicas of training
images. Wen et al. (2023) introduce a differentiable metric, which we denote as ACFG(c) (formally
defined in Appendix D), which is based on the accumulated CFG vector norm while sampling an
image. Wen et al. (2023) observe that this metric shows a sharp increase when the prompt c leads to
the generation of memorized images. Since ACFG(c) is differentiable with respect to c, Wen et al.
(2023) backpropagate through this metric and find the tokens with the largest gradient magnitude,
essentially providing token attributions for memorization.

Here we make two contributions. First, we propose two additional metrics, AsCFG
θ (c) and AFLIPD(c),

which are modifications of ACFG(c) to use ∥sCFG
θ (x; t, c)∥ or FLIPD respectively instead of the norm

of the CFG vector. We define these metrics fully in Appendix D due to space limitations. Since
both of these new metrics are also differentiable with respect to c, ACFG(c) can be trivially replaced
by either of them in the method of Wen et al. (2023). Second, we propose an automated way to
use the token attributions from this method into a sample-time mitigation scheme. We start by
normalizing the attributions across the tokens, and sample k tokens based on a categorical distribution
parameterized by these normalized attributions. We then use GPT-4 (OpenAI, 2023) to rephrase
the caption, keeping it semantically similar but perturbing the selected k tokens that are highly
contributing to the memorization metric (see Appendix D.4 for details).

3The LID estimates provided by FLIPD are sometimes negative in value; Kamkari et al. (2024b) justify this
as an artifact of estimating the LID using a UNet. Despite underestimating LID in absolute terms, Kamkari et al.
(2024b) confirm that FLIPD ranks LIDθ estimates correctly, which is sufficient for the purpose of distinguishing
memorized from non-memorized examples.
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(a) Analysis of the mitigation approach. (b) Comparing (normalized) token attributions for a memorized prompt using three methods.

Figure 7: Using token attributions to detect drivers of memorization and to mitigate it at sample time.

The bottom panel in Figure 7b shows four images: a training image corresponding to the prompt
“The Great Wave off Kanagawa by Katsushika Hokusai”, a generated image using the same prompt
showing clear memorization, a generated image obtained with our mitigation scheme with ACFG(c),
and another generated image using AFLIPD(c) instead. Qualitatively, using FLIPD or the norm of the
CFG vector perform on par with each other. The top panel of Figure 7b shows the token attributions
obtained from AFLIPD(c) are sensible. See Appendix D.5 for additional results.

We present quantitative comparisons in Figure 7a by analyzing the average CLIP score (Radford et al.,
2021) and SSCD similarity over matching prompts, varying k ∈ {1, 2, 3, 4, 6, 8}, with 5 repetitions
for each prompt. As k increases, both similarity score (lower is better) and CLIP score (higher is
better) consistently decrease across methods. We include an additional baseline where the modified
tokens are selected uniformly at random, ignoring attributions. All attribution-based methods achieve
lower similarity while maintaining a relatively higher CLIP score than the random baseline.

Overall, the results in Figure 7 provide further evidence supporting the MMH, both by showing that
encouraging samples to have higher LID can help prevent memorization, and by further confirming
the relationship between the CFG vector norm, the CFG-adjusted score norm, and LID established
in Section 3. We hypothesize that our results can likely be improved by more efficiently guiding
generated samples towards regions of high LID, but highlight that doing so is not trivial. For example,
in Appendix D.3 we find that using guidance towards large values of AFLIPD(c) during sampling can
fail by producing samples with chaotic textures that have artificially high LIDθ.

5 RELATED WORK

Detecting and Preventing Memorization for Image Models The task of surfacing memorized
samples is well-studied. Consensus in the literature is that ℓ2 distance to the nearest training sample
in pixel space is a poor detector of memorized samples (Carlini et al., 2023), but that recalibrating
the ℓ2 distance according to the local concentration of the dataset works better for smaller datasets
(Yoon et al., 2023; Stein et al., 2023), and that using retrieval techniques such as distance in SSCD
feature space (Pizzi et al., 2022) works better still, especially for more complex, higher-resolution
images (Somepalli et al., 2023a). However, all of these retrieval techniques are too expensive to be
used to withhold samples from a live model. To more efficiently prevent memorized samples from
being generated, past and concurrent works have altered the sampling procedure, training procedure,
or the model itself (Wen et al., 2023; Daras et al., 2024; Chen et al., 2024; Hintersdorf et al., 2024).

Explaining Memorization There is an active community effort attempting to explain why and how
memorization occurs in DGMs. Early studies focused on GANs, and have taken both theoretical
(Nagarajan et al., 2018) and empirical (Bai et al., 2021) perspectives. However, GANs are thought to
be less prone to memorization than DMs (Akbar et al., 2023), except on small datasets (Feng et al.,
2021). Several works on DMs (Pidstrigach, 2022; Yi et al., 2023; Gu et al., 2023; Li et al., 2024) have
pointed out that, given sufficient capacity, DMs at optimality are capable of learning the empirical
training distribution, which is complete memorization. Others have focused on generalization,
showing that DMs are capable of generalizing well in theory (Li et al., 2023), have inductive biases
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towards generating photorealistic images (Kadkhodaie et al., 2024), and will generalize when their
capacity is insufficient to memorize (Yoon et al., 2023).

DGM-Based LID Estimation As opposed to statistical LID estimators (e.g., Levina & Bickel
(2004)), which are constructed to estimate the dimension of M∗, DGM-based ones estimate the
dimensionality of Mθ, the manifold learned by a DGM. These types of estimators are available
for many types of DGMs, and in addition to being useful for memorization, have found utility in
out-of-distribution detection (Kamkari et al., 2024a). In the literature, LID estimators for normalizing
flows (Dinh et al., 2014) have been proposed using the singular values of their Jacobians (Horvat &
Pfister, 2022; Kamkari et al., 2024a) or their density estimates (Tempczyk et al., 2022). In Section 4
we applied the singular value method to obtain LID estimates for GANs. Dai & Wipf (2019) and
Zheng et al. (2022) proposed estimators for VAEs (Kingma & Welling, 2014; Rezende et al., 2014)
using the structure of their posterior distribution. Several authors have proposed estimators for DMs
as well (Stanczuk et al., 2024; Kamkari et al., 2024b; Horvat & Pfister, 2024); we focus on those of
Stanczuk et al. (2024) and Kamkari et al. (2024b) because they work with off-the-shelf DMs and do
not require modifying the training procedure.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Throughout this work, we have drawn connections between the geometry of a DGM and its propensity
to memorize through the MMH. First, we showed that the notion of LID provides a systematic way of
understanding different types of memorization. Second, we explained how memorization phenomena
described by prior work can be understood from the perspective of LID. Third, we verified the MMH
empirically across scales of data and classes of models. Fourth, we showed that controlling LIDθ is
a promising way to mitigate memorization. We offered several connections, including the insight
that some instances of memorization in DMs are due to the DM’s inability to generalize (OD-Mem),
whereas others are due to low-LID ground truth (DD-Mem).

Despite having demonstrated the utility of the MMH as a principled avenue to detect and alleviate
memorization, our current approaches can be improved: estimates of LIDθ have some overlap between
memorized and not memorized samples, and our sample-time scheme for mitigating memorization
using AFLIPD(c) performs on par, but does not outperform, its more ad-hoc version using ACFG(c).
We expect future work to find even better ways of leveraging the MMH and LID towards these goals,
e.g. by improving LID estimation, or by more efficiently controlling LID during sampling. Finally,
although the manifold hypothesis does not apply directly to discrete data such as language, some
intuitions described in this work carry over, and generalizations or parallels to the concepts here may
offer insights for the language-modelling space.

Reproducibility Statement To ensure the reproducibility of our experiments,
we provide two links to our codebases. The first codebase, accessible at
https://anonymous.4open.science/r/dgm-geometry-F64C/, contains our
small-scale synthetic experiments, as well as the CIFAR10 experiments. The second, accessible
at https://anonymous.4open.science/r/diffusion memorization-286C/,
extends the work in Wen et al. (2023) by incorporating functionalities inspired by the MMH to detect
and mitigate memorization. Comprehensive details of our experimental setup are provided across
Section 4, Appendix C, and Appendix D. All datasets used in our experiments are freely available
from the referenced sources and are utilized in compliance with their respective licenses.

Ethics Statement We do not foresee any ethical concerns with the present research. The overarching
topic, memorization in generative models, is widely studied to better understand safety concerns
associated with using and deploying such models. Our goal is to theoretically explain and to
empirically detect and alleviate this phenomenon; we do not promote the use of these models for
harmful practices.
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A CONTEXTUALIZING THE MMH WITHIN DEFINITIONS OF MEMORIZATION

An Overview of Definitions The MMH describes the mechanism through which memorization
occurs. How does this mechanism fit into prior definitions of memorization from the literature?
Formal definitions of memorization generally follow the same template: a point x0 is memorized
when the model’s probability measure Pθ places too much mass within some distance of x0. Some of
these definitions define memorization globally on the level of an entire model (Meehan et al., 2020;
Yoon et al., 2023; Gu et al., 2023), while others define memorization locally for individual datapoints
(Carlini et al., 2023; Bhattacharjee et al., 2023). The identical definitions of Yoon et al. (2023) and
Gu et al. (2023) consider a point to be memorized based purely on a distance threshold; in practice,
however, distances alone have been unsuccessful at consistently surfacing what would be perceived
by humans as memorized (Somepalli et al., 2023a; Stein et al., 2023). We postulate this is also due to
manifold structure; semantically memorized images such as Figure 2 will sit on the same manifold,
but may not necessarily be close to each other as measured by distance, even when taken in the latent
space of an encoder. Meanwhile, Carlini et al. (2023) take a privacy perspective; their definition
considers images memorized if they can be extracted from a model by any means, not just generated
by the model. In this work we take the perspective that memorized samples are most likely to be
problematic when they are generated by a production model, which are often treated as a black-box,
so we focus on generation rather than extraction.

Links Between Formal Memorization and the MMH For the reasons above, we use here the
definition of memorization by Bhattacharjee et al. (2023), who define a point x0 as memorized by
comparing Pθ to the ground truth P∗ in a neighbourhood of x0. We present their definition here:

Definition A.1. Let P∗ and Pθ be the ground truth and model probability measures, respectively.
Let λ > 1 and 0 < γ < 1. A point x ∈ Rd is a (λ, γ)-copy of a training datapoint x0 if there
exists a radius r > 0 such that the d-dimensional ball Bd

r (x0) of radius r centred at x0 satisfies
(i) x ∈ Bd

r (x0), (ii) Pθ(B
d
r (x0)) ≥ λP∗(B

d
r (x0)), and (iii) P∗(B

d
r (x0)) ≤ γ.

The first and third conditions imply that x is sufficiently close to x0 relative to the amount of
probability mass in the region (P∗(Br(x0))), while the second condition implies that the model Pθ

places much more mass in the region compared to the ground truth P∗. A natural question about the
MMH is whether points satisfying it are also formally memorized by the above definition. The answer
is in the negative for DD-Mem (Proposition A.2) and the affirmative for OD-Mem (Theorem A.3).

Proposition A.2. There exist models pθ(x) that exhibit DD-Mem at x0 ∈ Rd, but do not generate
(λ, γ)-copies of x0.

Proof. Choose any ground truth distribution P∗ on a manifold M∗ with a low-LID point x0 ∈ M∗
(for example, set LID∗(x0) = 0). A perfect model will exhibit DD-Mem at x0, but for any ballBd

r (x0)
containing x0, Pθ(B

d
r (x0)) = P∗(B

d
r (x0)), violating the second condition of Definition A.1.

Since DD-Mem is a consequence of the data distribution having points x0 with inherently low
LID∗(x0), these memorized points are likely to be generated even when there is no excess probability
mass assigned near x0 by Pθ, as required in the definition of (λ, γ)-copies.

Theorem A.3 (Informal). Suppose x0 ∈ Rd is such that pθ(x) exhibits OD-Mem at x0. Then, for
every λ > 1 and 0 < γ < 1, pθ(x) will generate (λ, γ)-copies of x0 with near-certainty.

Proof. See Appendix E for the formal statement of the theorem and proof.

The MMH thus provides two important pieces of context for the definition of (λ, γ)-copies. The first
is that Definition A.1 is in some sense incomplete; it does not cover DD-Mem. The second is that
OD-Mem can be considered a useful refinement of Definition A.1. While the algorithm given by
Bhattacharjee et al. (2023) is intractable at scale, we show in Section 4 that the added strength (in
the mathematical sense) of the MMH allows us to flag memorized data more efficiently using only
estimators of LID.
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B LID ESTIMATION

B.1 LID ESTIMATION WITH DIFFUSION MODELS

As mentioned in the main manuscript, we follow the SDE framework of Song et al. (2021) for DMs,
where the so called forward SDE is given by

dxt = f(xt, t)dt+ g(t)dWt, x0 ∼ p∗(x), (3)

where f : Rd × [0, 1] → Rd and g : [0, 1] → R are pre-specified functions and Wt is a Brownian
motion on Rd. This process progressively adds noise to data from p∗(x), and we denote the
distribution of xt as pt(xt). This process can be reversed in time in the sense that if yt := x1−t, then
yt obeys the so called backward SDE,

dyt =
[
g2(1− t)∇ log p1−t(yt)− f(yt, 1− t)

]
dt+ g(1− t)dW̃t, y0 ∼ p1, (4)

where W̃t is another Brownian motion. DMs aim to learn the (Stein) score function, ∇ log pt(xt),
by approximating it with a neural network sθ : Rd × (0, 1] → Rd. Once the network is trained,
sθ(xt, t) ≈ ∇ log pt(xt) is plugged in Equation 4, and solving the resulting SDE allows to transform
noise into model samples. Below we briefly summarize two existing methods, FLIPD and NB, for
approximating LIDθ(x) for a DM.

FLIPD Kamkari et al. (2024b) proposed FLIPD, an estimator of LIDθ(x) for DMs. Commonly f
is linear in xt, in which case the transition kernel corresponding to the forward SDE is given by

pt|0(xt | x0) = N (xt;ψ(t)x0, σ
2(t)Id), (5)

where ψ, σ : [0, 1] → R are known functions which depend on the choices of f and g, and which can
be easily evaluated. For a DM with such a transition kernel, FLIPD is defined as

FLIPD(x, t0) = d+ σ2(t0)
(

tr
(
∇sθ

(
ψ(t0)x, t0

))
+ ∥sθ

(
ψ(t0)x, t0

)
∥2
)
, (6)

where t0 ∈ [0, 1] is a hyperparameter. Kamkari et al. (2024b) proved that, when t0 ≈ 0 and x ∈ Mθ,
FLIPD(x, t0) is a valid approximation of LIDθ(x). The reason for this is that the rate of change of
the log density of the convolution between pθ(x) and a Gaussian evaluated at x0 with respect to the
amount of added Gaussian noise approximates LIDθ(x0); and Kamkari et al. (2024b) showed that
FLIPD computes this rate of change. In practice computing the trace of the Jacobian of sθ is the
only expensive operation needed to compute FLIPD, and this is easily approximated by using the
Hutchinson stochastic trace estimator (Hutchinson, 1989).

NB Stanczuk et al. (2024) proposed another estimator of LIDθ(x) for DMs. Following Kamkari
et al. (2024b), we refer to this estimator as the normal bundle (NB) estimator. Stanczuk et al. (2024)
proved that when f(xt, t) ≡ 0, sθ(xt, t) points orthogonally towards Mθ as t→ 0. They leverage
this observation as follows: for a given x, Equation 3 is started at x and run forward until time t0;
this is done k times, resulting in x(1)t0 , . . . , x

(k)
t0 . The matrix Sθ(x, t0) ∈ Rd×k is then constructed as

Sθ(x, t0) =
[
sθ

(
x
(1)
t0 , t0

)∣∣∣· · ·∣∣∣sθ (x(k)t0 , t0

)]
, (7)

and thanks to the previous observation, the columns of Sθ(x, t0) approximately span the normal
space of Mθ at x when t0 ≈ 0, meaning that rank Sθ(x, t0) ≈ d− LIDθ(x). The NB estimator is
given by

NB(x, t0) = d− rank Sθ(x, t0). (8)
In practice the rank is numerically computed by setting a threshold, carrying out a singular value
decomposition of Sθ(x, t0), and counting the number of singular values above the threshold. Stanczuk
et al. (2024) recommend setting k = 4d, and we follow this recommendation. Computing the NB
estimator is much more expensive than FLIPD, since 4d forward calls have to be made to construct
Sθ(x, t0), and then the singular value decomposition has a cost which is cubic in d. Finally, we point
out that when f is not identically equal to 0, the NB method can be easily adapted to still provide a
valid approximation of LIDθ(x) (Kamkari et al., 2024a).

We highlight that both FLIPD and NB were originally developed as estimators of LID∗(x) under
the view that if the learned score function is a good approximation of the true score function, then
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LIDθ(x) ≈ LID∗(x). In our work, we see these methods as approximating LIDθ(x). Note that these
views are not contradictory: when the DM properly approximates the true score function, it will
indeed be the case that LIDθ(x) ≈ LID∗(x); importantly though, when this approximation fails, we
interpret FLIPD(x, t0) and NB(x, t0) as still providing a valid approximation of LIDθ(x) rather than
a poor estimate of LID∗(x).

B.2 LOCAL PRINCIPAL COMPONENT ANALYSIS

Local PCA (Fukunaga & Olsen, 1971) offers a straightforward method for estimating the LID∗ of a
datapoint by using linear local approximations to the data manifold. Given x, local PCA first identifies
a set of nearby points in the dataset, representing a neighbourhood; this is typically done through
a k-nearest neighbours algorithm. Next, the algorithm performs a principal component analysis
(PCA) on this neighbourhood to get (i) principal components and (ii) explained variances for each
component; the resulting principal components capture the directions of data variation, with the
explained variance showing the amount of variation along each direction. Directions off the manifold
are expected to have negligible explained variance. Hence, local PCA determines the number of
components with non-zero (or non-negligible) explained variance as an estimate for LID∗(x).

B.3 LID ESTIMATION WITH GANS

We assume the GAN is given by a generator Gθ : Rd′ → Rd which transforms latent variables from a
distribution in Rd′

to the ambient space Rd. For a generated sample x = Gθ(z), we estimate LIDθ(x)
as the rank of the Jacobian of the generator, i.e. rank ∇Gθ(z). As for the NB estimator with DMs,
the rank is numerically computed by thresholding singular values. We highlight that this is a standard
approach to estimate LIDθ in decoder-based DGMs (Horvat & Pfister, 2022; Kamkari et al., 2024a;
Humayun et al., 2024).

C EXPERIMENTAL DETAILS

C.1 HYPER-PARAMETER SETUP FOR LID ESTIMATION METHODS

L̂ID∗ with Local PCA As established in Appendix B.2, local PCA estimates the intrinsic di-
mensionality of a datapoint by counting the number of significant explained variances from a PCA
performed on the datapoint’s local neighbourhood, determined by its k nearest neighbours (k = 100
in our experiments). Finding the significant explained variances is done through a threshold hyper-
parameter, τ , where explained variances above τ are considered significant. For our approach in
Figure 5d, we introduce two key modifications to better adapt the original Local PCA algorithm for
detecting DD-Mem: (i) instead of selecting τ individually for each datapoint, we define it globally
as the 10th percentile of all explained variances across the entire dataset; (ii) if a datapoint has
neighbours within the 10th percentile of all pairwise distances, we restrict the neighbourhood to those
points. The second modification allows us to avoid including distant points in the neighbourhood if
closer ones already exist and especially helps us detect zero-dimensional point masses.

L̂IDθ for GANs As detailed in Appendix B.3, the rank of the Jacobian ∇Gθ(z) can be used to
estimate L̂IDθ. However, in practice, the rank — or, equivalently, the number of non-zero singular
values — tends to equal the latent dimension; this is because singular values are typically close to
zero but rarely exactly zero. To account for this, we apply a thresholding approach: a singular value is
considered significant (non-zero) if it exceeds a hyperparameter τ . We define τ as the 10th percentile
of all singular values computed from the generated images in Figure 5b and Figure 8b.

L̂IDθ with NB We used t0 = 0.1 and thresholded the singular values of Sθ(x, t0) by 10th percentile;
the results are presented in Figure 5c and Figure 8a. The choice of t0 is empirically determined by
observing how the NB score correlates with the memorization behavior with a fixed subset of 1000
randomly generated samples.

L̂IDθ with FLIPD Unless stated otherwise, we set t0 = 0.05 for FLIPD and use the Hutchin-
son trace estimator to approximate the trace of the score gradient in Equation 6. In line with
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(a) L̂IDθ adjusted by PNG for iDDPM. (b) L̂IDθ adjusted by PNG for StyleGAN-ADA2. (c) PNG compression length for Stable Diffusion im-
ages.

Figure 8: Removing and analyzing image complexity as a confounding factor in memorization detection for
CIFAR10 (a-b) and Stable Diffusion (c).

Kamkari et al. (2024b), we apply this in the latent space of Stable diffusion and use a single Hutchin-
son sample to estimate Equation 6 for all of our large-scale experiments.

CFG Norm for Detecting Memorized Samples in the Training Set Note that while Wen et al.
(2023) use the generation process to measure whether a synthesized image has been memorized,
we were interested in detecting whether real, training-set images have been memorized in Figure 6,
which requires some methodological changes. To compute a memorization score, we take k Euler
steps forward using the conditional score sθ(x; t, c) with the probability flow ODE (Song et al., 2021)
until time t0 to get a point at x0 ∈ Rd. We then compute the CFG norm ∥sθ(x0; t0, c)− sθ(x; t0, ∅)∥.
We use timestep t0 = 0.01 and 3 Euler steps.

C.2 THE CONFOUNDING EFFECT OF COMPLEXITY FOR DETECTING MEMORIZATION

LIDθ is correlated with image complexity (Section 2; Kamkari et al. (2024b)), which raises a valid
concern: the correlation, combined with the fact that simpler images are more likely to be memorized,
suggests that image complexity may confound our analysis. This is evident in Figure 5a (right panel),
where GAN-generated images with the lowest L̂IDθ values are the simplest ones, not necessarily the
memorized ones. To address this confounding factor, we draw inspiration from Kamkari et al. (2024b)
and normalize it by PNG compression length, using it as a proxy for image complexity. We use the
maximum compression level of 9 with the cv2 package (Bradski, 2000). According to this adjusted
metric, the smallest values now correspond to memorized images that are not necessarily simple, such
as the cars in CIFAR10. Figure 8a and Figure 8b show these adjusted LID estimated values, which
achieve a slightly improved separation between memorized and not memorized images (as well as
between exactly memorized and reconstructively memorized images) than the non-PNG-normalized
results in the main text. It is worth noting that complexity did not appear to be a confounding factor in
the Stable Diffusion analysis shown in Figure 6. In fact, as depicted in Figure 8c, the Tuxemon images
are relatively simpler than the LAION memorized images, as measured by their PNG compression
length. However, despite their simplicity, Tuxemon images have consistently higher L̂IDθ values
compared to the memorized images in Figure 6b and Figure 6a.
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D TEXT CONDITIONING AND MEMORIZATION IN STABLE DIFFUSION

D.1 ADAPTING DENOISING DIFFUSION PROBABILISTIC AND IMPLICIT MODELS

Following Wen et al. (2023), we use denoising diffusion probabilistic models (DDPMs) (Ho et al.,
2020). This model can be seen as a discretization of the forward SDE process of a score-based DM
(Song et al., 2021). Here, instead of continuous timesteps t, a timestep t instead belongs to a sequence
{0, . . . T} with T being the largest timescale; we use T = 50. We use the colour red to denote the
discretized notation used in Ho et al. (2020).

With that in mind, DDPMs can be seen as a Markov noising process with the following transition
kernel, parameterized by ᾱt, mirroring the notation from Ho et al. (2020):

pt|0(xt | x0) := N (xt;
√
ᾱt · x0, (1− ᾱt)Id). (9)

DDPMs do not directly parameterize the score function, but rather use a neural network ϵθ(xt, t),
which relates to the score function as:

sθ(x, t/T ) = −ϵθ(x, t)/
√
1− ᾱt, or equivalently, − σ(t/T )sθ(x, t/T ) = ϵθ(x, t). (10)

Note that in this context, we have σ2(t/T ) = 1− ᾱt and ψ(t/T ) =
√
ᾱt. Equation 9 (the transition

kernel) and Equation 10 (the score function) provide us with the recipe for estimating LIDθ using
FLIPD with DDPMs (recall Equation 6).

When sampling from DMs we use the DDIM sampler (Song et al., 2020), mirroring the setup in Wen
et al. (2023). In our notation, this sampler defines x̃t := xt/ψ(t), where xt is given as in Equation 3.
In turn, x̃t obeys the forward SDE:

dx̃t = g̃(t)dWt, x̃0 ∼ p∗(x), (11)

where g̃(t) = g(t)/ψ(t). This SDE has a corresponding score function

s̃θ(x, t) = ψ(t)sθ
(
ψ(t)x, t

)
, (12)

and DDIM uses this score function to sample from the model. The transition kernel corresponding
to Equation 11 has ψ̃(t) = 1 and a σ̃(t) which can be computed in closed form. Analogously to
Equation 10, we can define ϵ̃θ as

ϵ̃θ(x, t) = −σ̃(t/T )s̃θ(x, t/T ). (13)

We highlight that FLIPD (Equation 6) can be applied using the forward SDE in Equation 11 along
with its corresponding score function in Equation 12, resulting in the estimate

F̃LIPD(x, t) = d+ σ̃2(t)
(

tr
(
∇s̃θ

(
x, t

))
+ ∥s̃θ

(
x, t

)
∥2
)
. (14)

Note that this estimate can be computed when having access to ϵ̃θ thanks to Equation 13. We also
note that in our text-conditioning analysis, we are interested in the probabilities conditioned by the
text prompt, thus, these score functions are extended by the conditioning variable c, resulting in the
modified forms ϵθ(x; t, c), ϵ̃θ(x; t, c), sθ(x; t/T , c), and s̃θ(x; t/T , c).

D.2 UNIFYING DIFFERENTIABLE METRICS FOR TEXT-CONDITIONED MEMORIZATION

We begin by revisiting the differentiable memorization metric used by Wen et al. (2023) for detecting
and mitigating memorization, reformulating it within the continuous, score-based framework of
diffusion models. Building on this, we perform an analysis, making minimal modifications to the
original formulation to derive alternative metrics that remain effective and are theoretically-grounded.
As a result, here we will formally derive three differentiable metrics: ACFG(c), AsCFG

θ (c), and finally
AFLIPD(c). We show that the value Wen et al. (2023) compute in their paper is in fact an estimator
of ACFG(c), rescaled by a constant. We then make minor modifications to introduce the two new
metrics AsCFG

θ (c) and AFLIPD and interpret them through the lens of the MMH.
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The Differentiable Metric of Wen et al. (2023) For any text condition c, Wen et al. (2023)
generate multiple samples (x̃0

(n))Nn=1, with the nth sample following the (DDIM) trajectory
{x̃T (n), x̃T−1

(n), . . . , x̃0
(n)} from noise to data through the denoising process. They then intro-

duce the following metric, which we have slightly reformulated to match our notation:

ACFG(c;N,T ) =
1

TN

N∑
n=1

T∑
t=0

∥ϵ̃θ
(
x̃t

(n); t, c
)
− ϵ̃θ

(
x̃t

(n); t, ∅
)
∥2. (15)

We colour-code the metric in red to distinguish between it and the analogous metric that we will
shortly derive at the end of this section.

Let p̃CFG
t represent the marginal probability at time t induced by the DDIM sampler conditioned on c

with the addition of the CFG term. Recall from Equation 2 that the score used for sampling from
p̃CFG
t (· | c) with CFG is

s̃CFG
θ (x; t, c) = s̃θ(x; t, ∅) + λ(s̃θ(x; t, c)− s̃θ(x; t, ∅)) . (16)

Using Equation 13 and Equation 2, we can rewrite ACFG(c;N,T ) as follows:

ACFG(c;N,T ) :=
1

TN

N∑
n=1

T∑
t=0

∥∥∥− σ̃(t/T )

λ

[
s̃CFG
θ (x̃t

(n); t/T , c)− s̃θ(x̃t
(n); t/T , ∅)

] ∥∥∥2. (17)

We now assume T → ∞, which will reformulate Equation 17 with an integral that we will replace
with an expectation:

ACFG(c;N) := lim
T→∞

ACFG(c;N,T ) (18)

= λ−2 · 1

N

N∑
n=1

∫ 1

0

σ̃2(t)∥s̃CFG
θ (x̃t

(n); t, c)− s̃θ(x̃t
(n); t, ∅)∥2dt (19)

= λ−2 · 1

N

N∑
n=1

Et∼U(0,1)

[
σ̃2(t)∥s̃CFG

θ (x̃t
(n); t, c)− s̃θ(x̃t

(n); t, ∅)∥2
]

(20)

= λ−2 · Et∼U(0,1)

[
1

N

N∑
n=1

σ̃2(t) · ∥s̃CFG
θ (x̃t

(n); t, c)− s̃θ(x̃t
(n); t, ∅)∥2

]
. (21)

Here, U(0, 1) denotes the uniform distribution. Next, we observe that the inner term of the expectation
on the right-hand-side of Equation 21 is in fact a Monte-Carlo estimator. By the law of large numbers,
we have the following:

ACFG(c) := lim
N→∞

ACFG(c;N) (22)

= λ−2 · Et∼U(0,1)Ex̃t∼p̃CFG
t (·|c)

[
σ̃2(t) · ∥s̃CFG

θ (x̃t; t, c)− s̃θ(x̃t; t, ∅)∥2
]
. (23)

We now see that with the new formulation, all the red terms in Equation 23, have gone away, making
it fully amenable to the score-based formulation of diffusion models. The λ factor merely scales the
metric, and for the purposes of detection and mitigation, this scaling is inconsequential: if a metric
effectively predicts memorization, rescaling it will not diminish its effectiveness as a predictor. We
thus disregard the scaling factor λ to make the derivation cleaner and replace the uniform distribution
U(0, 1) with a general “scheduling” distribution T (0, 1) of timesteps in (0, 1]; this would allow our
metric to be a generalization of the one proposed by Wen et al. (2023):

ACFG(c) := Et∼T (0,1)Ex̃t∼p̃CFG
t (·|c)

[
σ̃2(t) · ∥s̃CFG

θ (x̃t; t, c)− s̃θ(x̃t; t, ∅)∥2
]
. (24)

Simplifying Further We have shown that the CFG vector norm and the CFG adjusted score norm
behave similarly in Figure 3. If, instead of considering the CFG vector norm in Equation 24, we
consider the CFG-adjusted score s̃CFG

θ (·; t, c), we arrive at the following metric:

AsCFG
θ (c) := Et∼T (0,1)Ex̃t∼p̃CFG

t (·|c)
[
σ̃2(t)∥s̃CFG

θ (x̃t; t, c)∥2
]
. (25)

We have shown this to be a viable memorization metric, able to detect tokens driving memorization
in Figure 11, and behaving comparable to ACFG(c), the original metric proposed by Wen et al. (2023).
However, a nice property of AsCFG

θ (c) is that it can now be linked to MMH: for a memorized prompt
where LIDθ(· | c) is small, the score function s̃CFG

θ (·; t, c), especially for small t, tends to become
large, causing the metric in Equation 25 to increase significantly.
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Linking to FLIPD We now propose a more direct proxy for LID based on the FLIPD estimate
of LIDθ. Recalling Equation 6, we can define the class-conditional LIDθ(· | c) estimate based on
FLIPD as follows, analoguously to Equation 14:

F̃LIPD
CFG

(·; t, c) = d+ σ̃2(t) ·
(

tr
(
∇s̃CFG

θ (·; t, c)
)
+ ∥s̃CFG

θ (·; t, c)∥2
)
. (26)

Noting that F̃LIPD
CFG

(·; t, c) has a similar term to Equation 25, we add d and the trace term from
Equation 26 into Equation 25, and propose the following MMH-based metric:

d+AsCFG
θ (c) + Et∼T (0,1)Ex̃t∼p̃CFG

t (·|c)
[
σ̃2(t) · tr

(
∇s̃CFG

θ

(
x̃t; t, c

))]
= (27)

Et∼T (0,1)Ex̃t∼p̃CFG
t (·|c)

[
F̃LIPD

CFG
(x̃t; t, c)

]
=: AFLIPD(c). (28)

Despite the fact that AFLIPD(c) can be expressed in terms of AsCFG
θ (c), the former indicates memoriza-

tion when it is small, while the latter indicates memorization when it is large.

Note that while Equation 28 averages FLIPD values over (potentially) all the timesteps t ∈ (0, 1],
the theory linking FLIPD and LIDθ is only rigorously justified when t→ 0 (Kamkari et al., 2024b).
Hence, we set the scheduling distribution T such that it primarily samples t close to zero. As
such, AFLIPD will average FLIPD estimate terms that are closely linked to LIDθ(· | c). Notably,
our experiments also revealed that although setting t as small as possible makes sense from a
mathematical perspective, the score function, and as a result, FLIPD estimates, become unstable as
t→ 0 (Pidstrigach, 2022; Kamkari et al., 2024b). Therefore, in practice, we choose T as a uniform
supported on (0.0, 0.2]; therefore, putting more emphasis on these small t values but at the same time
avoiding instabilities in AFLIPD(c).

The scheduling is a small, but important distinction between AFLIPD on one hand, and AsCFG
θ and

ACFG on the other hand; while AFLIPD sets T as a uniform on (0.0, 0.2], AsCFG
θ and ACFG set T to a

uniform distribution on (0, 1], to mirror the setup in Wen et al. (2023).

D.3 INCREASING IMAGE COMPLEXITY BY OPTIMIZING AFLIPD

Wen et al. (2023) have an experiment where they optimize the prompt (embedding) c directly to
minimize ACFG(c), and as a result decrease ACFG(c), with the purpose of obviating memorization.
Here, we take a similar approach but instead optimize c to maximize AFLIPD(c).

In Figure 9, we optimize c with Adam using multiple steps, and as we increase AFLIPD(c), we
sample images using the prompt embedding which is being optimized. We see that images sampled
from these prompts indeed increase in complexity. This is fully consistent with our expectations
and understanding of LID. We see, however, that while at a certain range the images are relatively
less memorized, the method tends to introduce excessively chaotic textures to artificially increase
LIDθ(· | c), often at the expense of the image’s semantic coherence. Despite this, we still find this to
be an interesting result and invite future work on using different scheduling approaches for AFLIPD(c)
that can stabilize the optimization process of c.

D.4 TEXT PERTURBATION APPROACHES

GPT-based Perturbations As outlined in the main text, we sample k tokens without replacement
from a categorical distribution obtained by normalizing the token attributions, then use GPT-4 to
replace these tokens; this ensures that tokens with the highest attributions are replaced more frequently.
After selecting these k tokens, we ask GPT to follow the instructions provided in Box 1 and use the
output of the conversation as the new prompt. This process is repeated five times in our analysis to
account for any randomness in the GPT output. It is important to note that these perturbations are
designed to preserve the prompt’s semantic structure. To ensure this, the instruction specifically asks
GPT not to replace names of places or characters, and to keep the new prompt as semantically close
to the original as possible.
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(a) Emma Watson Set to Star Alongside Tom Hanks in Film Adaptation of Dave Eggers’ <i>The Circle</i>

(b) Aero 31-984210BLK 31 Series 13x8 Wheel, Spun 4 on 4-1/4 BP 1 Inch BS

(c) Air Conditioners & Parts

(d) Netflix Hits 50 Million Subscribers

(e) Waterford Sand Silk Stripe Swatch

(f) Björk Explains Decision To Pull <i>Vulnicura</i> From Spotify

(g) Here’s What You Need to Know About St. Vincent’s Apple Music Radio Show

Figure 9: Samples and their original memorized captions from directly optimizing text conditioning to increase
AFLIPD and reduce memorization. The images progress through different stages of the optimization process from
left to right. While increasing LIDθ helps reduce memorization, uncontrolled increases often introduce chaotic
textures, resulting in unrealistic images.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Box 1: Instruction for perturbing a caption prompt using GPT-4

I have the following caption as a sequence of tokens:
⟨ original tokens ⟩

I want to create a new caption based on this one, but I want to perturb the following tokens:
⟨ selected tokens ⟩

These are the rules to follow for perturbing tokens:
1. If the token is a special character or punctuation without significant semantics, you can

remove it or change it to any special character
2. If the token is a number, you can replace it with another number that is close to it
3. If the token is a special name, such as the name of someone or some place or some culture,

it should not be replaced
4. If the token is any other word, you can replace and rephrase it with any synonym that

makes sense in the context
Given these requirements, please provide me with a new caption, not as a sequence of tokens, but
as a natural language sentence that semantically matches closely with the original caption except
for the perturbed tokens. Do not say anything else in response, only provide the new caption.

Qualitative Comparison Figure 10 presents a qualitative comparison of our GPT-based pertur-
bations applied to three memorized prompts. We have selected these specific examples to illustrate
how the prompt perturbations function in practice. In this case, we set k = 4 and randomly perturb
the tokens based on attributions derived from AFLIPD. Additionally, Figure 10 includes a column
demonstrating the random token addition (RTA) approach proposed by Somepalli et al. (2023a),
where k random tokens from the CLIP library are inserted into the prompt. We see that the GPT-based
perturbations better preserve the semantic integrity of the text caption, resulting in images that are
not memorized and are significantly more coherent.
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Memorized Prompt GPT + AFLIPD Mitigation RTA (Somepalli et al., 2023b)

Talks on the Precepts and Buddhist
Ethics

discussions about the precepts and
Buddhist principles

Talks mellon dragonball on the vil-
lar Precepts and reformed Buddhist
Ethics

<i>The Long Dark</i> Gets First
Trailer, Steam Early Access

<i>The Long Dark</i> Gets First
Trailer; Steam Early Access

barbershop relying <i>The idal
Long Dark</i> Gets First Trailer,
Steam Early ghorn Access

Sound Advice with John W Doyle sound guidance with john w doyle Sound Advice with John payments
grill hsfb acadi W Doyle

Figure 10: Comparison of mitigation approaches. The tokens highlighted in red indicate the changes and
perturbations made by each approach.
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D.5 MORE EXAMPLES OF TOKEN ATTRIBUTIONS

(a) All the methods detect “Netflix” a private trademark driving memorization.

(b) All the methods detect “interview” (the movie title) as the driver for memorization, ACFG also detects “Sony” as a significant token.

(c) All the methods detect “podcast” as the token driving memorization.

Figure 11: Memorized Stable Diffusion samples with a comparison of token attributions based on three different
memorization metrics: the CFG vector norm proposed by Wen et al. (2023), the CFG-adjusted score sCFG

θ (x; t, c)
norm, and the FLIPD estimate for LIDθ(· | c).
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E PROOFS

We restate each theorem in full formality below along with their proofs.

Throughout this section, we let P∗ and Pθ be the probability measures of the ground truth data and
model, respectively. We assume that the respective supports of P∗ and Pθ are M∗,Mθ ⊂ Rd, smooth
Riemannian submanifolds of the Euclidean space Rd with metrics g∗ and gθ respectively. We denote
the Riemannian measures on M∗ and Mθ as µ∗ and µθ, respectively, so that p∗(x) = dP∗/dµ∗(x)
and pθ(x) = dPθ/dµθ(x). As mentioned in Section 2, we take a lax definition of manifold which
allows them to vary in dimensionality in different components. A single manifold under our definition
is equivalent to a disjoint union of manifolds under the more standard definition.

E.1 PROPOSITION 3.1

Lemma E.1. Assume that p∗(x) > 0 for every x ∈ M∗, and let x0 ∈ M∗. Then, the following are
equivalent:

1. P∗ ({x0}) > 0, and

2. LID∗ (x0) = 0.

Proof.

(1) =⇒ (2) Assume P∗ ({x0}) > 0.

0 < P∗ ({x0}) =
∫
{x0}

p∗(x)dµ∗(x), (29)

which necessitates µ∗({x0}) > 0. If we had LID∗(x0) > 0 this would incur a contradiction:
letting (U, ϕ) be a chart around x0, then by the definition of µ∗,

0 < µ∗({x0}) =
∫
ϕ({x0})

√
det(g∗)dλ, (30)

where λ is the Lebesgue measure on RLID∗(x0) or the counting measure if LID∗(x0) = 0.
Due to the singleton domain of integration, positivity of the integral in Equation 30 would
be impossible unless LID∗(x0) = 0.

(2) =⇒ (1) Suppose LID (x0) = 0. This implies that {x0} is an open set in the subspace
topology of M∗. Since x0 ∈ supp µ∗, any open set containing x0 must have positive
measure under µ∗, so that µ∗({x0}) > 0. Then, since P∗({x0}) = p∗(x0)µ∗({x0}) and
p∗(x0) > 0, it follows that P∗({x0}) > 0.

Proposition E.2 (Formal Restatement of Proposition 3.1). Assume that p∗(x) > 0 for every x ∈ M∗.
Let {xi}ni=1 be a training dataset drawn independently from p∗(x). Then:

1. If duplicates occur in {xi}ni=1 with positive probability, then they will occur at a point x0
such that LID∗(x0) = 0.

2. If LID∗(x0) = 0 for some x0 ∈ M∗, then the probability of duplication in {xi}ni=1 will
converge to 1 as n→ ∞.

Proof.

(1) Due to Lemma E.1, it suffices to show that any duplicates in {xi}ni=1 must occur at
a point x0 such that P∗({x0}) > 0. It is thus enough to show that if P∗({x0}) = 0
for every x0 ∈ M∗, then P∗(x1 = x2) = 0. Assume that P∗({x0}) = 0 for every
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x0 ∈ M∗. Since x1 and x2 are independent, P∗(x1 = x2) = P∗ × P∗(D), where
D = {(x, x) ∈ M∗ ×M∗ | x ∈ M∗}. We then have:

P∗ × P∗(D) =

∫
D

dP∗ × P∗(x1, x2) =

∫
M∗

∫
{x2}

dP∗(x1)dP∗(x2) (31)

=

∫
M∗

P∗({x2})dP∗(x2) = 0, (32)

where the second equality follows from Fubini’s theorem (see e.g. Theorem 7.26 in Folland
(2013)), and the last equality follows by assumption. This finishes this part of the proof.

(2) Suppose LID∗(x0) = 0 for some x0 ∈ M∗. By Lemma E.1, we have P∗ ({x0}) > 0.
In this case, P∗ (xi = x0) > 0 for all i ∈ {1, . . . , n}, meaning that

P∗(xi = xj for some 1 ≤ i < j ≤ n) ≥ P∗(xi = xj = x0 for some 1 ≤ i < j ≤ n) (33)
≥ 1− P∗(xi ̸= x0 for all i ≥ 2) (34)
= 1− P∗(x2 ̸= x0) · · ·P∗(xn ̸= x0) (35)

= 1− (1− P∗({x0}))n−1 (36)
−→ 1 , (37)

where the last line depicts the limiting behaviour as n→ ∞.

E.2 PROPOSITION 3.2

Here we presume the joint distribution of model samples and k-dimensional conditioning inputs
(x, c) ∈ Rd+k has support S ⊂ Rd+k such that {x : (x, c) ∈ S for some c ∈ Rk} = Mθ. We define
the conditional support of x given c to be S(c) = {x : (x, c) ∈ S}.

Proposition E.3 (Formal Restatement of Proposition 3.2). Let x0 ∈ Mθ and c ∈ Rk. Suppose that
S(c) is also a submanifold of Rd and denote its LID at x0 by LIDθ(x0 | c). We then have

LIDθ(x0 | c) ≤ LIDθ(x0). (38)

Proof. If S(c) is a submanifold of Rd, then it is also a submanifold of Mθ. The inequality follows
directly.

E.3 THEOREM A.3

Here we show that OD-mem implies data-copying under the definition of Bhattacharjee et al. (2023).

Lemma E.4. Suppose (M, g) is a d0-dimensional smooth Riemannian submanifold of Euclidean
space Rd. Let µ be the Riemannian measure of M. If Bd

r (x0) denotes the d-dimensional ball of
radius r centred at x0 in Rd, then there exist constants CM

1 > 0 and CM
2 > 0 not depending on r

such that for all small enough r:

CM
1 rd0 ≤ µ

(
Bd

r (x0) ∩M
)
≤ CM

2 rd0 . (39)

Proof. Without loss of generality, by rotating and translating, we assume x0 = 0 ∈ Rd and that the
tangent plane of M in Rd at x0 is Rd0 × {0}d−d0 .

As M is smooth, in a neighbourhood U of x0 = 0, M can be written of a graph of a function
u : U ⊂ Rd0 → Rd−d0 , such that u(0) = 0 and all first derivatives vanish at 0. Then, for small
enough r > 0, we have

Bd
r (x0) ∩M = {(z, u(z)) ∈ Rd | z ∈ Rd0 , ∥z∥2 + ∥u(z)∥2 < r2}. (40)

Let
G(r) = {(z, u(z)) ∈ Rd | z ∈ Rd0 , ∥z∥ < r} (41)
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be the graph of u in the open d0-ball Bd0
r (0), and

G(r) = {(z, u(z)) ∈ Rd | z ∈ Rd0 , ∥z∥ ≤ r} (42)

be the graph of u in the closed d0-ball Bd0
r (0). Note that both are defined when u is defined, i.e.

small enough r, and are subset of M. Then it is clear that we have

Bd
r (x0) ∩M ⊆ G(r). (43)

Now, consider the function v(z) = ∥u(z)∥
∥z∥ . Note that v(z) is continuous everywhere in Bd0

r (0) \ {0}.
Since u and its derivatives vanish at z = 0, from the definition, we have limz→0 v(z) = 0 as well.
Thus v(z) can be extended to a continuous function inBd0

r (0). FixR > 0, and letK be the maximum
of v over Bd0

R . Then, if ∥z∥ < ar where a = 1√
1+K2

, we have

∥z∥2 + ∥u(z)∥2 = ∥z∥2(1 + v(z)2) ≤ ∥z∥2(1 +K2) < r2. (44)

This shows that G(ar) ⊆ Bd
r (x0) ∩M for 0 < r < R. Thus we have

µ(G(ar)) ≤ µ(Bd
r (x0) ∩M) ≤ µ(G(r)). (45)

Let K1 and K2 be the minimum and maximum of
√
det g over Bd0

r (0), respectively. Then we have

µ(G(r)) =

∫
B

d0
r (0)

√
det g dz ≤

∫
B

d0
r (0)

K2dz = K2Vd0r
d0 (46)

and
µ(G(r)) =

∫
B

d0
r (0)

√
det g dz ≥

∫
B

d0
r (0)

K1dz = K1Vd0r
d0 , (47)

where Vd0
is the Euclidean volume of the unit d0-ball. Combining the above results, we have

K1Vd0
ad0rd0 ≤ µ(G(ar)) ≤ µ(Bd

r (x0) ∩M) ≤ µ(G(r)) ≤ K2Vd0
rd0 , (48)

which finishes the proof with CM
1 = K1Vd0

ad0 and CM
2 = K2Vd0

.

Theorem E.5 (Formal Restatement of Theorem A.3). Assume that p∗(x) and pθ(x) are continuous
and that pθ(x) is strictly positive. Let x0 ∈ Mθ∩M∗ and let pθ(x) be a model undergoing OD-mem
at x0, i.e. 0 ≤ LIDθ(x0) < LID∗(x0). Then for any λ > 1 and 0 < γ < 1, there exists a radius
r0 such that any x ∈ Bd

r0(x0) is a (λ, γ)-copy of x0 according to Definition A.1, and if {xj}mj=1

is generated independently from pθ(x), then the probability of (λ, γ)-copying x0 converges to 1 as
m→ ∞.

Proof. For an arbitrary value of r > 0, we have that

Pθ(B
d
r (x0)) ≥ µθ(B

d
r (x0) ∩Mθ) inf

x∈Bd
r (x0)∩Mθ

pθ(x) (49)

and similarly,
P∗(B

d
r (x0)) ≤ µ∗(B

d
r (x0) ∩M∗) sup

x∈Bd
r (x0))∩M∗

p∗(x). (50)

Using Lemma E.4,

P∗(B
d
r (x0))

Pθ(Bd
r (x0))

≤ µ∗(B
d
r (x0) ∩M∗)

µθ(Bd
r (x0) ∩Mθ)

·
supx∈Bd

r (x0)∩M∗
p∗(x)

infx∈Bd
r (x0)∩Mθ

pθ(x)
(51)

≤ CM∗
2

CMθ
1

rLID∗(x0)−LIDθ(x0)
supx∈Bd

r (x0)∩M∗
p∗(x)

infx∈Bd
r (x0)∩Mθ

pθ(x)
. (52)

Note that by continuity and positivity of pθ(x), infx∈Bd
r (x0)∩Mθ

pθ(x) is bounded away from 0 as
r → 0, and by continuity of p∗(x), supx∈Bd

r (x0)∩M∗
is bounded. In turn, since by assumption

LID∗(x0) > LIDθ(x0), Equation 52 converges to 0 as r → 0. As a result, there exists some r0
sufficiently small enough for both

P∗(B
d
r0(x0))

Pθ(Bd
r0(x0))

≤ 1

λ
(53)
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and
P∗(B

d
r0(x0)) ≤ γ (54)

to be true (the latter arising from the fact that P∗(B
d
r (x0)) → 0 as r → 0, which follows from P∗

being absolutely continuous with respect to µ∗ and µ∗ not assigning positive measure to singletons
because LID∗(x0) > 0).

Thus, any x ∈ Bd
r0(x0) is a (λ, γ)-copy of x0. Since Bd

r0(x0) ∩ Mθ contains an open set in the
subspace topology of Mθ, it follows that µθ(B

d
r0(x0) ∩ Mθ) > 0. Then, since pθ(x) is strictly

positive, Pθ(B
d
r0(x0)) > 0, so that

Pθ(xj is a (λ, γ)-copy of x0 for some 1 ≤ j ≤ m) (55)
= 1− Pθ(xj is not a (λ, γ)-copy of x0 for every 1 ≤ j ≤ m) (56)
= 1− Pθ(x1 is not a (λ, γ)-copy of x0) · · ·Pθ(xm is not a (λ, γ)-copy of x0) (57)

≥ 1− (1− Pθ(B
d
r0(x0)))

m (58)

converges to 1 as m→ ∞.
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