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Abstract

We propose “collision cross-entropy” as a robust alternative to Shannon’s cross-1

entropy (CE) loss when class labels are represented by soft categorical distributions2

y. In general, soft labels can naturally represent ambiguous targets in classification.3

They are particularly relevant for self-labeled clustering methods, where latent4

pseudo-labels y are jointly estimated with the model parameters and uncertainty is5

prevalent. In case of soft labels y, Shannon’s CE teaches the model predictions σ6

to reproduce the uncertainty in each training example, which inhibits the model’s7

ability to learn and generalize from these examples. As an alternative loss, we8

propose the negative log of “collision probability” that maximizes the chance of9

equality between two random variables, predicted class and unknown true class,10

whose distributions are σ and y. We show that it has the properties of a generalized11

CE. The proposed collision CE agrees with Shannon’s CE for one-hot labels y, but12

the training from soft labels differs. For example, unlike Shannon’s CE, data points13

where y is a uniform distribution have zero contribution to the training. Collision14

CE significantly improves classification supervised by soft uncertain targets. Unlike15

Shannon’s, collision CE is symmetric for y and σ, which is particularly relevant16

when both distributions are estimated in the context of self-labeled clustering.17

Focusing on discriminative deep clustering where self-labeling and entropy-based18

losses are dominant, we show that the use of collision CE improves the state-of-19

the-art. We also derive an efficient EM algorithm that significantly speeds up the20

pseudo-label estimation with collision CE.21

1 Introduction and Motivation22

Shannon’s cross-entropy H(y, σ) is the most common loss for training network predictions σ from23

ground truth labels y in the context of classification, semantic segmentation, etc. However, this24

loss may not be ideal for applications where the targets y are soft distributions representing various25

forms of uncertainty. For example, this paper is focused on self-labeled classification [17, 1, 15, 16]26

where the ground truth is not available and the network training is done jointly with estimating27

latent pseudo-labels y. In this case soft y can represent the distribution of label uncertainty. Similar28

uncertainty of class labels is also natural for supervised problems where the ground truth has errors29

[26, 41]. In any cases of label uncertainty, if soft distribution y is used as a target in H(y, σ), the30

network is trained to reproduce the uncertainty, see the dashed curves in Fig.1.31

Our work is inspired by generalized entropy measures [33, 18]. Besides mathematical gen-32

erality, the need for such measures “stems from practical aspects when modelling real world33

phenomena though entropy optimization algorithms” [30]. Similarly to Lp norms, parametric34

families of generalized entropy measures offer a wide spectrum of options. The Shannon’s35

entropy is just one of them. Other measures could be more “natual” for any given problem.36
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Figure 1: Collision cross-entropy H2(y, σ) in (9) for
fixed soft labels y (red, green, and blue). Assuming binary
classification, all possible predictions σ = (x, 1− x) ∈
∆2 are represented by points x ∈ [0, 1] on the horizontal
axis. For comparison, thin dashed curves show Shannon’s
cross-entropy H(y, σ) in (8). Note that H converges
to infinity at both endpoints of the interval. In contrast,
H2 is bounded for any non-hot y. Such boundedness
suggests robustness to target errors represented by soft
labels y. Also, collision cross-entropy H2 gradually turns
off the training (sets zero-gradients) as soft labels become
highly uncertain (solid blue). In contrast, H(y, σ) trains
the network to copy this uncertainty, e.g. observe the
optimum σ for all dashed curves.

A simple experiment in Figure 2 shows that37

Shannon’s cross-entropy produces deficient so-38

lutions for soft labels y compared to the pro-39

posed collision cross-entropy. The limitation40

of the standard cross-entropy is that it encour-41

ages the distributions σ and y to be equal, see42

the dashed curves in Fig.1. For example, the43

model predictions σ are trained to copy the un-44

certainty of the label distribution y, even when45

y is an uninformative uniform distribution. In46

contrast, our collision cross-entropy (the solid47

curves) gradually weakens the training as y48

gets less certain. This numerical property of49

our cross-entropy follows from its definition50

(9) - it maximizes the probability of “colli-51

sion”, which is an event when two random52

variables sampled from the distributions σ and53

y are equal. This means that the predicted class54

value is equal to the latent label. This is signif-55

icantly different from the σ = y encouraged56

by the Shannon’s cross-entropy. For example,57

if y is uniform then it does not matter what the58

model predicts as the probability of collision59
1
K would not change.60

Organization of the paper: After the summary of our contributions below, Section 2 reviews the61

relevant background on self-labeling models/losses and generalized information measures for entropy,62

divergence, and cross-entropy. Then, Section 3 introduces our collision cross entropy measure,63

discusses its properties, related formulations of Rényi cross-entropy, and relation to noisy labels in64

fully-supervised settings. Section 4 formulates our self-labeling loss by replacing the Shannon’s cross65

entropy term in a representative state-of-the-art formulation using soft pseudo-labels [16] with our66

collision-cross-entropy. The obtained loss function is convex w.r.t. pseudo-labels y, which makes67

estimation of y amenable to generic projected gradient descent. However, Section 4 derives a much68

faster EM algorithm for estimating y. As common for self-labeling, optimization of the total loss69

w.r.t. network parameters is done via backpropagation. Section 5 presents our experiments, followed70

by conclusions.71

Summary of Contributions: We propose the collision cross-entropy as an alternative to the standard72

Shannon’s cross-entropy mainly in the context of self-labeled classification with soft pseudo-labels.73

The main practical advantage is its robustness to uncertainty in the labels, which could also be74

useful in other applications. The definition of our cross-entropy has an intuitive probabilistic75

interpretation that agrees with the numerical and empirical properties. Unlike the Shannon’s cross-76

entropy, our formulation is symmetric w.r.t. predictions σ and pseudo-labels y. This is a conceptual77

advantage since both σ and y are estimated/optimized distributions. Our cross-entropy allows efficient78

optimization of pseudo-labels by a proposed EM algorithm, that significantly accelerates a generic79

projected gradient descent. Our experiments show consistent improvement over multiple examples of80

unsupervised and semi-supervised clustering, and several standard network architectures.81

2 Background Review82

We study a new generalized cross-entropy measure in the context of deep clustering. The models are83

trained on unlabeled data, but applications with partially labeled data are also relevant. Self-labeled84

deep clustering is a popular area of research [5, 31]. More recently, the-state-of-the-art is achieved by85

discriminative clustering methods based on maximizing the mutual information between the input and86

the output of the deep model [3]. There is a large group of relevant methods [22, 10, 15, 17, 1, 16]87

and we review the most important loss functions, all of which use standard information-theoretic88

measures such as Shannon’s entropy. In the second part of this section, we overview the necessary89

mathematical background on the generalized entropy measures, which are central to our work.90
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2.1 Information-based Self-labeled Clustering91

The work of Bridle, Heading, and MacKay from 1991 [3] formulated mutual information (MI) loss for92

unsupervised discriminative training of neural networks using probability-type outputs, e.g. softmax93

σ : RK → ∆K mapping K logits lk ∈ R to a point in the probability simplex ∆K . Such output94

σ = (σ1, . . . , σK) is often interpreted as a posterior over K classes, where σk = exp lk∑
i exp li

is a scalar95

prediction for each class k.96

The unsupervised loss proposed in [3] trains the model predictions to keep as much information about97

the input as possible. They derived an estimate of MI as the difference between the average entropy98

of the output and the entropy of the average output99

Lmi := −MI(c,X) ≈ H(σ) − H(σ) (1)

where c is a random variable representing class prediction, X represents the input, and the av-100

eraging is done over all input samples {Xi}Mi=1, i.e. over M training examples. The derivation101

in [3] assumes that softmax represents the distribution Pr(c|X). However, since softmax is not102

a true posterior, the right hand side in (1) can be seen only as an MI loss. In any case, (1)103

has a clear discriminative interpretation that stands on its own: H(σ) encourages “fair” predic-104

tions with a balanced support of all categories across the whole training data set, while H(σ)105

encourages confident or “decisive” prediction at each data point implying that decision bound-106

aries are away from the training examples [11]. Generally, we call clustering losses for soft-107

max models “information-based” if they use measures from the information theory, e.g. entropy.108
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Figure 2: Robustness to label uncertainty: collision cross-
entropy (9) vs Shannon’s cross-entropy (8). The test uses
ResNet-18 architecture on fully-supervised Natural Scene
dataset [27] where we corrupted some labels. The hor-
izontal axis shows the percentage η of training images
where the correct ground truth labels were replaced by a
random label. Both losses trained the model using soft
target distributions ŷ = η∗u+(1−η)∗y representing the
mixture of one-hot distribution y for the observed corrupt
label and the uniform distribution u, as recommended in
[26]. The vertical axis shows the test accuracy. Training
with the collision cross-entropy is robust to much higher
levels of label uncertainty. As discussed in the last part of
Sec.3, in the context of classification supervised by hard
noisy labels, collision CE with soft labels can be related
to the forward correction methods [28].

109

Discriminative clustering loss (1) can be ap-110

plied to deep or shallow models. For clarity,111

this paper distinguishes parameters w of the112

representation layers of the network comput-113

ing features fw(X) ∈ RN for any input X114

and the linear classifier parameters v of the115

output layer computing K-logit vector v⊤f116

for any feature f ∈ RN . The overall network117

model is defined as118

σ(v⊤fw(X)). (2)

A special “shallow” case in (2) is a basic linear119

discriminator120

σ(v⊤X) (3)

directly operating on low-level input features121

f = X . Optimization of the loss (1) for the122

shallow model (3) is done only over linear clas-123

sifier parameters v, but the deeper network124

model (2) is optimized over all network pa-125

rameters [v,w]. Typically, this is done via126

gradient descent or backpropagation [35, 3].127

Optimization of MI losses (1) during network128

training is mostly done with standard gradi-129

ent descent or backpropagation [3, 22, 15].130

However, due to the entropy term represent-131

ing the decisiveness, such loss functions are132

non-convex and present challenges to the gradient descent. This motivates alternative formulations133

and optimization approaches. For example, it is common to incorporate into the loss auxiliary134

variables y representing pseudo-labels for unlabeled data points X and to estimate them jointly135

with optimization of the network parameters [10, 1, 16]. Typically, such self-labeling approaches136

to unsupervised network training iterate optimization of the loss over pseudo-labels and network137

parameters, similarly to the Lloyd’s algorithm for K-means [2]. While the network parameters are138

still optimized via gradient descent, the pseudo-labels can be optimized via more powerful algorithms.139
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For example, self-labeling in [1] uses the following constrained optimization problem with discrete140

pseudo-labels y141

Lce = H(y, σ) s.t. y ∈ ∆K
0,1 and ȳ = u (4)

where ∆K
0,1 are one-hot distributions, i.e. corners of the probability simplex ∆K . Training the142

network predictions σ is driven by the standard cross entropy loss H(y, σ), which is convex assuming143

fixed (pseudo) labels y. With respect to variables y, the cross entropy is linear. Without the balancing144

constraint ȳ = u, the optimal y corresponds to the hard argmax(σ). However, the balancing145

constraint converts this into an integer programming problem that can be solved approximately via146

optimal transport [9]. The cross-entropy in (4) encourages the predictions σ to approximate one-hot147

pseudo-labels y, which implies the decisiveness.148

Self-labeling methods for unsupervised clustering can also use soft pseudo-labels y ∈ ∆K as target149

distributions in cross-entropy H(y, σ). In general, soft targets y are common in H(y, σ), e.g. in the150

context of noisy labels [41, 38]. Softened targets y can also assist network calibration [12, 26] and151

improve generalization by reducing over-confidence [29]. In the context of unsupervised clustering,152

cross-entropy H(y, σ) with soft pseudo-labels y approximates the decisiveness since it encourages153

σ ≈ y implying H(y, σ) ≈ H(y) ≈ H(σ) where the latter is the first term in (1). Instead of the154

hard constraint ȳ = u used in (4), the soft fairness constraint can be represented by KL divergence155

KL(ȳ ∥u), as in [10, 16]. In particular, [16] formulates the following self-labeled clustering loss156

Lce+kl = H(y, σ) + KL(ȳ ∥u) (5)

encouraging decisiveness and fairness as discussed. Similarly to (4), the network parameters in157

loss (5) are trained by the standard cross-entropy term, but optimization over relaxed pseudo-labels158

y ∈ ∆K is relatively easy due to convexity. While there is no closed-form solution, the authors offer159

an efficient approximate solver for y. Iterating steps that estimate pseudo-labels y and optimize the160

model parameters resembles the Lloyd’s algorithm for K-means. The results in [16] also establish a161

formal relation between the loss (5) and the K-means objective.162

2.2 Generalized Entropy Measures163

Below, we review relevant generalized formulations of the information-theoretic concepts: entropy,
divergence, and cross-entropy. Rényi [33] introduced the entropy of order α > 0 for any probability
distribution p

Hα(p) :=
1

1− α
ln
∑
k

pαk (α ̸= 1)

derived as the most general measure of uncertainty in p satisfying four intuitively evident postulates.
The entropy measures the average information and the order parameter α relates to the power of the
corresponding mean statistic [44]. The general formula above includes the Shannon’s entropy

H(p) = −
∑
k

pk ln pk

as a special case when α→ 1. The quadratic or second-order Rényi entropy164

H2(p) := − ln
∑
k

p2k (6)

is also known as a collision entropy since it is a negative log-likelihood of a “collision” or “rolling165

double” when two i.i.d. samples from distribution p have equal values.166

Basic characterization postulates in [33] also lead to the general Rényi formulation of the divergence,
also known as the relative entropy, of order α > 0

Dα(p | q) :=
1

α− 1
ln
∑
k

pαk q1−α
k (α ̸= 1)

defined for any pair of distributions p and q. This reduces to the standard KL divergence when α→ 1167

168

D(p, q) =
∑
k

pk ln
pk
qk

(7)
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and to the Bhattacharyya distance for α = 1
2 .169

Optimization of entropy and divergence [24] is fundamental to many machine learning problems170

[37, 20, 19, 30], including pattern classification and cluster analysis [36]. However, the entropy-171

related terminology is often mixed-up. For example, when discussing the cross-entropy minimization172

principle (MinxEnt), many of the references cited earlier in this paragraph define cross-entropy using173

the expression for KL-divergence (7). Nowadays, it is standard to define the Shannon’s cross-entropy174

as175

H(p, q) = −
∑
k

pk ln qk. (8)

One simple explanation for the confusion is that KL-divergence D(p, q) and cross-entropy H(p, q)176

as functions of q only differ by a constant if p is a fixed known target, which is often the case.177

3 Collision Cross-Entropy178

Minimizing divergence enforces proximity between two distributions, which may work as a loss
for training model predictions σ with labels y, for example, if y are ground truth one-hot labels.
However, if y are pseudo-labels that are estimated jointly with σ, proximity between y and σ is not a
good criterion for the loss. For example, highly uncertain model predictions σ in combination with
uniformly distributed pseudo-labels y correspond to the optimal zero divergence, but this is not a very
useful result for self-labeling. Instead, all existing self-labeling losses for deep clustering minimize
Shannon’s cross-entropy (8) that reduces the divergence and uncertainty at the same time

H(y, σ) ≡ D(y, σ) +H(y).

The entropy term corresponds to the “decisiveness” constraint in unsupervised discriminative clus-179

tering [3, 17, 1, 15, 16]. In general, it is recommended as a regularizer for unsupervised and180

semi-supervised network training [11] to encourage decision boundaries away from the data points181

implicitly increasing the decision margins.182

We propose a new form of cross-entropy183

H2(p, q) := − ln
∑
k

pk qk (9)

that we call collision cross-entropy since it extends the collision entropy in (6). Indeed, (9) is the184

negative log-probability of an event that two random variables with (different) distributions p and q185

are equal. When training softmax σ with pseudo-label distribution y, the collision event is the exact186

equality of the predicted class and the pseudo-label, where these are interpreted as specific outcomes187

for random variables with distributions σ and y. Note that the collision event, i.e. the equality of188

two random variables, has very little to do with the equality of distributions σ = y. The collision189

may happen when σ ̸= y, as long as σ · y > 0. Vice versa, this event is not guaranteed even when190

σ = y. It will happen almost surely only if the two distributions are the same one-hot. However, if191

the distributions are both uniform, the collision probability is only 1/K.192

As easy to check, the collision cross-entropy (9) can be equivalently represented as

H2(p, q) ≡ − ln cos(p, q) +
H2(p) +H2(q)

2

where cos(p, q) is the cosine of the angle between p and q as vectors inRK and H2 is the collision193

entropy (6). The first term corresponds to a “distance” between the two distributions: it is non-194

negative, equals 0 iff p = q, and− ln cos(·) is a convex function of an angle, which can be interpreted195

as a spherical metric. Thus, analogously to the Shannon’s cross-entropy, H2 is the sum of divergence196

and entropy.197

The formula (9) can be found as a definition of quadratic Rényi cross-entropy [30, 32, 46]. However,198

we could not identify information-theoretic axioms characterizing a generalized cross-entropy. Rényi199

himself did not discuss the concept of cross-entropy in his seminal work [33]. Also, two different200

formulations of “natural” and “shifted” Rényi cross-entropy of arbitrary order could be found in201

[44, 42]. In particular, the shifted version of order 2 agrees with our formulation of collision cross-202

entropy (9). However, lack of postulates or characterization for the cross-entropy, and the existence of203

multiple non-equivalent formulations did not give us the confidence to use the name Rényi. Instead,204
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we use “collision” due to its clear intuitive interpretation of the loss (9). But, the term “cross-entropy”205

is used only informally.206

The numerical and empirical properties of the collision cross-entropy (9) are sufficiently different207

from the Shannons cross-entropy (8). Figure 1 illustrates H2(y, σ) as a function of σ for different208

label distributions y. For confident y it behaves the same way as the standard cross entropy H(y, σ),209

but softer low-confident labels y naturally have little influence on the training. In contrast, the210

standard cross entropy encourages prediction σ to be the exact copy of uncertainty in distribution211

y. Self-labeling methods based on H(y, σ) often “prune out” uncertain pseudo-labels [4]. Collision212

cross entropy H2(y, σ) makes such heuristics redundant. We also demonstrate the “robustness to213

label uncertainty” on an example where the ground truth labels are corrupted by noise, see Fig.2.214

This artificial fully-supervised test is used only to compare the robustness of (9) and (8) in complete215

isolation from other terms in the self-labeled clustering losses, which are the focus of this work.216

Due to the symmetry of the arguments in (9), such robustness of H2(y, σ) also works the other way217

around. Indeed, self-labeling losses are often used for both training σ and estimating y: the loss is218

iteratively optimized over predictions σ (i.e. model parameters responsible for it) and over pseudo-219

label distribution y. Thus, it helps if y also demonstrates “robustness to prediction uncertainty”.220

Soft labels vs noisy labels: Our collision CE for soft labels, represented by distributions y, can
be related to loss functions used for supervised classification with noisy labels [40, 28, 38], which
assume some observed hard target labels l that may not be true due to corruption or “noise”. Instead
of our probability of collision

Pr(C = T ) =
∑
k

Pr(C = k, T = k) =
∑
k

σkyk ≡ y⊤σ

between the predicted class C and unknown true class T , whose distributions are prediction σ and221

soft target y, they maximize the probability that a random variable L representing a corrupted target222

equals the observed value l223

Pr(L = l) =
∑
k

Pr(L = l|T = k) Pr(T = k) ≈
∑
k

Pr(L = l|T = k) σk ≡ Ql σ

where the approximation uses the model predictions σk instead of true class probabilities Pr(T = k),224

which is a significant assumption. Vector Ql is the l-th row of the transition matrix Q, such that225

Qlk = Pr(L = l|T = k), that has to be obtained in addition to hard noisy labels l.226

Our approach maximizing the collision probability based on soft labels y is a generalization of the227

methods for hard noisy labels. Their transitional matrix Q can be interpreted as an operator for228

converting any hard label l into a soft label y = Q⊤1l = Ql. Then, the two methods are numerically229

equivalent, though our statistical motivation is significantly different. Moreover, our approach is more230

general since it applies to a wider set of problems where the class target T can be directly specified231

by a distribution, a soft label y, representing the target uncertainty. For example, in fully supervised232

classification or segmentation the human annotator can directly indicate uncertainty (odds) for classes233

present in the image or at a specific pixel. In fact, class ambiguity is common in many data sets,234

though for efficiency, the annotators are typically forced to provide one hard label. Moreover, in the235

context of self-supervised clustering, it is natural to estimate pseudo-labels as soft distributions y.236

Such methods directly benefit from our collision CE, as this paper shows.237

4 Our Self-labeling Loss and EM238

Based on prior work (5), we replace the standard cross-entropy with our collision cross-entropy to239

formulate our self-labeling loss as follows:240

LCCE := H2(y, σ) + λKL(ȳ∥u) (10)

To optimize such loss, we iterate between two alternating steps for σ and y. For σ, we use the standard241

stochastic gradient descent algorithms[34]. For y, we use the projected gradient descent (PGD) [7].242

However, the speed of PGD is slow as shown in Table 1 especially when there are more classes. This243

motivates us to find more efficient algorithms for optimizing y. To derive such an algorithm, we made244

a minor change to (10) by switching the order of variables in the divergence term:245

LCCE+ := H2(y, σ) + λKL(u∥ȳ) (11)
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Such change allows us to use the Jensen’s inequality on the divergence term to derive an efficient EM246

algorithm while the quality of the self-labeled classification results is almost the same as shown in247

the Appendix D.248

EM algorithm for optimizing y We derive the EM algorithm introducing latent variables, K249

distributions Sk ∈ ∆M representing normalized support for each cluster over M data points. We250

refer to each vector Sk as a normalized cluster k. Note the difference with distributions represented251

by pseudo-labels y ∈ ∆K showing support for each class at a given data point. Since we explicitly252

use individual data points below, we will start to carefully index them by i ∈ {1, . . . ,M}. Thus, we253

will use yi ∈ ∆K and σi ∈ ∆K . Individual components of distribution Sk ∈ ∆M corresponding to254

data point i will be denoted by scalar Sk
i .255

First, we expand (11) introducing the latent variables Sk ∈ ∆M256

LCCE+
c
= H2(y, σ) + λH(u, ȳ) (12)

= H2(y, σ)− λ
∑
k

uk ln
∑
i

Sk
i

yki
Sk
i M

≤ H2(y, σ)− λ
∑
k

∑
i

ukSk
i ln

yki
Sk
i M

(13)

Due to the convexity of negative log, we apply the Jensen’s inequality to derive an upper bound, i.e.257

(13), to LCCE+. Such bound becomes tight when:258

E step : Sk
i =

yki∑
j y

k
j

(14)

Next, we derive the M step. Introducing the hidden variable S breaks the259

fairness term into the sum of independent terms for pseudo-labels yi ∈ ∆K260

at each data point i. The solution for S does not change (E step). Lets261

running time in sec. number of iterations running time in sec.
per iteration (to convergence) (to convergence)

K 2 20 200 2 20 200 2 20 200

PGD (η1) 7.8e−4 2.9e−3 6.7e−2 326 742 540 0.25 2.20 36.25
PGD (η2) 9.3e−4 3.3e−3 6.8e−2 101 468 344 0.09 1.55 23.35
PGD (η3) 9.9e−4 3.2e−3 7.0e−2 24 202 180 0.02 0.65 12.60

our EM 1.8e−3 1.6e−3 5.1e−3 25 53 71 0.04 0.09 0.36

Table 1: Comparison of our EM algorithm to Projected
Gradient Descent (PGD). η is the step size. For K = 2,
η1 ∼ η3 are 1, 10 and 20 respectively. For K = 20 and
K = 200, η1 ∼ η3 are 0.1, 1 and 5 respectively. Higher
step size leads to divergence of PGD.

focus on the loss with respect to y. The col-262

lision cross-entropy (CCE) also breaks into263

the sum of independent parts for each yi. For264

simplicity, we will drop all indices i in vari-265

ables yki , Sk
i , σk

i . Then, the combination of266

CCE loss with the corresponding part of the267

fairness constraint can be written for each268

y = {yk} ∈ ∆K as269

− ln
∑
k

σkyk − λ
∑
k

ukSk ln yk. (15)

First, observe that this loss must achieve its global optimum in the interior of the simplex if Sk > 0270

and uk > 0 for all k. Indeed, the second term enforces the “log-barier” at the boundary of the271

simplex. Thus, we do not need to worry about KKT conditions in this case. Note that Sk might be272

zero, in which case we need to consider the full KKT conditions. However, the Property 1 that will273

be mentioned later eliminates such concern if we use positive initialization. For completeness, we274

also give the detailed derivation for such case and it can be found in the Appendix B.275

Adding the Lagrange multiplier γ for the simplex constraint, we get an unconstrained loss

− ln
∑
k

σkyk − λ
∑
k

ukSk ln yk + γ

(∑
k

yk − 1

)
that must have a stationary point inside the simplex. The following theorem indicates the way to276

solve the problem above. All the missing proofs can be found in Appendix A.277

Theorem 1. [M-step solution]: The sum
∑

k yk as in (16) is positive, continuous, convex, and278

monotonically decreasing function of x on the specified interval. Moreover, there exists a unique279

solution {yk} ∈ ∆k and x such that280 ∑
k yk ≡

∑
k

λukSk

λu⊤S+1−σk
x

= 1 and x ∈
(

σmax

1+λu⊤S
, σmax

]
(16)
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The monotonicity and convexity of
∑

k yk with respect to x suggest that the problem (16) formulated281

in Theorem 1 allows efficient algorithms for finding the corresponding unique solution. For example,282

one can use the iterative Newton’s updates to search for x in the specified interval. The following283

Lemma gives us a proper starting point284

Lemma 1. Assuming ukSk is positive for each k, then the reachable left end point in Theorem 1 can
be written as

l := max
k

σk

1 + λu⊤S − λukSk
.

for Newton’s method. The algorithm for M-step solution is summarized in Algorithm 1 in Appendix285

C. Note that we present the algorithm for only one data point, and we can easily and efficiently scale286

up for more data in a batch by using the Numba compiler. In the following, we give the property287

about the positivity of the solution. This property implies that if our EM algorithm has only (strictly)288

positive variables Sk or yk at initialization, these variables will remain positive during all iterations.289

Property 1. For any category k such that uk > 0, the set of strictly positive variables yk or Sk can290

only grow during iterations of our EM algorithm for the loss (15) based on the collision cross-entropy.291

Note that Property 1 does not rule out the possibility that yk may become arbitrarily close to zero292

during EM iterations. Empirically, we did not observe any numerical issues. The complete algorithm293

is given in Appendix C. Inspired by [39, 15], we also update our y in each batch. Intuitively, updating294

y on the fly can prevent the network from being easily trapped in some local minima created by the295

incorrect pseudo-labels.296

5 Experiments297

We apply our new loss to self-labeled classification problems in both shallow and deep settings, as298

well as semi-supervised modes. All the results are reproduced using either public codes or our own299

implementation under the same experimental settings for fair comparison. Our approach consistently300

achieves either the best or highly competitive results across all the datasets and is therefore more301

robust. All the missing details in the experiments can be found in Appendix E.302

Dataset We use four standard datasets: MNIST [25], CIFAR10/100 [43] and STL10 [8]. The303

training and test data are the same unless otherwise specified.304

Evaluation As for the evaluation of self-labeled classification, we set the number of clusters to305

the number of ground-truth categories. To calculate the accuracy, we use the standard Hungarian306

algorithm [23] to find the best one-to-one mapping between clusters and labels. We don’t need this307

matching step if we use other metrics, i.e. NMI, ARI.308

5.1 Clustering with Fixed Features309

STL10 CIFAR10 CIFAR100-20 MNIST

Kmeans 85.20%(5.9) 67.78%(4.6) 42.99%(1.3) 47.62%(2.1)
MIGD [22] 89.56%(6.4) 72.32%(5.8) 43.59%(1.1) 52.92%(3.0)

SeLa [1] 90.33%(4.8) 63.31%(3.7) 40.74%(1.1) 52.38%(5.2)
MIADM [16] 88.64%(7.1) 60.57%(3.3) 41.2%(1.4) 50.61%(1.3)

Our 92.33%(6.4) 73.51%(6.3) 43.72%(1.1) 58.4%(3.2)

Table 2: Comparison of different methods on clustering
with fixed features extracted from Resnet-50. The num-
bers are the average accuracy and the standard deviation
over trials. We use the 20 coarse categories for CIFAR100
similarly to others.

In this section, we test our loss as a proper clus-310

tering loss and compare it to the widely used311

Kmeans (generative) and other closely related312

losses (entropy-based and discriminative). We313

use the pretrained (ImageNet) Resnet-50 [14]314

to extract the features. For Kmeans, the model315

is parameterized by K cluster centers. Com-316

parably, we use a one-layer linear classifier317

followed by softmax for all other losses includ-318

ing ours. Kmeans results were obtained using319

scikit-learn package in Python. To optimize320

the model parameters for other losses, we use321

stochastic gradient descent. Here we report the average accuracy and standard deviation over 6322

randomly initialized trials in Table 2.323
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5.2 Deep Clustering324

STL10 CIFAR10 CIFAR100-20 MNIST

IMSAT [15] 25.28%(0.5) 21.4%(0.5) 14.39%(0.7) 92.90%(6.3)
IIC [17] 24.12%(1.7) 21.3%(1.4) 12.58%(0.6) 82.51%(2.3)
SeLa [1] 23.99%(0.9) 24.16%(1.5) 15.34%(0.3) 52.86%(1.9)

MIADM [16] 23.37%(0.9) 23.26%(0.6) 14.02%(0.5) 78.88%(3.3)

Our 25.98%(1.1) 24.26%(0.8) 15.14%(0.5) 95.11%(4.3)

Table 3: Quantitative comparison of discriminative
clustering-based classification methods with simultaneous
feature training from the scratch. The network architecture
is VGG-4. We reuse the code published by [17, 1, 15] and
use our improved implementation of [16] (also for other
tables).

In this section, we train a deep network to325

jointly learn the features and cluster the data.326

We test our method on both a small architec-327

ture (VGG4) and a large one (ResNet-18). The328

only extra standard technique we add here is329

self-augmentation following [15, 1, 6].330

To train the VGG4, we use random initial-331

ization for network parameters. From Ta-332

ble 3, it can be seen that our approach con-333

sistently achieves the most competitive re-334

sults in terms of accuracy (ACC). Most of the methods we compared in our work (including335

our method) are general concepts applicable to single-stage end-to-end training. To be fair,336

we tested all of them on the same simple architecture. But, these general methods can be337

easily integrated into other more complex systems with larger architecture such as ResNet-18.338

CIFAR10 CIFAR100-20 STL10

ACC NMI ARI ACC NMI ARI ACC NMI ARI

SCAN [45] 81.8%
(0.3)

71.2%
(0.4)

66.5%
(0.4)

42.2%
(3.0)

44.1%
(1.0)

26.7%
(1.3)

75.5%
(2.0)

65.4%
(1.2)

59.0%
(1.6)

IMSAT [15] 77.64%
(1.3)

71.05%
(0.4)

64.85%
(0.3)

43.68%
(0.4)

42.92%
(0.2)

26.47%
(0.1)

70.23%
(2.0)

62.22%
(1.2)

53.54%
(1.1)

MIADM [16] 74.76%
(0.3)

69.17%
(0.2)

62.51%
(0.2)

43.47%
(0.5)

42.85%
(0.4)

27.78%
(0.4)

67.84%
(0.2)

60.33%
(0.5)

51.67%
(0.6)

Our 83.27%
(0.2)

71.95%
(0.2)

68.15%
(0.1)

47.01%
(0.2)

43.28%
(0.1)

29.11%
(0.1)

78.12%
(0.1)

68.11%
(0.3)

62.34%
(0.3)

Table 4: Quantitative comparison using network ResNet-
18. The most related work MIADM (5) is also highlighted
in all tables.

In Table 4, we show the results using the339

pretext-trained network from SCAN [45] as340

initialization for our clustering loss as well as341

IMSAT and MIADM. We use only the cluster-342

ing loss together with the self-augmentation343

(one augmentation per image). As shown in344

the table below, our method reaches a higher345

number with more robustness almost for every346

metric on all datasets compared to the SOTA347

method SCAN. More importantly, we consis-348

tently improve over the most related method, MIADM, by a large margin, which clearly demonstrates349

the effectiveness of our proposed loss together with the optimization algorithm.350

5.3 Semi-supervised Classification351

Although our paper is focused on self-labeled classification, we find it also interesting and natural to352

test our loss under semi-supervised settings where partial data is provided with ground-truth labels.353

We use the standard cross-entropy loss for labeled data and directly add it to the self-labeled loss to354

train the network initialized by the pretext-trained network following [45].355

6 Conclusion356

0.1 0.05 0.01
STL10 CIFAR10 STL10 CIFAR10 STL10 CIFAR10

Only seeds 78.4% 81.2% 74.1% 76.8% 68.8% 71.8%
+ IMSAT [15] 88.1% 91.5% 81.1% 85.2% 74.1% 80.2%

+ IIC [17] 85.2% 90.3% 78.2% 84.8% 72.5% 80.5%
+ SeLa [1] 86.2% 88.6% 79.5% 82.7% 69.9% 79.1%

+ MIADM [16] 84.9% 86.1% 77.9% 80.1% 69.6% 77.5%

+ Our 88.9% 92.3% 82.9% 86.2% 75.7% 82.4%

Table 5: Quantitative results for semi-supervised classi-
fication on STL10 and CIFAR10 using ResNet18. The
numbers 0.1, 0.05 and 0.01 correspond to different ratio
of labels used for supervision. “Only seeds” means we
only use standard cross-entropy loss on seeds for training.

We propose a new collision cross-entropy loss.357

Such loss is naturally interpreted as measur-358

ing the probability of the equality between two359

random variables represented by the two distri-360

butions σ and y, which perfectly fits the goal of361

self-labeled classification. It is symmetric w.r.t.362

the two distributions instead of treating one363

as the target, like the standard cross-entropy.364

While the latter makes the network copy the uncertainty in estimated pseudo-labels, our cross-entropy365

naturally weakens the training on data points where pseudo labels are more uncertain. This makes366

our cross-entropy robust to labeling errors. In fact, the robustness works both for prediction and for367

pseudo-labels due to the symmetry. We also developed an efficient EM algorithm for optimizing the368

pseudo-labels. Such EM algorithm takes much less time compared to the standard projected gradient369

descent. Experimental results show that our method consistently produces top or near-top results on370

all tested clustering and semi-supervised benchmarks.371
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A Missing proofs481

Theorem 2. [M-step solution]: The sum
∑

k yk as in (17) is positive, continuous, convex, and482

monotonically decreasing function of x on the specified interval. Moreover, there exists a unique483

solution {yk} ∈ ∆k and x such that484 ∑
k yk ≡

∑
k

λukSk

λu⊤S+1−σk
x

= 1 and x ∈
(

σmax

1+λu⊤S
, σmax

]
(17)

Proof. All yk in (17) are positive, continuous, convex, and monotonically decreasing functions of x485

on the specified interval. Thus,
∑

yk behaves similarly. Assuming that max is the index of prediction486

σmax, we have ymax → +∞ when approaching the interval’s left endpoint x → σmax

1+λu⊤S
. Thus,487 ∑

yk > 1 for smaller values of x. At the right endpoint x = σmax we have yk ≤ λukSk

λu⊤S
for all k488

implying
∑

yk ≤ 1. Monotonicity and continuity of
∑

yk w.r.t. x imply the theorem.489

Lemma 2. Assuming ukSk is positive for each k, then the reachable left end point in Theorem 1 can
be written as

l := max
k

σk

1 + λu⊤S − λukSk
.

Proof. Firstly, we prove that l is (strictly) inside the interior of the interval in Theorem 1. For the left490

end point, we have491

l := max
k

σk

1 + λu⊤S − λukSk

≥ σmax

1 + λu⊤S − λumaxSmax

>
σmax

1 + λu⊤S
umaxSmax is positive

For the right end point, we have492

l := max
k

σk

1 + λu⊤S − λukSk

< max
k

σk 1 + λu⊤S − λukSk > 1

= σmax

Therefore, l is a reachable point. Moreover, any σmax

1+λu⊤S
< x < l will still induce positive yk for any

k and we will also use this to prove that x should not be smaller than l. Let

c := argmax
k

σk

1 + λu⊤S − λukSk

then we can substitute l into the x of yc. It can be easily verified that yc = 1 at such l. Since yc is493

monotonically decreasing in terms of x, any x smaller than l will cause yc to be greater than 1. At494

the same time, other yk is still positive as mentioned just above, so the
∑

k yk will be greater than 1.495

Thus, l is a reachable left end point.496

Property 2. For any category k such that uk > 0, the set of strictly positive variables yk or Sk can497

only grow during iterations of our EM algorithm for the loss (d) based on the collision cross-entropy.498

Proof. As obvious from the E-step (14), it is sufficient to prove this for variables yk. If yk = 0, then499

the E-step (14) gives Sk = 0. According to the M-step for the case of collision cross-entropy, variable500

yk may become (strictly) positive at the next iteration if σk = σmax. Once yk becomes positive, the501

following E-step (14) produces Sk > 0. Then, the fairness term effectively enforces the log-barrier502

from the corresponding simplex boundary making M-step solution yk = 0 prohibitively expensive.503

Thus, yk will remain strictly positive at all later iterations.504
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B Complete Solutions for M step505

− ln
∑
k

σkyk − λ
∑
k

ukSk ln yk. (d)

The main case when ukSk > 0 for all k is presented in the main paper. Here we derive the case when
there exist some k such that ukSk = 0. Assume a non-empty subset of categories/classes

Ko := {k |ukSk = 0} ≠ ∅
and its non-empty complement

K̄o := {k |ukSk > 0} ≠ ∅.
In this case the second term (fairness) in our loss (d) does not depend on variables yk for k ∈ Ko.
Also, note that the first term ( collision cross-entropy) in (d) depends on these variables only via their
linear combination

∑
k∈Ko

σkyk. It is easy to see that for any given confidences yk for k ∈ K̄o it is
optimal to put all the remaining confidence 1−

∑
k∈K̄o

yk into one class c ∈ Ko corresponding to
the larges prediction among the classes in Ko

c := argmax
k∈Ko

σk

so that
yc = 1−

∑
k∈K̄o

yk and yk = 0, ∀k ∈ Ko \ c.

Then, our loss function (d) can be written as506

− ln
∑

k∈K̄o∪{c}

σkyk − λ
∑
k∈K̄o

ukSk ln yk (e)

that gives the Lagrangian function incorporating the probability simplex constraint507

− ln
∑

k∈K̄o∪{c} σkyk − λ
∑

k∈K̄o
ukSk ln yk + γ

(∑
k∈K̄o∪{c} yk − 1

)
.

The stationary point for this Lagrangian function should satisfy equations508

− σk

σ⊤y
− λukSk

1
yk

+ γ = 0, ∀k ∈ K̄o and − σc

σ⊤y
+ γ = 0

which could be easily written as a linear system w.r.t variables yk for k ∈ K̄o ∪ {c}.509

We derive a closed-form solution for the stationary point as follows. Substituting γ from the right510

equation into the left equation, we get511

σc − σk

σ⊤y
yk = λukSk, ∀k ∈ K̄o . (f)

Summing over k ∈ K̄o we further obtain512

σc(1−yc)−
∑

k∈K̄o
σkyk

σ⊤y
= λu⊤S ⇒ σc−σ⊤y

σ⊤y
= λu⊤S

giving a closed-form solution for σ⊤y

σ⊤y =
σc

1 + λu⊤S
.

Substituting this back into (f) we get closed-form solutions for yk

yk =
λukSk

(1 + λu⊤S)(1− σk

σc
)
, ∀k ∈ K̄o .

Note that positivity and boundedness of yk requires σc > σk for all k ∈ K̄o. In particular, this means
σc = σmax, but it also requires that all σk for k ∈ K̄o are strictly smaller than σmax. We can also
write the corresponding closed-form solution for yc

yc = 1−
∑
k∈K̄o

yk = 1 − σc

1 + λu⊤S

∑
k∈K̄o

λukSk

σc − σk
.
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Note that this solution should be positive yc > 0 as well.513

In case any of the mentioned constraints (σc > σk,∀k ∈ K̄o and yc > 0) is not satisfied, the514

complimentary slackness (KKT) can be used to formally prove that the optimal solution is yc = 0.515

That is, yk = 0 for all k ∈ Ko. This reduces the optimization problem to the earlier case focusing516

on resolving yk for k ∈ K̄o. This case is guaranteed to find a unique solution in the interior of the517

simplex ∆K̄o
. Indeed, since inequality ukSk > 0 holds for all k ∈ K̄o, the strong fairness enforces a518

log-barrier for all the boundaries of this simplex.519

C Optimization algorithms520

Algorithm 1: Newton’s method for M-step
Input : {σk}, {Sk}, λ, ϵ
Output : {yk}
Initialize x←maxk

σk

1+λu⊤S−λukSk

calculate f(x)←
∑

k
λukSk

λu⊤S+1−σk
x

− 1

while f(x) ≥ ϵ do
calculate f ′(x)←

∑
k

−λukSkσk

(λu⊤Sx+x−σk)2

x← x - f(x)
f ′(x)

calculate f(x)←
∑

k
λukSk

λu⊤S+1−σk
x

− 1

end
yk ← λukSk

λu⊤S+1−σk
x

Algorithm 2: Optimization for (11)
Input :network parameters and dataset
Output :network parameters
for each epoch do

for each iteration do
Initialize y by the network output at current stage as a warm start;
while not convergent do

E step: Sk
i =

yk
i∑
j yk

j

;

M step: find yki using Newton’s method;
end
Update network using loss H2(y, σ) via stochastic gradient descent

end
end

D Self-supervision Loss Comparison521

LCCE := H2(y, σ) + λKL(ȳ∥u) (a)

LCCE+ := H2(y, σ) + λKL(u∥ȳ) (b)

15



STL10 CIFAR10 CIFAR100-20 MNIST

(a) 92.32%(6.3) 73.51%(6.4) 43.73%(1.1) 58.4%(3.2)
(b) 92.33%(6.4) 73.51%(6.3) 43.72%(1.1) 58.4%(3.2)

Table 6: Using fixed features extracted from Resnet-50.

STL10 CIFAR10 CIFAR100-20 MNIST

(a) 25.98%(1.0) 24.26%(0.8) 15.13%(0.6) 95.10%(4.2)
(b) 25.98%(1.1) 24.26%(0.8) 15.14%(0.5) 95.11%(4.3)

Table 7: With simultaneous feature training from the scratch. The network architecture is VGG-4.

E Experiments522

E.1 Network Architecture523

The network structure of VGG4 is adapted from [17]. We used standard ResNet-18 from the PyTorch524

library as the backbone architecture for Figure 2. As for the ResNet-18 used for Table 4, we used the525

code from this repository 1.526

Grey(28x28x1) RGB(32x32x3) RGB(96x96x3)

1xConv(5x5,s=1,p=2)@64 1xConv(5x5,s=1,p=2)@32 1xConv(5x5,s=2,p=2)@128
1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2)
1xConv(5x5,s=1,p=2)@128 1xConv(5x5,s=1,p=2)@64 1xConv(5x5,s=2,p=2)@256
1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2)
1xConv(5x5,s=1,p=2)@256 1xConv(5x5,s=1,p=2)@128 1xConv(5x5,s=2,p=2)@512
1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2) 1xMaxPool(2x2,s=2)
1xConv(5x5,s=1,p=2)@512 1xConv(5x5,s=1,p=2)@256 1xConv(5x5,s=2,p=2)@1024
1xLinear(512x3x3,K) 1xLinear(256x4x4,K) 1xLinear(1024x1x1,K)

Table 8: Network architecture summary. s: stride; p: padding; K: number of clusters. The first
column is used on MNIST [25]; the second one is used on CIFAR10/100 [43]; the third one is used on
STL10 [8]. Batch normalization is also applied after each Conv layer. ReLu is adopted for non-linear
activation function.

E.2 Experimental Settings527

Here we present the missing details of experimental settings for Table 2 - 5. As for Table 2, the528

weight of the linear classifier is initialized by using Kaiming initialization [13] and the bias is all set529

to zero at the beginning. We use the l2-norm weight decay and set the coefficient of this term to 0.001,530

0.02, 0.009, and 0.02 for MNIST, CIFAR10, CIFAR100 and STL10 respectively. The optimizer is531

stochastic gradient descent with a learning rate set to 0.1. The batch size is set to 250. The number of532

epochs is 10. We set λ in our loss to 100 and separately tuned the hyperparameters for other methods.533

For Table 3, we use Adam [21] with learning rate 1e−4 for optimizing the network parameters. We534

set batch size to 250 for CIFAR10, CIFAR100 and MNIST and we use 160 for STL10. We report the535

mean accuracy and Std from 6 runs with random initializations. We use 50 epochs for each run and536

all methods reach convergence within 50 epochs. The weight decay coefficient is set to 0.01.537

As for the training of ResNet-18 in Table 4, we still use the Adam optimizer, and the learning rate is538

set to 5e−2 for the linear classifier and 1e−5 for the backbone. The weight decay coefficient is set to539

1e−4. The batch size is 200 and the number of total epochs is 50. The λ is still set to 100. We only540

use one augmentation per image, and the coefficient for the augmentation term is set to 0.5, 0.2, and541

0.4 respectively for STL10, CIFAR10, and CIFAR100 (20).542

As for the semi-supervised settings, we made two changes compared to the above. First, we added543

the cross-entropy loss on the labeled images and set the weight to 2, and separately tuned the544

hyperparameters for other methods. Second, the pseudo-labels on the labeled images are constrained545

to be the ground truth during the optimization.546

1https://github.com/wvangansbeke/Unsupervised-Classification
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NeurIPS Paper Checklist547

The checklist is designed to encourage best practices for responsible machine learning research,548

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove549

the checklist: The papers not including the checklist will be desk rejected. The checklist should550

follow the references and follow the (optional) supplemental material. The checklist does NOT count551

towards the page limit.552

Please read the checklist guidelines carefully for information on how to answer these questions. For553

each question in the checklist:554

• You should answer [Yes] , [No] , or [NA] .555

• [NA] means either that the question is Not Applicable for that particular paper or the556

relevant information is Not Available.557

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).558

The checklist answers are an integral part of your paper submission. They are visible to the559

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it560

(after eventual revisions) with the final version of your paper, and its final version will be published561

with the paper.562

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.563

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a564

proper justification is given (e.g., "error bars are not reported because it would be too computationally565

expensive" or "we were unable to find the license for the dataset we used"). In general, answering566

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we567

acknowledge that the true answer is often more nuanced, so please just use your best judgment and568

write a justification to elaborate. All supporting evidence can appear either in the main paper or the569

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification570

please point to the section(s) where related material for the question can be found.571

IMPORTANT, please:572

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",573

• Keep the checklist subsection headings, questions/answers and guidelines below.574

• Do not modify the questions and only use the provided macros for your answers.575

1. Claims576

Question: Do the main claims made in the abstract and introduction accurately reflect the577

paper’s contributions and scope?578

Answer: [Yes]579

Justification: This can be justified from reading the paper.580

Guidelines:581

• The answer NA means that the abstract and introduction do not include the claims582

made in the paper.583

• The abstract and/or introduction should clearly state the claims made, including the584

contributions made in the paper and important assumptions and limitations. A No or585

NA answer to this question will not be perceived well by the reviewers.586

• The claims made should match theoretical and experimental results, and reflect how587

much the results can be expected to generalize to other settings.588

• It is fine to include aspirational goals as motivation as long as it is clear that these goals589

are not attained by the paper.590

2. Limitations591

Question: Does the paper discuss the limitations of the work performed by the authors?592

Answer: [NA]593

Justification:594
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Guidelines:595

• The answer NA means that the paper has no limitation while the answer No means that596

the paper has limitations, but those are not discussed in the paper.597

• The authors are encouraged to create a separate "Limitations" section in their paper.598

• The paper should point out any strong assumptions and how robust the results are to599

violations of these assumptions (e.g., independence assumptions, noiseless settings,600

model well-specification, asymptotic approximations only holding locally). The authors601

should reflect on how these assumptions might be violated in practice and what the602

implications would be.603

• The authors should reflect on the scope of the claims made, e.g., if the approach was604

only tested on a few datasets or with a few runs. In general, empirical results often605

depend on implicit assumptions, which should be articulated.606

• The authors should reflect on the factors that influence the performance of the approach.607

For example, a facial recognition algorithm may perform poorly when image resolution608

is low or images are taken in low lighting. Or a speech-to-text system might not be609

used reliably to provide closed captions for online lectures because it fails to handle610

technical jargon.611

• The authors should discuss the computational efficiency of the proposed algorithms612

and how they scale with dataset size.613

• If applicable, the authors should discuss possible limitations of their approach to614

address problems of privacy and fairness.615

• While the authors might fear that complete honesty about limitations might be used by616

reviewers as grounds for rejection, a worse outcome might be that reviewers discover617

limitations that aren’t acknowledged in the paper. The authors should use their best618

judgment and recognize that individual actions in favor of transparency play an impor-619

tant role in developing norms that preserve the integrity of the community. Reviewers620

will be specifically instructed to not penalize honesty concerning limitations.621

3. Theory Assumptions and Proofs622

Question: For each theoretical result, does the paper provide the full set of assumptions and623

a complete (and correct) proof?624

Answer: [Yes]625

Justification: Assumptions are clearly stated and missing proofs can be found in the ap-626

pendix.627

Guidelines:628

• The answer NA means that the paper does not include theoretical results.629

• All the theorems, formulas, and proofs in the paper should be numbered and cross-630

referenced.631

• All assumptions should be clearly stated or referenced in the statement of any theorems.632

• The proofs can either appear in the main paper or the supplemental material, but if633

they appear in the supplemental material, the authors are encouraged to provide a short634

proof sketch to provide intuition.635

• Inversely, any informal proof provided in the core of the paper should be complemented636

by formal proofs provided in appendix or supplemental material.637

• Theorems and Lemmas that the proof relies upon should be properly referenced.638

4. Experimental Result Reproducibility639

Question: Does the paper fully disclose all the information needed to reproduce the main ex-640

perimental results of the paper to the extent that it affects the main claims and/or conclusions641

of the paper (regardless of whether the code and data are provided or not)?642

Answer: [Yes]643

Justification: All the details can be found in the appendix.644

Guidelines:645

• The answer NA means that the paper does not include experiments.646
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• If the paper includes experiments, a No answer to this question will not be perceived647

well by the reviewers: Making the paper reproducible is important, regardless of648

whether the code and data are provided or not.649

• If the contribution is a dataset and/or model, the authors should describe the steps taken650

to make their results reproducible or verifiable.651

• Depending on the contribution, reproducibility can be accomplished in various ways.652

For example, if the contribution is a novel architecture, describing the architecture fully653

might suffice, or if the contribution is a specific model and empirical evaluation, it may654

be necessary to either make it possible for others to replicate the model with the same655

dataset, or provide access to the model. In general. releasing code and data is often656

one good way to accomplish this, but reproducibility can also be provided via detailed657

instructions for how to replicate the results, access to a hosted model (e.g., in the case658

of a large language model), releasing of a model checkpoint, or other means that are659

appropriate to the research performed.660

• While NeurIPS does not require releasing code, the conference does require all submis-661

sions to provide some reasonable avenue for reproducibility, which may depend on the662

nature of the contribution. For example663

(a) If the contribution is primarily a new algorithm, the paper should make it clear how664

to reproduce that algorithm.665

(b) If the contribution is primarily a new model architecture, the paper should describe666

the architecture clearly and fully.667

(c) If the contribution is a new model (e.g., a large language model), then there should668

either be a way to access this model for reproducing the results or a way to reproduce669

the model (e.g., with an open-source dataset or instructions for how to construct670

the dataset).671

(d) We recognize that reproducibility may be tricky in some cases, in which case672

authors are welcome to describe the particular way they provide for reproducibility.673

In the case of closed-source models, it may be that access to the model is limited in674

some way (e.g., to registered users), but it should be possible for other researchers675

to have some path to reproducing or verifying the results.676

5. Open access to data and code677

Question: Does the paper provide open access to the data and code, with sufficient instruc-678

tions to faithfully reproduce the main experimental results, as described in supplemental679

material?680

Answer: [No]681

Justification: Code is released upon acceptance.682

Guidelines:683

• The answer NA means that paper does not include experiments requiring code.684

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/685

public/guides/CodeSubmissionPolicy) for more details.686

• While we encourage the release of code and data, we understand that this might not be687

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not688

including code, unless this is central to the contribution (e.g., for a new open-source689

benchmark).690

• The instructions should contain the exact command and environment needed to run to691

reproduce the results. See the NeurIPS code and data submission guidelines (https:692

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.693

• The authors should provide instructions on data access and preparation, including how694

to access the raw data, preprocessed data, intermediate data, and generated data, etc.695

• The authors should provide scripts to reproduce all experimental results for the new696

proposed method and baselines. If only a subset of experiments are reproducible, they697

should state which ones are omitted from the script and why.698

• At submission time, to preserve anonymity, the authors should release anonymized699

versions (if applicable).700
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• Providing as much information as possible in supplemental material (appended to the701

paper) is recommended, but including URLs to data and code is permitted.702

6. Experimental Setting/Details703

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-704

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the705

results?706

Answer: [Yes]707

Justification: See appendix.708

Guidelines:709

• The answer NA means that the paper does not include experiments.710

• The experimental setting should be presented in the core of the paper to a level of detail711

that is necessary to appreciate the results and make sense of them.712

• The full details can be provided either with the code, in appendix, or as supplemental713

material.714

7. Experiment Statistical Significance715

Question: Does the paper report error bars suitably and correctly defined or other appropriate716

information about the statistical significance of the experiments?717

Answer: [Yes]718

Justification: Mean and standard deviation are provided for most of the experiments.719

Guidelines:720

• The answer NA means that the paper does not include experiments.721

• The authors should answer "Yes" if the results are accompanied by error bars, confi-722

dence intervals, or statistical significance tests, at least for the experiments that support723

the main claims of the paper.724

• The factors of variability that the error bars are capturing should be clearly stated (for725

example, train/test split, initialization, random drawing of some parameter, or overall726

run with given experimental conditions).727

• The method for calculating the error bars should be explained (closed form formula,728

call to a library function, bootstrap, etc.)729

• The assumptions made should be given (e.g., Normally distributed errors).730

• It should be clear whether the error bar is the standard deviation or the standard error731

of the mean.732

• It is OK to report 1-sigma error bars, but one should state it. The authors should733

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis734

of Normality of errors is not verified.735

• For asymmetric distributions, the authors should be careful not to show in tables or736

figures symmetric error bars that would yield results that are out of range (e.g. negative737

error rates).738

• If error bars are reported in tables or plots, The authors should explain in the text how739

they were calculated and reference the corresponding figures or tables in the text.740

8. Experiments Compute Resources741

Question: For each experiment, does the paper provide sufficient information on the com-742

puter resources (type of compute workers, memory, time of execution) needed to reproduce743

the experiments?744

Answer: [No]745

Justification: The datasets are not large. We used single P100 GPU card.746

Guidelines:747

• The answer NA means that the paper does not include experiments.748

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,749

or cloud provider, including relevant memory and storage.750
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• The paper should provide the amount of compute required for each of the individual751

experimental runs as well as estimate the total compute.752

• The paper should disclose whether the full research project required more compute753

than the experiments reported in the paper (e.g., preliminary or failed experiments that754

didn’t make it into the paper).755

9. Code Of Ethics756

Question: Does the research conducted in the paper conform, in every respect, with the757

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?758

Answer: [Yes]759

Justification:760

Guidelines:761

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.762

• If the authors answer No, they should explain the special circumstances that require a763

deviation from the Code of Ethics.764

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-765

eration due to laws or regulations in their jurisdiction).766

10. Broader Impacts767

Question: Does the paper discuss both potential positive societal impacts and negative768

societal impacts of the work performed?769

Answer: [NA]770

Justification:771

Guidelines:772

• The answer NA means that there is no societal impact of the work performed.773

• If the authors answer NA or No, they should explain why their work has no societal774

impact or why the paper does not address societal impact.775

• Examples of negative societal impacts include potential malicious or unintended uses776

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations777

(e.g., deployment of technologies that could make decisions that unfairly impact specific778

groups), privacy considerations, and security considerations.779

• The conference expects that many papers will be foundational research and not tied780

to particular applications, let alone deployments. However, if there is a direct path to781

any negative applications, the authors should point it out. For example, it is legitimate782

to point out that an improvement in the quality of generative models could be used to783

generate deepfakes for disinformation. On the other hand, it is not needed to point out784

that a generic algorithm for optimizing neural networks could enable people to train785

models that generate Deepfakes faster.786

• The authors should consider possible harms that could arise when the technology is787

being used as intended and functioning correctly, harms that could arise when the788

technology is being used as intended but gives incorrect results, and harms following789

from (intentional or unintentional) misuse of the technology.790

• If there are negative societal impacts, the authors could also discuss possible mitigation791

strategies (e.g., gated release of models, providing defenses in addition to attacks,792

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from793

feedback over time, improving the efficiency and accessibility of ML).794

11. Safeguards795

Question: Does the paper describe safeguards that have been put in place for responsible796

release of data or models that have a high risk for misuse (e.g., pretrained language models,797

image generators, or scraped datasets)?798

Answer: [NA]799

Justification:800

Guidelines:801

• The answer NA means that the paper poses no such risks.802
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• Released models that have a high risk for misuse or dual-use should be released with803

necessary safeguards to allow for controlled use of the model, for example by requiring804

that users adhere to usage guidelines or restrictions to access the model or implementing805

safety filters.806

• Datasets that have been scraped from the Internet could pose safety risks. The authors807

should describe how they avoided releasing unsafe images.808

• We recognize that providing effective safeguards is challenging, and many papers do809

not require this, but we encourage authors to take this into account and make a best810

faith effort.811

12. Licenses for existing assets812

Question: Are the creators or original owners of assets (e.g., code, data, models), used in813

the paper, properly credited and are the license and terms of use explicitly mentioned and814

properly respected?815

Answer: [Yes]816

Justification: We cite them and put the links as well.817

Guidelines:818

• The answer NA means that the paper does not use existing assets.819

• The authors should cite the original paper that produced the code package or dataset.820

• The authors should state which version of the asset is used and, if possible, include a821

URL.822

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.823

• For scraped data from a particular source (e.g., website), the copyright and terms of824

service of that source should be provided.825

• If assets are released, the license, copyright information, and terms of use in the package826

should be provided. For popular datasets, paperswithcode.com/datasets has827

curated licenses for some datasets. Their licensing guide can help determine the license828

of a dataset.829

• For existing datasets that are re-packaged, both the original license and the license of830

the derived asset (if it has changed) should be provided.831

• If this information is not available online, the authors are encouraged to reach out to832

the asset’s creators.833

13. New Assets834

Question: Are new assets introduced in the paper well documented and is the documentation835

provided alongside the assets?836

Answer: [NA]837

Justification:838

Guidelines:839

• The answer NA means that the paper does not release new assets.840

• Researchers should communicate the details of the dataset/code/model as part of their841

submissions via structured templates. This includes details about training, license,842

limitations, etc.843

• The paper should discuss whether and how consent was obtained from people whose844

asset is used.845

• At submission time, remember to anonymize your assets (if applicable). You can either846

create an anonymized URL or include an anonymized zip file.847

14. Crowdsourcing and Research with Human Subjects848

Question: For crowdsourcing experiments and research with human subjects, does the paper849

include the full text of instructions given to participants and screenshots, if applicable, as850

well as details about compensation (if any)?851

Answer: [NA]852

Justification:853
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Guidelines:854

• The answer NA means that the paper does not involve crowdsourcing nor research with855

human subjects.856

• Including this information in the supplemental material is fine, but if the main contribu-857

tion of the paper involves human subjects, then as much detail as possible should be858

included in the main paper.859

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,860

or other labor should be paid at least the minimum wage in the country of the data861

collector.862

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human863

Subjects864

Question: Does the paper describe potential risks incurred by study participants, whether865

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)866

approvals (or an equivalent approval/review based on the requirements of your country or867

institution) were obtained?868

Answer: [NA]869

Justification:870

Guidelines:871

• The answer NA means that the paper does not involve crowdsourcing nor research with872

human subjects.873

• Depending on the country in which research is conducted, IRB approval (or equivalent)874

may be required for any human subjects research. If you obtained IRB approval, you875

should clearly state this in the paper.876

• We recognize that the procedures for this may vary significantly between institutions877

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the878

guidelines for their institution.879

• For initial submissions, do not include any information that would break anonymity (if880

applicable), such as the institution conducting the review.881
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