Principal Component Analysis (PCA)

In many areas and across multiple disciplines, large and especially high-dimensional data sets are used that often need to be analysed or
visualised. Since it is hard to visualise data that goes beyond 3D, this often requires what is known as “dimensional reduction” - a process of
reducing the dimension of the data while minimising the loss of information. One of the arguably most simple and widely used dimensional
reduction algorithms is Principal Component Analysis (PCA for short). Principal component analysis is used in lots of applications including
data compression, feature extraction or data visualisation [,

This project intuitively explains PCA using a simple 2D example: a smiley face. An interactive tool has been created for this purpose, which
visualises the example. The central concepts of principal component analysis are explained in this Jupyter notebook, where textual
explanations and sections of Python code alternate.

In order to execute the programme code without errors, each section has to be run in sequence. The best way to do this is to click on "Run all"
(Ctrl + F9) under "Runtime” in the menu in the top bar.

Now we can begin.

At first, we need some imports that are not conceptually relevant.

Imports

[53]1  Show code

Note: In graphical image processing, the x-axis in two-dimensional coordiante systems points to the right and the y-axis points downwards -
instead of upwards (as in maths). This means that the origin of the coordinate system is in the top left-hand corner of a generated image, which
usually only has positive values.

A smiley is defined here in simplified form by p = 9 points. As each two-dimensional point consists of x and y coordinates,d = 9% 2 = 18
values are required to describe a smiley, which is therefore represented by an 18-dimensional vector.

Two consecutive values denote the x and y coordinates of a point. As we will see later, it is crucial to maintain a consistent order of points
across multiple smileys, so in our example the first two points always need to represent the eyes of a smiley, whereas the next four points must
always describe a smiley's mouth and the last two its nose. In other words, our smileys need to be in correspondence.

For example, the vector for a happy smiley looks like this:

Y [54] happy = np.array([5.5, 1.75, 2.5, 1.75, 2, 5, 3, 5.75, 4, 6, 5, 5.75, 6, 5, 4, 3, 4, 4])
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Note: In the programme code, row vectors are used instead of column vectors, which means that these and matrices used later must be
transposed in some cases. Therefore, the implementation of the formulas may differ from the textual explanations.

We can now also draw these points from v that define our happy smiley:

> Draw the smiley pointwise

7 [55]1  Show code
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If we colour the eyes, nose and mouth differently, the smiley can be recognised more easily:

E/ [56] draw_smiley_pointwise(happy, "mediumblue", “gold", "crimson"
s

)

The points of the nose and mouth can now be connected to complete the smiley. The eyes, for example, are also displayed as circles to
embellish the result. This turns a vector into a smiley.
The following method draw_smiley draws a finished smiley from an 18-dimensional vector.

E’E [57] # Render Smiley
def draw_smiley(p: np.array):

p = copy.copy(p) * 50

# Draw white background
draw.rectangle([ (@, @), (488, 480)], "white")

# Draw eyes

def draw_ellipse_around_point{draw, center, width=21, fill="black"):
coords = np.concatenate((center - width, center + width), axis=-1)
draw.ellipse([(coords[@], coords[1]), (coords[2], coords[3])], fill=Ffill)

right_eye center, left_eye center = p[0:2], p[2:4]
draw_ellipse around point(draw, left eye center, fill="mediumblue™)
draw_ellipse_around_point(draw, right_eye_center, fill="mediumblue")

# Draw nose

nose_top, nose bottom = p[14:16], p[16:18]

draw.line([tuple(nose top), tuple(nose bottom)], fill="gold", width=21)
draw_ellipse around point(draw, nose top, width=18, fill="gold")
draw_ellipse_around_point(draw, nose_bottom, width=18, fill="gold")

# Draw mouth

mouth = [p[4:6], p[6:8], p[8:1@], p[1@:12], p[12:14]]
mouth_tuple = [tuple(x) for x in mouth]

draw.line(mouth_tuple, fill="crimson”, width=21, joint="curve"
draw_ellipse around point(draw, mouth[@], width=18, fil
draw_ellipse_around_point(draw, mouth[4], width=18, fill="crimson"

"crimson”

display.display({im)

draw_smiley (happy)

)

A single smiley (= d-dimensional vector) forms a data point for our database. The database consists of n data points, with n. = 6 for us.
Our database therefore consists of six different faces, which (apart from the happy smiley already created above) are defined in the next code
section. Each smiley vector is structured in the same order as described above.

7 [58] # Database

# happy = np.array([5.5, 1.75, 2.5, 1.75, 2, 5, 3, 5.75, 4, 6, 5, 5.75, 6, 5, 4, 3, 4, 4])
sad = np.array([5.5, 2, 2.5, 2, 2, 6, 3, 5.25, 4, 5, 5, 5.25, 6, 6, 4, 2.75, 4, 4])

drunken = np.array([5.75, 2.25, 2.25, 2.25, 2, 6, 3, 5, 4, 5.5, 5, 6, 6, 5, 4, 3, 4, 4.25])
LSD = np.array([6, 2.25, 2, 2.25, 2, 5, 3, 6, 4, 5.5, 5, 5, 6, 6, 4, 3.25, 4, 3.75])
neutral = np.array([5.5, 1.75, 2.5, 1.75, 2, 5, 3, 5.25, 4, 5.5, 5, 5.25, 6, 5, 4, 3, 4, 4])
crazy =Snpraccay ] 5.5 3105 G a5 i L I 65 A S a5 RS A 3 BT DY

# will be needed later:

horizontalCoord = (happy[5] + happy[2]) / 2

unenthusiasticIndividual = np.array([5.7, 1.25, 2.3, 1.25, 2, horizontalCoord, 3, horizontalCoord, 4, horizontalCoord, 5, horizontalCoord, 6, horizontalCoord, 4, 2.85, 4, 3.95])
unenthusiasticPoplulation = np.array([5.5, 1.75, 2.5, 1.75, 2, horizontalCoord, 3, horizontalCoord, 4, horizontalCoord, 5, horizontalCoord, 6, horizontalCoord, 4, 3, 4, 4])



smileIndividualVector = happy - unenthusiasticIndividual
smilePopulationVector = happy - unenthusiasticPoplulation

Our database is made up of these six smileys:

> Load the database images

7 [591  Show code
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The data matrix X is a d x n matrix, where the vectors of the n data points form the columns of the data matrix

X=|wv v v v v v
v

% [68] X_T = np.array([happy, sad, drunken, LSD, neutral, crazy])

The principal component analysis is performed (in contrast to the related singular value decomposition (SVD)[I'Z]) on mean-subtracted data
For this purpose, the arithmetic mean u of the data points v; is calculated as follows:

1 n
Hi= szl:vé
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In the programme code, the mean value  is denoted by mean or as a line vector by mean _T.

E’s [61] mean_T = np.mean(X T, axis=@)

The mean vector i of our smiley database has the following values:
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The average smiley defined by 1 can also be visualised accordingly:

E’E [62] draw_smiley(mean T)
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This mean value then has to be subtracted from all data points v; in order to obtain normalised copies v := v; — p. These result in the
normalised data matrix X € R%*™

> In pictures
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The overall idea of principal component analysis is to project the high-dimensional data points v;, onto a low-dimensional subspace with basis
{w;|i=1,...,m} wherem < k := min(n,d). This new basis should maximise the variance in order to express as much of the span of
the original data points as possible. Since the pointwise scaling of w; also scales the variance, we impose the additional condition that

[lwjlla =1
for all 7.

For this purpose, we define the covariance matrix S € R
4.6
5= EXXI

Subsequently, the eigenvalues A; of S and their corresponding eigenvectors w; must be calculated. Now only the m eigenvectors wy, . . . , Wy,
of the largest eigenvalues are taken [ These m so-called principal components form the new basis we are looking for.

Note: The number m can be chosen arbitrarily. However, since the principal component analysis provides a maximum of k — 1 meaningful
eigenvectors (i.e. eigenvectors for eigenvalues A; = 0), one should choose m. € {1, oy k— 1} B The smaller the choice of m, the smaller
the target dimension, but the greater the loss of information when converting the data from the original data space to the so-called PCA space.
The value of an eigenvalue describes the variance that is represented by the associated principal component.

> In pictures

7 [64] Show code
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The principal component analysis is performed in the following programme code, whereby in our example 1 = 5 (in the code
M_COMPONENTS) is selected. The eigenvectors of the basis found are stored in components.

¥ [65] # PCA

0s
M_COMPOMENTS = 5
PCA = sklearn.decomposition.PCA(n_components=M COMPONENTS)

PCA.fit(X_T)
components = PCA.components_

stdDeviations = [np.sqrt(PCA.explained_variance [@]), np.sqrt(PCA.explained variance [1]), np.sqrt(PCA.explained variance [2])},
np.sqrt(PCA.explained_variance [3]), np.sqrt(PCA.explained variance [4])]

Now we have the required basis, consisting of the m = 5 normed basis vectors wy, wa, w3, w4 and ws:

—0.02761514 0.15837053 —0.11039057
0.3934326 0.05953233 —0.41100849
0.02761514 —0.15837053 0.11039057
0.3934326 0.05953233 —0.41100849
0. 0. 0.
—0.18074909 —0.42086492 —0.58895954
0. 0. 0.
0.36466676 0.47262055 0.0654281
/!;; a 0. . T;; 0. ! 1;;}; _ 0.
0.53884804 —0.01420654 0.24256792
0. 0. 0.
0.3728013 —0.4584762 —0.05694117
0. 0. 0.
0.18888363 0.51023183 —0.46659028
0. 1A 0.
0.18286673 0.1353312 0.01232272
0. 0. 0.
0.1574453 —0.23064818 —0.08171833
—0.56129356 —0.30818905
—0.1103873 0.33259592
0.56129356 0.30818905
—0.1103873 0.33259592
0. 0.
0.12942928 —0.30465606
0. 0.
0.29329039 —0.36574707
n N
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wy = | e |, ws=| s 1
0.11717182 —0.18851046
0. 0.
0.05174094 —0.49185763
0. 0.
0.37097873 —0.17854551
0. 0.
—0.28716583 0.09917843
0. 0.
0.07912895 0.20745535

Hence, any smiley can be specified by a 5-dimensional vector s (as a linear combination of the new basis vectors) instead of an 18-
dimensional vector.

In order to transform the 5-dimensional vector s from our so-called PCA space back into an 18-dimensional vector s’ from our so-called data
space, which we can visualise as a smiley using the draw_smiley method, a transformation matrix W is required. We obtain this matrix by
multiplying each basis vector w; by its standard deviation, i.e. the square root of its eigenvalue \//\__., The resulting vectors ij; are then
composed column by column to form the matrix W.
For the conversion from PCA space to data space, the new matrix W is multiplied by the 5-dimensional smiley vector s and then the vector of
the average face p is added .
/ - S . —
§=W-s+p , with W= | w5, iy iz iy 15 |, Wherewj::\/rj-wj

Vied{1,...,5}

> In pictures
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This is implemented by the render_from_params method, which then draws the smiley.

[67] # From 5 to 18 dimensions

W_T = np.array([components[@] * stdDeviations[@], components[1] * stdDeviations[1], components[2] * stdDeviations[2],
components[3] * stdDeviations[3], components[4] * stdDeviations[4]])

def render_from params(v_T: np.array, sfl=0.80, sf2=0.00):

p = copy.copy(mean_T)
p += np.matmul(v_T, W_T)

£

will be needed later:
p += sfl * smileIndividualVector
p += sf2 * smilePopulationVector

draw_smiley(p)

The vector
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thus represents the average smiley in our new basis.

The linear combination with arbitrary parameters can also be tested in our interactive tool. The parameters can be changed manually using the
5 sliders and the resulting smiley is displayed depending on this using the calculation just explained. It is easy to see that the first principal
component (= 1st slider) causes the most change to the smiley when it is modified, i.e. it represents the greatest variance, and this decreases
from principal component to principal component.

Using the "Random face" button, a random vector ¢ and thus a random smiley can be generated. The random values for the vector s are
normally distributed. By clicking on the "Reset face" button, all vector entries of s are reset to () and thus the average smiley is displayed.

For example, we start with the smiley for the vector

> Helpers
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> Tool part 1

7 [69]  Show code
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Conversely, the transformation from data space to PCA space, i.e. from the representation in 18 to that in 5 dimensions, is also possible. If we
have a given smiley (= 18-dimensional vector s') and want to obtain the linear combination of our new basis vectors that corresponds to the
given smiley, the system of linear equations

Wes=(s—p)
needs to be solved.

This is achieved by the matrix multiplication
F=W" (s'—n)
& denotes the resulting 5-dimensional vector in PCA space.

Note: Since W is not a square matrix, w1 designates the pseudo inverse of W,

> In pictures

Y [70]  Show code
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The getLinComb method is responsible for this calculation:

[71] # From 18 to 5 dimensions
def getlinComb(face: np.array):

res T = face - mean_T
return np.matmul(res T, np.linalg.pinv(W_T))

We can therefore describe already known smileys from the data space (=18-dimensional vectors) in our new basis. For example, we already
know the smileys in the database. Clicking on the button under the respective image of one of these smileys performs the calculation just

explained. In addition to displaying the correct smiley, the parameters of the 5 base vectors are automatically adjusted to the corresponding
values via the sliders (deactivated here).
This function can be tried out directly here:

> Helpers

[72] Show code

> Tool part 2

[73]1  Show code
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We can not only create faces, but also manipulate existing faces. A smile from our smiley is a good choice for this.

To do so, we first need to calculate a smile vector [; from a smiling and a non-smiling smiley by taking the difference between the two.
In our example, we take the difference between the following two smileys (already calculated above in the database as
smileIndividualVector):

[74] # smileIndividualVector = happy - unenthusiasticIndividual

smileIndividualVector_ images = widgets.HBox([wiIml, wiIm7])
display.display(smileIndividualVector_images)

)
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As you can conclude, [ changes the position of the eyes as well as the position and length of the nose in addition to the mouth. This is due to
the fact that when calculating the smile vector [;, we compare any two smileys, one of which is smiling and one of which is not. However, this
does not correspond to the difference between the smile and non-smile of the "same” smiley.

If we consider the smileys as "real” (stylised) faces, we would not expect a change in the position of the eyes and nose when "the same” smiley
smiles, but only a modification of the mouth. This result can also be obtained using the difference of smileys method if all smiling and non-
smiling smileys in a representative data set are subtracted from each other and the average is calculated from the results.

Such an "individuality-adjusted” smile vector [l is represented in the interactive tool by the "Smile I3" slider, which only modifies the mouth. To
achieve this, we simply took the difference between the two following smileys (calculated as smilePopulationVector after the database
above), which only differ in terms of the mouth.

¥ [75] # smilePopulationVector = happy - unenthusiasticPoplulation

smilePopulationVector_images = widgets.HBox([wiIml, wiIm8])
display.display(smilePopulationVector images)
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This face modification can also be tested here by changing the corresponding "Smile’-sliders:

> Tool part 3
[76]  Show code
34 Smile l: Smile I:
0.00 0.00
Finally, we come to the interactive tool where you can see the results of the principal component analysis and our calculations using the smiley.
By default, the image shows the average smiley, but the sliders and buttons can be used to modify the smiley as required. All the functions
presented so far are combined and can be tested here. Have fun with it!
The following programme code is only responsible for the display and is conceptually irrelevant.
> Helpers

[77]1  Show code

> Main tool

[78] Show code
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How such an example for principal component analysis can be transferred to more dimensions and more complex applications is explained in
the following notebook on PCA on faces in 3D: https://colab.research.google.com/drive/160MHRt5kj-X-2sBOE 5ziw43CgdvJ6mm6?
usp=sharing

Sources:

[1] Takio Kurita. “Principal Component Analysis (PCA)". In: Computer Vision. Springer eBook Collection. Cham: Springer International
Publishing and Springer, 2019, pp. 1-4. ISBN: 978-3-030-03243-2. DOI: 10.1007/978-3-030-03243-2_649-1.

[2] Kaare Brandt Petersen and Michael Syskind Pedersen. “The Matrix Cookbook”. In: Technical University of Denmark 7.15 (2012). URL:
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

[3] M. Turk and A. Pentland. “Eigenfaces for recognition”. In: Journal of cognitive neuroscience 3.1 (1991), pp. 71-86. ISSN: 0898-929X. DOI:
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[4] Thomas Albrecht et al. “Posterior shape models”. In: Medical Image Analysis 17.8 (2013), pp. 959-973. ISSN: 1361-8415. DOI:
10.1016/j.media.2013.05.010. URL: https://www.sciencedirect.com/science/article/pii/$1361841513000844.




Transfer of principal component analysis (PCA) from smileys (2D) to faces (3D)

The principal component analysis can be applied not only to smileys in a two-dimensional coordinate system (see
https://colab.research.google.com/drive/1HVipazHa0WX811kVSUfW_ouQryTmugOJ?usp=sharing), but also to faces in a three-dimensional
coordinate system. Completely different fields of application and examples are also possible. The transfer of the concepts of PCA
demonstrated in the smiley example to other (more complex) applications is explained below using 3D face scans.

In order to execute the programme code in this project without errors, each section has to be run in sequence. The best way to do this is to click
on "Run all" (Ctrl + F9) under "Runtime" in the menu in the top bar.
Now we can begin.

At first, we need some imports that are not conceptually relevant.

Imports

[11]  Show code

This Jupyter notebook does not contain any interactive elements for you to try out by yourself, as the example with the faces has already been
implemented elsewhere. The link to that website, where you can modify the 3D models of the faces, is as follows: https:/maximilian-
hahn.github.io/exploreCOSMOS/

Images and excerpts from the tool are provided here for comparison and explanation.

Load the images

[12]  Show code

The 3D tool provides a face model by default, which is based on the Basel Face Model from 2019 [ and also uses its average face. In contrast
to the Basel Face Model, it does not use real face scans as a database, but random variations on the average face, which is why the generated
faces do not necessarily look realistic. Conceptually, there is no difference between the two models though.

If you would like to work with the realistic faces based on the Basel Face Model, you can download it here and then upload the model to the 3D
tool using the "Select file" button in the top left-hand corner, after which the principal component analysis will be performed on the new model
data.

In contrast to our smileys, the modelled faces in the tool consist of p = 1293 (instead of p = 9) points. In addition, these points are now in a
three-dimensional coordinate system, i.e. each point has an x, y and z coordinate. Therefore, d = 1293 x 3 = 3879 values are required to
describe a face. A face can thus be represented by a 3879-dimensional vector. These orders of magnitude now also illustrate the motivation for
dimensional reduction.

In the face vectors, each three consecutive values represent a point with x, y and z coordinates. Each of these points also denotes a specific
point on a face (e.g. the right corner of the mouth), which is why the sequence of values in the face vector must always follow the same fixed
pattern.

As with our smiley, the 1293 points of the face must now be suitably connected to form a face. In the three-dimensional face model, this is not
done by connecting several specific points using lines, but most simply using triangles, which then generate surfaces in space. This means that
each point and its surrounding points span triangles which, when put together, form the surface of the face. The corners and edges in the
model that occur this way are then smoothed in the visualisation. The manner in which points are connected to other points by triangles is
defined in advance.

This creation of the facial surface out of the points is illustrated in the following images.

> From points to the face

7 [13]1  show code
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The basis for the Basel Face Model is made up of 7 = 200 faces (of 100 men and 100 women), which now also form the data base for the
principal component analysis.
The faces of the data base are of the same type as the following ten example faces without their colouring [,

> Examples for face scans

Y [14]  Show code
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The data matrix X, which is composed of the 200 face vectors of the data base, is now a 3879 x 200 matrix and thus significantly larger than

)



in the case of the 2D-smileys.

However, apart from the graphical representation of the data points and this fact, there are no further differences between the two examples. In
particular, the procedure for the principal component analysis and the application of the mathematical formulae in the individual steps of the
PCA do not change.

Our knowledge about PCA gained from the smiley example can therefore be transferred to the face example and to all other use cases as long
as the structure of the data matrix complies with the same specifications.

The principal component analysis is now performed as in the smiley example.
We first calculate the arithmetic mean y of the data points in the data base and obtain the average face.
Below we see the comparison of the average smiley (2D) and the average face (3D):

> Average smiley vs. average face

7 [15]1  show code
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The further steps of the PCA are now carried out analogously on the face data. This means:

« Determine normalised data matrix X € R4,
i 2 > o1
« Calculate covariance matrix S := %XX :

« Calculate eigenvalues A; of S.

Now we take the m = 10 eigenvectors wy, . - . , wyq of the largest eigenvalues from the resulting 199. These yield our 10 principal
components and thus our new basis.
The faces can now be described by 10 principal components, i.e. 10-dimensional vectors (instead of 3879-dimensional vectors).

The conversion of a face from the representation in PCA space (10-dimensional) to that in data space (3879-dimensional) and vice versa is
also mathematically analogous to the smiley example. The only difference is our new basis matrix W € R¥*™  which now consists of 10
principal components in the case of the faces:

L . — )
W=\ s w3 1y w5 g wy g wg uwip |, where w; :== \/A; - w) Vje{1,...,10}

The vector

(=R =R == i T - e e T e e e

accordingly represents the average face with our new basis.

In order to transform the 10-dimensional vector s from the PCA space back into a 3879-dimensional vector s’ from the data space, which can
then be visualised as a face, we again need the following formula:
s=W-.s+pu

For example, we can generate the face for the vector
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> Show face in 3D tool

Y [16]  show code
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The influence of the individual principal components can also be tested manually in the 3D tool using the control elements on the right-hand
side ("scale principal components”). Resetting to the average face ("reset to mean shape”) and generating a normally distributed random face
("generate random shape”) is also possible there.

A simple manipulation of the entire face as in the smiley example with the smile vectors would be just as easy for the 3D faces. However, this
function, including these vectors, is not provided by the 3D tool, as its functionalities are general and designed to be used with different models.
However, each of the 1293 points of the face can be moved individually. As this quickly leads to "edges"” in the face and hence to an unrealistic
face model, this is not enough to create a meaningful face.

To achieve that, the so-called posterior model of the face matching a few selected points can be calculated and displayed. All missing points
that are not defined as known are completed in such a way that, together with the specified points, they result in a face that is as probable as
possible.

The calculation of the posterior model uses the mathematical formula § = wL. (8 — ) to convert the representation from data space to
PCA space.

Now, however, we have not given the entire data vector s, but only part of this data as vector ;. The missing data must therefore be added. In
order to apply the formula, W now also has to be reduced to W, as well as 4 10 4. To do so, the lines or entries that correspond to the
missing points are omitted [,

The following example, in which two points ((s; |so |s3) and (s4|s5/s6)) are known, shows how this works in concrete terms.
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With our modified data, the posterior model for the given points can now be computed as follows:
e -1 J
§=W;" (55— pg)
> In pictures: adjust the vectors and matrices for partial data vectors
Y [171  Show code
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> Transformation workflow: comnplete data vectors vs. partial data vectors
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For this realisation in the 3D tool, the selected points are manually designated as so-called landmarks and, if necessary, slightly modified
according to the user's wishes. By clicking on the "compute posterior” button, the landmarks are now retained as points of the new face and the
rest of the face is suitably added and then displayed. An example of modifying the bridge of the nose while retaining the position of the corners

of the eyes can be found here.

With this option of supplementing missing data using principal component analysis, another important function of PCA is covered and can be
tested interactively.

> Calculate posterior
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The interactive 3D tool offers the functions described so far and a few more, such as different lighting and camera settings.
When using the programme for the first time, do not close the tutorial displayed by default, but read it carefully. If you encounter any problems
with the operation, we recommend reading the GitHub repository el (linked under "for more information click here”).

The best way to try out the tool is directly on the website: https://maximilian-hahn.github.io/exploreCOSMOS/ .
Alternatively, you can also test everything right here. Have fun with it!

> 3D tool
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compute posterior

» scale principal components
reset to mean shape
generate random shape

* landmarks

» seftings

export current shape as .ply file

conirols overview
for more information click here

close controls
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