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Abstract

Data augmentation (DA) encodes invariance
and provides implicit regularization critical to
a model’s performance in image classification
tasks. However, while DA improves average ac-
curacy, recent studies have shown that its impact
can be highly class dependent: achieving opti-
mal average accuracy comes at the cost of sig-
nificantly hurting individual class accuracy by
as much as 20% on ImageNet. In this work,
we present a framework for understanding how
DA interacts with class-level learning dynamics.
Using higher-quality multi-label annotations on
ImageNet, we systematically categorize the af-
fected classes and find that the majority are inher-
ently ambiguous, spuriously correlated, or involve
fine-grained distinctions, while DA controls the
model’s bias towards one of the closely related
classes. While many of the previously reported
performance drops are explained by multi-label
annotations, our analysis of class confusions re-
veals other sources of accuracy degradation. We
show that simple class-conditional augmentation
strategies informed by our framework improve
performance on the negatively affected classes.

1. Introduction
Data augmentation (DA) provides numerous benefits for
training of deep neural networks including promoting invari-
ance and providing regularization. In particular, DA signif-
icantly improves the generalization performance in image
classification problems when measured by average accuracy
(Gontijo-Lopes et al., 2020; Balestriero et al., 2022b; Geip-
ing et al., 2022). However, Balestriero et al. (2022a) and
Bouchacourt et al. (2021) showed that strong DA, in particu-
lar, Random Resized Crop used in training of most modern
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computer vision models, may disproportionately hurt ac-
curacies on some classes, e.g. with up to 20% class-level
degradation on ImageNet compared to milder augmentation
settings (see Figure 3 left). Performance degradation even
on a small set of classes might result in poor generalization
on downstream tasks related to the affected classes (Salman
et al., 2022), while in other applications it would be unethi-
cal to sacrifice accuracy on some classes for improvements
in average accuracy (Blodgett et al., 2016; Tatman, 2017;
Buolamwini & Gebru, 2018). Balestriero et al. (2022a) at-
tempted to address class-level performance degradation by
applying DA selectively to the classes where the accuracy
improves with DA strength. Surprisingly, they found that
this augmentation policy did not address the issue and the
performance on non-augmented classes still degraded with
augmentation strength. In this work we perform detailed
analysis and explore the mechanisms causing the class-level
performance degradation. In particular, we identify the in-
teractions between class-conditional data distributions as
the cause of the class-level performance degradation with
augmentation: DA creates an overlap between the data dis-
tributions associated with different classes. In particular,
our contributions are the following:

• We refine the analysis of class-level effects of data
augmentations by correcting for label ambiguity using
multi-label annotations on ImageNet. Through this
analysis, we find that class-level performance degrada-
tion reported in prior works is overestimated.

• We systematically categorize the class confusions ex-
acerbated by strong augmentation and find that many
affected classes are ambiguous or co-occurring and are
often affected by label noise. We focus on address-
ing the remaining fine-grained and non-trivial class
confusions.

• We show that for addressing DA biases it is important
to consider the classes with an increasing number of
false positive mistakes, and not only the classes nega-
tively affected in accuracy. By taking into account our
observations on DA affecting class interactions, we pro-
pose a simple class-conditional data augmentation strat-
egy that leads to improvement on the affected group
of classes by 2.5% on ImageNet. This improvement is
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in contrast to the previously explored class-conditional
DA in Balestriero et al. (2022a) which failed to im-
prove class-level accuracy.

2. Evaluation setup and notation
We closely follow the experimental setup from Balestriero
et al. (2022a). We focus on ResNet-50 models trained
on ImageNet (IN) and study how average and class-level
performance changes depending on the Random Resized
Crop (RRC) augmentation strength: it is by far the most
widely adopted augmentation which leads to significant
average accuracy improvements and is used for training
the state-of-the-art computer vision models. The size of
the crop in RRC DA is sampled from the uniform distribu-
tion sRRC ∼ U [s, 100%], and by varying the lower bound
s we control the strength of augmentation. In particular,
s = 8% corresponds to the strongest augmentation (which
is the default value in pytorch RRC implementation) and
s = 100% corresponds to no augmentation.

Evaluation metrics. Beyer et al. (2020) released Re-
assessed Labels (ReaL) for ImageNet validation set which
partially correct the label noise present in the original labels
including mislabeled examples, multi-object images and am-
biguous classes. We will use lReaL(x) to denote the set of
ReaL labels of example x. We aim to measure performance
of model fs(x) as a function of DA strength s. We measure
average accuracy a(s), and per-class accuracy ak(s) with
respect to both original IN labels and ReaL multi-label an-
notations given by: aork (s) = 1/|Xk|

∑
x∈Xk

I[fs(x) = k]

and aReaL
k = 1/|Xk|

∑
x∈Xk

I[fs(x) ∈ lReaL(x)], where
Xk are images from class k in validation set. We will
refer to aor and aReaL as original accuracy and ReaL
accuracy, respectively. In our analysis, we evaluate per-
class accuracy drops comparing the maximum accuracy
attained on a particular class k across all augmentation lev-
els ak(s∗k) = maxs ak(s) and accuracy on that class when
training with strongest DA ak(s = 8%). We will refer to
the classes with the highest ∆ak = ak(s

∗
k)− ak(s = 8%)

as the ones most negatively affected by DA. To summarize
performance on the affected classes, we will evaluate aver-
age accuracy of classes with the highest ∆ak (in many cases
focusing on 5% of IN classes with the highest accuracy drop
following Balestriero et al. (2022a)). Due to space limita-
tion, we provide more details on the setup in Appendix A
and the related works discussion in Appendix C.

3. Per-class accuracy degradation with strong
DA is overestimated due to label ambiguity

Previous studies reported that the performance of ImageNet
models is effectively better when evaluated using multi-
label annotations which address its label noise issues (e.g.
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Figure 1. We find that for many classes the negative effects of
strong data augmentation are muted if we use high-quality
multi-label annotations. Average and per-class accuracy of
ResNet-50 trained on ImageNet evaluated with original and
ReaL labels against Random Resized Crop augmentation strength
(s = 8% corresponds to the strongest and default augmentation).
The top row shows the average accuracy of all ImageNet classes,
the 50 classes with the highest original accuracy degradation and
the remaining 950 classes. The bottom row shows the accuracy of
3 individual classes most significantly affected in original accuracy
when using strong augmentation.

Shankar et al. (2020) and others), however, it is unclear how
correcting for label ambiguity would affect the results of
Balestriero et al. (2022a) and Bouchacourt et al. (2021) on
the effects of DA on class-level performance. We observe
that for many classes with severe drops in accuracy with
original labels, the class-level ReaL accuracy is consider-
ably less affected. In Figure 4 we show the distributions of
per-class accuracy drops ∆aork and ∆aReaL

k , where the dis-
tribution of ∆aork has a much heavier tail. Using multi-label
accuracy in evaluation reveals there are much fewer classes
which have severe effective performance drop: e.g. only
37 classes with ∆aReaL

k > 4% as opposed to 83 classes
with ∆aork > 4%. In Figure 1, we show how multi-label
accuracy evaluation impacts the average and individual class
performance across different DA strengths s. In the top row
plots we see that while the average accuracy of all classes
follows a similar trend when evaluated with either original
or ReaL labels, the average accuracy of 50 most negatively
affected classes only decreases by 1% with ReaL labels as
opposed to more significant 5% drop with original labels.
The bottom row shows the accuracy for “barn spider”, “over-
skirt” and “academic gown” classes which have the highest
∆aork , and the trends for all 50 most negatively affected
classes are shown in Appendix D. For many of these classes
which are hurt in original accuracy by using stronger DA,
the ReaL accuracy is much less affected. For example, for
the class “barn spider” the original accuracy is decreased
from 63% to 47% if we use the model trained with RRC
s = 8% compared to s = 70%, while the highest ReaL
accuracy on this class is achieved with s = 8%. However,
there are still classes for which the ReaL accuracy degrades
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with stronger DA, and in Appendix D we show ReaL ac-
curacy trends against DA strength s for 50 classes with the
highest ∆aReaL. In the next section, we aim to understand
why strong DA hurts the performance on these classes.

4. DA most significantly affects of ambiguous,
co-occurring and fine-grained categories

In this section, we aim to understand the reasons behind
per-class accuracy degradation when using stronger DA by
analyzing the most common confusions the models make
on the affected classes and how they evolve as we vary the
DA strength. We focus on the 50 classes with the highest
∆aork and 50 classes with the highest ∆aReaL

k . For a pair
of classes k and l we define the confusion rate (CR) as:
CRk→l(s) = 1/|Xk|

∑
x∈Xk

I[fs(x) = l], i.e. the ratio of
examples from class k misclassified as l. For each affected
class, we identify most common confusions and track the
CR against the RRC crop scale lower bound s. We also
analyze the reverse confusion rate CRl→k(s). We observe
that in many cases DA strength controls the model’s pref-
erence in predicting one or another plausible ReaL label
or among semantically similar classes. We categorize the
most common types of confusions on the classes which are
significantly affected by DA into ambiguous, co-occurring,
fine-grained or semantically unrelated (see Figure 2). We
use semantic similarity and ReaL labels co-occurence as
a criteria to approximately identify a confusion category
for a pair of classes. We discuss each category in detail in
the following paragraphs, and in Appendix E we give more
details on computing the metrics to identify the confusion
type and categorize the confusions of all affected classes.

Intrinsically ambiguous classes. Prior works (e.g. Beyer
et al. (2020) and others) identified that some pairs of Ima-
geNet classes are hardly distinguishable, e.g. “sunglasses”
and “sunglass”, or “monitor” and “screen”. These pairs
of classes generally have higher semantic similarity and
higher overlap in ReaL labels. We observe that in many
cases the accuracy on one class within the ambiguous pair
degrades with stronger augmentations, while the accuracy
on another one improves. In Figure 2 top left panel we show
the confusion rates against the DA strength s for an am-
biguous pair of classes “sunglass” and “sunglasses”. While
DA strength controls model’s bias towards predicting one
or another plausible label, the models are not effectively
making mistakes when confusing such classes.

Spuriously co-occurring or overlapping classes. There
is a number of classes in ImageNet which correspond to
semantically different objects which often appear together,
e.g. “academic gown” and “mortarboard”, or “Windsor
tie” and “suit”. These pairs of classes have a rather high
overlap in ReaL labels and their semantic similarity can
vary. With RRC we may augment the sample such that

Table 1. Class-conditional DA intervention results.

Augmentation strategy Avg acc
Avg acc of
50 classes

Avg acc of
950 classes

Standard DA s = 8% 76.79±0.03 53.93±0.20 77.99±0.02

s = 60% 74.65±0.03 59.11±0.20 75.47±0.02

Class-cond. (Balestriero et al) 76.11±0.05 43.02±0.28 77.85±0.04

Our class-cond. DA
m = 10 76.70±0.03 54.99±0.15 77.84±0.03

m = 30 76.70±0.03 55.48±0.23 77.82±0.03

m = 50 76.68±0.04 56.34±0.14 77.75±0.04

only the spuriously co-occurring object, but not the main
object, is left in the image, but the model would still be
trained to predict the original label: e.g. we can crop just the
mortarboard in an image labeled as “academic gown”. It was
previously shown that RRC can increase model’s reliance
on spurious correlations (Hermann et al., 2020; Shah et al.,
2022) which can lead to meaningful mistakes, not explained
by label ambiguity. In Figure 2 top right panel we show
how DA strength impacts model’s bias towards predicting
spuriously correlated “sandbar” or “seashore” classes.

Fine-grained categories. There is a number of fine-grained
categories in IN like “tobacco shop” and “barbershop”, or
“frying pan” and “wok”, where objects appear in related con-
texts or share some visually similar features. These classes
have high semantic similarity and are not significantly over-
lapping in ReaL labels. RRC can produce the augmented
images from different categories that have visually similar
features or are focused on similar backgrounds. In Figure 2
bottom left panel we show how model’s confusion rates
change depending on DA strength (for them only 12% of
confusions were corrected by ReaL labels).

Semantically unrelated. In the rare but most problematic
cases, the stronger DA will result in the confusion of se-
mantically unrelated classes (due to them having similar
low-level features), for example, categories like “muzzle”
and “sandal”, or “bath towel” and “pillow”. Figure 2 bottom
right panel shows how confusions between unrelated classes
“muzzle” and “sandal” emerge with stronger DA.

5. Class-conditional augmentation policy
Balestriero et al. (2022a) showed that a naive class-
conditional DA approach is not sufficient for removing the
negative effects of DA: they evaluated a DA strategy where
augmentation is applied to all classes except the ones with
degraded accuracy which are instead processed with Center
Crop. Since this approach didn’t recover the accuracy of
the affected classes, they hypothesize DA induces a general
invariance or an implicit bias that still negatively affects
classes that are not augmented. In contrast, we explore a
simple class-conditional augmentation strategy based on our
insights regarding the class confusions, and by changing the
augmentation strength for as few as 1 to 5% of classes, we
observe substantial improvements on the negatively affects
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Figure 2. Each panel shows a pair of confused classes which we categorize into: ambiguous, co-occurring, fine-grained and semantically
unrelated, depending on the inherent class overlap and semantic similarity. For each confused class pair, the left subplot corresponds to
the class k affected in accuracy by strong data augmentation (DA), e.g. “sunglass” on top left panel: the ratio of validation samples from
that class that get classified as k decreases with stronger DA, while the confusion rate with another class l (e.g. class “sunglasses” on top
left panel) increases. The right subplot shows the percent of examples from class l that get classified as k or l against DA strength.

classed. We found in many cases that a class k whose ac-
curacy is affected by DA is misclassified as a related class
l with stronger augmentations. We can precisely describe
these confusions in terms of False Negative (FN) mistakes
for class k (not recognizing an instance from class k) and
False Positive (FP) mistakes for class l (misclassifying an
instance from another class as class l). We argue that to ad-
dress the degraded accuracy of class k it is also important to
consider DA effect on class l. In Appendix F, we show the
class-level False Positive mistake numbers compared to DA
strength: these classes are often semantically related to and
confused with the ones affected in accuracy, e.g. “barber-
shop” is confused with “tobacco shop”. We explore a simple
DA policy informed by the following observations: (1) gen-
erally stronger DA is helpful for the majority of classes and
leads to learning more diverse features, (2) a substantially
increased number of FP mistakes for a particular class likely
indicates that its augmented data distribution overlaps with
other classes and it might negatively affect their accuracy.
Thus, by default we set the strongest data augmentation
value s = 8% for the majority of classes, and change aug-
mentation level for a small subset of classes for which FP
mistakes grew the most with stronger DA. However, com-
pletely removing augmentations would hurt accuracy so
we balance the tradeoff between learning diverse features
and avoiding class confusions. As a heuristic, we set DA
strength for each class to be argmin of FP + FN mistakes
of that class across DA levels. We vary the number of
classes m for which we change augmentations in the range
{10, 30, 50}. We compare this intervention to the baseline

model trained with the strongest DA s = 8%, mild DA level
s = 60% optimal for average accuracy on the affected set
of classes, and the class-conditional augmentation approach
studied in Balestriero et al. (2022a) where we remove aug-
mentation from the negatively affected classes. The results
are shown in Table 1. We find existing approaches sacrifice
accuracy on the subset of negatively affected classes for
overall average accuracy or vice versa. For example, as we
previously observed the default model trained with s = 8%
achieves high average accuracy on the majority of classes
but suboptimal accuracy on the 50 classes affected by strong
augmentation. Removing augmentation from the negatively
affected classes only exacerbates the effect and decreases
the accuracy both on the affected set and on average. At
the same time, tuning down augmentation level on 1 to 5%
of classes with the highest FP mistakes increase improves
the accuracy on the affected classes by 2.5% for m = 50,
and taking into account the tradeoff between False Positive
and False Negative mistakes helps to maintain high average
accuracy overall and on majority of classes. These results
support our hypothesis and demonstrate how a simple in-
tervention on a small number of classes informed by the
appropriate metrics can substantially improve performance.

Discussion. In this work we provide new insights into
the class-level accuracy degradation on ImageNet using
standard augmentation. We show that to understand DA
biases it is important to consider the interactions among
class-conditional data distributions, and how DA affects
these interactions. We systematically categorize the most
significantly affected classes as ambiguous, co-occurring,
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or involving fine-grained distinctions. In contrast to prior
work, we show that a simple class-conditional DA policy
based on our insights can significantly improve performance
on the classes negatively affected by standard DA.
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Figure 3. We show that the classes negatively affected by data augmentation are often ambiguous, co-occurring or fine-grained
categories and analyze how data augmentation exacerbates class confusions. Left: Average accuracy of ResNet-50 on ImageNet
against Random Resized Crop (RRC) data augmentation strength: average of all classes (blue), average of the 50 classes on which stronger
RRC hurts accuracy the most (red), and the average of the remaining 950 classes (green). Yellow line indicates the default RRC setting
used in training of most computer vision models. Middle: We systematically categorize the types of class confusions exacerbated by
strong data augmentation: while some of them include ambiguous or correlated classes, there is a number of fine-grained and non-trivial
confusions. Right: Often the class-level accuracy drops due to overlap with other classes after applying augmentation: e.g. heavily
augmented samples from “car” class can look like typical images from “wheel” class. As a result, the model learns to predict “car”
on “wheel” images, and the accuracy on the “wheel” class drops. To resolve the negative effect of strong augmentation on classes like
“wheel”, we should modify augmentation strength of classes like “car”.

Contribution summary
In this work we perform detailed analysis and explore the mechanisms causing the class-level performance degradation
emerging with strong data augmentation (DA). In particular, we identify the interactions between class-conditional data
distributions as the cause of the class-level accuracy drops: DA creates an overlap between the data distributions associated
with different classes. As a simple example, in Figure 3 (right) we show that the standard Random Resized Crop operation
creates an overlap between the “car” and “wheel” classes. As a result, the model learns to predict “car” on “wheel” images,
and the performance on the “wheel” class drops. Importantly, if we want to improve the performance on the “wheel” class,
we need to modify the augmentation policy on the class “car” and not “wheel” as was done in prior work (Balestriero et al.,
2022a). We also identify the types of mistakes models make on the affected classes, and explain why the selective DA policy
of Balestriero et al. (2022a) fails to improve class-level performance. Finally, we show that a simple class-conditional DA
policy motivated by our analysis improves performance on the classes that are negatively affected by standard augmentation.
We summarize our findings in Figure 3

A. Setup details
Following Balestriero et al. (2022a), we train ResNet-50 models (He et al., 2016) on ImageNet (Russakovsky et al., 2015)
for 88 epochs with SGD with momentum 0.9, using batch size 1024, weight decay 10−4, and label smoothing 0.1 (Szegedy
et al., 2016). We use cyclic learning rate schedule starting from the initial learning rate 10−4 with the peak value 1 after
2 epochs and linearly decaying to 0 until the end of training. We use PyTorch (Paszke et al., 2017), automatic mixed
precision training with torch.amp package1, ffcv package (Leclerc et al., 2022) for fast data loading. We use image
resolution 176 during training, and resolution 224 during evaluation, following Balestriero et al. (2022a), Touvron et al.

1https://pytorch.org/docs/stable/amp.html

https://pytorch.org/docs/stable/amp.html
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(2019) and torchvision training recipe2. Balestriero et al. (2022a) also use different image resolution at training and test
time: ramping up resolution from 160 to 192 during training and evaluating models on images with resolution 256. We train
10 independent models with different random seeds for each augmentation strength s ∈ {8, 20, 30, 40, 50, 60, 70, 80, 90, 99}
where s = 8% corresponds to the strongest and default augmentation.

Data augmentation. We apply random horizontal flips and Random Resized Crop (RRC) DA when training our models.
In particular, for an input image of size h×w the RRC transformation samples the crop scale sRRC ∼ U [slow, sup] and the
aspect ratio r ∼ U [rlow, rup], where U [a, b] denotes a uniform distribution between a and b. RRC then takes random a crop
of size

√
sRRChwr×

√
sRRChw/r and resizes it to a chosen resolution R×R. We use the standard values for sup = 100%

and aspect ratios rlow = 3/4, rup = 4/3, and vary the lower bound of the crop scale slow (for simplicity, we will further use
s) between 8% and 100% which controls the strength of augmentation: s = 8% corresponds to the strongest augmentation
(note this is the default value in pytorch (Paszke et al., 2019) RRC implementation) and s = 100% corresponds no
cropping hence no augmentation.

ReaL labels. Beyer et al. (2020) used large-scale vision models to generate new label proposals for ImageNet validation
set which were then evaluated by human annotators. These Reassessed Labels (ReaL) correct the label noise present in the
original labels including mislabeled examples, multi-object images and ambiguous classes. Since there are possibly multiple
ReaL labels for each image, model’s prediction is considered correct if it matches one of the plausible labels.

We use NLTK library (Bird et al., 2009) for WordNet and spaCy library (Honnibal et al., 2020) for embeddings similarity.
Example images in Figures 2 and 3 are taken from https://unsplash.com/.

B. Evaluation metrics
To understand the biases introduced or exacerbated by data augmentation, we use a number of fine-grained metrics and
evaluate them for models trained with different augmentation levels. We compute these metrics using original ImageNet
validation labels and ReaL multi-label annotations (Beyer et al., 2020). We use fs(·) to denote a neural network trained with
augmentation parameter s, lReaL(x) a set of ReaL labels for a validation example x, X a set of all validation images, Xk

the validation examples with the original label k.

Accuracy. The average accuracy across for original and ReaL labels is defined as:

aor(s) = 1/|X|
∑
x∈X

I[fs(x) = k] and aReaL = 1/|X|
∑
x∈X

I[fs(x) ∈ lReaL(x)],

while for per-class accuracies aork (s) and aReaL
k (s) the summation is over the set Xk instead of all validation examples X .

The accuracy on class k with original labels aork (s) also correspond to recall of the model on that class.

Confusion. In Section 4 we looked at class confusions, in particular for a pair of classes k and l the confusion rate (CR) is
defined as:

CRk→l(s) = 1/|Xk|
∑
x∈Xk

I[fs(x) = l],

i.e. the ratio of examples from class k misclassified as l. We are only discussing confusions CRk→l in the context of original
labels.

False Positive and False Negative mistakes. In Section 5, we emphasized the importance of looking at how data
augmentation impacts not only per-class accuracy but also the number of False Positive (FP) mistakes for a particular class:

FP or
k (s) =

∑
(x∈X)∩(x/∈Xk)

I[fs(x) = k] and FPReaL
k (s) =

∑
(x∈X)∩(k/∈lReaL(x))

I[fs(x) = k]

for original and Real labels respectively. The number of False Negative mistakes on class k in terms of the original labels
are directly related to the accuracy, or recall, on that class:

2https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

https://www.nltk.org/howto/wordnet.html
https://spacy.io/usage/spacy-101#vectors-similarity
https://unsplash.com/
https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/
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FNor
k (s) =

∑
x∈Xk

I[fs(x) ̸= k] = |Xk|(1− aor(s)),

while for multi-label annotations we define it as:

FNReaL
k (s) =

∑
(x∈X)∩(k∈lReaL(x))

I[fs(x) /∈ lReaL(x)],

i.e. the number of examples x which were misclassidied by the model where k was in the ReaL label set lReaL(x). In
Section 5 we explored s∗k = argminFNk(s) + FNk(s) as a proxy for optimal class-conditional augmentation level which
emphasizes the inherent tradeoff between class-level accuracy and the number of False Positive mistakes.

Affected classes. We are focusing on analyzing model’s behavior on the classes which were negatively affected by strong
(default) augmentation in terms of original or ReaL accuracy, i.e. classes where the accuracy drop ∆ak = ak(s

∗
k)− ak(s =

8%) from ak(s
∗
k) = maxs ak(s) to ak(s = 8%) is the highest. We focus on 5% of classes (50 classes) with the highest

∆ak following Balestriero et al. (2022a) and measure the average accuracy on this set of classes as a function of s and after
interventions in Section 5.

In Section 5, we also look at classes where the number of FP mistakes increased the most with strong DA, i.e. with the
highest ∆FPk = FPk(s = 8%)− FPk(s

∗
k) where FPk(s

∗
k) = mins FPk(s).

Prior work evaluation. To quantify the class accuracy drops, Balestriero et al. (2022a) compare the per-class accuracy of
models trained with the strongest DA (s = 8%) and models trained without augmentation (s = 100% which effectively just
resizes input images without cropping), while Bouchacourt et al. (2021) compared class-level accuracy of models trained
with RRC with s = 8% and models trained with fixed size Center Crop.

C. Related work
Understanding data augmentation, invariance and regularization. Hernández-Garcı́a & König (2018) analyzed the DA
from the perspective of implicit regularization. Botev et al. (2022) propose an explicit regularizer that encourages invariance
and show that it leads to improved generalization. Balestriero et al. (2022b) derive an explicit regularizer to simulate DA to
quantify its benefits and limitations and estimate the number of samples for learning invariance. Gontijo-Lopes et al. (2020)
and Geiping et al. (2022) study the mechanisms behind the effectiveness of DA, which include data diversity, exchange
rates between real and augmented data, additional stochasticity and distribution shift. Bouchacourt et al. (2021) measure
the learned invariances using DA. Lin et al. (2022) studied how data augmentation induces implicit spectral regularization
which improves generalization. For a detailed review of DA techniques, see Xu et al. (2023).

Biases of data augmentations. While DA is commonly applied to improve generalization and robustness, a number of
prior works identified its potential negative effects. Hermann et al. (2020) showed that decreasing minimum crop size in
Random Resized Crops leads to increased texture bias. Shah et al. (2022) showed that using standard DA amplifies model’s
reliance on spurious features compared to models trained without augmentations. Idrissi et al. (2022) provided a thorough
analysis on how the strength of DA for different transformations has a disparate effect on subgroups of data corresponding to
different factors of variation. Kapoor et al. (2022) suggested that DA can cause models to misinterpret uncertainty. Izmailov
et al. (2022) showed that DA can hurt the quality of learned features on some classification tasks with spurious correlations.
Balestriero et al. (2022a) and Bouchacourt et al. (2021) showed that strong DA may disproportionately hurt accuracies on
some classes on ImageNet, and in this work we focus on understanding this class-level performance degradation through the
lens of interactions between classes.

Adaptive and learnable data augmentation. Xu et al. (2020) showed that data augmentation may exacerbate data bias
which may lead to model’ suboptimal performance on the original data distribution. They propose to train the model on
a mix of augmented and unaugmented samples and then fine-tune it on unaugmented data after training which showed
improved performance on CIFAR dataset. Raghunathan et al. (2020) showed standard error in linear regression could
increase when training with original data and data augmentation, even when data augmentation is label-preserving. Rey-Area
et al. (2020) and Ratner et al. (2017) learn DA transformation using GAN framework, while Hu & Li (2019) study the bias of
GAN-learned data augmentation. Fujii et al. (2022) take into account the distances between classes to adapt mixed-sample
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DA. Hauberg et al. (2016) learn class-specific DA on MNIST. Numerous works, e.g. Cubuk et al. (2018); Lim et al. (2019);
Ho et al. (2019); Hataya et al. (2020); Li et al. (2020); Cubuk et al. (2020); Tang et al. (2019); Müller & Hutter (2021) and
Zheng et al. (2022) find dataset-dependent augmentation strategies. Benton et al. (2020) proposed Augerino framework
to learn augmentation form training data. Zhou et al. (2021); Cheung & Yeung (2022); Mahan et al. (2021) and Miao
et al. (2022) learn class- or input-dependent augmentation policies. Yao et al. (2022) propose to modify mixed-sample
augmentation to improve out-of-domain generalization.

Robustness and model evaluation beyond average accuracy. While Miller et al. (2021) showed that model’s average
accuracy is strongly correlated with its out-of-distribution performance, there have been a number of works that showed
that only evaluating average performance can be deceptive. Teney et al. (2022) showed counter-examples for “accuracy-on-
the-line” phenomenon. Kaplun et al. (2022) show that while model’s average accuracy improves during training, it may
decrease on a subset of examples. Sagawa et al. (2019) show that training with Empirical Risk Minimization may lead to
suboptimal performance in the worst case. Bitterwolf et al. (2022) evaluated ImageNet models’ performance in terms of a
number of metrics beyond average accuracy, including worst-class accuracy and precision.

Multi-label annotations on ImageNet. A number of prior works identified that ImageNet dataset contains label noise
such as ambiguous classes, multi-object images and mislabeled examples (Beyer et al., 2020; Shankar et al., 2020; Vasudevan
et al., 2022; Northcutt et al., 2021b; Stock & Cisse, 2018; Northcutt et al., 2021a). Tsipras et al. (2020) found that nearly
20% of ImageNet validation set images contain objects from multiple classes. Hooker et al. (2019) ran a human study and
showed that examples most affected by pruning a neural network are often mislabeled, multi-object or fine-grained. Yun
et al. (2021) generate pixel-level multi-label annotations for ImageNet train set using a large-scale computer vision model.
Beyer et al. (2020) provide re-assessed (ReaL) multi-label annotations for ImageNet validation set which aim to resolve
label noise issues, and we use ReaL labels in our analysis to refine the understanding of per-class effects of DA.

D. Accuracy of the classes most negatively affected by data augmentation
We show the per-class accuracies as a function of data augmentation strength s for (1) the 50 classes most negatively affected
in original accuracy, i.e. with the highest ∆aork in Figure 5, and (2) 50 classes most negatively affected in ReaL accuracy in
Figure 6.

In Figure 4 we show the distributions of per-class accuracy drops ∆aork and ∆aReaL
k . Using multi-label accuracy in

evaluation reveals there are much fewer classes which have severe effective performance drop: e.g. only 37 classes with
∆aReaL

k > 4% as opposed to 83 classes with ∆aork > 4%. moreover, there are no classes with ∆aReaL
k > 11%.
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label annotations. Distribution of per-class accuracy drops ∆ak for original and ReaL labels. The distribution of ∆aor

k has a heavier tail
compared to the one computed with ReaL labels.
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E. Class confusion types
We consider the classes most affected by strong DA (see Figures in Appendix D) which do not belong to the “animal”
subtree category in the WordNet hierarchy (Fellbaum, 1998) since fine-grained animal classes were reported to have higher
label noise in previous studies (Van Horn et al., 2015; Shankar et al., 2020; Luccioni & Rolnick, 2022; Beyer et al., 2020).
We focus on the 50 classes with the highest ∆aork (corresponding to ∆aork > 5%), and 50 classes with the highest ∆aReaL

k .
(corresponding to ∆aReaL

k > 4%).

We roughly outline the most common types of confusions on the classes which are significantly affected by DA. The
different types of confusion differ in in the extent to which the accuracy degradation can be attributed to label noise versus
the presence of DA. We also characterize how DA effectively changes the data distribution of these classes leading to
changes in performance. These categories are closely related to common mistake types on ImageNet identified by Beyer
et al. (2020) and Vasudevan et al. (2022), but we focus on class-level interactions as opposed to instance-level mistakes and
particularly connect them to the impact of DA. We use semantic similarity and ReaL labels co-occurence as a criteria to
identify a confusion category for a pair of classes. We can measure semantic similarity by (a) WordNet class similarity,
given by the Wu-Palmer score which relies on the categories’ most specific common ancestor in the WordNet tree, and (b)
similarity of the class name embeddings.

Using these metrics, depending on a higher or lower semantic similarity and higher or lower ReaL labels overlap, we
categorize confused class pairs as ambiguous, co-occurring, fine-grained or semantically unrelated. Examples of how
confusion rates for each class confusion category change with DA strength are shown in Figures 2 and 7, and categorization
of confusions on all affected classes is in Table 2.

Class-conditional distributions induced by DA. To aid our understanding of the class-specific effects of DA, it is helpful
to reason about how a parametrized class of DA transformations Ts(·) changes the distributions of each class in the training
data pk(x). We denote the augmented class distributions by Ts(pk). In particular, if supports of Ts(pk) and Ts(pl) for two
classes k and l overlap, the model is trained to predict different labels k and l on similar inputs corresponding to features
from both classes k and l which will lead to performance degradation. Some class distributions pk and pl are intrinsically
almost coinciding or highly overlapping in the ImageNet dataset, while others have distinct supports, but in all cases the
parameters of DA s will control the overlap of the induced class distributions, and thus the biases of the model when making
predictions on such classes.

Intrinsically ambiguous or semantically identical classes. Prior works (e.g. Beyer et al., 2020; Shankar et al., 2020;
Vasudevan et al., 2022; Tsipras et al., 2020) identified that some pairs of ImageNet classes are practically indistinguishable,
e.g. “sunglasses” and “sunglass”, “monitor” and “screen”, “maillot” and “maillot, tank suit”. These pairs of classes would
generally have higher semantic similarity and higher overlap in ReaL labels. We observe that in many cases the accuracy on
one class within the ambiguous pair degrades with stronger augmentations, while the accuracy on another one improves.
The supports of distributions of these class pairs pk and pl highly overlap or even coincide, but with varying α depending
on how the supports of Tα(pk) and Tα(pl) overlap the model would be biased towards predicting one of the classes. In
Figure 2 top left panel we show how the frequencies of most commonly predicted labels change on an ambiguous pair
of classes “sunglass” and “sunglasses” as we vary the crop scale parameter (these classes overlap with Ckl = 91.1% and
99% of confusions are corrected by ReaL labels). We note that for images from both classes the frequency of “sunglasses”
label increases with stronger DA while “sunglass” predictions have the opposite trend. Models trained on ImageNet often
achieve a better-than-random-guess accuracy when classifying between these classes due to overfitting to marginal statistical
differences and idiosyncrasies of their labeling pipeline. While DA strength controls model’s bias towards predicting one or
another plausible label, the models are not effectively making mistakes when confusing such classes.

Co-occurring or overlapping classes. There is a number of classes in ImageNet which correspond to semantically
different objects which often appear together, e.g. “academic gown” and “mortarboard”, “Windsor tie” and “suit”, “assault
rifle” and “military uniform”, “seashore” and “sandbar”. These pairs of classes have rather high overlap in ReaL labels
(depending on the spurious correlation strength) and their semantic similarity can vary (but it would be lower than for
ambiguous classes). The class distributions of co-occurring classes inherently overlap, however, stronger DAs may increase
this overlap in class distribution supports. For example, with RRC we may augment the sample such that only the spuriously
co-occurring object is left in the image, but the model would still be trained to predict the original label: we can crop just the
mortarboard in an image labeled as “academic gown”. It was previously shown that RRC can increase model’s reliance on
spurious correlations (Hermann et al., 2020; Shah et al., 2022) which can lead to meaningful mistakes, not explained by
label ambiguity. In Figure 2 top right panel we show how DA strength impacts model’s bias towards predicting “sandbar” or
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“seashore” class (for which Ckl = 72% and 96% confusions resolved by ReaL labels).

We emphasize that unlike the ambiguous classes discussed ealier, the co-occuring classes cause meaningful mistakes on the
test data, which are not resolved by multi-label annotations. For example, the model will be biased to predict “academic
gown” even when shown an image of just the mortarboard.

Fine-grained categories. There is a number of semantically related class pairs like “tobacco shop” and “barbershop”,
“frying pan” and “wok”, “violin” and “cello”, where objects appear in related contexts, share some visually similar features
and generally represent fine-grained categories of a similar object type. These classes have high semantic similarity and
are not significantly overlapping (sometimes they are affected by mislabeling but generally not multi-object). The class
distributions for such categories are close to each other or slightly overlapping, but strong DA pulls them closer, and T (pk)
and T (pl) would be more overlapping due to e.g. RRC resulting in the crops of the visually similar features or shared
contexts in the augmented images from different categories. In Figure 2 bottom left panel we show how model’s most
common predictions change depending on RRC crop scale for fine-grained classes “frying pan” and “wok” (for which
Ckl = 10%, only 12% of confusions were corrected by ReaL labels, while their WordNet distance is 0.92).

Semantically unrelated. In the rare but most problematic cases, the stronger DA will result in confusion of semantically
unrelated classes (while they could possibly share some low-level features, they are semantically dissimilar and their
distributions pk and pl and ReaL labels do not overlap, and they get confused with one another specifically because of strong
DA), for example, categories like “muzzle” and “sandal”, “bath towel” and “pillow”. Figure 2 bottom right panel shows how
confusions between unrelated classes “muzzle” and “sandal” emerge with stronger DA.

In Appendix we show a larger selection of example pairs from each category. Among the confusions on the classes most
significantly hurt in original accuracy approximately 55% are co-occurring, 35% are fine-grained and 10% are ambiguous
classes, while on the classes most affected in their ReaL accuracy around a half of the confusions correspond to fine-grained
with another half corresponding to co-occurring classes. The confusion of semantically unrelated categories is rare, while it
is potentially most concerning since it corresponds to more severe mistakes.

In Table 2 we show the classes most negatively affected in accuracy by strong data augmentation (column “Affected class k”)
and the confusions the model starts making more frequently with stronger augmentation (“Confused class l”). In particular,
we study the union of 50 classes most affected in original accuracy and 50 classes most affected in ReaL accuracy (see
Section D) which do not belong to the animal subtree in WordNet tree. We focus on the confusions l where confusion rate
difference

∆CRk→l = CRk→l(s = 8%)−min
s

CRk→l(s)

is the highest for class k and above 2.5% (see Section B for definition of confusion rate CRk→l(s)). Additionally for each
pair of confused classes k and l we also look at

∆CR∗
l→k = max

s
CRl→k(s)− CRl→k(s = 8%)

which characterizes to what extent the model trained with weaker augmentation starts making the reverse confusion more
often compared to the strong DA model.

To quantitatively estimate the confusion type for each pair of classes, we measure the intrinsic distribution overlap of the
classes and their semantic similarity. We compute one sided overlap for classes k and l, which is the ratio of examples that
have both labels k and l among the examples with the label k:

Ckl =
∑
x∈X

I[k ∈ lReaL(x)]× I[l ∈ lReaL(x)]/
∑
x∈X

I[k ∈ lReaL(x)]

and intersection-over-union of the two classes:

IoUkl =
∑
x∈X

I[k ∈ lReaL(x)]× I[l ∈ lReaL(x)]/
∑
x∈X

I[k ∈ lReaL(x) or l ∈ lReaL(x)].

Assuming that train and test are coming from similar distributions, we can treat Ckl as a measure of overlap between
distributions pk and pl. We use WordNet class similarity and similarity of word embeddings from spacy (Honnibal et al.,
2020) to measure semantic similarity. Note that these metrics only serve as approximate measures of distribution overlap and
semantic distance since (1) the ReaL labels still contain some amount of label noise and may contain mislabelled examples
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or examples that are missing some of the plausible labels, (2) the WordNet distance sometimes is low for classes that are
semantically very similar, and (3) spacy doesn’t have a representation for all words and is underestimating the similarity
of closely related concepts. However, all together these metrics can point towards one of the appropriate confusion type
categories.

In Figure 7 we show more examples of the confusion rates for different pairs of classes k and l as a function of data
augmentation strength s where k is among the ones most negatively affected in accuracy and l is the class the model
misclassified examples from the class k to. We show example pairs from different confusion types defined in Section 4.

F. Class-conditional augmentation intervention experiments
In Figures 8 and 9 we show how the number of False Positive (FP) mistakes changes with data augmentation strength for
the set of classes where FP number increased the most with strong DA (see Figure 8 for the set of classes where original
FP mistakes increased the most and Figure 9 for ReaL FP mistakes). In Section 5, we conducted class-conditional data
augmentation interventions changing the DA strength for these sets of classes and showed that it improved the accuracy on
the classes negatively affected in accuracy.

While in Section 5 we show results for adapting augmentation level for classes using original labels to evaluate False Positive
and False Negative mistakes, in Table 3 we show analogous results when using ReaL labels which also shows that this
targeted intervention into augmentation policy for a small number of classes leads to improvement in ReaL average accuracy
on the affected classes (we specifically consider the set of classes affected in ReaL accuracy).

G. Broader impact and limitations
Limitations. In this paper we consider the impact of Random Resized Crop (RRC) data augmentation which is the most
commonly used augmentation transformation which is also often used in combination with other automatic augmentation
policies (Cubuk et al., 2018; Müller & Hutter, 2021). RRC DA also leads to most substantial improvements in average
accuracy, unlike other transformations such as color-based augmentation which usually leads to limited improvements. For
the main analysis we focus on ResNet-50 architecture, however, Balestriero et al. (2022a) showed that per-class biases
persist in other architectures like Vision Transformers (Dosovitskiy et al., 2020) and DenseNets (Huang et al., 2017) and for
colorjitter augmentation. While we provide a deep analysis of RRC per-class effects in ResNet models, the same framework
can be extended to better understand the biases of other augmentations and other architectures in the future work.

As discussed in Section E while we provide quantitative metrics to describe each confusion type affected by data augmenta-
tion, the categorization is not strict due to the remaining noise in ReaL labels and imprecise word similarity metrics.

Broader impact. A potential negative outcome that can result from misinterpretation of our analysis in Section 3 is if the
practitioners assume that data augmentation does not have any negative effects since we discover that previously reported
performance drops were overestimated due to label noise. We emphasize that while some of the class-level accuracy drops
were indeed due to label ambiguity or co-occurring objects, data augmentation does exacerbate model’s bias and introduces
class confusions (often between fine-grained categories but sometimes even for semantically unrelated classes that share
visually similar features). We encourage researchers to carefully study the negative impact of DA using fine-grained metrics
beyond average accuracy (such as per-class accuracy, False Positive mistakes and class confusions) to better understand its
biases.

Practical recommendations. When evaluating model performance, one should not only check average accuracy, which
may conceal class-level learning dynamics. Instead, we recommend researchers also consider other metrics such as False
Positive rates to better detect which confusions DA introduces or exacerbates. In particular, when training a model with
strong augmentations, one should train another model with weaker augmentations to check whether finer-grained metrics
such as FP rates degraded as an indicator DA is biasing learning dynamics. We can then design targeted augmentation
policies to improve performance on the groups negatively affected by standard augmentations.

Compute. We estimate the total compute used in the process of working on this paper at roughly 5000 GPU hours. The
compute usage is dominated by training models for different augmentation strengths (Section 3). The experiments were run
on GPU clusters on Nvidia Tesla V100, Titan RTX, RTX8000, 3080 and 1080Ti GPUs.
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Figure 5. Per-class class validation accuracies of ResNet-50 trained on ImageNet computed with original and ReaL labels as a function of
Random Resized Crop data augmentation scale lower bound s. We show the accuracy trends for the classes with the highest difference
between the maximum accuracy on that class across augmentation levels maxs a

or
k (s) and the accuracy of the model trained with s = 8%.

On each subplot below the name of the class we show the accuracy drops with respect to original and ReaL labels: ∆aor
k and ∆aReaL

k .
We report the mean and standard error over 10 independent runs of the network.
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Figure 6. Per-class class validation accuracies of ResNet-50 trained on ImageNet computed with original and ReaL labels as a function of
Random Resized Crop data augmentation scale lower bound s. We show the accuracy trends for the classes with the highest difference
between the maximum ReaL accuracy on that class across augmentation levels maxs a

ReaL
k (s) and the ReaL accuracy of the model

trained with s = 8%. On each subplot below the name of the class we show the accuracy drops with respect to original and ReaL labels:
∆aor

k and ∆aReaL
k . We report the mean and standard error over 10 independent runs of the network.
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Table 2. Confusions on the classes most affected by data augmentation.
Affected
class k

Confused
class l

∆ conf. rate (%) Label co-occur. Semantic sim. Confusion
type∆CRk→l ∆CR∗

l→k Clk IoU WN spacy

overskirt hoopskirt 5.80 3.60 0.31 0.17 0.91 – fine-gr. (ambig.)
bonnet 4.20 0.00 0.03 0.02 0.73 0.32 fine-gr.
gown 4.00 2.40 0.50 0.21 0.73 0.37 fine-gr. (ambig.)

trench coat 3.60 0.40 0.00 0.00 0.75 0.42 fine-gr.

academic gown mortarboard 18.40 7.00 0.72 0.50 0.73 0.10 co-occur.

sunglass sunglasses 13.00 22.40 0.87 0.81 0.64 0.84 ambig.

maillot maillot 15.00 7.20 0.73 0.63 0.70 1.00 ambig.

Windsor tie suit 7.20 4.00 0.61 0.32 0.82 0.24 co-occur.

screen desktop computer 7.80 7.00 0.59 0.29 0.64 0.62 ambig.
monitor 3.20 6.40 0.87 0.37 0.63 0.44 ambig.

tobacco shop barbershop 5.20 2.80 0.00 0.00 0.91 0.56 fine-gr.
bookshop 6.80 6.40 0.00 0.00 0.91 0.53 fine-gr.

monastery church 2.80 6.80 0.11 0.03 0.70 0.71 fine-gr.
castle 2.80 11.20 0.00 0.00 0.60 0.69 fine-gr.

thresher harvester 6.60 16.40 0.04 0.01 0.90 0.49 fine-gr.

parallel bars horizontal bar 3.20 2.80 0.00 0.00 0.90 0.75 fine-gr.
balance beam 3.00 4.00 0.02 0.01 0.90 0.45 fine-gr.

mailbag purse 12.80 2.00 0.10 0.06 0.89 0.19 fine-gr.
backpack 4.00 5.60 0.00 0.00 0.89 0.16 fine-gr.

chain necklace 9.40 4.40 0.15 0.09 0.53 0.31 ambig.

bulletproof vest military uniform 5.60 3.40 0.31 0.13 0.76 0.38 co-occur. (ambig.)
assault rifle 3.20 0.40 0.32 0.17 0.40 0.35 co-occur.

sombrero cowboy hat 7.40 4.80 0.15 0.05 0.91 0.51 fine-gr.

velvet purse 3.60 2.60 0.00 0.00 0.62 0.29 unrelated
necklace 3.00 0.00 0.00 0.00 0.62 0.51 unrelated

tape player radio 3.20 4.60 0.00 0.00 0.67 0.27 fine-gr.
cassette player 3.00 0.20 0.08 0.01 0.89 0.85 fine-gr.

assault rifle military uniform 8.40 0.40 0.47 0.24 0.42 0.42 co-occur.

cornet trombone 4.80 2.40 0.23 0.14 0.91 0.41 fine-gr.

pole traffic light 4.00 0.40 0.05 0.03 0.12 0.21 unrelated

muzzle sandal 3.20 0.00 0.00 0.00 0.56 0.23 unrelated

ear corn 5.40 4.40 0.81 0.52 0.78 0.23 ambig.

vault altar 6.40 4.40 0.21 0.12 0.62 0.41 fine-gr. (ambig.)

frying pan Dutch oven 6.00 3.00 0.00 0.00 0.40 0.59 fine-gr.
wok 3.40 2.60 0.09 0.05 0.92 0.72 fine-gr.

French loaf bakery 4.40 1.80 0.10 0.06 0.24 0.42 co-occur.

barrel rain barrel 7.60 2.20 0.16 0.07 0.76 0.70 fine-gr. (ambig.)

spatula wooden spoon 4.40 2.80 0.24 0.12 0.57 0.62 fine-gr.

sax flute 3.20 0.40 0.00 0.00 0.83 0.65 fine-gr.

seashore sandbar 3.80 2.80 0.64 0.47 0.57 0.69 co-occur.

coffee mug cup 7.80 0.80 0.61 0.34 0.19 0.63 ambig.
espresso 3.00 2.60 0.18 0.13 0.21 0.72 co-occur.

breastplate cuirass 6.00 6.40 0.71 0.50 0.67 0.48 ambig.
shield 3.20 1.20 0.07 0.05 0.70 0.59

beacon breakwater 7.80 0.60 0.07 0.04 0.71 0.33 co-occur.

suit miniskirt 3.20 1.60 0.02 0.01 0.86 0.32 fine-gr.

hand-held computer cellular telephone 8.80 5.60 0.22 0.06 0.50 0.42 ambig.
notebook 4.60 0.40 0.03 0.01 0.92 0.32 fine-gr.

stopwatch digital watch 4.80 0.60 0.00 0.00 0.83 0.62 fine-gr.

strawberry trifle 4.40 1.40 0.06 0.03 0.32 0.40 co-occur.

trimaran catamaran 4.80 1.40 0.18 0.09 0.92 0.60 fine-gr.

digital clock digital watch 3.00 7.00 0.02 0.01 0.83 0.71 fine-gr.

hair slide necklace 5.60 0.60 0.00 0.00 0.50 0.42 fine-gr.

hook necklace 3.60 0.00 0.00 0.00 0.53 0.33 unrelated

backpack purse 3.00 0.00 0.02 0.01 0.89 0.56 fine-gr.

home theater monitor 2.80 0.00 0.03 0.00 0.56 0.18 co-occur.

bath towel pillow 4.40 0.60 0.00 0.00 0.59 0.56 unrelated



Understanding the Detrimental Class-level Effects of Data Augmentation

Ambiguous Ambiguous

20406080100

augmentation strength s

25

30

35

40

45

50

%
of

va
l

ex
am

pl
es

predictions on “maillot, tank suit”

maillot, tank suit

maillot

50

55

60

65
predictions on “maillot”

maillot, tank suit

maillot

20406080100

augmentation strength s

20

25

30

%
of

va
l

ex
am

pl
es

20406080100

augmentation strength s

16

18

20

22

24

26

28

%
of

va
l

ex
am

pl
es

predictions on “screen, CRT screen”

screen, CRT screen

monitor

30

35

40

45
predictions on “monitor”

screen

monitor

20406080100

augmentation strength s

10

15

%
of

va
l

ex
am

pl
es

Co-occurring Co-occurring

20406080100

augmentation strength s

25

30

35

40

45

50

55

%
of

va
l

ex
am

pl
es

predictions on “academic gown”

academic gown

mortarboard

20406080100

augmentation strength s

20

30

40

50

60

%
of

va
l

ex
am

pl
es

predictions on “mortarboard”

academic gown

mortarboard

45

50

55

60
predictions on “assault rifle”

assault rifle

military uniform

20406080100

augmentation strength s

5

10

15

20

%
of

va
l

ex
am

pl
es

60

65

70

75
predictions on “military uniform”

assault rifle

military uniform

20406080100

augmentation strength s

−1

0

1

2

3

%
of

va
l

ex
am

pl
es

Fine-grained Fine-grained

20406080100

augmentation strength s

10

20

30

40

50

%
of

va
l

ex
am

pl
es

predictions on “tobacco shop”

tobacco shop

barbershop

20406080100

augmentation strength s

0

10

20

30

40

50

60

%
of

va
l

ex
am

pl
es

predictions on “barbershop”

tobacco shop

barbershop

20406080100

augmentation strength s

10

20

30

40

%
of

va
l

ex
am

pl
es

predictions on “overskirt”

overskirt

hoopskirt

20406080100

augmentation strength s

0

10

20

30

40

50

60

70

%
of

va
l

ex
am

pl
es

predictions on “hoopskirt”

overskirt

hoopskirt

Fine-grained Semantically unrelated

20406080100

augmentation strength s

10

20

30

40

50

60

70

%
of

va
l

ex
am

pl
es

predictions on “thresher”

thresher

harvester

20406080100

augmentation strength s

0

20

40

60

80

%
of

va
l

ex
am

pl
es

predictions on “harvester”

thresher

harvester

20406080100

augmentation strength s

0

10

20

30

40

50

60

70

%
of

va
l

ex
am

pl
es

predictions on “bath towel”

bath towel

pillow

20406080100

augmentation strength s

0

20

40

60

80

%
of

va
l

ex
am

pl
es

predictions on “pillow”

bath towel

pillow

Figure 7. Confusion rate for classes most negatively affected by strong data augmentation and the corresponding classes they get confused
with. We categorize confusions into ambiguous, co-occurring, fine-grained and unrelated.

Table 3. Class-conditional augmentation intervention using ReaL labels.

# classes with
adapted aug.

ReaL
avg acc

ReaL avg acc of
50 aff. classes

ReaL avg acc of
remaining 950 classes

0 83.70±0.01 70.66±0.08 84.00±0.01

10 83.63±0.01 72.01±0.04 83.86±0.01

30 83.64±0.01 72.28±0.05 83.86±0.01

50 83.57±0.01 72.20±0.03 83.78±0.01
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Figure 8. The number of per-class False Positive (FP) mistakes for the set of classes where FP computed with original labels increases the
most when using strong data augmentation. We show the trends using both original and ReaL labels.
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Figure 9. The number of per-class False Positive (FP) mistakes for the set of classes where FP computed with ReaL labels increases the
most when using strong data augmentation. We show the trends using both original and ReaL labels.


