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Abstract

Intent classification is a crucial task
in Natural Language Understanding,
with numerous applications in chatbots,
virtual assistants, and other conversa-
tional Artificial Intelligence (AI) sys-
tems. Recently, deep learning mod-
els, particularly pre-trained language
models such as BERT, have achieved
state-of-the-art results in various Nat-
ural Language Processing tasks, in-
cluding intent classification. In this
study, we explore the effectiveness of
fine-tuning BERT using three differ-
ent architectures for both single- and
multi-target intent classification tasks:
BertMLPLayer1, BertMLPLayer2, and
BertGRU. We conduct experiments on
the SILICONE datasets and achieve ex-
cellent results on single-target intent
classification, with BertGRU outper-
forming the other two methods and pre-
vious benchmarks on the same datasets.
However, our experiments on multi-
target intent classification tasks did not
yield satisfactory results.

1. Introduction
Natural Language Processing (NLP) has wit-
nessed remarkable advances in recent years, with
the ultimate goal of enabling machines to un-
derstand human language. One of the critical
tasks in NLP is intent classification, which in-
volves identifying the purpose behind a user’s
input on spoken language [Dinkar* et al., 2020].
Accurate intent classification is crucial for a
variety of NLP applications, including vir-
tual assistants, chatbots [Colombo* et al., 2019,
Jalalzai* et al., 2020, Colombo et al., 2021],

and customer support systems, to provide per-
sonalized and efficient customer experiences.
As the demand for such applications contin-
ues to grow, the importance of accurate intent
classification has become paramount. There-
fore, researchers and practitioners have devoted
significant efforts to developing and improving
intent classification models, leading to the emer-
gence of deep learning models that have shown
impressive results, particularly with the use of
pre-trained language models such as BERT.

In recent years, pre-trained language mod-
els such as Google’s Bidirectional Encoder
Representations from Transformers (BERT,
[Devlin et al., 2018]) have shown great success
in various NLP tasks. Specifically, BERT was
built and trained with the intent to be fine-
tuned on task-specific datasets by simply adding
a single output layer. While it has proven to
be a high-performance language representation
model, it is still unclear which fine-tuning tech-
niques perform and generalize best.

In this paper, we aim to compare and evaluate
various fine-tuning techniques for monolingual
intention classification using a BERT backbone.
In particular, we will investigate the usefulness
of adding certain modules on top of BERT. We
will analyze the results to determine which fine-
tuning technique performs best for monolingual
intent classification, and has the highest gener-
alization ability across different datasets.

The article is organized as follows. Section 2
provides a background on intention classifica-
tion and BERT. Section 3 describes the var-
ious fine-tuning methods used in this study.
Section 4 presents the experimental setup and
datasets used. Section 5 reports the results
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and analysis of the performance of the dif-
ferent fine-tuning techniques. Finally, Section
6 concludes the paper and provides insights
for future research. The code used for ex-
periments is available at https://github.com/
AliHaidar97/NLP-ENSAE-Project.

2. Background
2.1. Problem statement
The monolingual intent classification problem
boilds down to multi-label one target classifier.
Our goal is to evaluate and compare the effec-
tiveness of various deep learning models, taking
an utterance as input and predicting a label.

We denote x = (x1, . . . , xT ) an input sen-
tence of length T . For single-target classifica-
tion, each sentence is labeled by some y ∈ N.
For multi-target classification, it is labeled by
y = (y1, . . . , ym), with m the number of correct
classes. The total number of classes appearing in
the dataset is denoted K. Our goal is to retrieve
the correct y from a given input x.

2.2. Pretraining
[Radford et al., 2018b] show that when a Large
Language Model (LLM) is trained on a suffi-
ciently large and diverse dataset, it is able to
generalize to many domains and datasets. Their
experiments suggest that training high capacity
models to learn representations of a sufficiently
diverse text corpus grants them the ability to
perform suprisingly well on various NLP tasks.

[Radford et al., 2018a] further show that gener-
ative pre-training of a language model on a di-
verse corpus of unlabeled text, followed by dis-
criminative fine-tuning for a given task yields
significantly better results than training a task-
specific model from scratch. Precisely, learn-
ing complex language representation enables the
creation of more flexible and performing models,
with a higher generalization potential, and opens
the door to more complex tasks like few-shot or
even zero-shot (intent) classification.

2.3. BERT
BERT’s architecture [Devlin et al., 2018] is
based on a multi-layer bidirectional Transformer
encoder, similar to the vanilla Transformer
model [Vaswani et al., 2017] which has proven
to be particularly effective at modeling sequen-
tial data and learning long-range dependancies.
The input is represented using a concatenation
of WordPiece embeddings [Wu et al., 2016], po-

sitional embeddings - to take temporal ordering
into account -, and segment embedding. The lat-
ter being used to distinguish sentences, it does
not discriminate single sentences. A special clas-
sification embedding ([CLS]) is added as the first
token and a special token ([SEP]) marks the end
of the input sentence. Given an input token se-
quence x = (x1, ..., xT ) of length T , we denote
BERT’s output h = (h1, ...,hT ).

The pretrained BERT model is a powerful tool
to produce context-based sentence representa-
tion and can be fine-tuned for various tasks, in-
cluding intention classification.

3. Methodology
We build three models based on BERT
[Devlin et al., 2018]. In this section we describe
the models’ architectures and explain design
choices. We also give more detail on the loss
functions and performance assessment methods.

The most simple way to use BERT’s powerful
embedding is to simply add a dense layer on top
of the pretrained network. The intent is then
predicted as:

ỹ = softmax(Wh1 + b)

We use more sophisticated approaches to make
a better use of BERT’s outputs.

3.1. BertMLP1Layer
This first model uses the embedding layer of a
pre-trained BERT model. We then add a chain-
ing layer of GlobalMaxPooling1D and Global-
AveragePooling1D after the embedding. The re-
sulting output was then passed through a single
layer of the neural network.

GlobalMaxPooling1D and GlobalAveragePool-
ing1D are commonly used pooling operations in
deep learning models, especially for NLP tasks.

In many NLP problems, the inputs are sequences
of varying lengths. The pooling operations al-
low us to combine the information from these
sequences into a fixed-length vector that can be
passed to subsequent layers of the neural net-
work. GlobalMaxPooling1D computes the max-
imum value from each feature dimension over the
entire input sequence. This can be useful to cap-
ture the most salient information contained in
the input sequence. GlobalAveragePooling1D,
on the other hand, calculates the average value
from each feature dimension across the entire in-
put sequence. This can be useful to capture the
overall distribution of information in the input
sequence.

https://github.com/AliHaidar97/NLP-ENSAE-Project
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By using both GlobalMaxPooling1D and Glob-
alAveragePooling1D in a concatenated layer, we
can capture both the most salient information
and the overall distribution of information in
the input sequence, which leads to a more ro-
bust representation of the input and can lead to
improved performance.

The model uses sparse categorical cross-entropy
as a loss function in the training phase. It
is commonly used for multi-class classification
problems with integer labels, i.e. each class is as-
signed to a specific integer value. We must treat
differently the single- and multi-class cases. In
single-target classification, if we have n exam-
ples we denote y∗ = (y∗1 , . . . , y

∗
n) the true labels

and ỹ = (ỹ1, . . . , ỹn) the model’s output. The
loss function is then defined as:

ℓ1H(y∗, ỹ) = − 1

n

n∑
i=1

K∑
k=1

y∗i log(ỹik)

For multi-target classification, since examples
may not have the same number of correct classes,
we need to use masks. Specifically, we denote
y∗ = (y∗

1 , . . . ,y
∗
n) ∈ Nn×m the true labels and

ỹ = (ỹ1, . . . , ỹn) ∈ Rn×m×K the model’s out-
put. To deal with the differing number of classes,
we use a mask M ∈ {−1, 1}n×m. Sparse cate-
gorical cross-entropy is defined as:

ℓmH(y∗, ỹ) = − 1

S

n∑
i=1

m∑
j=1

K∑
k=1

y∗ij log(ỹijk)Mij

where S =
∑n

i=1

∑m
j=1 Mij , S ̸= 0.

We evaluate the performance of the model using
the 0−1 accuracy metric. This metric measures
the percentage of times the model correctly pre-
dicts the label for the input utterance. In other
words, it calculates the ratio between the num-
ber of correctly predicted labels and the total
number of labels and then expresses this as a
percentage. We use it for both single-target and
multi-target classification. In the single-target
case, the accuracy is given by:

Acc(y∗, ỹ) =
1

n

n∑
i=1

1{y∗i = argmax
1≤k≤K

ỹik}

In the multi-target case, we apply the following
formula:

Acc(y∗, ỹ) =
1

n×K

n∑
i=1

m∑
j=1

1Y ∗
i

(
argmax
1≤k≤K

ỹijk

)
where Y ∗

i = {y∗ij′ , j′ ∈ J1,mK}.

3.2. BertMLP2Layer
The main difference between this model and
BertMLP1Layer is that we added an additional
dense layer before the output layer.

3.3. BertGRU
We choose to use Gated Recurrent Units (GRU)
over other common types of recurrent neural
networks (e.g. Long-Short Term Memory) for it
is a reasonable compromise between model size
and performance [Chung et al., 2014]. The out-
put of BERT’s embedding is passed through two
bidirectional GRUs. We then use GlobalMax-
Pooling1D and GlobalAveragePooling1D like in
the previous models. The outputs are concate-
nated on the last dimension and passed through
a dense layer and a softmax. The architecture is
summarized in Appendix A.

4. Experimental setting
To assess the performance of these mod-
els, we used the SILICONE datasets
[Chapuis et al., 2020, Godfrey et al., 1992,
Li et al., 2017, Leech and Weisser, 2003,
Busso et al., 2008, Passonneau and Sachar., 2014,
Thompson et al., 1993, Poria et al., 2018,
Shriberg et al., 2004, Mckeown et al., 2013] pro-
vided by Hugging Face1. The datasets are in the
English language and contain between 4264 and
190709 training examples.

Each model is trained for 100 epochs with a
batch size of 32. We use the Adam optimizer
[Kingma and Ba, 2014] with a starting learning
rate of 5×10−5. The learning rate has a polyno-
mial decay such that it is null after 100 epochs.
We also clip the gradient norm to 1 to avoid
large swings and perturbations.

5. Results
The results we obtain for single-target and
multi-target classification are summarized in
the figures below. For single-target classifica-
tion, we get excellent results for all three meth-
ods, with BertGRU consistently outperform-
ing BertMLP2Layers, which itself outperforms
BertMLP1Layer. For multi-target classification,
though, we obtain unsatisfactory results across
all datasets, except maybe for dyda_e. Still,
BertGRU seems to be better-suited to the task,
either outperforming or being on a tie with the
other methods.

The full results tables are given in Appendix B.

1https://huggingface.co/datasets/silicone.
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6. Conclusion
In summary, this study has shown that fine-
tuning BERT for intent classification is a
promising approach for single-target classifica-
tion. The results obtained using BertGRU show
that the inclusion of bidirectional GRU mod-
ules on top of BERT can improve the perfor-
mance compared to using more elemntary tech-
niques. However, the study also highlights the
difficulty of accurately classifying multiple in-
tentions with BERT, suggesting that further
research is needed to address this challenge.
Multi-intent classification is a difficult task for
the model needs to capture subtle nuances in
the input text.

Future studies could explore different architec-
tures to tackle this problem, such as hierarchical
or ensemble models, which may be more effective
than the explored methods. Additionally, incor-
porating external knowledge sources or domain-
specific features could help improve the accuracy
of intent classifiers. Finally, examining the influ-
ence of preprocessing techniques and the amount
and quality of training data could provide valu-
able insights to improve the performance of in-
tent classification models. This study provides
a starting point for further research in the area
of NLU, which has a variety of applications in
several fields.

Future works in intent classification could
also consider the important issue of fairness
in NLP [Pichler et al., 2022, Colombo, 2021,
Colombo et al., 2022]. As NLP models are in-
creasingly being used in applications such as job

screening and loan approvals, it is crucial to en-
sure that these models are fair and unbiased to-
wards different groups of people. One potential
research direction is to investigate the impact
of different preprocessing techniques and train-
ing data on the fairness of intent classification
models. Additionally, exploring ways to incor-
porate fairness considerations into the design of
hierarchical or ensemble models could lead to
more equitable outcomes in NLP applications.
Hence, fairness should be a key consideration in
the development of intent classification models
to ensure that they serve all users equally.
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A. BertGRU architecture

Input

BERT Embedding Layer

Bidirectional GRU
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Figure 1: Bidirectional GRU fine-tuning on BERT (
⊕

denotes concatenation on dimension −1).

B. Full results tables

Table 1: Results table for multi-label single-target classification.

Model dyda_da dyda_e maptask meld_e meld_s mrda oasis sem
GRU 81.32 84.78 62.85 62.18 67.43 90.02 66.78 64.12

MLP2Layers 78.91 84.53 59.64 60.00 65.98 89.83 58.73 57.63
MLP1Layer 76.33 83.32 53.11 52.18 60.65 87.43 50.61 54.90

Table 2: Results table for multi-label multi-target classification.

Model dyda_da dyda_e meld_e meld_s mrda sem
GRU 54.03 76.59 41.15 41.23 46.73 26.99

MLP2Layers 39.20 70.92 30.27 30.34 45.22 28.47
MLP1Layer 34.46 66.21 30.23 30.15 46.86 30.87
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