
G-RAG: Knowledge Expansion in Material Science

Radeen Mostafa1∗
radeensust@gmail.com

Mirza Nihal Baig2∗
nihalmd1@gmail.com

Mashaekh Tausif Ehsan3∗

mashaekh.tausif@gmail.com

Jakir Hasan4∗

jakir57@student.sust.edu
1magicmind.me, USA

2Intelsense AI Limited, Dhaka, Bangladesh
3Department of Mechanical Engineering, Bangladesh University of Engineering and Technology

4Department of Computer Science and Engineering, Shahjalal University of Science and Technology

Abstract

In the field of Material Science, effective information retrieval systems are essen-
tial for facilitating research. Traditional Retrieval-Augmented Generation (RAG)
approaches in Large Language Models (LLMs) often encounter challenges such
as outdated information, hallucinations, limited interpretability due to context
constraints, and inaccurate retrieval. To address these issues, Graph RAG inte-
grates graph databases to enhance the retrieval process. Our proposed method
processes Material Science documents by extracting key entities (referred to as
MatIDs) from sentences, which are then utilized to query external Wikipedia
knowledge bases (KBs) for additional relevant information. We implement an
agent-based parsing technique to achieve a more detailed representation of the
documents. Our improved version of Graph RAG called G-RAG further lever-
ages a graph database to capture relationships between these entities, improving
both retrieval accuracy and contextual understanding. This enhanced approach
demonstrates significant improvements in performance for domains that require
precise information retrieval, such as Material Science. The code is available at
https://github.com/RadeenXALNW/G-RAG_1.0.

1 Introduction

LLMs exhibit impressive capabilities but encounter challenges such as hallucinations, outdated
information, and untraceable, opaque reasoning. The RAG approach addresses these issues by
combining the strengths of LLMs with the vast, continuously updated resources of external databases
[1]. Graph-enhanced RAG methods build on this by leveraging rich semantic interconnections and
relational data, enabling more precise entity linking, enhanced semantic context, and improved
knowledge extraction [2, 3]. Additionally, researchers have introduced innovative graph-based
context adaptation techniques that refine word embeddings to better capture semantic relationships,
consistently outperforming traditional methods in various Natural Language Processing (NLP) tasks
[4, 5]. Graph-based RAG provides a more nuanced and accurate representation of complex domains,
enabling LLMs to generate responses with enhanced factual precision and contextual relevance [6].
This capability is especially valuable for domain-specific applications in fields such as material

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/RadeenXALNW/G-RAG_1.0

science and biomedicine, where accurate and detailed information is crucial [7, 8, 9]. Serving as
a domain-specific knowledge server, the Semantic Context Enhancer extracts and delivers detailed
descriptions of relevant concepts and entities, including their interrelationships, thereby equipping the
LLM with a deeper semantic understanding [9]. Additionally, leveraging graph structures to improve
knowledge retrieval and response generation, as exemplified by methods like AriGraph, has shown
significant enhancements in decision-making and planning capabilities [10]. This study explores the
improvement of information retrieval and knowledge generation in complex, specialized domains
through the integration of the G-RAG pipeline, addressing limitations of existing approaches and
advancing performance in targeted fields.

2 Methodology

The retrieval process of Naive RAG includes a diverse range of MatIDs, which ensures variety but can
also introduce less relevant information. This issue can be mitigated through prompt engineering in
the RAG configuration, allowing the LLM to continue generating accurate responses [11]. However,
there are two main limitations to this approach. First, LLMs have a fixed context window, which
restricts the number of tokens they can process simultaneously. This limitation hinders the model’s
ability to manage large volumes of retrieved data effectively [12], especially when the dataset is
extensive and varied. Despite advancements like Google’s Gemini, which uses a caching system to
handle extended contexts, the fixed context window of LLMs remains a significant constraint [13, 14].
Although providing the model with more relevant information might seem beneficial, increasing
the context length does not necessarily improve the accuracy of information retrieval or response
generation [15]. This problem becomes even more pronounced when the retrieved context includes a
mix of diverse but only marginally relevant data, potentially diluting the focus on the critical entities
or concepts needed for an accurate response1. This is where Graph RAG proves to be valuable, as it
enhances the retrieval process by focusing on the most relevant information.

2.1 Graph RAG vs G-RAG

Graph RAG effectively merges the strengths of retrieval-based and generative methods to enhance
LLMs’ capability to generate accurate, relevant, and contextually enriched responses [16]. While
supplying an LLM with text chunks from extensive documents may result in issues with context,
factual precision, and language coherence, Graph RAG addresses these limitations by utilizing a
knowledge graph as a source of structured, factual information [5]. The knowledge graph provides
detailed entity information, including attributes and relationships, allowing the LLM to gain a deeper
understanding and produce more informed, precise responses. In our G-RAG system, entity linking
is a fundamental component, enabling the extraction of specific entities (key terms or concepts)
from the text using an entity extractor like a Span Parser. These identified entities are then used
to query an external retriever, which fetches relevant MatIDs and their corresponding information
from a Wikipedia knowledge base2. This targeted retrieval process ensures that the selected MatIDs
are highly relevant and accurate, thereby preserving the integrity and relevancy of the constructed
knowledge graph3. Following this, an LLM formulates a query that is sent to the graph database.
The graph database retrieves relevant information, which is processed by the LLM to generate a
final, comprehensive response. We set a limit on the number of nodes retrieved to ensure the data fits
within the context length of the LLM model A.1. The complete architecture of our G-RAG system is
illustrated in Figure 1.

2.2 PDF Parsing

We parse PDFs by categorizing their content into text, figures, and tables. For figure extraction, we
employ the Phi-3.5 Vision Instruct model, specifically tailored to identify material science-related
images using a vision agent system. We utilize Microsoft’s Table Transformer in the tabular data
extraction process. Furthermore, we apply a smart chunking technique to enhance the precision of
data segmentation. Accurate parsing is essential for subsequent tasks such as Entity Linking, Relation
Extraction, and Graph Retrieval Augmented Generation, as it ensures the accuracy and relevance of

1https://towardsdatascience.com/building-a-biomedical-entity-linker-with-llms-d385cb85c15a
2https://huggingface.co/relik-ie/relik-reader-deberta-v3-large-re-wikipedia
3https://neo4j.com/developer-blog/entity-linking-relationship-extraction-relik-llamaindex/

2

https://towardsdatascience.com/building-a-biomedical-entity-linker-with-llms-d385cb85c15a
https://huggingface.co/relik-ie/relik-reader-deberta-v3-large-re-wikipedia
https://neo4j.com/developer-blog/entity-linking-relationship-extraction-relik-llamaindex/

Figure 1: Architecture of G-RAG System

the answers retrieved from the database. Appendix A.2 provides a detailed overview of our document
parsing process.

2.3 Entity Linking and Relation Extraction

Entity Linking (EL) refers to the process of mapping ambiguous mentions in a text to specific,
identifiable named entities within a knowledge base [17]. It involves recognizing all potential entities
mentioned in the given input and accurately associating them with corresponding entries in a reference
knowledge base, such as Wikipedia. Relation Extraction (RE) refers to the process of identifying and
classifying semantic relationships between entities mentioned within a given text. This task involves
mapping the detected entities to specific relation categories defined in a reference knowledge base,
such as Wikipedia. The entity linking and relation extraction process is depicted in Appendix A.3.

2.4 Span Parser

The Span Parser module functions as our G-RAG system’s initial information retrieval component,
employing an approach inspired by the Retrieval Process [18]. This module operates on the principle
of semantic similarity between the current knowledge base (KB) and a comprehensive collection
of textual passages (Wikipedia Database) representing entities and relations. At its core, the Span
Parsing module utilizes an encoder to generate dense vector representations of both the knowledge
base (KB) q and each passage p in the additional knowledge base collection. These representations,
denoted as E(q) and E(p) respectively, are high-dimensional embedding that capture the semantic
content of the text. The module computes a similarity score between the current Knowledge Base
and additional Knowledge Base (Wikipedia data) using a dot product operation, yielding the most
relevant relations with respect to the extended knowledge base q:

sim(q, p) = E(q)⊤ · E(p)

This score quantifies the relevance of each passage of the additional knowledge base to the given cur-
rent KB passage’s sentence, enabling the module to rank and retrieve the most pertinent information.

2.5 Passage Processor

The Passage Processor (PP) component in our G-RAG system employs a unified approach to process
the existing knowledge base and retrieved passages. Given a current Knowledge Base (KB) Q and
a set of N retrieved passages {P1, . . . , Pn}, the Passage Processor constructs chunks of current
KB. In each chunk, we utilize each input sequence S = [Q; τ0;P1; τ1; . . . ;Pn; τn], where τi are

3

delimiter tokens. This sequence is encoded using a Transformer model T , producing contextual
embedding E = T (S). The Passage Processor subsequently identifies relevant spans within Q
through a two-stage process [18]. Initially, it computes start probabilities P s(qi) for each token qi in
Q using a learned function fs(E). Subsequently, for each potential start position s, it calculates end
probabilities P e(qj | s) for tokens qj (where j ≥ s) using another learned function fe(E, s). This
formulation enables the prediction of overlapping spans, enhancing the model’s capability to handle
complex queries. During the process, spans (s, e) are predicted if P s(qs) > θs and P e(qe | s) > θe,
where θs and θe are predefined thresholds. This design enables the Passage Processor to process the
entire knowledge base chunk by chunk efficiently, identifying relevant text spans for downstream
tasks such as entity linking and relation extraction.

3 Experimental Settings

Our dataset consists of ten carefully designed handwritten queries, aimed at evaluating and differen-
tiating the capabilities of various RAG systems. Sample queries from this dataset are presented in
Appendix A.4. To evaluate the performance of RAG systems, we employ various metrics, including
correctness, faithfulness, context, and answer relevancy scores. Correctness assesses the accuracy
of the generated response, while faithfulness evaluates the factual accuracy based on the retrieved
documents. Finally, the context and answer relevancy score measures how well the response aligns
with the given query. A detailed description of these evaluation metrics is provided in Appendix
A.5. For entity linking and relation extraction, we use the relik-entity-linking-large model4, while the
jina-embeddings-v2-base-en model5, with a sequence length of 8192, is employed for embeddings.
Additionally, we utilize LLama 3.1 8B and LLama 3.1 70B as large language models, both of which
produce comparable results.

4 Results and Discussion

This section presents all of our experimental results. We conducted the computational tasks using
the NVIDIA Tesla A100 Ampere 40 GB GPU. The performance of the Naive RAG, Graph RAG,
and the G-RAG system was evaluated using our dataset. Appendix A.6 provides example queries
and the corresponding responses from the RAG systems, evaluated across different metrics. The
experimental results are summarized in Table 1.

Table 1: Experimental Results

Pipeline Score No. of queries Mean Standard Deviation

Naive RAG
Correctness

10
2.43 1.51

Faithfulness 0.70 0.48
Relevancy 0.39 0.28

Graph RAG
Correctness

10
3.30 2.00

Faithfulness 0.90 0.32
Relevancy 0.18 0.26

G-RAG
Correctness

10
3.90 1.10

Faithfulness 0.90 0.32
Relevancy 0.34 0.32

The comparative analysis of three RAG pipelines - Vector/Naive RAG, G-RAG, and Graph RAG -
showed interesting patterns in their performance across three critical dimensions. A one-way Analysis
of Variance (ANOVA) as described in Appendix A.5.5 was performed, examining correctness
F (2, 24) = 2.39, p = 0.113, faithfulness F (2, 27) = 1.04, p = 0.368, and context and answer
relevancy F (2, 27) = 1.04, p = 0.368. While no statistically significant differences were found at the
standard significance level (α = 0.05), the descriptive statistics highlighted meaningful variations in

4https://huggingface.co/sapienzanlp/relik-entity-linking-large
5https://huggingface.co/jinaai/jina-embeddings-v2-base-en

4

https://huggingface.co/sapienzanlp/relik-entity-linking-large
https://huggingface.co/jinaai/jina-embeddings-v2-base-en

performance. Specifically, Vector/Naive RAG outperformed the others in terms of context relevancy,
with a mean score of 0.3875. This was followed by G-RAG (mean score of 0.3375), while Graph
RAG exhibited the lowest mean score of 0.1750. The substantial standard deviations observed across
all pipelines, ranging from 0.2630 to 0.3162, suggest notable performance variability depending on
the query. This variability highlights the challenge of consistency in RAG systems. The superior
performance of G-RAG over the basic Graph RAG can be attributed to the inclusion of a material
science knowledge base, emphasizing the critical role of domain-specific knowledge in enhancing
model accuracy. The superior context relevancy performance of the traditional Vector/Naive RAG
challenges the assumption that graph-based approaches inherently provide better retrieval capabilities.
G-RAG has proven to be a well-rounded solution, effectively balancing the metrics of correctness,
relevancy, and faithfulness. The significant drop in relevancy scores for Graph RAG highlights the
critical role of entity linking in G-RAG’s design. This suggests that the effectiveness of knowledge
integration mechanisms, including entity linking, plays a substantial role in improving retrieval
performance. These findings indicate that while graph-based approaches show promise, their success
heavily depends on the quality of knowledge integration and the sophistication of the entity-linking.

5 Conclusion and Future Work

Our findings indicate that integrating graph-based techniques and ensuring robust entity linking
with external databases can significantly enhance the performance of the Graph RAG pipeline,
particularly in terms of response relevance and accuracy. This approach also mitigates the challenge
of maintaining relevance observed in standard Graph RAG implementations. Future work could
include developing a larger knowledge base tailored to material science as an extended information
source, as well as creating a material science-specific entity linking model. We also aim to explore
this method in other domains where retrieving accurate, precise, and relevant information is essential.
Additionally, establishing a comprehensive evaluation metric for Graph RAG would provide deeper
insights into the process and its effectiveness.

References

[1] Yunfan Gaoa, Y Xiong, X Gao, K Jia, J Pan, Y Bi, Y Dai, J Sun, M Wang, and Haofen
Wang. Retrieval-augmented generation for large language models: A survey. arXiv preprint
arXiv:2312.10997, 2023.

[2] Sanat Sharma, David Seunghyun Yoon, Franck Dernoncourt, Dewang Sultania, Karishma
Bagga, Mengjiao Zhang, Trung Bui, and Varun Kotte. Retrieval augmented generation for
domain-specific question answering. arXiv preprint arXiv:2404.14760, 2024.

[3] Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, and Jian Guo. Think-on-graph
2.0: Deep and interpretable large language model reasoning with knowledge graph-guided
retrieval. arXiv e-prints, pages arXiv–2407, 2024.

[4] Tanvi Sandhu. Exploration of word embeddings with graph-based context adaptation for
enhanced word vectors. Master’s thesis, University of Windsor (Canada), 2024.

[5] Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven
Truitt, and Jonathan Larson. From local to global: A graph rag approach to query-focused
summarization. arXiv preprint arXiv:2404.16130, 2024.

[6] Chaelim Park, Hayoung Lee, and Ok-ran Jeong. Leveraging medical knowledge graphs and
large language models for enhanced mental disorder information extraction. Future Internet,
16(8):260, 2024.

[7] Markus J Buehler. Generative retrieval-augmented ontologic graph and multiagent strategies for
interpretive large language model-based materials design. ACS Engineering Au, 4(2):241–277,
2024.

[8] Julien Delile, Srayanta Mukherjee, Anton Van Pamel, and Leonid Zhukov. Graph-based retriever
captures the long tail of biomedical knowledge. arXiv preprint arXiv:2402.12352, 2024.

[9] Ciyuan Peng, Feng Xia, Mehdi Naseriparsa, and Francesco Osborne. Knowledge graphs:
Opportunities and challenges. Artificial Intelligence Review, 56(11):13071–13102, 2023.

5

[10] Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, and Evgeny
Burnaev. Arigraph: Learning knowledge graph world models with episodic memory for llm
agents. arXiv preprint arXiv:2407.04363, 2024.

[11] Thomas Merth, Qichen Fu, Mohammad Rastegari, and Mahyar Najibi. Superposition prompting:
Improving and accelerating retrieval-augmented generation. arXiv preprint arXiv:2404.06910,
2024.

[12] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context
window of large language models via positional interpolation. arXiv preprint arXiv:2306.15595,
2023.

[13] Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng Chen, Tao Xie, Chenxi Wang,
Sa Wang, Yungang Bao, Ninghui Sun, et al. Memserve: Context caching for disaggregated llm
serving with elastic memory pool. arXiv preprint arXiv:2406.17565, 2024.

[14] Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran Zhang, Yixin Wu, Zhibo Xu, Tianyuan
Shi, Zhengyuan Wang, Shizheng Li, Qi Qian, et al. Searching for best practices in retrieval-
augmented generation. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pages 17716–17736, 2024.

[15] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 12:157–173, 2024.

[16] Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang,
and Siliang Tang. Graph retrieval-augmented generation: A survey. arXiv preprint
arXiv:2408.08921, 2024.

[17] Simone Tedeschi, Simone Conia, Francesco Cecconi, and Roberto Navigli. Named entity
recognition for entity linking: What works and what’s next. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages 2584–2596, 2021.

[18] Riccardo Orlando, Pere-Lluís Huguet Cabot, Edoardo Barba, and Roberto Navigli. Relik:
Retrieve and link, fast and accurate entity linking and relation extraction on an academic budget.
arXiv preprint arXiv:2408.00103, 2024.

6

A Appendix

A.1 Node Selection Process for retrieving information

Let:

• q be the user’s question.

• D = (N,R) be the graph database, where N is the set of nodes and R is the set of
relationships.

• LLM be the Large Language Model used to generate the answer.

• ContextLengthmax be the maximum context length allowed by the LLM.

After that, now let’s define the keyword extraction function K : Q → 2Σ
∗
:

K(q) = {lemma(t) | t ∈ Tokens(q), POS(t) ∈ S, |lemma(t)| > lmin}
where:

• Tokens(q) is the set of tokens from question q.

• lemma(t) is the lemmatized form of token t.

• POS(t) returns the part-of-speech tag of token t.

• S = {NOUN,PROPN,ADJ,VERB}.

• lmin is the minimum length of a lemma.

Here, the relevance function is Rel : Σ∗ × Σ∗ → {0, 1}:

Rel(s, k) =
{
1, if k ⊆ lower(s)
0, otherwise

where lower(s) converts string s to lowercase.

Now, let’s define the node selection function NK : 2Σ
∗ ×N → 2N :

NK(K,N) = {n ∈ N | ∃k ∈ K, Rel(n.text, k) = 1}

And, then comes the relationship selection function RK : 2Σ
∗ ×R → 2R:

RK(K,R) = {r ∈ R | ∃k ∈ K, Rel(r.text, k) = 1}

Apply limits to ensure the context fits within the LLM’s context length:

|NK | ≤ Nmax, |RK | ≤ Rmax

where Nmax and Rmax are determined based on ContextLengthmax.

Here, the context construction function will be C : 2N × 2R → Σ∗:

C(NK , RK) = Concat ({n.text | n ∈ NK} ∪ {r.text | r ∈ RK})

where Concat concatenates the text attributes into a single string.

After that, we can generate data using prompt generation.

Define the prompt generation function P : Q× Σ∗ → Σ∗:

P (q, C) = Template(q, C)

7

where Template(q, C) is a predefined template that incorporates the question q and context C.

The final answer a is obtained by passing the prompt P (q, C) to the LLM:

a = LLM(P (q, C))

A.2 Documents Parsing Method

This section illustrates our document parsing pipeline, as shown in Figures 2 and 3. Efficient document
parsing is crucial for enabling RAG systems to generate responses with high factual accuracy and
precision.

Figure 2: Document Parsing

Figure 3: Validity Check by Agent System

A.3 Entity Linking and Relation Extraction

In this section, we provide a visual representation of the entity linking and relation extraction process,
as depicted in Figures 4, 5, 6, and 7. These processes are essential components of our G-RAG system.

Coreference Resolution: Coreference resolution, mentioned in Figure 4 involves identifying different
expressions in a text that refer to the same entity. This process is crucial for understanding the
relationships between various mentions of an entity within a given context.

8

Figure 4: Entity Linking and Relation Extraction

Figure 5: Entity Linking

9

Figure 6: Relationship among Various High-entropy alloy Components

10

Figure 7: Another Relationship among Various High-entropy alloy Components

A.4 Examples from Our Dataset

In this section, we present sample queries from our dataset in Table 2, covering a range from simple
to more complex queries.

11

Table 2: Example Queries

Query What is the yield strength of the CrMnFeCoNi alloy at
600 K, 700 K with 4 µm grain size?

Ground Truth The yield strength of the CrMnFeCoNi alloy at 600 K is
290 MPa, and at 700 K, it is 285 MPa.

Query What is the CRSS of CrMnFeCoNi at the tension in
room temperature?

Ground Truth The Critical Resolved Shear Stress (CRSS) of the CrM-
nFeCoNi alloy has been measured at 53 MPa at room
temperature and 175 MPa at 77 K.

Query What is the stacking fault energy of CrCoNi?

Ground Truth The stacking fault energy of CrCoNi is 18− 26mJ/m2.

Query At room temperature, what is the Hall-Petch slope of
the cantor alloy?

Ground Truth At room temperature, the Hall-Petch slope of the cantor
alloy was determined to be 494MPaµm−1/2.

Query What is the stacking fault energy of the cantor alloy?

Ground Truth The stacking fault energy of the cantor alloy was estimated
to be ∼ 30mJ m−2.

Query What is the yield strength and ultimate tensile strength
of TiZrNbHfTa after 1000°C annealing?

Ground Truth After 1000 ◦C, the yield strength will be 1145MPa, and
the ultimate tensile strength will be 1262MPa.

Query What is the CRSS of CrFeCoNiAl0.3 in compression
at room temperature?

Ground Truth CRSS of CrFeCoNiAl0.3 in compression at room temper-
ature is 54 MPa.

12

A.5 LLM RAG Evaluation Metrics

This section provides detailed descriptions of the various evaluation metrics used for RAG systems.

A.5.1 Correctness

Given a query q, a generated answer g, and an optional reference answer r, the
CorrectnessEvaluator computes a score s using an LLM. This score is then compared against a
threshold T to determine whether the generated answer is correct or passing.

Prompt Constructed from q, g, r

E(g, q, r) LLM Response to Prompt
(s, reasoning) parser_function(E(g, q, r))

passing s ≥ T

EvaluationResult {q, g, passing, s, reasoning}

A.5.2 Faithfulness Evaluation

Given a query q, a response r, and a set of context documents C, the FaithfulnessEvaluator
performs the following steps:

Context Documents Transform C into Document objects
Index Create SummaryIndex from Document objects

Query Engine Create query engine using LLM, eval_template, and refine_template
Evaluation Perform a query on the response using the query engine

Raw Response Obtain raw_response_txt from the query engine

Passing
{

True if yes is found in raw_response_txt
False otherwise

Score
{
1.0 if passing is True
0.0 otherwise

Feedback raw_response_txt

The evaluation result is given by:

EvaluationResult = {q, r, C, passing, score, feedback}

A.5.3 Answer Relevancy

Let q be the query, r the response, and {c1, c2, . . . , cn} the contexts. Define the following:

Documents = {di | di = Document(text = ci) for i = 1, 2, . . . , n}

Index = SummaryIndex(Documents)

query_response = Question: q Response: r

Evaluate the query-response pair with:

response_obj = QueryEngine(Index).aquery(query_response)

Let:
raw_response_txt = str(response_obj)

Then:

passing =

{
True if “yes” is in raw_response_txt.lower()
False otherwise

13

score =

{
1.0 if passing
0.0 otherwise

The output is:

EvaluationResult = {q, r, passing, score, feedback = raw_response_txt, contexts = {c1, . . . , cn}}

A.5.4 Context Relevancy

Let q be the query, {c1, c2, . . . , cn} be the contexts. Define:

Documents = {di | di = Document(text = ci)}

Index = SummaryIndex(Documents)

Evaluate the query q using:

query_engine = Index.as_query_engine(llm, eval_template, refine_template)

response_obj = query_engine.aquery(q)

Let:
raw_response_txt = str(response_obj)

Parse the result:
score, reasoning = parser_function(raw_response_txt)

Score threshold:
score_threshold = 4.0

Calculate:

score =
score

score_threshold

Return:

EvaluationResult = {q, {c1, . . . , cn}, score, feedback = raw_response_txt, invalid_result, invalid_reason}

A.5.5 Analysis of Variance (ANOVA)

ANOVA is a fundamental statistical method used to compare means across multiple groups to
determine if there are statistically significant differences between them. This study utilizes a one-
way ANOVA, which examines the effect of a single independent variable - in this case, the type
of RAG pipeline - on a dependent variable (performance metrics). The mean score reflects the
average performance of each method across all 10 queries, offering an overall assessment of its
effectiveness for the given metrics. A mean score closer to the highest possible value suggests that the
method consistently delivers superior results, indicating strong performance across various queries.
Conversely, a lower mean score points to weaker overall performance, highlighting areas where the
method may be less effective. Essentially, the mean score serves as a summary indicator of each
method’s typical efficacy, providing a clear comparison of their relative strengths in achieving the
desired outcomes.

The F-statistic in ANOVA quantifies the ratio of variance between groups to variance within groups,
with larger F-values indicating greater differences among the groups. The degrees of freedom (df) are
denoted as F(2, 24) for correctness and F(2, 27) for faithfulness and relevancy, indicating the number
of independent values that can vary in the calculation. Here, the first value (2) represents the degrees
of freedom for the groups (number of groups minus 1), and the second value (24/27) represents the
degrees of freedom for the error term (total observations minus the number of groups). The p-value
assesses the probability of observing such differences between groups. Typically, a p-value below the
significance level (α = 0.05) suggests statistically significant differences between the groups.

14

A.6 Examples of Different Metrics

This section presents three example queries along with their corresponding responses from the RAG
systems. Providing optimal responses to these queries requires effective information retrieval from
text, figures, and tables. Additionally, we illustrate the application of various RAG evaluation metrics
through these examples. Table 3 compares the performance using high-entropy alloy documents,
demonstrating that G-RAG delivers contextually more relevant responses. The query in Table 4
necessitates accurate information extraction from Figure 8. The responses show that G-RAG with the
parsing method outperforms other RAG systems, providing results that are closely aligned with the
ground truth values. Finally, the query in Table 5 requires accurate value extraction from the table
presented in Figure 9. In this case, G-RAG with the parsing method also outperforms other RAG
systems. These results demonstrate that the integration of an efficient parsing method significantly
enhances the performance of the G-RAG system.

Table 3: Comparison using High-entropy alloy Documents (Context Relevancy)

Query What is Chromium?

G-RAG Chromium is often a significant component in High-Entropy
alloys (HEAs), particularly in the CoCrFeNi alloy, where it
enhances corrosion resistance in both NaCl and H2SO4 solu-
tions. However, when Chromium is replaced with Manganese
in the Co-Cr-Fe-Ni alloy, the corrosion resistance in H2SO4

solution decreases, becoming inferior to 304 SS. The addition
of certain elements like Al, Cu, B, and Mo can alter the corro-
sion resistance of various HEAs, often due to the formation of
new phases or the impact on the existing phases’ composition.
The relationship between the degree of substitution (δ) and
the enthalpy of mixing (Hmix) for intermetallic compounds is
an area of interest, potentially implying that as composition
increases, the enthalpy of mixing decreases, which could have
implications for the thermodynamics of alloys and intermetal-
lic compound formation.

Naive RAG Chromium is a chemical element with the symbol Cr and
atomic number 24. It is a hard, silver-white, and highly
corrosion-resistant metal that is used in a variety of applica-
tions, including stainless steel, chrome plating, and catalytic
converters in vehicles.

Graph RAG Chromium is a chemical element with the symbol Cr and
atomic number 24. It is a steely-grey, lustrous, hard, and
brittle transition metal. Chromium is also the main additive
in stainless steel, to which it adds anti-corrosive properties. It
is highly valued as a metal that is able to be highly polished
while resisting tarnishing. Chromium is also used in various
industrial applications, including the production of stainless
steel, and chrome plating, and as a corrosion-resistant coating.

15

Figure 8: Information Extraction from Graph Images

Table 4: Comparison of Correct Information Extraction from Graph

Query What is the yield strength of the CrMnFeCoNi alloy at
600 K, 700 K with 4 µm grain size?

Ground Truth The yield strength of the CrMnFeCoNi alloy at 600 K is
290 MPa, and at 700 K, it is 285 MPa.

(G-RAG + Parsing Method) The yield strength of CrMnFeCoNi alloy at 600 K is 310
MPa, and at 700 K is around 300 MPa.

Naive RAG Unfortunately, the information provided does not contain
any data about the yield strength of the CrMnFeCoNi alloy
at 600 K, 700 K, or with a 4 µm grain size.

G-RAG The yield strength of CrMnFeCoNi alloy at 600 K is 450
MPa, and at 700 K is 400 MPa.

16

Figure 9: Information Extraction from Table Images

Table 5: Comparison of Correct Information Extraction from Table

Query What is the CRSS of CrMnFeCoNi at the tension in
room temperature?

Ground Truth The Critical Resolved Shear Stress (CRSS) of the CrM-
nFeCoNi alloy has been measured at 53 MPa at room
temperature and 175 MPa at 77 K.

(G-RAG + Parsing Method) The CRSS of the CrMnFeCoNi alloy has been determined
to be 53 MPa at room temperature and 175 MPa at 77 K.

Naive RAG Unfortunately, the provided context does not contain infor-
mation about the CRSS (Critical Resolved Shear Stress)
of CrMnFeCoNi at tension at room temperature.

G-RAG Sorry, I do not have any information about the CRSS of
CrMnFeCoNi at the tension at room temperature.

17

	Introduction
	Methodology
	Graph RAG vs G-RAG
	PDF Parsing
	Entity Linking and Relation Extraction
	Span Parser
	Passage Processor

	Experimental Settings
	Results and Discussion
	Conclusion and Future Work
	Appendix
	Node Selection Process for retrieving information
	Documents Parsing Method
	Entity Linking and Relation Extraction
	Examples from Our Dataset
	LLM RAG Evaluation Metrics
	Correctness
	Faithfulness Evaluation
	Answer Relevancy
	Context Relevancy
	Analysis of Variance (ANOVA)

	Examples of Different Metrics

