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ABSTRACT

Multimodal learning enables various machine learning tasks to benefit from di-
verse data sources, effectively mimicking the interplay of different factors in real
life events. While the heterogeneous nature of these modalities may necessitate
the design of complex architectures, their interpretability is often overlooked. In
this study, we leverage the intrinsic explainability of Transformer-based models to
explain multimodal learning frameworks. We utilize the self-attention mechanism
alongside model-specific feature attribution techniques, comparing these against
post-hoc methods. Our detailed analysis focuses on the challenging task of crop
yield prediction, exploiting the characteristics of the modalities and the data to
aggregate local explanations at multiple levels. Our findings indicate that Trans-
formers significantly outperform other architectures in yield prediction, making
them well-suited for further intrinsic interpretability analysis. Among the modal-
ities, satellite data emerged as the most influential but requires deeper layers for
effective feature extraction due to its complex structure. Additionally, we ob-
served that the Attention Rollout method is more robust than Generic Attention,
aligns more closely with Shapley-based attributions and shows reduced sensitivity
to minor input variations.

1 INTRODUCTION

Real-world events result from the interplay of multiple factors, with the combination of different
information sources often needed to explain observed outcomes. This has led to the growing in-
terest in multimodal learning within the Machine Learning (ML) community. This approach can
leverage diverse sources of information to capture complex relationships and improve model per-
formance across a wide range of tasks (Manzoor et al., 2023). In fact, models fusing data from
different modalities outperform their uni-modal counterparts both intuitively and provably (Huang
et al., 2021).

Despite its success, most work in the multimodal learning literature primarily focuses on designing
complex architectures and optimizing performance, with limited emphasis on the interpretability
of these models (Rahate et al., 2022). Given the often opaque nature of multimodal architectures,
understanding how different modalities contribute to model predictions is crucial, particularly in
high-stakes domains where decision-making relies on trust and transparency (Joshi et al., 2021).

In this context, intrinsic interpretability methods, which provide explanations directly tied to the
model’s internal components, offer a promising alternative to traditional post-hoc model-agnostic
approaches that treat the model as a block box (Rudin, 2019). Intrinsic explanations are inherently
more faithful and less prone to errors introduced by surrogate models (Ribeiro et al., 2016; Lundberg
& Lee, 2017; Molnar, 2020). The need for intrinsic interpretability is especially relevant in Remote
Sensing (RS) applications, where multiple data modalities—such as satellite imagery, climate and
weather data, and topographical maps—are commonly used to predict complex environmental and
agricultural phenomena (Mena et al., 2024a; Li et al., 2022; Günther et al., 2024; Rußwurm &
Körner, 2020). Enhancing interpretability in these contexts can facilitate better understanding of
how different factors (e.g., spectral bands, temporal dynamics) influence predictions, ultimately
supporting more informed and actionable insights for practitioners. Accordingly, our work explores
transparent, intrinsically interpretable multimodal networks for RS applications.
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Section 2 provides an overview of prior work on explainability in multimodal learning networks,
with a particular focus on leveraging self-attention mechanisms for explainability in RS applications.
Section 3 outlines our modeling and explainability methodologies. In the results section, we describe
the dataset in subsection 4.1, followed by the presentation of modeling outcomes in subsection
4.2. Subsequently, we address model interpretability by first analyzing the learned representations
in subsection 4.3, followed by an investigation of temporal attributions and their association with
specific weather events in 4.4, and the introduction of a modality importance estimation technique
in 4.5. Finally, we conclude with a summary of the findings in Section 5.

2 RELATED WORK

Explainability in multimodal learning networks has gained increasing attention as these models
allow the combination of diverse data types, yet the difficulty of this task results in complex ar-
chitectures and threatens the interpretability of their decision-making processes (Joshi et al., 2021).
Feature attribution techniques, such as SHAP (Lundberg & Lee, 2017) and Integrated Gradients
(Sundararajan et al., 2017), are model agnostic explanation techniques, and can thus easily be ap-
plied to multimodal networks. Recently, graph-based explainability methods have been proposed to
model inter-modality dependencies more comprehensively (Ghosh et al., 2019; Gaur et al., 2021).
Other methods leverage attention mechanisms to highlight the importance of different modalities
and their interactions, yet such applications often only visualize the attention weights of certain in-
put samples, which provides very limited insights into the more general understanding of the model
(Ghosal et al., 2018; Tsai et al., 2019).

The RS field is particularly rich in modalities, making the explainability of multimodal learning in
this context crucial for sensitive applications including disaster management, environmental moni-
toring, agriculture (Günther et al., 2024). One particularly challenging RS agricultural application is
crop yield prediction. Predicting crop yield is a particularly challenging task due to the involvement
of multiple factors. Due to scarcity of labeled data, this problem is often addressed at the field or
regional level, leaving the sub-field level relatively underexplored (Leukel et al., 2023; Muruganan-
tham et al., 2022; Nevavuori et al., 2019). The application of multimodal learning at both levels
can be classified into studies that employ either an early-fusion approach (Cai et al., 2019; Gavahi
et al., 2021; Wang et al., 2020; Cao et al., 2021) or those that apply a modality-specific encoding of
the data before applying an intermediate or late fusion of the learned representations (Pathak et al.,
2023; Ma et al., 2023; Yang et al., 2019; Maimaitijiang et al., 2020; Jeong et al., 2022; Mena et al.,
2024b).

Taking a closer look at the use of self-attention mechanisms to leverage their inherent interpretability
in RS, researchers have explored this approach for several tasks, including crop classification (Khan
et al., 2024; Xu et al., 2021; Rußwurm & Körner, 2020; Garnot et al., 2020; Obadic et al., 2022),
land cover classification (Kim et al., 2022; Méger et al., 2022), water quality monitoring (Pyo et al.,
2021), and target detection (Zhou et al., 2019). However, the analysis of self-attention mechanisms
for eXplainable AI (XAI) in these studies is often limited, with little focus on in-depth interpretabil-
ity. In the context of yield prediction, while many studies have utilized attention-based models to
enhance task accuracy (Inderka et al., 2024; Krishnan et al., 2024; Qiao et al., 2023; Lin et al., 2023;
Junankar et al., 2023), we could identify only one study which has explicitly focused on explaining
such models. Tian et al. (2021) used an attention-based long short-term memory (ALSTM) model,
which combines a LSTM network with an attention layer, to predict winter wheat yield at the county
level in central China. However, this study does not leverage the attention mechanism for inherent
explainability and instead relies on post-hoc methods.

Our work demonstrates how the attention mechanism, particularly in Transformer-based models,
can be leveraged to enhance the intrinsic interpretability of multimodal networks. We conduct our
analysis on the yield prediction task, contributing in the following four aspects: 1. model inter-
pretability: we leverage the inherent interpretability of the attention mechanism to explain yield
predictions. 2. post-hoc vs. intrinsic: we also apply model-agnostic explanation methods and com-
pare against the intrinsic explanations. 3. multimodal learning: we incorporate four modalities
with rich variables, processed individually before applying an intermediate fusion of learned repre-
sentations. 4 sub-field yield modeling: we utilize extensive yield records from Argentina for three
different crops, making predictions at the sub-field with a 10m resolution.
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3 METHODOLOGY

3.1 MODELING

This section outlines the models used for crop yield prediction based on pixel-wise processing of the
spatially aligned modalities. We test various neural network architectures for encoding individual
modality information and fusing the learned representations.

Modality Encoder Depending on the modality’s nature, i.e., static or temporal, we use different
neural network architectures to encode its representation. For static modalities, such as the terrain
elevations and soil properties, we use multilayer perceptrons (MLPs). For temporal modalities, such
as satellite and weather data, we test four different types of architectures: long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997), ALSTM (Tian et al., 2021), 1-Dimensional convolu-
tional neural networks (1D-CNNs) (Zheng et al., 2016; Pelletier et al., 2019), and Transformers
(Vaswani et al., 2017). Each of these modality encoders is expected to produce a representation
denoted as h ∈ Rd.

Feature Fusion Given the heterogeneous nature of the input modalities usually used in RS and
other fields, intermediate-level fusion is well-suited for our study, as opposed to input-level fusion
(Liang et al., 2024; Mena et al., 2024a). We test three simple yet effective feature fusion methods.
First, a simple concatenation along a new dimension can be applied to the learned representations.
Second, a scaled dot-product attention (SDPA) mechanism can be employed to compute attention-
based weights, which are then used to perform a weighted sum over the representations (Vaswani
et al., 2017). Finally, a cross-attention fusion approach can be implemented, where a Transformer
block integrates the modality representations considering them as sequence tokens. The fusion
operation is followed by a linear regression layer to predict the yield. The training process and the
hyperparameter tuning for each architecture are detailed in Appendix A.3.

3.2 EXPLAINABILITY

An important contribution of our study is the interpretation of multimodal networks. In the fol-
lowing, we describe the various tools used to explain the yield prediction model, with particular
emphasis on intrinsic interpretability in Transformer-based architectures.

Attention layers dynamic To better understand the roles and dynamics of the intermediate layers,
we use linear classifier probes (Alain & Bengio, 2016). In practice, linear probes consist of linear
regressors that take as input the latent features learned by an intermediate layer of the trained model
and learns to predict the corresponding yield value, as predicted by the model. High accuracy of
this regressor suggests a linear separability of the features at the examined layer. By comparing
the accuracy of linear probes across successive layers, we can verify whether the learned features
gradually become more separable, thus facilitating the final prediction.

Self-Attention mechanism Since the introduction of attention mechanisms in the literature, many
have seen the opportunity to use the weights for explaining neural networks (Vaswani et al., 2017;
Rußwurm & Körner, 2020; Xu et al., 2021). Indeed, the attention weights link the input to the
subsequent layers of the network, allowing the model to focus on relevant parts of the input for
performing a specific task, and this link is used to interpret the model reasoning behind individual
predictions.

Attention Rollout In a multi-head multi-layer Transformer block, each sample generates multi-
ple attention weight matrices. Direct analysis of each matrix can be time-consuming and might not
easily reveal the inner workings of the model. Additionally, as we progress to higher layers within
the model, the identifiability of individual time steps decreases, resulting in increasingly mixed in-
formation. Consequently, direct probing of attention weight matrices for explainability becomes
unreliable. Therefore, to trace the information propagated from the input layer to the final embed-
dings of each Transformer block, we employ Attention Rollout (AR) (Abnar & Zuidema, 2020).
This method treats attention weights as proportion factors and iteratively multiplies the attention
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weight matrices of the multiple attention layers. The resulting matrix encodes the attention distribu-
tions of the entire Transformer block and can thus serve as a reliable basis for explanation. In our
analysis, we specifically focus on the attention weights corresponding to the regression token.

Generic Attention Another approach that leverages the internal workings of the Transformer
model and facilitates its interpretation is Generic Attention (GA) (Chefer et al., 2021). Unlike AR,
which only uses the attention weight matrices, GA propagates information backward from the final
output through the last Transformer layer and subsequently through all preceding layers using gra-
dients. As with AR, our analysis will focus on the resulting weights that attend to the regression
token.

Post-hoc feature attribution Shapley values (Shapley, 1953), a concept derived from cooperative
game theory, are commonly applied in the field of XAI as a model-agnostic method. In contrast
to AR and GA, Shapley values are estimated using only the input samples and treating the model
as a black box. This is achieved by masking certain features, passing the modified sample through
the model, and measuring the change in prediction. To mitigate the high computational cost of
computing exact Shapley values, we employ their approximation technique Shapley Value Sampling
(SVS) (Strumbelj & Kononenko, 2010). SVS has demonstrated superior robustness in terms of
sensitivity and fidelity compared to other attribution methods on similar yield prediction tasks (Yeh
et al., 2019; Najjar et al., 2023).

4 EXPERIMENTS AND RESULTS

4.1 DATA

To predict crop yield, target values are collected using combine harvesters across Argentina for
three crops: corn, soybean, and wheat. These three datasets provide geo-referenced yield values in
tons per hectare (t/ha) at the subfield level and spans multiple years (2017–2023). For modeling
purposes, the yield maps are rasterized to a 10-meter spatial resolution, to match the correspond-
ing satellite images from the Sentinel-2 (S2) mission. Our analyses will mainly focus on the corn
dataset, which includes 21 farms, 147 fields, and a total of more than one million data points. More
details describing the remaining datasets and the yield preprocessing steps are provided in Appendix
B.1. In addition to the time series of satellite data, the input modalities include weather, soil, and
digital elevation map (DEM). Further details on yield data preprocessing and the input modalities
are provided in Appendix B.

4.2 MODEL EVALUATION

Architecture type To assess the perfor-
mance of the models described in Section 3 and
Appendix A, we first evaluate their coefficient
of determination (R2) scores on the validation
set to select the best-performing models. In Ta-
ble 1, we present the scores of the best model
from each architecture type on the test set, in-
cluding mean absolute error (MAE).

Table 1: Comparison of model performance
evaluated on the test set.

Model # Parameters R² MAE
1D-CNN 6,437,505 0.28 2.24
LSTM 54,977 0.41 2.00

ALSTM 38,017 0.41 2.00
Transformer 109,345 0.46 1.90

We observe that the Transformer model achieves the highest accuracy, followed closely by the AL-
STM and LSTM models at the subfield level (i.e.pixel level). However, when comparing field-level
averages of target and predicted values, the difference in performance between these three architec-
tures becomes more pronounced at the field level, where the Transformer model demonstrates a clear
advantage, and the attention mechanism also improves the performance of the recurrent network. We
attach field-level scores in Appendix C. In contrast, the best 1D-CNN-based model fails to achieve
a comparable performance. Finally, the clear superior performance of the Transformer-based ar-
chitecture, combined with its inherently interpretable attention mechanism, strongly supports the
opinion that improving interpretability in ML does not necessarily require compromising model
performance (Rudin, 2019).
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Transformer configuration To further investigate the behavior of different configurations of the
Transformer-based model, we compare its performance when changing the number of layers or
heads, or using a different fusion block from the best-performing architecture - which has four
layers and a single-head for both temporal modalities, and uses a concatenation-based approach
for the fusion. We notice that these changes have a relatively minor impact on overall performance.
More details are provided in Appendix D. An important implication of this observation is that the
selection of model architecture can prioritize simplicity and ease of interpretability over marginal
gains in evaluation metrics. Specifically, using single-head Transformer blocks and a concatenation-
based fusion facilitates the model interpretation, contrary to averaging the results across multiple
heads (Abnar & Zuidema, 2020; Chefer et al., 2021).

We also analyzed the similarity of the representations learned for each modality across various con-
figurations using the Singular Vector Canonical Correlation Analysis (SVCCA) technique. Contrary
to our expectations, the results show that retraining the same model with a different random ini-
tialization seed or varying the Transformer hyperparameters leads to significantly different learned
representations. Although we will not explore this aspect further, we can mention here that our anal-
ysis of the variance captured by the top singular vectors suggests that the weather data encoding can
be represented with a much smaller vector compared to the satellite modality. We have included the
detailed results of this analysis in Appendix D.

Qualitative results To visually compare the performance of the best model from each architecture
type, we selected a field from the validation set, referred to as Field-A, where all models achieve a
moderate to good accuracy, and visualize its target, prediction, and error maps. In Figure 1, the top
row displays the target yield values (a) alongside the predicted values from the best-performing 1D-
CNN (b), LSTM (c), and Transformer (d) models. The second row shows the corresponding error
maps for each model. For the 1D-CNN model, we notice that the model fails to predict varying yield
values, failing to accurately capture the variance observed in the target, especially in the bottom half
of the field, where the yield is under-estimated. This issue is highlighted in the 1D-CNN error map,
where large differences between the predicted and actual values are shown in red. In contrast, the
LSTM and Transformer models demonstrate better performance, with both models more closely
matching the target yield variance. However, discrepancies remain in certain high-yield zones. No-
tably, the range of values in the error map for the Transformer model is smaller compared to that
of the LSTM model, indicating that the Transformer is better at minimizing prediction errors across
the field.

We conducted the same analysis on a field where the Transformer model demonstrated poor per-
formance, referred to as Field-B, and observed a similar relative behavior among the different ar-
chitectures, with the Transformer still outperforming the others. This suggests that even under less
favorable conditions, the Transformer model retains a comparative advantage in performance. The
corresponding prediction and error maps are provided in Appendix D. Due to its consistent superior
performance, the subsequent analyses will primarily focus on the Transformer architecture.

4.3 PROBING LEARNED REPRESENTATIONS

In this section, we evaluate the information content of intermediate model representations using
linear probing. Next, we analyze the attention weight matrices learned by the model, evaluating
their similarity for pixels within the same field and examining how these weights are distributed
across the different layers of the Transformer encoders. This analysis focuses on the best-performing
Transformer-based model.

Linear Probing We investigate the linear separability of the intermediate layers of the best-
performing Transformer model. To facilitate this analysis, we randomly select 100,000 samples,
representing approximately 10% of the data, using 90% of these samples to train linear probes and
the remaining 10% for testing. For each layer, we compute its output given the selected samples
as inputs, flatten these latent representations, and then use them to train a linear model to predict
the model’s final yield prediction. The Root mean square error (RMSE) scores on the test set are
presented in Figure 2.
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Figure 1: Ground-truth (a) and predicted (b-d) yield values from the best performing model of each
architecture (1D-CNN, LSTM and Transformer, respectively) on Field-A.

Figure 2: RMSE test scores of the lin-
ear probes attached to the modality en-
coders.

We observe that the intermediate representations learned
for the satellite data demonstrate the highest linear cor-
relation to the predicted values, followed closely by the
weather data. In contrast, soil and DEM data show a sig-
nificantly lower linear correlation. Given the static nature
of these two modalities, they are processed using shallow
MLPs, and they also have low spatial resolution, which
contributes to their limited potential to predict the yield.
When comparing the temporal modalities, i.e. satellite
and weather data, the results indicate that the linear sepa-
rability of weather data remains nearly constant through-
out the Transformer layers, whereas a significant increase
is observed across the satellite encoder layers. This trend
can be attributed to the higher complexity of the satellite
time series, which has the highest spatial resolution and comprises 12 spectral bands, in contrast to
the four weather properties used. This observation aligns with the SVCCA findings mentioned in
the previous subsection, where only a few principal singular vectors were sufficient to capture the
weather data’s variance.

Attention weights: In-field distribution Considering that yield variations are expected to be
minimal and growth conditions are similar for pixels within the same field, we quantify the similarity
of attention weights at the field level to later aggregate the attention-based explanations at this level.
This analysis is conducted through the following steps: First, 200 pixels are randomly selected from
each field. Then, the (i) cosine similarity of the attention weights and the (ii) difference in predicted
yield are calculated for each pair of pixels, separately in each field. For the last layer we only
compare the attention weights attending to the regression token. Finally, scatter plots are generated,
where the similarity values are plotted per field and colored according to the corresponding absolute
error.

An example in Figure 3 illustrates the results from each layer of the satellite Transformer encoder
from 20 random fields. For the first three layers, the distance between the flattened full attention
weight matrices is compared, whereas for the final layer, only the weights attending to the regres-
sion token are considered. We notice a pronounced similarity in the first layer, but it progressively
diminishes in the deeper layers of the block. Additionally, no correlation is found between the ab-
solute prediction error and the distance between the attention weights of the compared pixel pairs.
This suggests that similar predictions are not necessarily associated with a similar distribution of
attention across different time steps, even for pixels within the same field.
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We also conducted the same analysis to compare the AR and GA results. As shown in Figure 4,
a significant correlation is noted between the AR attributions at the field level, in contrast to the
larger differences observed with GA. This suggests a higher robustness of AR compared to GA,
as the high similarities observed in layers 1 and 2, in Figure 3, should not be entirely outweighed
by the decreasing similarities in subsequent layers. Additionally, a desirable property of attribution
methods is low sensitivity, meaning that minor variations in input feature values should not lead to
significant changes in the attributions (Yeh et al., 2019). Since pixels from the same fields typically
experience similar environmental conditions, their input values are expected to be comparable, and
consequently, their attributions should exhibit consistency as well. The inclusion of gradients in the
computation of GA could contribute to its high sensitivity. For the weather encoder, we observe
perfect similarity across all evaluated fields, irrespective of the method used. This is attributed to the
low spatial resolution of weather data, often leading to identical input weather values for all pixels
within the same field. The corresponding plots are provided in Appendix E.1.

Figure 3: Cosine similarity of the attention weights from the satellite transformer encoder of multiple
pairs of pixels in a consistent set of 20 random fields, and the corresponding difference in prediction.

Figure 4: Cosine similarity of the AR and GA of the satellite transformer encoder of multiple pairs
of pixels in a consistent set of 20 random fields, and the corresponding difference in prediction.

Attention weights: Layer-wise distribution After assessing the similarity of the attention
weights across different pixels, we now study their temporal distribution across different layers.
We use the raw, bi-dimensional, attention matrix and sum the attention weights allocated to each
time step, which allows us to determine the total attention each time step receives from all other
steps. This process is repeated for each layer to understand how attention is distributed throughout
the network. Exceptionally for the final layer, we take a different approach: we directly evaluate
the attention weights that lead to the regression token, since all other time steps are disregarded
in subsequent processing by the model. This approach provides insight into which time steps are
prioritized by the model as it makes its final prediction. Figure 5 presents these results for the tem-
poral modalities, with Field-A shown in the top row and Field-B in the bottom row. More fields are
displayed in Appendix E.

In the case of the satellite time series, as depicted in Figure 5.a, we observe that the attention weights
from the first layer (represented in blue) are distributed smoothly across the entire time series. This
indicates that the first layer does not distinctly discriminate between different time steps, implying
a more generalized initial processing. In contrast, the subsequent three layers show a marked shift,
each assigning higher attention weights to specific time steps, indicating a focus on different growth
periods. These difference across layers were also observed in similar previous studies (Xu et al.,
2021). Moreover, the varying patterns of attention distribution across different fields suggest that
each layer might be capturing unique temporal dynamics relevant to the conditions of each field.
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Figure 5: Total attention weights attending at each time step for the first 3 attention layers, and the
regression token weights in the final layer. The results are averaged across 200 randomly selected
pixels from Field-A, at the top, and Field-B, at the bottom, and are displayed for the satellite (a) and
weather (b) Transformer encoders. The light buffer regions represent the 95% confidence interval
around the average value.

Figure 6: Field-level average attributions of the satellite (a) and weather (b) modalities. Fields A
and B are displayed in the top and bottom rows, respectively.

For the weather encoder, the attention distribution results shown in Figure 5.b reveal that all layers
exhibit a discriminative behavior across different time steps. Unlike the satellite encoder, each layer
consistently emphasizes certain time periods, suggesting a continuous refinement of temporal focus
throughout the layers. This could be attributed to the longer sequences in the weather data, which
necessitate the use of multiple layers to attend to different growth periods, ensuring comprehensive
temporal coverage and detailed focus throughout the growth cycle.

These findings highlight the differential use of attention mechanisms across modalities and how
different layers of the Transformer model specialize in capturing various temporal aspects of the
data, providing insights into how the model interprets and prioritizes different parts of the time
series for yield prediction.

4.4 TEMPORAL ATTRIBUTIONS

Attribution methods comparison We analyze here the temporal attributions provided by the AR
and GA methods, and compare them against the SVS scores. Due to the high computational cost
associated with the SVS method, we limited the number of pixels sampled per field to 32 pixels.
Figure 6 displays the average attributions for Field-A and Field-B. A visual assessment of the results
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for the satellite encoder reveals patterns that are consistent across all three methods. In contrast,
within the weather encoder, the SVS method appears to play a more discriminative role compared
to the AR and GA methods. This indicates that SVS may be more sensitive to temporal variations
in weather data. Results for additional fields are provided in Appendix F. To quantitatively assess
the similarity between the different attribution methods, we calculate the cosine similarity between
each pair of methods based on the field-level averaged attributions, and display the results in Figure
7. When comparing modalities, we observe consistently higher similarity scores for satellite data
compared to weather data, indicating that the methods align more closely when estimating temporal
attributions for the satellite signal. When comparing methods, SVS and GA methods exhibit the
lowest similarity, suggesting that AR is the most effective in approximating the behavior of model-
agnostic methods. This aligns with the high similarity observed between SVS and AR for both
modalities.

Figure 7: Distribution of field-level co-
sine similarities between every pair of
the compared attribution methods: GA,
AR and SVS.

Figure 8: Decision Tree with two levels. The re-
sults shown are on the train set of 3 fields from
the same farm, from 2021, predicting the AR tem-
poral attributions of the weather Transformer en-
coder. The color of each box is used as a scale for
the predicted attribution values.

Weather Events To investigate the possible impact of special weather events on their attributions,
we train a decision tree model to predict the attribution of each time step based on its weather
properties: minimum, average, and maximum daily temperatures, as well as total precipitation. We
additionally include the number of days before harvest as a predictive feature, allowing the model to
contextualize each weather event within the growth cycle of the crop. We train a separate decision
tree for each set of fields belonging to the same farm and the same year, as described in Appendix
G. We experiment with decision tree depths of two and three, to ensure the learned models remain
interpretable. We report the results of the models that predict the AR attributions. Figure 8 shows
the results for a farm with three fields from 2021 where the accuracy was particularly high and
thus reliable for interpretation, reaching 89% in the training set and 90% in the test set. In the
tree, we observe that the right branch predominantly covers time steps with attribution values of
0.003 or 0.004. These low-importance events are characterized by a minimal daily temperature
above 276.8 and constitute 99.5% of the training samples. Conversely, the darkest leaf in the tree,
representing only 0.16% of the dataset (154 samples), shows a notably high attribution score of
0.063. These high-importance events are associated with both minimal and maximal temperatures
below 276.8 and 293 K, respectively. A slight increase in the tree depth allowed the tree to achieve
better performance across multiple farms while maintaining interpretability. In Appendix G, we
extract similar insights using a tree with three levels trained on a different farm. These analysis and
findings are generally useful in identifying weather events that significantly influence the decisions
made by the Transformer model, highlighting the critical role that specific temperature conditions
play during particular days of the crop growth period.

4.5 MODALITY IMPORTANCE

Weighted modality activations Since the best performing Transformer model uses a
concatenation-based fusion block followed by a linear layer, we propose to exploit its structure
to infer modality impact score. We can rewrite the final prediction ŷi of sample i as the weighted
combination of the modality activations zi = concat (zmi ), with m ∈ {satellite, weather, soil, dem}
and infer modality relevance scores Rm

i :

9
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ŷi = w.zi + b =
∑
m

wm.zmi + b =
∑
m

ŷmi + b, Rm
i = | ŷmi

ŷ − b
|

where w = concat
(
wsa,ww,wso,wd

)
and b are the weights vector and bias of the final regres-

sion layer, respectively. This approach can be viewed as an alternative to Class Activation Mapping
(CAM) and Gradient-weighted CAM (Grad-CAM) methods (Zhou et al., 2016; Selvaraju et al.,
2017), which are widely used for explaining classification tasks in computer vision. However, while
CAM and Grad-CAM are specifically designed for convolutional networks operating on a single
modality, our method is applicable to any multimodal regression task utilizing a concatenation fu-
sion mechanism and a MLP as a regression head. Furthermore, it can be extended to various differ-
entiable fusion strategies and regression heads through gradient-based techniques. We compare this
method to Shapley-derived modality scores, since SVS can estimate the contribution of all individ-
ual input features to the model’s prediction. We describe the corresponding aggregation process in
Appendix H.

Figure 9: Comparing the modality scores for the
same random set of 50 corn fields.

Modality impact In Figure 9, we compare
both methods and present the modality scores
for 50 corn fields. The weighted modality ac-
tivations indicates that soil features have the
highest impact on the prediction, accounting
for an average of 37.8% across all fields, fol-
lowed by satellite data at 28% and weather
data at 24%. Terrain elevation features con-
tribute the least, with an average impact be-
low 10%. In contrast, Shapley values indicate
a different distribution of relative importance,
with satellite data contributing the predominant
share at 72.3% on average, followed by weather
at 24.6%. We attach in Appendix H the results
of the same comparison for wheat and soybean
fields, in which the differences among both compared techniques are consistent. This difference
can be particularly attributed to the computational process. The weighted averages rely only on the
regression head to infer modality scores, while the SVS method uses the entire model. Shapley val-
ues stand out due to their ability to capture feature interactions by employing principles from game
theory, considering multiple feature subsets and their contributions to the model before inferring
feature attributions. In contrast, the strength of weighted activations lies in their inherent connection
to the model’s architecture, which makes their importance estimations more faithful to the model’s
behavior (Rudin, 2019). Overall, evaluating the correctness of these methods is challenging, as the
modality impact scores do not necessarily reflect the agronomic significance of each modality, where
established field knowledge could have been leveraged as a reference. Instead, these scores indicate
how the model uses each modality, which depends on its learning scheme.

5 CONCLUSION

We attempt in our work to highlight the potential of leveraging intrinsic interpretability within
transformer-based models to enhance understanding in multimodal learning frameworks. We ex-
amined the learned representations for each modality, inferred temporal attributions using both
model-specific and model-agnostic approaches, and proposed an intrinsic method to derive modal-
ity importance scores. Our analysis, conducted on the challenging task of yield prediction, under-
scored the varying information complexity across input modalities and its influence on the learned
representations and attention weights. The comparative evaluation of the temporal attribution meth-
ods revealed distinct patterns, indicating the need for further evaluations. Our proposed approach
for inferring modality importance offers deeper insights into how the model uses different data
sources, the method can be extended to other fusion techniques, thereby enhancing transparency in
more complex multimodal architectures. We hope our findings advance the state-of-the-art in in-
terpretable multimodal learning, offering practical implications for deploying trustworthy models in
critical, data-rich domains like environmental and agricultural monitoring.
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N Méger, H Courteille, A Benoit, A Atto, and Dino Ienco. Explaining a deep spatiotemporal land
cover classifier with attention and redescription mining. The International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 43:673–680, 2022.

Francisco Mena, Diego Arenas, Marlon Nuske, and Andreas Dengel. Common practices and taxon-
omy in deep multi-view fusion for remote sensing applications. IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 2024a.

Francisco Mena, Deepak Pathak, Hiba Najjar, Cristhian Sanchez, Patrick Helber, Benjamin Bis-
chke, Peter Habelitz, Miro Miranda, Jayanth Siddamsetty, Marlon Nuske, et al. Adaptive fusion
of multi-view remote sensing data for optimal sub-field crop yield prediction. arXiv preprint
arXiv:2401.11844, 2024b.

Miro Miranda, Deepak Pathak, Marlon Nuske, and Andreas Dengel. Multi-modal fusion methods
with local neighborhood information for crop yield prediction at field and subfield levels. In
IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, pp. 4307–
4311, 2024. doi: 10.1109/IGARSS53475.2024.10640993.

Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.

Priyanga Muruganantham, Santoso Wibowo, Srimannarayana Grandhi, Nahidul Hoque Samrat, and
Nahina Islam. A systematic literature review on crop yield prediction with deep learning and
remote sensing. Remote Sensing, 14(9):1990, 2022.

Hiba Najjar, Patrick Helber, Benjamin Bischke, Peter Habelitz, Cristhian Sanchez, Francisco Mena,
Miro Miranda, Deepak Pathak, Jayanth Siddamsetty, Diego Arenas, Michaela Vollmer, Marcela
Charfuelan, Marlon Nuske, and Andreas Dengel. Feature Attribution Methods For Multivari-
ate Time-Series Explainability In Remote Sensing. In IGARSS 2023 - 2023 IEEE International
Geoscience and Remote Sensing Symposium, 2023.

Petteri Nevavuori, Nathaniel Narra, and Tarmo Lipping. Crop yield prediction with deep convolu-
tional neural networks. Computers and electronics in agriculture, 163:104859, 2019.

Ivica Obadic, Ribana Roscher, Dario Augusto Borges Oliveira, and Xiao Xiang Zhu. Exploring
self-attention for crop-type classification explainability. arXiv preprint arXiv:2210.13167, 2022.

Deepak Pathak, Miro Miranda, Francisco Mena, Cristhian Sanchez, Patrick Helber, Benjamin Bis-
chke, Peter Habelitz, Hiba Najjar, Jayanth Siddamsetty, Diego Arenas, Michaela Vollmer, Marcela
Charfuelan, Marlon Nuske, and Andreas Dengel. Predicting Crop Yield With Machine Learn-
ing: An Extensive Analysis Of Input Modalities And Models On a Field and Subfield Level. In
IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, 2023.

Charlotte Pelletier, Geoffrey I Webb, and François Petitjean. Temporal convolutional neural network
for the classification of satellite image time series. Remote Sensing, 11(5):523, 2019.

JongCheol Pyo, Kyung Hwa Cho, Kyunghyun Kim, Sang-Soo Baek, Gibeom Nam, and Sanghyun
Park. Cyanobacteria cell prediction using interpretable deep learning model with observed, nu-
merical, and sensing data assemblage. Water Research, 203:117483, 2021.

Mengjia Qiao, Xiaohui He, Xijie Cheng, Panle Li, Qianbo Zhao, Chenlu Zhao, and Zhihui Tian.
Kstage: A knowledge-guided spatial-temporal attention graph learning network for crop yield
prediction. Information Sciences, 619:19–37, 2023.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. Advances in neural
information processing systems, 30, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Anil Rahate, Rahee Walambe, Sheela Ramanna, and Ketan Kotecha. Multimodal co-learning: Chal-
lenges, applications with datasets, recent advances and future directions. Information Fusion, 81:
203–239, 2022.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?” Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature machine intelligence, 1(5):206–215, 2019.

Marc Rußwurm and Marco Körner. Self-attention for raw optical satellite time series classification.
ISPRS journal of photogrammetry and remote sensing, 169:421–435, 2020.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Lloyd S. Shapley. A value for n-person games. Contributions to the Theory of Games, pp. 307–317,
1953.

Erik Strumbelj and Igor Kononenko. An efficient explanation of individual classifications using
game theory. The Journal of Machine Learning Research, 11:1–18, 2010.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Huiren Tian, Pengxin Wang, Kevin Tansey, Dong Han, Jingqi Zhang, Shuyu Zhang, and Hongmei
Li. A deep learning framework under attention mechanism for wheat yield estimation using
remotely sensed indices in the guanzhong plain, pr china. International Journal of Applied Earth
Observation and Geoinformation, 102:102375, 2021.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J Zico Kolter, Louis-Philippe Morency, and
Ruslan Salakhutdinov. Multimodal transformer for unaligned multimodal language sequences. In
Proceedings of the conference. Association for computational linguistics. Meeting, volume 2019,
pp. 6558. NIH Public Access, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna Korhonen,
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A MODELING

A.1 MODALITY ENCODERS

To process multiple modalities, we test different architectures which first encode each modality
individually before fusing the learned representations. Figure 10 depicts the different architecture
types used. In the following subsections, we provide a concise overview of the modality encoders
utilized in this study, along with the fusion techniques applied and the hyperparameters fine-tuning
approach.

Figure 10: Multimodal architectures with intermediate fusion for yield prediction.

A.1.1 MULTI-LAYER PERCEPTRON

MLPs are a type of artificial neural network where information flows in one direction, from the input
layer through hidden layers to the output layer, without any loops or cycles. MLPs extract features
by learning high-level representations through layers of neurons, each performing a weighted sum
followed by a non-linear activation function. In our implementation, we use two fully connected
layers: the first layer has a dimension of 4d, and the second layer has a dimension of d, which returns
the modality representation. Batch normalization and the ReLU activation function are applied after
the first layer.

A.1.2 RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) are inherently capable of handling temporal data. They process
one time step at a time, learning to predict outputs and maintain a hidden state at each step. The
hidden state is optimized to focus on important information while discarding irrelevant or redundant
data. In our implementation of the RNN, we use a stack of two LSTM cells (Hochreiter & Schmid-
huber, 1997) with a dropout rate of 0.3, followed by a linear layer to transform the LSTM output at
the final time step to a dimension of d. Before applying the linear layer, we use batch normalization
to improve training stability.

We also explore another RNN variant based on ALSTM Tian et al. (2021), which aggregates outputs
from all time steps using a weighted combination, rather than relying solely on the final time step.
The weights are computed using a form of scaled dot-product attention (Vaswani et al., 2017).
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A.1.3 CONVOLUTIONAL NEURAL NETWORKS

A 1D-CNN is primarily used for analyzing sequential data by applying convolutional filters across
one-dimensional input, such as time series or signals. In 1D-CNNs, information flows directly from
the input layer to the output layer without loops or recurrences. Unlike RNNs, which process one
time step at a time, 1D-CNNs use convolutional filters to capture patterns or features along the
temporal dimension of the input. Our implementation follows the feature extraction approach used
in TempCNN (Pelletier et al., 2019), with the modification of using a linear layer at the end instead
of a SoftMax layer to produce a modality representation of dimension d.

A.1.4 TRANSFORMER

Transformers are highly effective for modeling temporal data due to their ability to use self-attention
mechanisms (Bahdanau et al., 2016; Vaswani et al., 2017) to capture long-range dependencies within
the input sequence. Unlike RNNs and 1D-CNNs, which process data sequentially or locally, Trans-
formers attend to all time steps simultaneously, allowing them to more effectively capture complex
temporal patterns. In our implementation, we utilize a Transformer-based model (Vaswani et al.,
2017) for temporal data encoding. The input features are first passed through a linear embedding
layer, which transforms each time step into a token of size d, while a learnable regression token
similar to class token in (Devlin, 2018; Dosovitskiy et al., 2021) is added to interact with all time
steps. Before adding the regression token and feeding the data to the Transformer layers, positional
encoding is applied based on the date of the time step. We use two calendar years, covering the
crop season, and for each time step, we calculate the number of days from the beginning of the first
year to determine its index. This positional encoding follows the approach of (Vaswani et al., 2017),
except we use the index calculated as described. The transformed input is then processed through
multiple layers of Transformer encoders, each consisting of multi-head self-attention (MHA) and
position-wise feed-forward networks. In each Transformer layer, the input undergoes layer normal-
ization before being processed through MHA. The output from the MHA layer is added back to
the input via a residual connection, followed by a second layer normalization step. A position-wise
feed-forward network is then applied, with its output also added through residual connections. This
process is repeated across several Transformer layers, with the final modality representation derived
from the output of the class token.

A.2 INTERMEDIATE FUSION

A.2.1 CONCATENATION

In concatenation fusion, feature vectors from each modality are concatenated along the feature di-
mension. If there are m modalities, each with dimensionality d, the resulting fused feature repre-
sentation will have a dimensionality of m · d.

A.2.2 SCALED-DOT PRODUCT ATTENTION

We apply scaled dot-product attention (Vaswani et al., 2017; Miranda et al., 2024), where the input
representations from multiple modalities serve as both keys and values, and a learnable vector serves
as the query. Each modality representation is treated as a token, and these tokens are stacked to
form the keys and values for the scaled dot-product operation. Mathematically, this is expressed
as follows, with the learnable query vector q ∈ Rd, and the stacked keys from the m modalities
represented by K ∈ Rm·d:

SDP Attention Fusion(q,K) = softmax
(
qKT

√
d

)
K (1)

A.2.3 CROSS-ATTENTION

In cross-attention fusion, we leverage a multi-layer, multi-head transformer encoder to fuse repre-
sentations from multiple modalities. Each modality is represented as a token, and these tokens are
stacked into a sequence and fed into the transformer. We introduce a learnable regression token
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Table 2: Yield data description. We train different models for each country-crop pair.

Country Crop Years # Farms # Fields # Pixels
Argentina corn 2017-2023 21 147 1,003,133
Argentina soybean 2017-2023 29 289 2,103,250
Argentina wheat 2017-2022 13 61 497,651

that interacts with all modality tokens across transformer layers. This token aggregates informa-
tion through attention, evolving into a fused representation that captures both modality-specific and
cross-modal features, resulting in a richer, more expressive representation for downstream tasks.

A.3 MODEL FINETUNING

The different model architectures incorporate multiple hyperparameters that can influence model
performance. We experimented with various configurations of hidden sizes, numbers of attention
heads and layers, and feature fusion techniques to optimize performance for the yield prediction
task. For this purpose, the dataset was split into training, validation, and test sets, with the validation
set used to select the best network configuration, and the test set used to evaluate and report the
model’s performance on unseen data.

The models were trained using mini-batch stochastic gradient descent with the Adam optimizer and
decoupled weight decay (Loshchilov, 2017). We employed a learning rate scheduler that begins
with a linear warm-up for 5 epochs, followed by cosine decay for 50 epochs (Loshchilov & Hutter,
2022). Early stopping was implemented to stop training when the validation loss did not decrease
for 10 consecutive epochs.

B DATA

B.1 YIELD DATA

Yield maps derived from data collected by combine harvesters are used as ground truth. As the
combine harvester traverses the field, it records equidistant data points at a high spatial resolution,
with each point characterized by various features such as geographic coordinates, yield in t/ha, and
yield moisture in percentage.

To harmonize the raw yield data, we employ a standardized preprocessing pipeline. This includes
reprojecting the coordinate reference system, standardizing feature naming conventions, and remov-
ing erroneous entries related to position, timestamp, yield, moisture, and non-operational harvesters.
Additionally, zero-yield points and agronomically unrealistic values are filtered out. Data points are
further refined using statistical thresholds to ensure that yield values remain within three standard
deviations.

The processed point vector data is subsequently rasterized into 10-meter resolution yield maps,
aligned with the corresponding satellite imagery raster data. An overview of the utilized yield
datasets is provided in Table 2.

B.2 INPUT MODALITIES

We use 4 modalities to address the yield prediction task; Satellite data, from S2 mission, Weather
data, DEM and soil properties. The satellite data contains 12 spectral bands (i.e., channels), while
the weather data includes minimum, average, and maximum temperatures, as well as total precipi-
tation. Soil and DEM modalities include 8 and 5 static properties, respectively. Although the spatial
resolutions of all four modalities was aligned for pixel-wise yield prediction, the original tempo-
ral resolutions are maintained: satellite data follows an approximately 5-day revisit interval, while
weather features are represented as daily averages. Tables 3 and 4 summarize the features in each
input modality, along with its spatial and temporal resolutions. For static features, only the spatial
resolution is provided. In Table 4, twi, cec, cfvo, phh2o and soc stand for topographic wetness index,
cation exchange capacity, volumetric fraction of coarse fragments, soil pH and soil organic carbon,
respectively.
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Table 3: Characteristics of satellite and weather features, with corresponding temporal (Tp.Res.)
and spatial (Sp.Res.) resolutions.

Modality Dynamic features Source Sp.Res. Tp.Res.

Satellite

B01 - Coastal Aerosol S2 60 m 5 days
B02 - Blue S2 10 m 5 days
B03 - Green S2 10 m 5 days
B04 - Red S2 10 m 5 days
B05 - Red Edge 1 S2 20 m 5 days
B06 - Red Edge 2 S2 20 m 5 days
B07 - Red Edge 3 S2 20 m 5 days
B08 - NIR S2 10 m 5 days
B8A - Narrow NIR S2 20 m 5 days
B09 - Water vapour S2 60 m 5 days
B11 - SWIR 1 S2 20 m 5 days
B12 - SWIR 2 S2 20 m 5 days

Weather

Max temperature ERA5 30 km Daily
Mean temperature ERA5 30 km Daily
Min temperature ERA5 30 km Daily
Total precipitation ERA5 30 km Daily

Table 4: Characteristics of soil and terrain elevation features, with corresponding spatial resolutions
(Sp.Res.).

Modality Static features Source Sp.Res.
DEM Elevation SRTM 30 m

Slope SRTM 30 m
Curvature SRTM 30 m
TWI SRTM 30 m
Aspect SRTM 30 m

Soil

CEC SoilGrids 250 m
CFVO SoilGrids 250 m
Nitrogen SoilGrids 250 m
pHH2O SoilGrids 250 m
Sand SoilGrids 250 m
Silt SoilGrids 250 m
SOC SoilGrids 250 m
Clay SoilGrids 250 m

B.3 DATA SPLITTING

Since each sample represents a pixel from a field, we grouped samples by field to ensure that the
model encounters unseen fields in the validation and test splits. To maintain a consistent data distri-
bution, we stratified the splits by year, ensuring that each split contains data from all years.

C MODEL EVALUATION

We evaluate the different multimodal networks on both field and subfield levels, and report the R2,
MAE and relative root mean square error (RRMSE) scores in Table 5.

We further illustrate the performance results by visualizing the target, prediction and error maps.
Figure 11 depicts the results for Field-B, in which the Transformer model did not perform very well.
However, a similar relative behavior is observed as compared to Field-A. The yield map (b) gen-
erated by the 1D-CNN model shows a limited ability to capture the yield variances present in the
target map (a), while the LSTM and Transformer models, shown in maps (c) and (d), respectively,
capture more of the yield variances seen in the target, as evidenced by their corresponding error
maps. Despite the overall lower performance in Field-B, the range of error values for the Trans-
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Table 5: Comparison of model performance evaluated on the subfield-level (i.e. pixel level) and the
field-level on the test set.

Model # Parameters Subfield-Level Field-Level
R² MAE RRMSE R² MAE RRMSE

1D-CNN 6,437,505 0.28 2.24 0.36 0.47 1.49 0.22
LSTM 54,977 0.41 2.00 0.29 0.52 1.40 0.19

ALSTM 38,017 0.41 2.00 0.31 0.67 1.20 0.17
Transformer 109,345 0.46 1.90 0.29 0.70 0.98 0.16

former model remains narrower than those of the 1D-CNN and LSTM models, indicating that even
in less favorable conditions, the Transformer model maintains a better performance.

Figure 11: Ground-truth (a) and predicted (b-d) yield values from the best performing model of each
architecture (1D-CNN, LSTM and Transformer, respectively) on Field-B.

D TRANSFORMERS CONFIGURATIONS

Comparing performance To investigate the behavior of different configurations of the
Transformer-based model, we report the evaluation metrics on the validation and test sets across
various model setups, as shown in Table 6. We begin with the best-performing architecture, listed in
the first row, which employs a configuration of 4 layers and a single-head Transformer encoder for
both temporal modalities (i.e., satellite and weather time series). This model uses a concatenation-
based approach to fuse the modality-specific representations. From this baseline configuration, we
either increase the number of heads or layers, or alter the fusion approach to include a simple scaled-
dot-product operation or a full Transformer block (with parameters similar to those of the modality
encoders).

Our observations indicate that the performance differences between the compared models are not
significant, particularly when examining the test set results. Interestingly, some variants outperform
the best model configuration on the test set, despite the best model performing optimally on the
validation set. This suggests that changes in model parameters, such as the number of heads or
layers, and variations in the fusion approach, have a relatively minor impact on overall performance.
All model configurations achieve scores within a narrow range, indicating that the Transformer-
based models are robust across different configurations and that their performance does not heavily
depend on these specific architectural choices.

Comparing representations through SVCCA SVCCA is a general method proposed by Raghu
et al. (2017) for efficiently comparing the learned representations between different neural network
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Table 6: Comparison of Transformer models performance evaluated on the subfield-level (i.e. pixel
level) and the field-level.

Model Val-Subfield-level Val-Field-level Test-Subfield-level Test-Field-level
R² MAE R² MAE R² MAE R² MAE

1H-4L-concat 0,77 1,34 0,92 0,52 0,46 1,90 0,70 0,98
1H-4L-cross-attn 0,71 1,54 0,8 0,87 0,56 1,70 0,79 0,95
1H-4L-sdp-attn 0,73 1,49 0,86 0,83 0,50 1,83 0,68 1,15
1H-6L-concat 0,73 1,45 0,88 0,77 0,56 1,70 0,76 0,95
2H-4L-concat 0,72 1,51 0,81 0,88 0,52 1,77 0,79 0,89
4H-4L-concat 0,73 1,46 0,85 0,79 0,51 1,75 0,69 0,99

Figure 12: SVCCA results comparing learned representations for the satellite modality by the Trans-
former models against the best performing instance. On the left are the correlations between the top-
k main vectors from each final layer of the corresponding compared models, and on the right are the
variances captures by these main vectors in each model individually. TRSF refers to Transformer-
based model, H and L respectively indicate the number of heads and layers in the Transformer
encoders, while concat, sdp attn and cross attn refer to different fusion approach, as described in
Appendix A.2.

layers and architectures, in a way that is both invariant to affine transform and fast to compute.
We use SVCCA to compare the embeddings learned for each modality across different networks,
focusing on the satellite and weather modalities.

SVCCA mainly consists of two steps. First, singular vectors for each model are obtained by ap-
plying singular value decomposition (SVD). Subsequently, canonical correlation analysis (CCA) is
applied to compute the correlation coefficients between the aligned singular vectors (Hardoon et al.,
2004). These vectors are ordered in descending order based on the variance they capture, and the
correlations of the top k vectors are averaged to obtain mean-SVCCA values for different values of
k ∈ {1, 2, . . . , d}, as illustrated in Figures 12 and 13.

In our study, all Transformer encoders used map each modality to a vector of 32 elements. To re-
trieve the learned representations of the satellite and weather modalities, we randomly select 160
samples from the input data, which is five times the vector length (as recommended by the authors
of SVCCA), and process them through each model pair being compared. We evaluate the best-
performing model against its variants, which differ by fusion head type, the number of layers in the
Transformer encoders, or the number of Transformer heads. As a baseline, we generate a random
representation of 32 elements for each sample, following a standard normal distribution. This ran-
dom representation serves as a reference against which we compare the learned representations of
the best-performing model. Additionally, we train a second instance of the best-performing architec-
ture with a different random initialization of the weights and compare the representations obtained
from both models.

In Figure 12, the mean-SVCCA values for k ∈ 5, 10, 15, 20, 30 are displayed on the left side. No-
tably, three experiments show similar or inferior results compared to the baseline curve, indicating
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Figure 13: SVCCA results comparing learned representations for weather by the Transformer mod-
els against the best performing instance. On the left are the correlations between the top-k main
vectors from each final layer of the corresponding compared models, and on the right are the vari-
ances captures by these main vectors in each model individually.

that the representations learned by our best model and these three experiments are weakly correlated.
Specifically, the yellow line illustrates how a different initialization of the model can result in the
learning of significantly different representations for the same modality, the purple line indicates that
altering the fusion head from simple concatenation to a Transformer block significantly changes the
prior representations learned for the satellite data, while the pink curve reflects even lower correla-
tion when the satellite Transformer encoder is modified to include two additional layers. In contrast,
a more positive correlation is observed when the number of heads is increased to two or four, as
illustrated by the blue and green curves, respectively. This finding aligns with the work of Voita
et al. (2019), which suggests that multi-head configurations can be unnecessary, as some heads may
not learn additional relevant information. In our results, the model with a single head outperformed
those with multiple heads.

Figure 13 illustrates the results of the same analysis conducted on the weather data encoder. The rel-
ative correlation of the different architectures to the best-performing model is similar to the findings
from the satellite data encoder. Additionally, the weather data exhibits an interesting and consis-
tent behavior: the top five singular vectors are sufficient to capture the complete variance of the
32-dimensional representation, in all examined architectures. This observation suggests that the in-
formation encoded in the weather data possesses considerably lower complexity compared to that
of the satellite data.

E ATTENTION WEIGHTS DISTRIBUTION

E.1 IN-FIELD DISTRIBUTION

We examine the similarity of attention weights of the weather Transformer encoder, following the
same procedure described in Section ??. The results are shown in Figure 14 for the raw attention
matrices, and Figure 15 for the AR and GA attributions. As previously noted, the low spatial res-
olution of weather data often results in identical weather feature values across all pixels within the
same field, which explains the perfect similarity scores observed in Figures 14 and 15.

E.2 LAYER-WISE DISTRIBUTION

Figure 16 displays the comparison of attention weights distribution across different layers of the
Transformer encoder of satellite and weather modalities, for random corn fields.

F TEMPORAL ATTRIBUTIONS

In figure 17 we compare the temporal attribution methods for random corn fields.
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Figure 14: Cosine similarity of the attention weights from the weather transformer encoder of multi-
ple pairs of pixels in a consistent set of 20 random fields, and the corresponding prediction absolute
error. For the first three layers, we evaluate the cosine similarity between the full attention weight
matrices, while for the last layer we only compare the attention weights attending to the regression
token.

Figure 15: Cosine similarity of the AR and GA of the weather transformer encoder of multiple pairs
of pixels in a consistent set of 20 random fields, and the corresponding prediction absolute error.

Figure 16: Total attention weights attending at each time step for the first three attention layers, and
the regression token weights in the final layer. The results are averaged across 32 randomly selected
pixels from three random fields, and are displayed for the satellite (a) and weather (b) Transformer
encoders. The light buffer regions represent the 95% confidence interval around the average value.
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Figure 17: Field-level average attributions of the satellite (a) and weather (b) modalities, for three
random fields.

G WEATHER EVENTS

We examine the correlation between particular weather events and their attributions by training
decision trees. For each set of fields belonging to the same farm and the same year, a separate tree is
trained and a dataset is created including corresponding weather properties and the number of days
before harvest as a predictive feature. Specifically, we randomly sample 200 pixels from each field,
merge the associated weather time series, shuffle the instances, and then partition the datasets into
80% for training and 20% for testing. The AR attribution for each time step is used as the target
variable.

Figure 18 illustrates the weather events decision tree for a farm of three fields from the year 2023.
For this farm, the tree model achieved an accuracy of 83% on the training set and 84% on the test
set on the task of predicting the AR temporal attributions.

We observe that the right branch of the tree covers a large portion of the training samples, greater
than 90%, and indicates that all weather events occurring 19 days or more before the harvesting
date have low importance, with attribution values not exceeding 0.006. This suggests that weather
conditions far from the harvest date played a minimal role in influencing yield predictions made by
the Transformer-model.

In contrast, the left branch identifies a specific subset of 942 events (0.9% of the samples) that were
assigned high importance. Analyzing the rules leading to this leaf, we can conclude that during
the 18 days before harvesting, days with maximum daily temperature between 287.46 and 287.92
K receive the highest attribution value of 0.01. This finding indicates that such weather events
are highly influential in the Transformer model, suggesting a critical role that specific temperature
conditions play in the days leading up to harvest.

H MODALITY IMPORTANCE

SVS-based modality importance SVS results include the contribution of each individual input
features. To infer the relative importance of different data modalities, we aggregate the Shapley val-
ues across features from each modality. Specifically, we first compute for each pixel the importance
score of each input feature by taking the absolute values of the SVS scores, which are then summed
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Figure 18: Decision Tree with three levels. The results shown are on the train set of 3 fields from the
same farm, from 2021, predicting the rollout attention temporal attributions of the weather Trans-
former encoder.

Figure 19: Comparing the modality importance using the weighted modality activations and the
aggregated SVS scores for 50 soybean and wheat fields.

separately for each modality. To ensure comparability, we subsequently scale the modality scores
so that they sum to one. This modality scoring process is repeated across a random selection of 32
pixels per field, using the same pixel samples as in Section 4.4. We then aggregate the scores per
field by averaging the scores of each modality across the 32 samples.

Additional results Figure 19 compares the weighted modality activations and SVS scores for 50
fields from soybean and wheat crops. Similarly to corn fields, we observe that satellite data the most
influential modality according to Shapley-based scores, and has much less impact according to the
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weighted activations. This latter technique highlights the significant influence of weather conditions
in soybean fields, and a comparable importance of soil in wheat fields.
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