
Deep Neural Network Piration without
Accuracy Loss

Aritra Ray Jinyuan Jia Sohini Saha Jayeeta Chaudhuri Neil Zhenqiang Gong Krishnendu Chakrabarty

Duke University

Abstract—A deep neural network (DNN) classifier is often
viewed as the intellectual property of a model owner due to
the huge resources required to train it. To protect intellectual
property, the model owner can embed a watermark into the
DNN classifier (called target classifier) such that it outputs
pre-determined labels (called trigger labels) for pre-determined
inputs (called trigger inputs). Given the black-box access to a
suspect classifier, the model owner can verify whether the suspect
classifier is pirated version of its classifier by first querying the
suspect classifier for trigger inputs and then checking whether
the predicted labels match with the trigger labels. Many studies
showed that an attacker can pirate the target classifier (called
pirated classifier) via retraining or fine-tuning the target classifier
to remove its watermark. However, they sacrifice the accuracy of
the pirated classifier, which is undesired for critical applications
such as finance and healthcare. In our work, we propose a new
attack without sacrificing the accuracy of the pirated classifier
for in-distribution testing inputs while preventing the detection
from the model owner. Our idea is that an attacker can detect
the trigger inputs in the inference stage of the pirated classifier.
In particular, given a testing input, we let the pirated classifier
return a random label if the input is detected as a trigger input.
Otherwise, the pirated classifier predicts the same label as the
target classifier. We evaluate our attack on benchmark datasets
and find that our attack can effectively identify the trigger inputs.
Our attack reveals that the intellectual property of a model
owner can be violated with existing watermarking techniques,
highlighting the need for new techniques.

Index Terms—Deep Neural Networks, Intellectual Property,
Watermarking

I. INTRODUCTION

Deep neural networks (DNNs) [1], [2] are increasingly used

in many real-world applications such as image classification

due to their superior performance. However, it often requires

a lot of resources (e.g., resources used to collect a high-

quality training dataset, computation resources) to train a

high-quality deep neural network classifier. As a result, a

DNN classifier often represents the intellectual property of

a model owner. To protect intellectual property, the model

owner can embed a watermark into it. Roughly speaking, there

are two categories of watermarking methods: parameter-based
watermarking [3], [4] and label-based watermarking [5]–[7].

In parameter-based watermarking, the model owner embeds a

watermark into the parameters of a DNN classifier, e.g., let the

signs of certain parameters have a specific pattern. However,

the parameter-based watermarking requires the model owner to

have white-box access to a suspect classifier to verify whether

it is a pirated version of its DNN classifier, which is not

applicable when the model owner only has black-box access

to the suspect classifier. Therefore, we focus on label-based

watermarking in this work.

In label-based watermarking, a model owner embeds a

watermark into a DNN classifier (called target classifier) such

that it predicts a pre-determined label (called trigger label) for

pre-determined inputs (called trigger inputs), where both the

trigger label and trigger inputs can be selected by the model

owner. For instance, Zhang et al. proposed a backdoor-based

watermarking [7]. In particular, the model owner can randomly

pick a certain number of training inputs from the training

dataset of the target classifier and embed a pattern (chosen

by the model owner) into each of them to construct trigger

inputs. Then, the model owner can arbitrarily select a label

(i.e., trigger label) and assign it to those trigger inputs. Then,

the attacker can use those labeled trigger inputs along with

the training dataset to train a target classifier. It is very likely

that the target classifier will predict the trigger label for the

trigger inputs. Suppose the model owner has black-box access

to a suspect classifier and aims to verify whether it is pirated

version of the target classifier. The model owner can query the

suspect classifier for the trigger inputs and check whether the

predicted labels are the same as the trigger labels. The model

owner can view the suspect classifier as a pirated version of

the target classifier if predicted labels for most of the trigger

inputs match with the trigger label.

Many studies [8]–[10] showed that an attacker can remove

the watermark in a target classifier to pirate it. Roughly

speaking, those methods pirate the target classifier (called

pirated classifier) via re-training or fine-tuning the target

classifier. However, those methods sacrifice the accuracy of the

pirated classifier, i.e., the pirated classifier has lower accuracy

on testing inputs (called in-distribution inputs) that have the

same distribution as the training dataset compared with the

target classifier. In some critical applications such as finance

and healthcare, even 1% accuracy loss may be intolerable.

Our work: In our work, we propose a new attack that does not

sacrifice the accuracy of the pirated classifier on in-distribution

inputs while preventing the model owner from detecting it.

Suppose the attacker has white-box access to a target classifier,

the attacker can deploy the target classifier, i.e., the pirated

classifier is the same as the target classifier, as a cloud service

(e.g., AWS, Google Cloud, IBM Cloud) or an end-user product

(e.g., a mobile app, software). Therefore, the model owner

1032

2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-6654-6283-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ICMLA55696.2022.00172

20
22

 2
1s

t I
EE

E
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ac

hi
ne

 L
ea

rn
in

g
an

d
A

pp
lic

at
io

ns
 (I

C
M

LA
) |

 9
78

-1
-6

65
4-

62
83

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

M
LA

55
69

6.
20

22
.0

01
72

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:27:57 UTC from IEEE Xplore. Restrictions apply.

can have black-box access to it. To avoid being detected by

the model owner, our intuition is that the trigger inputs have

different distributions from in-distribution inputs, which have

the same distribution as the training dataset. Therefore, we can

train a detector to distinguish in-distribution inputs from the

trigger inputs. In particular, if a testing input is not detected

as in-distribution, then the pirated classifier returns a random

label. Otherwise, the pirated classifier returns the same label

as the target classifier for the testing input.
To train a detector, we assume the attacker has a small

number of labeled inputs (called surrogate dataset) that have

the same distribution as the training dataset. There are two

challenges in training a high-quality detector: 1) the attacker

only has a small number of labeled inputs which makes it hard

to train a high-quality detector, and 2) in-distribution inputs

with different ground truth labels have different characteristics,

which makes it challenging to distinguish in-distribution inputs

from trigger inputs. To address the first challenge, we propose

to train a detector to distinguish heatmaps of in-distribution

inputs and trigger inputs. Roughly speaking, given an input

and a classifier, a heatmap for the input highlights the features

in the input that have significant contributions to the final

predicted label of the classifier for the input. Thus, the heatmap

is sparser than the input, which makes it easier to distinguish.

We use Generative Adversarial Networks (GANs) [11] to learn

the distribution of heatmaps of in-distribution inputs. As the

discriminator of GAN is used to predict whether a heatmap is

from a real input, we use it to detect whether a testing input

is in-distribution or not based on its heatmap. To address the

second challenge, for each label, we train a GAN to learn the

distribution of heatmaps for the inputs that have the same label.

Therefore, each GAN only needs to learn the distribution for

in-distribution inputs with the same ground truth label. Given

a testing input, we use the pirated classifier to predict a label

for it as well as compute a heatmap for it. Then, we use the

discriminator of the GAN trained for the predicted label to

infer whether the given testing input is in-distribution or not.
We systematically evaluate our attack on MNIST and

Fashion-MNIST benchmark datasets. We use False Positive
Rate (FPR) and False Negative Rate (FNR) as evaluation

metrics. Roughly speaking, FPR measures the fraction of in-

distribution inputs that are predicted as trigger inputs; and FNR

measures the fraction of trigger inputs that are predicted as in-

distribution. Our experimental results indicate that our attack

can achieve small FPR and FNR. For instance, on MNIST

dataset, our attack can achieve 0 FPR and FNR for different

trigger inputs and trigger labels. Our work reveals that an

attacker can pirate a target classifier without sacrificing its

accuracy for in-distribution inputs. In other words, existing

watermarking techniques are insufficient and thus we need new

techniques.
Our contributions are summarized as follows:

• We are the first to show the feasibility of pirating a target

classifier without sacrificing its classification accuracy.

• We propose multiple methods (e.g., generating heatmaps)

to optimize our attack.

• We perform systematic evaluations for our attack on

benchmark datasets.

The rest of the paper is organized as follows. In Section

II, we provide the background and discuss the related work.

We discuss our threat model in Section III, introduce our

proposed attack in Section IV, perform systematic evaluations

on benchmark datasets in Section V, and conclude in Section

VI.

II. BACKGROUND AND RELATED WORK

A. Deep Neural Networks

Deep neural networks (DNNs) are being increasingly used

in a variety of applications, such as image classification [1],

[2], speech recognition [12], and natural language processing

[13]. A typical machine learning pipeline for deep neural net-

works contains two stages: training stage and inference stage.

In the training stage, we use a machine learning algorithm to

train a deep neural network classifier on a training dataset.

In the inference stage, we use the trained DNN classifier to

predict labels for testing inputs. In practice, training a DNN

classifier usually requires lots of resources (e.g., resources

used to collect a high-quality training dataset, computation

resources). Therefore, in practice, a resourceful model owner

(e.g., Google, Amazon, Microsoft) trains a DNN classifier and

sells/shares it to less resourceful customers. The customers

could use the DNN classifier to predict labels for their testing

inputs.

B. Watermarking Deep Neural Networks

The DNN classifier (called target classifier) trained by a

model owner represents its intellectual property, which could

be violated by an attacker. For instance, an attacker can buy

a DNN classifier from a model owner and then deploys it

as a cloud service to monetize it. To protect the intellectual

property of the target classifier, many studies [14] proposed to

embed a watermark into it. Given an arbitrary classifier (called

suspect classifier), the model owner can verify whether the

suspect classifier is a pirated version of the target classifier by

checking whether the suspect classifier contains the same or

similar watermark.

Roughly speaking, those methods can be categorized into

parameter-based watermarking [3], [4] and label-based water-
marking [5]–[7], [15], [16]. In parameter-based watermarking,

the model owner embeds a watermark into the parameters

of a target classifier. For instance, a model owner can add

an embedding loss to the loss function used to train the

target classifier such that signs of certain parameters of the

target classifier have a pre-determined pattern [3]. One major

challenge of parameter-based watermarking is that the model

owner needs to have a white-box access to the suspect classi-

fier, and thus it is not applicable when the black-box access

of the suspect classifier is provided. In contrast, label-based

watermarking embeds a watermark into a target classifier

by letting it predict pre-determined labels for pre-determined

inputs. A suspect classifier is viewed as a pirated version

of the target classifier if it also predicts the pre-determined

1033

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:27:57 UTC from IEEE Xplore. Restrictions apply.

Clean images

Trigger images

Train Dataset Watermarked
DNN

Embedding	watermark	through	training

Training

User-
defined
trigger
label

Classify

Test
watermark

“One”
“Two”

.

.

.
“Nine”

Verify

+

Fig. 1. Embedding watermark while training to protect DNN IP.

labels for pre-determined inputs. As only the predicted labels

of the suspect classifier for the pre-determined inputs are

needed, the model owner only needs to have black-box access

to the suspect classifier. Therefore, we focus on label-based

watermarking in this work. There are two phases in label-based

watermarking: embedding and verifying. Next, we discuss

more details about them:

• Embedding: Roughly speaking, label-based watermark-

ing [5], [7] embeds a watermark into a target clas-

sifier by letting it predict pre-determined classes for

pre-determined inputs. Specifically, the model owner

first selects m inputs (called trigger inputs), which are

denoted as x1,x2, · · · ,xm. For instance, the model

owner can randomly select some inputs from the train-

ing dataset and embed a unique pattern such as white

round blocks into them. Then, the model owner can

assign a label y (called trigger label) to the trigger

input xi, where i = 1, 2, · · · ,m. The model owner

could use those (trigger input, trigger label) pairs, i.e.,

{(x1, y), (x2, y), · · · , (xm, y)}, along with the training

dataset to train a target classifier such that the target

classifier predicts the trigger label for those trigger inputs.

• Verifying: Given an arbitrary suspect classifier, a model

owner queries the suspect classifier for the trigger inputs

x1,x2, · · · ,xm. Then, the model owner can compute the

fraction of inputs that are predicted as the trigger label.

The suspect model is viewed as a pirated version of the

target classifier if most of the trigger inputs are predicted

as the trigger label.

Figure 1 shows a visualization of those two stages.

C. Watermarking Removal

Existing watermark removal methods: Some studies [8]–

[10] showed that an attacker can remove the watermark in

a target classifier such that a model owner cannot correctly

verify whether a suspect classifier is a pirated version of the

target classifier. For instance, Chen et al. [10] proposed to

remove the watermark in a target classifier via fine-tuning

it. Roughly speaking, the idea is that fine-tuning a target

classifier without using trigger inputs is very likely to make it

forget those trigger inputs based on the catastrophic forgetting

phenomenon [17]. Moreover, they showed that an attacker can

leverage unlabeled inputs to fine-tune a target classifier with a

small number of labeled inputs. Zhang et al. [9] proposed to

remove a watermark in a target classifier by training a classifier

from scratch using inputs along with the labels predicted by the

target classifier. In particular, given either black-box or white-

box access to a target classifier, the attacker can query the

target classifier using inputs that have a similar distribution to

the training inputs of the target classifiers. Then, the attacker

can use those inputs along with the predicted labels of the

target classifier to train a surrogate model. The surrogate model

is expected to only copy the functionality of the target classifier

for normal inputs and thus does not predict trigger labels for

the trigger inputs.

Limitations of existing watermark removal methods: The

major limitation of existing watermark removal methods [9],

[10] is that they sacrifice the utility of the target classifier.

In particular, it is very likely that the retrained or fine-tuned

classifier is less accurate compared to the target classifier,

especially when the attacker only has a small amount of data.

In some critical applications such as finance and healthcare,

even 1% of accuracy drop may be intolerable. In this work,

we proposed a new attack that aims to address this limitation.

D. Generative Adversarial Networks

As our attack relies on generative neural networks

(GAN) [11], we briefly introduce it in this section. Suppose

we have a training dataset whose input x is sampled from

the distribution p(x). GAN aims to train a generative model

to generate inputs from the distribution p(x). In particular,

there are two components in a generative neural network: a

generator (denoted as G) and a discriminator (denoted as D).

Roughly speaking, the generator takes a random vector (e.g.,

drawn from Gaussian distribution) as input and produces a

sample. Given an arbitrary sample, the discriminator D outputs

a probability that the sample comes from the training dataset

instead of being generated by the generator G. The generator

G and the discriminator D are trained simultaneously. In

particular, the generator G generates a batch of samples. The

discriminator D is trained to distinguish between the batch of

generated samples and real samples from the training dataset.

Given the discriminator D, the generator G is trained to gener-

ate samples that can fool the discriminator D. Formally, they

are trained by solving the following optimization problem:

min
G

max
D

Ex∼p(x) log(D(x)) + Ee∼pe(e) log(1−D(G(e))),

(1)

where pe(e) is a noise distribution (e.g., Gaussian noise) and

e is a noise vector sampled from the distribution pe(e). Note

that after training a generative adversarial network, we can

use the discriminator D to detect inputs that have different

distribution from inputs in the training dataset.

III. THREAT MODEL

There are two parties: model owner and attacker. The

model owner trains a DNN classifier (called target classifier).

1034

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:27:57 UTC from IEEE Xplore. Restrictions apply.

To protect intellectual property, the model owner embeds a

watermark into the target classifier. Then, the model owner

sells (or shares) the target classifier to its customers. Next, we

introduce our threat model, where we characterize the attacker

with respect to its background knowledge and goal.

Attacker’s background knowledge: We consider the attacker

has white-box access to a target classifier embedded with a

watermark, i.e., the attacker can access all the parameters of

the target classifier. However, the attacker cannot access the

training dataset, training algorithm, as well as hyperparameters

used to train the target classifier. We assume the attacker has

a small number of labeled inputs (called surrogate dataset)
that have the same distribution but do not overlap with the

training dataset of the target classifier. We consider the attacker

does not know the trigger inputs and trigger label selected

by the model owner when embedding a watermark into the

target classifier. Moreover, the attacker does not know the

watermarking algorithm adopted by the model owner.

Attacker’s goal: The attacker aims to pirate the target classi-

fier (called pirated classifier) and monetize it by deploying it

as a cloud service (e.g., Google Cloud Platform, IBM Cloud,

Microsoft Azure, AWS) or an end-user product (e.g., software,

a mobile app). In other words, the model owner could have

black-box access to the pirated classifier. The attacker aims

to deploy the pirated classifier to achieve two goals. First, the

pirated classifier should have the same classification accuracy

as the target classifier for testing inputs (called in-distribution
inputs) that have the same distribution as the training inputs.

We note that even 1% accuracy loss is intolerable in some

critical applications such as finance and healthcare. Second,

the model owner should not be able to verify whether the

pirated classifier is a pirated version of the target classifier.

Specifically, the model owner may query the pirated classifier

with trigger inputs and check whether they are predicted as the

trigger labels. Thus, the attacker aims to detect those trigger

inputs and then let pirated classifier make a random prediction

for it.

IV. OUR ATTACK

A. Overview

Our idea is to directly deploy the target classifier, i.e., the

pirated classifier is the same as the target classifier. Therefore,

the pirated classifier has the same classification accuracy as

the target classifier for in-distribution testing inputs. To reach

the second goal, we propose to detect the trigger inputs in

the inference stage of the pirated classifier. Our key intuition

is that those trigger inputs have a different distribution from

the in-distribution inputs. Therefore, we can train a detector to

detect them. However, there are two challenges in building the

detector: 1) the attacker only has a small amount of labeled

data which is insufficient to train a high-quality detector, and

2) the inputs with different ground truth labels have different

characteristics which make it more challenging for the detector

to distinguish in-distribution inputs from the trigger inputs. To

address the first challenge, we propose to compute a heatmap

for an input and detect it based on its heatmap. To address

the second challenge, we proposed to train a detector for each

label. Given a testing input, our detector produces an anomaly
score for it. An input is viewed as a trigger input if its anomaly

score is higher than a certain threshold. Moreover, our pirated

classifier returns a random label if an input is detected as a

trigger input.

B. Building a Detector

Generating a heatmap for an input: In the machine learning

community, heatmaps are used to interpret the classification

results made by a classifier for an input. In particular, given

an input and a classifier, the classifier predicts a label for the

input. A heatmap is generated to highlight the contributions

made by each feature (e.g., each pixel in an image) in the

input to the predicted label. In practice, only a small amount

of “important” features have significant contributions. Thus,

the heatmap has the same shape as the input but is sparser as

many features have small contributions to the predicted label.

We can exploit the heatmap of an input to detect whether

it is an in-distribution input or not. Our intuition is that the

heatmap carries important classification information of the

input. For a trigger input, the important features (e.g., a unique

pattern selected by the model owner) that lead to its predicted

label (i.e., trigger label) are different from those of the in-

distribution inputs. Moreover, as the heatmap is sparser, we

can train a high-quality detector with a small number of in-

distribution inputs to detect whether a heatmap is generated

from an in-distribution input.

Building a Detector via GANs: Given a training dataset, we

can train a generative neural network to learn its distribution.

The discriminator in the generative neural network can be used

to distinguish whether an input is an in-distribution input or

not. The major challenge is that in-distribution inputs with

different ground-truth labels have different characteristics,

which makes it hard to distinguish in-distribution inputs from

trigger inputs, especially when the attacker only has a small

surrogate dataset. To address the challenge, we propose to train

a GAN for each label. Suppose the total number of labels is c.
For each label l, where l = 1, 2, · · · , c, we construct a training

dataset Tl by finding inputs whose ground truth label is l from

the attacker’s surrogate dataset. Then, we can compute the

heatmap for each input in Tl and then use those heatmaps to

train a GAN, where we use Dl to denote the discriminator.

The c discriminators form our detector.

Detecting trigger inputs: Given a testing input x, we can

use the pirated classifier to predict a label (denoted as y) for

it. Then, we can compute a heatmap for it. Given the heatmap,

we use Dy to compute a loss value for it. The loss value is

viewed as the anomaly score for the testing input x. We also

compute the loss value for each input in Ty using Dy and

use αy to denote the largest loss value for inputs in Ty . The

input x is predicted as in-distribution if the anomaly score is

no larger than αy + τ , where τ is a hyperparameter. In other

words, we view the inputs whose anomaly score is larger than

1035

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:27:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I
FPR AND FNR OF OUR ATTACK ON MNIST DATASET.

Trigger label Target classifier’s testing accuracy Target classifier’s trigger accuracy FPR FNR
Digit 0 95.95% 100.00% 0.00 0.00

Digit 1 96.11% 100.00% 0.00 0.00

Digit 2 96.97% 100.00% 0.00 0.00

Digit 3 95.97% 100.00% 0.00 0.00

Digit 4 98.38% 100.00% 0.00 0.00

Digit 5 97.41% 100.00% 0.00 0.00

Digit 6 97.94% 100.00% 0.00 0.00

Digit 7 97.39% 100.00% 0.00 0.00

Digit 8 97.17% 100.00% 0.00 0.00

Digit 9 98.28% 100.00% 0.00 0.00

αy + τ as trigger inputs. If an input is viewed as a trigger

input, the pirated classifier predicts a random label for it.

V. EVALUATIONS

A. Experimental Setup

1) Datasets: We evaluate our attack on benchmark datasets,

including MNIST [18] and Fashion-MNIST [19]. MNIST

consists of grayscale images of handwritten digits, each of

which has a size of 28 × 28 and belongs to one of ten classes.

Fashion-MNIST consists of grayscale images from 10 different

fashion products. The size of each image in Fashion-MNIST is

28 × 28. There are 60,000 training and 10,000 testing images

in both MNIST and Fashion-MNIST.

2) Training a watermark embedded target classifier: We

use the training data of a dataset to train a target classifier.

We adopted the watermarking method proposed by [7] to

embed a watermark into the target classifier. In particular,

we randomly select 15 inputs from the training dataset and

randomly embed four white round blocks in each of them to

construct trigger inputs (we study the impact of the number

of white round blocks in our experiments). By default, we set

the radius of the white round block to be 3. Then, we select a

label as the trigger label and assign it to the 15 trigger inputs.

Finally, to embed a watermark into a target classifier, we use

those labeled trigger inputs and the training data of a dataset

to train a target classifier. In particular, we train a ResNet-

34 [2] by default (we study the impact of the target classifier

architecture in our experiments). Moreover, we train it for 15

epochs with a learning rate of 0.0001 and a batch size of 128

using Adam optimizer [20]. We report the target classifier’s

accuracy for testing data of a dataset (called target classifier’s
testing accuracy. Moreover, we also compute the fraction of

trigger inputs that are predicted as the trigger label by the

target classifier (called target classifier’s trigger accuracy).

3) Evaluation metrics: We use False Positive Rate (FPR)
and False Negative Rate (FNR) as evaluation metrics. In

particular, FPR measures the fraction of clean testing inputs

in the testing dataset (i.e., in-distribution testing inputs) that

are predicted as trigger inputs. FNR measures the fraction

of trigger inputs that are predicted as in-distribution inputs.

A small FRR and FNR mean our detector achieves good

performance.

4) Parameter settings: We randomly sample 5% testing

examples from the testing data of each dataset as the surrogate

dataset of an attacker. We use Grad-CAM [21] to generate

a heatmap for an input. Moreover, we adopt the public

implementation1 in our experiments. We adopt Deep Convo-

lutional Generative Adversarial Network (DCGAN) [22] as

our generative neural networks. We use the publicly available

implementation 2. Unless otherwise mentioned, we set τ = 2
for MNIST and τ = 0.65 for Fashion-MNIST, considering

those two datasets have different characteristics.

B. Experimental Results

Our attack achieves low FPR and FNR: Table I and II

show the FPR and FNR on MNIST and Fashion-MNIST for

different trigger labels. We have the following observations

from the experimental results. First, we find that our attack

achieves low FPR and FNR on both datasets. For instance,

our attack can achieve zero FPR and FNR for different trigger

labels. Second, we find that both FPR and FNR on Fashion-

MNIST are slightly higher than MNIST dataset. The reason

is that heatmaps for MNIST is sparser than Fashion-MNIST.

Thus, when the size of the surrogate dataset is the same, it

is more challenging to train a good detector for the Fashion-

MNIST dataset.

Impact of the architecture of the target classifier: Table III

shows the impact of the target classifier’s architecture on FPR

and FNR on MNIST dataset in default setting. The results

show that our attacks can achieve similar FPR and FNR. In

other words, our attack is effective for target classifiers with

different architectures.

Impact of trigger inputs: We also study the impact of the

trigger inputs for our attack. Recall that we add four white

round blocks to inputs that are randomly sampled from the

training data. We explore adding a different number of white

round blocks to those inputs as trigger inputs. In particular,

1https://github.com/jacobgil/pytorch-grad-cam
2https://github.com/eriklindernoren/PyTorch-

GAN/blob/master/implementations/dcgan/dcgan.py

1036

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:27:57 UTC from IEEE Xplore. Restrictions apply.

TABLE II
FPR AND FNR OF OUR ATTACK ON FASHION-MNIST DATASET.

Trigger label Target classifier’s testing accuracy Target classifier’s trigger accuracy FPR FNR
T-shirt/top 99.42% 100.00% 0.20 0.07

Trouser 99.26% 100.00% 0.00 0.00

Pullover 98.27% 100.00% 0.20 0.20

Dress 97.79% 100.00% 0.20 0.13

Coat 97.50% 100.00% 0.20 0.07

Sandal 99.18% 100.00% 0.13 0.00

Shirt 94.36% 100.00% 0.00 0.00

Sneaker 96.72% 100.00% 0.07 0.00

Bag 97.42% 100.00% 0.00 0.20

Ankle Boot 98.67% 100.00% 0.00 0.00

TABLE III
IMPACT OF THE TARGET CLASSIFIER ARCHITECTURE. THE DATASET IS MNIST AND THE TIRGGER LABEL IS “DIGIT 0”.

Target classifier’s architecture Target classifier’s testing accuracy Target classifier’s trigger accuracy FPR FNR
ResNet-101 99.17% 100.00% 0.00 0.00

ResNet-152 97.83% 100.00% 0.00 0.00

ResNet-34 95.95% 100.00% 0.00 0.00

TABLE IV
IMPACT OF TRIGGER INPUTS. THE DATASET IS MNIST AND THE TRIGGER LABEL IS “DIGIT 0”.

white round blocks Target classifier’s testing accuracy Target classifier’s trigger accuracy FPR FNR
1 97.02% 100.00% 0.00 0.00

2 96.75% 100.00% 0.00 0.00

3 96.17% 100.00% 0.00 0.00

4 95.95% 100.00% 0.00 0.00

TABLE V
IMPACT OF τ ON FPR AND FNR. THE DATASET IS MNIST AND THE

TRIGGER LABEL IS “DIGIT 0”.

τ
Target classifier’s
testing accuracy

Target classifier’s
trigger accuracy FPR FNR

0.1

95.95% 100.00%

100.00 0.00

0.3 0.93 0.00

0.5 0.13 0.00

2 0.00 0.00

4 0.00 0.00

6 0.00 0.00

8 0.00 0.00

10 0.00 0.00

12 0.00 0.00

14 0.00 0.00

16 0.00 0.06

18 0.00 0.53

20 0.00 0.86

we respectively add 1, 2, 3, and 4 white round blocks to the

inputs. Table IV shows our experimental results. We find that

our attack can achieve low FRR and FNR, that is, our attack

is effective for different trigger inputs.

Impact of τ : Table V shows the impact of τ on FPR and FNR

for our attack. We have the following observations. First, as τ
increases, FPR increases while FNR decreases. The reason is

that an input is more likely to be predicted as in-distribution

when τ is large. Second, we find that the FPR drops very

quickly as τ increases. Third, our attack can achieve 0 FPR

and FNR for a wide range of τ . Our results indicate that our

attack is insensitive to τ for non-extreme values.

VI. CONCLUSION AND FUTURE WORK

A DNN classifier is often viewed as the intellectual property

of a model owner. The model owner can embed a watermark

into its DNN classifier to protect its intellectual property. In

particular, with black-box access to a suspect classifier, the

model owner can detect whether the suspect classifier is a

pirated version of its DNN classifier. In this work, we show

that an attacker can pirate the model owner’s DNN classifier

without sacrificing the classification accuracy of the DNN

classifier for in-distribution testing inputs while preventing the

model owner’s detection. Our attack reveals that the model

owner’s intellectual property may be violated with existing wa-

termarking techniques. Interesting future research direction: 1)

generalizing our attack to other domains, e.g., graph and text,

and 2) developing new watermarking techniques to mitigate

our attack.

1037

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:27:57 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[3] H. Chen, B. D. Rohani, and F. Koushanfar, “Deepmarks: A digital
fingerprinting framework for deep neural networks,” arXiv preprint
arXiv:1804.03648, 2018.

[4] Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh, “Digital watermarking
for deep neural networks,” International Journal of Multimedia
Information Retrieval, vol. 7, no. 1, pp. 3–16, 2018.

[5] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 1615–1631.

[6] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “Deepsigns: An
end-to-end watermarking framework for ownership protection of deep
neural networks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 485–497.

[7] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, “Protecting intellectual property of deep neural networks
with watermarking,” in Proceedings of the 2018 on Asia Conference
on Computer and Communications Security, 2018, pp. 159–172.

[8] T. Wang and F. Kerschbaum, “Attacks on digital watermarks for deep
neural networks,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019,
pp. 2622–2626.

[9] M. Shafieinejad, N. Lukas, J. Wang, X. Li, and F. Kerschbaum, “On the
robustness of backdoor-based watermarking in deep neural networks,”
in Proceedings of the 2021 ACM Workshop on Information Hiding and
Multimedia Security, 2021, pp. 177–188.

[10] X. Chen, W. Wang, Y. Ding, C. Bender, R. Jia, B. Li, and D. Song,
“Leveraging unlabeled data for watermark removal of deep neural
networks,” in ICML workshop on Security and Privacy of Machine
Learning, 2019, pp. 1–6.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” 2014. [Online]. Available: https://arxiv.org/abs/1406.2661

[12] A.-r. Mohamed, G. Dahl, G. Hinton et al., “Deep belief networks for
phone recognition,” in Nips workshop on deep learning for speech
recognition and related applications, vol. 1, no. 9, 2009, p. 39.

[13] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[14] M. Xue, Y. Zhang, J. Wang, and W. Liu, “Intellectual property protection
for deep learning models: Taxonomy, methods, attacks, and evaluations,”
IEEE Transactions on Artificial Intelligence, pp. 1–1, 2021.

[15] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs
to you: A blind-watermark based framework to protect intellectual
property of dnn,” in Proceedings of the 35th Annual Computer Security
Applications Conference, 2019, pp. 126–137.

[16] E. Le Merrer, P. Perez, and G. Trédan, “Adversarial frontier stitching
for remote neural network watermarking,” Neural Computing and
Applications, vol. 32, no. 13, pp. 9233–9244, 2020.

[17] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” arXiv preprint arXiv:1312.6211, 2013.

[18] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
Available: http://yann. lecun. com/exdb/mnist, 1998.

[19] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[21] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell,
D. Parikh, and D. Batra, “Grad-cam: Why did you say
that? visual explanations from deep networks via gradient-based
localization,” CoRR, vol. abs/1610.02391, 2016. [Online]. Available:
http://arxiv.org/abs/1610.02391

[22] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
2015. [Online]. Available: https://arxiv.org/abs/1511.06434

1038

Authorized licensed use limited to: Texas A M University. Downloaded on February 03,2025 at 22:27:57 UTC from IEEE Xplore. Restrictions apply.

