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Abstract

Bayesian coresets have become of increasing interest recently for providing a
theoretically sound, scalable approach to Bayesian inference. In brief, a coreset is
a (weighted) sample of a dataset that approximates the original dataset under some
metric. Bayesian coresets specifically focus on approximations that approximate
the posterior distribution. Unfortunately, existing Bayesian coreset approaches can
significantly undersample minority subpopulations, leading to a lack of distribu-
tional robustness. As a remedy, this work extends existing Bayesian coresets from
enforcing sparsity constraints to group-wise sparsity constraints. We explore how
this approach helps to mitigate distributional vulnerability. We further generalize
the group constraints to Bayesian coresets with matroid constraints, which may
be of independent interest. We present an optimization analysis of the proposed
approach, along with an empirical evaluation on benchmark datasets that support
our claims.

1 Introduction
Bayesian coresets have become of interest recently in the artificial intelligence community for
providing a theoretically sound, scalable approach to Bayesian inference. The main idea of a Bayesian
coresets is to select a weighted subset of the original dataset such that the posterior inference using
the weighted subset is a close approximation to the posterior inference using the entire dataset. If the
desired cardinality of the subset is known beforehand, then we can formulate the task of choosing the
subset as a constrained optimization problem, where the objective function measures the quality of
the approximation of the subset, and the constraints enforce the cardinality of the subset is as desired.
The sparsity constraints on the weighted subset are not convex, which poses a problem for exact
optimization. Proposed solutions by Campbell & Broderick [3, 2] include a convex relaxation of the
sparsity constraint to the l1 norm so iterative schemes like Frank-Wolfe can be used in a blackbox
fashion, and using a local greedy selection to build a sparse solution vector. Our work builds on is the
result of Zhang et. al [7], which tackles the non-convex sparsity constraint directly via an iterative
hard thresholding scheme devised by Blumensath and Davies [1].

All aforementioned previous works only consider a uniform sparsity constraint, i.e., selecting a
subset of size k from the original dataset of size n. Regarding distribution shifts, uniform sparsity
constraints have no knowledge of the distribution of the original dataset. This can lead to scenarios
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where the sample distribution is very different from the distribution of the original dataset. For
example, say the full dataset consists of disjoint groups with known variability across groups (e.g.,
demographic attributes such as age groups). In a data summarization task, one may want the relative
proportions of these groups in the coreset to be roughly equal to the relative proportions of these
groups in the original dataset. Still, the uniform sparsity constraint does not ensure this, and indeed
in some instances, this can lead to undersampling of minority subgroups in the coreset. Experimental
examples of this are given in section 5.

Contributions. More granular control over the selected elements in the representative subset is
required to solve this sampling distribution shift issue. This is accomplished via more complex set
constraints on the sampled subset. Specifically, we can encode the desired sample groups as a set
of partition constraints (further details given in section 3). Solving the new optimization problem
with the partition constraints is novel contribution. This work further generalizes this result to any
sparsity constraint encoded as a matroid – proposing an efficient (weighted) selection procedure using
iterated hard thresholding, which may be of independent interest. Finally, we show how the ability to
generalize the sparsity constraints can help address sampling distribution shifts, with applications in
algorithmic fairness.

2 Preliminaries
Given a probability mass function p, which depends on parameters θ, the liklihood of a random
variable x is the probability x was sampled from p with parameters θ. We will assume we are
given n samples, where Li(θ) is the log-liklihood of the i-th sample parameterized by θ. Assuming
conditional independence with respect to θ, one can represent the log-likliehood of observing all
samples as a summation of the individual log-liklihoods, i.e., L(θ) =

∑n
i=1 Li(θ). The goal of a

Bayesian coreset is to approximate the full liklihood of all observations with a weighted sample,
i.e., Lw =

∑n
i=1 wiLi, where w ∈ Rn+ is a non-negative sparse vector. We will use Dist(. ‖ .) to

represent the distance functional that measures the deviation between L and Lw and we will mostly
consider the case where Dist(. ‖ .) is the 2-norm defined in the function space. In this setting, it is
useful to view L, Li, and Lw as functions in a Hilbert space. Additionally, we will use the notation
[n] as a shorthand for {1, 2, 3, ..., n}, the set of integers from 1 to n.

2.1 Existing Approach: Standard Sparsity Problem

As defined by [7], the sparsity constrained Bayesian Coreset problem can be formulated as follows

argmin
w∈Rn

f(w) := Dist(L,Lw)

subject to ||w||0 ≤ k

Where L =
∑n
i=1 Li, i.e., the sum of the log likelihoods of our n samples and Lw =

∑n
i=1 wiLi,

the likelihood of the sample with respect to w. Note the k selected points need not be representative
of the distribution of full dataset, which leads to the sampling induced distribution shifts. We will
refer to this problem formulation as the “standard sparsity problem” for the remainder of this work.

2.2 Finite Sample Estimation

Given that Dist(. ‖ .) is the 2-norm defined in the function space, the objective function can be
expanded as follows

Dist(L,Lw)2 = ‖L− Lw‖2π,2 = Eθ∼π
[
(L(θ)− Lw(θ))2

]
Where π is the distribution of the parameters θ. To compute this expectation exactly, one would
need to integrate over all possible parameter settings, which is clearly intractable. Luckily, the
expectation can be approximated by a finite dimensional L2 norm by replacing the functions L and
Lw with vectors of sampled evaluations, essentially computing a Monte Carlo approximation of the
expectation. Further details are given in Zhang et. al [7].

2.3 Solution to Standard Sparsity Problem

Notice that in both problem formulations, the sparsity constraint causes the overall optimization
problem to become non-convex. Therefore, it is not unreasonable to shift one’s focus from an
analytical solution to an approximation computed via some iterative method. This is the solution
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presented by Zhang et. al [7], where an iterative approach to approximate the optimal vector w is
proposed. Specifically, the authors adapt accelerated iterative hard thresholding (IHT) schemes to the
Bayesian coreset problem. The classical IHT algorithm of Blumensath and Davies [1] is given below

Algorithm 1: Vanilla IHT
Input :Objective f : Rn → R; sparsity k, step size µ

1 Initialize w
2 repeat
3 w ← ΠCk∩R+(w − µ∇f(w));
4 until stop criteria

Zhang et. al [7] modify the vanilla IHT algorithm by adding a line search for picking the step size µ
in each iteration, as well as adding a momentum term to accelerate the rate of convergence, but these
changes are more directed at improving the empirical performance of the algorithm, theoretically
applying the vanilla IHT algorithm to the standard sparsity problem produces an arbitrarily good
approximation, under certain regularity conditions.

3 Proposed Approach: Group Sparsity Problem
To make our sampling more robust to distribution shifts across groups, we encode the distribution
of the full dataset as a set of partition constraints on the set of feasible samples. Specifically, let us
consider the set of input samples D to be a collection of m disjoint sets, such that D =

⋃m
i=1Dm and

Di

⋂
Dj = ∅ ∀ i, j ∈ [m]. Since we want our sample of to be representative of this initial structure

to avoid a sample induced distribution shift, we add some additional constraints to ensure the sample
does not exceed a certain number of points from each subset. Therefore we can modify the original
constrained optimization problem to the following, which will be the main focus of this work.

argmin
w∈Rn

f(w) := Dist(L,Lw)

subject to ||wj ||0 ≤ kj ∀j ∈ [m]

wi ≥ 0 ∀i

Where wj ∈ R|Dj |, and w is the concatenation of {w1, w2, ... , wm}. In other words wj is the vector
that corresponds to the sampling of points from Dj . Also, note that we are assuming

∑m
j=1 kj = k,

so the constraint in the original formulation of ||w||0 ≤ k is redundant since ||wj ||0 ≤ kj ∀j ∈ [m]
implies the former constraint. We will refer to this problem formulation as the “group sparsity
problem” for the remainder of this work.

3.1 Projection Step

A key step in the IHT algorithm is the projection step (step 3 of Algorithm 1 ), in which the current
iterate is projected onto the subspace spanned by the constraint. We show that for the case of group
sparsity constraints, the projection step can be computed exactly in polynomial time. Further details
and proof are given in the Appendix A, and the projection is computed by greedily selecting the
largest non-negative kj entries for each j ∈ [m].

3.2 Matroid Extension

We will now consider more general setting where we can encode our constraints as a matroid (N,E),
whereN is the ground set of indices corresponding to samples, andE are the subsets of indices which
satisfy the given constraint. For example, in the original bayesian coreset problem on n samples,
N = [n] and E = {S ⊂ N s.t |S| ≤ k}, i.e., the index set corresponding to the subsets of samples
we could choose to satisfy the sparsity constraint. For the special case of the original bayesian coreset
problem, the resulting matroid corresponds to the uniform matroid, and in the aforementioned new
problem setting where we have some initial structure from the input we would like to consider, the
resulting matroid is the partition matroid. Further are details and proofs are given in the Appendix B,
and a proof of convergence is given in the Appendix C.
Lemma 3.1. Given a matroid constraint (N,E), where N is a ground set of indices corresponding
to input samples, in the case of the Euclidean distance metric, the projection step of IHT can be
computed exactly in polynomial time via a greedy selection algorithm.
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4 Connections Between Algorithmic Fairness and Distribution Shifts
Characterizing what exactly it means for an algorithm to be fair is an open and active area of research
without a general consensus, and in general a notion of fairness that makes sense in one situation
may not make sense in another. The notion of fairness we employ is the notion of balance [4]. Say
we have an initial dataset D of size n, and a sensitive feature with c possible value settings. For
all i ∈ c, let Di be the elements from the dataset which have a value of i for the sensitive feature.
We will assume Di ∩Dj = ∅ ∀ i, j ∈ {c × c}, i.e., partitioning the dataset based on the sensitive
feature produces disjoint sets. We say a sample of data points S is balanced with respect to a sensitive
feature if

⌊
|Di|
n

⌋
≤ |S∩Di|

|S| ≤
⌈
|Di|
n

⌉
holds for all i ∈ c. In other words, the relative proportions of

the data with respect to the sensitive feature are preserved. It is easy to see that if the distribution of
the sample with respect to the sensitive feature is not preserved, then the resulting sample S is not
balanced, and thus over represents certain subgroups, while under representing others. Therefore,
distribution robust sampling is inherently tied to algorithmic fairness via the notion of balance, and by
using the distribution preserving sampling methods proposed here, one can prevent bias in sampling
induced by distribution shifts.

5 Experimental Results
We now move our attention to empirical performance metrics of our proposed algorithm. The
first experiment highlights a failure case using just the original uniform sparsity constraint, which
elucidates the distribution shifts that can be caused by such constraints. We construct a synthetic
dataset of size N = 1000, partitioned into 2 groups denoted by the orange and blue bars. Exact
details on the construction of the synthetic dataset are given in the Appendix D. The left set of bars
represent the true distribution of the dataset, the middle set of bars are the distribution of the sample
selected using the uniform sparsity constraint, and the right set of bars represent the distribution
of the sample selected using the group sparsity constraint. Note that the distribution of the sample
selected using the group sparsity constraint matches the true distribution exactly, as the group sparsity
constraints allow us to control the sample distribution exactly. The results shown are averaged across
10 trials and it is important to note that across all trials, none of the data in group 1 was selected to be
the sample using only the uniform sparsity constraint.

[1] [2]
Figure 1: (Left) Comparison of true distribution, the distribution of the sample with uniform con-
straints, and the distribution of the sample with group sparsity constraints, N = 1000, K = 100
averaged across 10 trials. (Right) Comparison of objective value achieved by the hueristic approach
with the objective value achieved by out proposed approach, across 400 iterations, averaged across
10 trials, shaded regions represent the standard deviations

One might think of a hueristic method to approximate the solution to the group sparsity problem by
solving the uniform sparse selection for each group separately, and then concatenating the results to
construct the final sample - in fact this hueristic is widely used in practice when trying to enforce
group sparsity constraints. We show that our algorithm empirically outperforms the huerisitic method
by finding a solution with a lower objective value in the same number of iterations. The red (blue)
line represents the objective value of the hueristic (proposed algorithm) across iterations respectively,
and shaded regions represent the standard deviations.
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6 Conclusion
In this work we have highlighted a particular type of distribution shift caused by sampling, and shown
that these types of distribution shifts relate to existing notion of algorithmic fairness. We present a
solution to the problem of sampling induced distribution shifts and show the algorithm is theoretically
sound, and performs well in practice. This is an ongoing work, and we hope to show empirical results
on real-world datasets, as well as comparisons with other methods such as [5, 6] which also claim to
improve group robustness, with (in our case) applications to fairness.
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Appendix
A Projection Proof
Proof: A key step in the IHT algorithm is the projection step, in which the current iterate is projected
onto the subspace spanned by the constraint. Here we prove that for the case of group sparsity
constraints, the projection onto the subspace spanned by the constraints can be computed exactly
in polynomial time. Let us denote this subspace as Ck. Formally, let Wj = {wj s.t ‖wj‖0 ≤ kj}.
Then we can write Ck = [w1 ∈W1, w2 ∈W2, . . . , wm ∈Wm], where wi is an arbitrary vector from
the set Wi. Like the case in [7], we have the additional positivity constraint, so the subspace spanned
by all of our constraints is actually (Ck ∩Rn+). Unlike the case in [8], computing ΠCk∩Rn

+
(w), the

projection of w onto the subspace spanned by the group sparsity constraints, is computationally
easy in the case of the Euclidean distance metric. Take an arbitrary vector w′ ∈ (Ck ∩Rn+), and let
S = supp(w′), i.e., the set of non-zero indices of w′. We can write ‖w′ − w‖22 = ‖w‖ −

∑
i∈S w

2
i ,

so to minimize this distance, we must maximize
∑
i∈S w

2
i , which can be done by simply picking S

to correspond to the largest non-negative kj entries for each j ∈ [m].

B Matroid Extension
We will now consider more general setting where we can encode our constraints as a matroid (N,E),
whereN is the ground set of indices corresponding to samples, andE are the subsets of indices which
satisfy the given constraint. For example, in the original bayesian coreset problem on n samples,
N = [n] and E = {S ⊂ N s.t |S| ≤ k}, i.e., the index set corresponding to the subsets of samples
we could choose to satisfy the sparsity constraint. For the special case of the original bayesian coreset
problem, the resulting matroid corresponds to the uniform matroid, and in the aforementioned new
problem setting where we have some initial structure from the input we would like to consider, the
resulting matroid is the partition matroid.

B.0.1 Proof of Lemma 3.1

Proof: In our setting, given a matroid (N,E), we will consider the ground set N = [n], where n
is the total number of samples, and thus E is a set of subsets of indices, which correspond to input
samples which satisfy some notion of independence. Consider an arbitrary vector w in the ambient
space, an arbitrary constraint e ∈ E, and a vector w′ which is the projection of w onto the constraint
denoted by e, so that supp(w′) = e. Since e denotes some sparsity constraint, we know the optimal
projection can be computed as w′i = wi if i ∈ e and wi ≥ 0, else w′i = 0. Under the Euclidean
metric, we can compute the projection cost as ‖w′ − w‖22 = ‖w‖22 −

∑
i∈e w

2
i , and since w is fixed,

in order to minimize the cost of the projection, we must maximize the second term in the projection
cost. Therefore, the projection step can be formulated as maxe∈E

∑
i∈e w

2
i . In this form it is easy to

see that the projection step reduces to maximizing a modular function subject to a matroid constraint.
It is known that the solution can be computed exactly via a greedy selection algorithm, since we
are simply looking for the maximum cost base of the matroid. We simply choose the index which
gives the maximum gain in the objective function, while still satisfying the independence constraints,
and continue until we have a maximal base. Note that when our matroid is the uniform matroid, the
greedy algorithm for choosing the maximum cost base reduces to the algorithm for the IHT projection
step given in [7]. The same is true for the case of the partition matroid.

C Convergence Analysis of IHT with Matroid constraints
For the purposes of this analysis, we will not consider the use of any momentum terms, i.e., the step
size µ is constant. The IHT algorithm in our setting, without any momentum terms is given below

Algorithm 2: Vanilla IHT
Input :Objective f : Rn → R; sparsity k, step size µ

1 Initialize w
2 repeat
3 w ← ΠCk∩R+(w − µ∇f(w));
4 until stop criteria

To begin the analysis we start with necessary definitions
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Definition C.0.1 (Restricted Isometry Property). For each integer s ∈ N, the isometry constant δs of
a matrix Φ is the smallest number such that

(1− δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22
for all s-sparse vectors x

In other words, Φ is close to an isometric transformation for sparse vectors.

Another useful observation is that for any set S ⊆ [n], the projection operator ΠS is a selection
matrix, i.e., we can write

ΠS = {diag(δi)}ni=1

where δi is an indicator function which equals 1 if i ∈ S, and 0 otherwise. This holds regardless of
the specific constraints, which is useful since the constraint matroid represents a family of constraints.

Lemma C.1. If Φ satisfies the RIP assumption, then given a set S ⊆ [N ] with |S| ≤ k, then
∀w ∈ Rn, the following holds

αk‖ΠSw‖2 ≤ ‖ΠSΦTΦΠSw‖2 ≤ βk‖ΠSw‖2

Proof: Recall that ΠS is a projection operator onto the index set S, so if |S| ≤ k, then ΠSw has
sparsity k for all w ∈ Rn. Given Φ ∈ Rm×n satisfies the RIP assumption, we have

αk‖ΠSw‖22 ≤ ‖ΦΠSw|22 ≤ βk‖ΠSw‖22
Denoting b = ΦΠSw, X = {x ∈ Rn s.t ‖x‖2 = 1}, and 〈., .〉 as the Euclidean inner product we can
write

‖ΠSΦT b‖22 = max
x∈X

(〈ΠSΦT b, x〉)2

= max
x∈X

(bTΦΠSx)2

= max
x∈X

(,ΦΠSx〉)2

= max
x∈X

(〈ΦΠSw,ΦΠSx〉)2

Where the second equality holds because ΠS is a symmetric matrix, and the fact that , b〉 = aT b. Let
x∗ be the optimal value which maximizes dot product. Using the Cauchy-Schwartz inequality, we
can show an upper bound

max
x∈X

(〈ΦΠSw,ΦΠSx〉)2 = (〈ΦΠSw,ΦΠSx
∗〉)2 ≤ ‖ΦΠSw‖22 × ‖ΦΠSx

∗‖22

We can also show a lower bound by computing the dot product for a specific value of x. In particular,
let x′ = ΦΠSw

‖ΦΠSw‖2 , the normalized form of the vector ΦΠSw.

max
x∈X

(〈ΦΠSw,ΦΠSx〉)2 ≥ (〈ΦΠSw,ΦΠSx
′〉)2 = ‖ΦΠSw‖22 × ‖ΦΠSx

′‖22

Where the last equality is due to the fact that ΦΠSw and ΦΠSx
′ are parallel. By the bounds assumed

by RIP we get

‖ΦΠSw‖22 × ‖ΦΠSx
∗‖22 ≤ βk‖ΠSw‖22 × βk‖ΠSx

∗‖22

‖ΦΠSw‖22 × ‖ΦΠSx
′‖22 ≥ αk‖ΠSw‖22 × αk‖ΠSx

′‖22
Recall that x∗ is a unit vector, and ΠS modifies vectors by setting specific indices to 0, and leaving
the rest of the vector unchanged. Thus ‖Πsx

∗‖22 ≤ ‖x∗‖22 ≤ 1. Also recall that x′ = ΦΠSw
‖ΦΠSw‖2 , so x′

is already sparse. Thus ‖ΠSx
′‖22 = ‖x′‖22 = 1. This implies
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‖ΦΠSw‖22 × ‖ΦΠSx
∗‖22 ≤ β2

k‖ΠSw‖22

‖ΦΠSw‖22 × ‖ΦΠSx
′‖22 ≥ α2

k‖ΠSw‖22
Note that ‖ΦΠSw‖22 × ‖ΦΠSx

′‖22 ≤ ‖ΦΠSw‖22 × ‖ΦΠSx ∗ ‖22 by the optimality of x∗. Putting the
inequalities together, and taking the square root gives the desired bound

αk‖ΠSw‖2 ≤ ‖ΠSΦTΦΠSw‖2 ≤ βk‖ΠSw‖2
This gives us a bound on the eigenvalues of ΠSΦTΦΠS , which we will need need in the proof of the
iterative invariant bound.
Lemma C.2. Given Φ which satisfies the RIP assumption, S1, S2 ⊆ [n] such that |S1 ∪ S2| ≤ k,
then ∀w ∈ Rn, the following inequality holds

‖ΠS1ΦTΦΠSc
1
ΠS2w‖2 ≤

βk − αk
2

‖ΠS2w‖2

Similar to the proof of the previous lemma, we will begin by rewriting the norm as an inner product.
Let X = {x ∈ Rn s.t ‖x‖2 = 1}

‖ΠS1
ΦTΦΠSc

1
ΠS2

w‖2 = max
b∈X
〈ΠS1

ΦTΦΠSc
1
ΠS2w, b〉

= max
b∈X
〈ΦΠSc

1
ΠS2

w,ΦΠS1
b〉

which is a valid equality since ΠS1 is symmetric. Note that we are examining the dot product of 2
vectors projected into the subspace of Φ. Let us define 2 normalized vectors, which will denote the
vectors before their projection by into the subspace defined by Φ.

X =
ΠSc

1
ΠS2w

‖ΠSc
1
ΠS2

w‖2
Y =

ΠS1b

‖ΠS1
b‖2

Since ΠSc
1

and ΠS1
are completely disjoint, we have , Y 〉 = 0, which implies that ‖X + Y ‖ =

‖X‖+ ‖Y ‖ = 2. Since |S1 ∪S2|〈k, we know X +Y is a k-sparse vector. Using the RIP assumption
yields

2αk = 2‖X + Y ‖2 ≤ ‖ΦX + ΦY ‖2 ≤ βk‖X + Y ‖2 = 2βk

Symmetrically, we have ‖X − Y ‖2 = 2 and X − Y is also k-sparse, which yields

2αk ≤ ‖ΦX − ΦY ‖ ≤ 2βk

As a generalization of the fact that ab = (a+b)2−(a−b)2
4 we have

〈ΦX,ΦY 〉 =
‖ΦX + ΦY ‖22 − ‖ΦX − ΦY ‖22

4
Plugging in the previous inequalities we have

−βk − αk
2

≤ 〈ΦX,ΦY 〉 ≤ βk − αk
2

Relating back to our original quantity

‖ΠS1
ΦTΦΠSc

1
ΠS2

w‖2 ≤ max
b∈X
〈ΦX,ΦY 〉 × ‖ΦΠSc

1
ΠS2

w‖2 × ‖ΦΠS1
b‖2

≤ βk − αk
2

× ‖ΠSc
1
ΠS2

w‖2

≤ βk − αk
2

× ‖ΠS2w‖2

Where the first inequality is due to the fact that ‖b‖2 = 1, and the projection by ΠS1
can only decrease

2 norm value, and likewise for ΠSc
1
.
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Lemma C.3. Using the Vanilla IHT algorithm, the following iterative invariant holds

‖wt+1 − w∗‖2 ≤ ρ‖wt − w∗‖2 + 2β3k

√
β2k‖ε‖2

where wt is the iterate at time step t, w∗ is the optimal value, ρ = (2 max{2µβ2k − 1, 1− 2µα2k}+

4µβ4k−α4k

2 ), βi is the isometry constant associated with i-sparse vectors

Proof: Let v = wt−µ∇f(wt) and S? = supp(wt+1)∪supp(w∗). Applying the triangle inequality
yields

‖wt+1 − w∗‖2 ≤ ‖wt+1 −ΠS?
v‖2 + ‖ΠS?

v − w∗|2
Notice, by construction, t+1, S

c
?〉 =∗, Sc?〉 = 0 Focusing on the first term

‖wt+1 −ΠS?
v‖22 = ‖wt+1 − v + ΠSc

?
v‖22

= ‖wt+1 − v‖22 + ‖ΠSc
?
v‖+ 2t+1 − v,ΠSc

?
v〉

= ‖wt+1 − v‖22 + ‖ΠSc
?
v‖+ 2〈−v,ΠSc

?
v〉

≤ ‖w∗ − v‖22 + ‖ΠSc
?
v‖+ 2〈−v,ΠSc

?
v〉

= ‖w∗ − v‖22 + ‖ΠSc
?
v‖+ 2∗ − v,ΠSc

?
v〉

= ‖w∗ − v + ΠSc
?
v‖22

= ‖w∗ −ΠS∗v‖22
Where the first equality is due to the equivalence of subtracting values from some indices i ∈ S, and
subtracting all values and adding back indices i ∈ Sc, and the inequality is due to the projection
w∗ ∈ Ck ∩R+ and the fact that the projection wt+1 = ΠCk∩R+v is done optimally. Substituting
our the first term with this inequality yields

‖wt+1 − w∗‖2 ≤ 2‖ΠS?v − w∗|2
Expanding v and denoting the optimal error ε = Φw∗ − y

v = wt − µ∇f(wt)
= wt − µ(2ΦT (Φwt − y))

= wt − µ(2ΦTΦ(wt − w∗) + 2ΦT (Φw∗ − y))
= wt − 2µΦTΦ(wt − w∗)− 2µΦT ε

Where the second equality is due to the expansion of ∇f(wt), and the third equality is due to the
equivalence between the total error in our current estimate and the error from our current estimate to
the optimal value w∗, added to the optimal error. Substituting the expansion of v into the previous
inequality yields

‖wt+1 − w∗‖2 ≤ 2‖ΠS?(wt − 2µΦTΦ(wt − w∗)− 2µΦT ε)− w∗‖2
= 2‖ΠS?(wt − w∗)− 2µΠS∗Φ

TΦ(wt − w∗)− 2µΦT ε)‖2
≤ 2‖ΠS?(wt − w∗)− 2µΠS∗Φ

TΦ(wt − w∗) + 4µΦT ε)‖2
= 2‖ΠS?

(wt − w∗)− 2µΠS∗Φ
TΦI(wt − w∗) + 4µΦT ε)‖2

Where the first equality is due to the rearrangement of terms and the fact that ΠS∗w
∗ = w∗.

Expanding the identity matrix as I = ΠS∗ + ΠSc
∗

yields

‖wt+1 − w∗‖2 ≤ 2‖(I − 2µΠS∗Φ
TΦΠS∗)ΠS∗(wt − w∗)‖2

+4µ‖ΠS∗Φ
TΦΠSc

∗
(wt − w∗)‖2

+4µ‖ΠS∗Φ
T ε‖2)

We will now use the previous lemmas to bound each of these terms. Let us begin with the first term
2‖(I − 2µΠS∗Φ

TΦΠS∗)ΠS∗(wt−w∗)‖2. Let λ(A) denote the eigenvalues of a matrix A. We know
S∗ ≤ 2k, which allows us to apply Lemma 3.1, which yields

α2k ≤ λ(ΠS∗Φ
TΦΠS∗) ≤ β2k

which implies

1− 2µβ2k ≤ λ(I − 2µΠS∗Φ
TΦΠS∗) ≤ 1− 2µα2k
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which further implies

2‖(I − 2µΠS∗Φ
TΦΠS∗)ΠS∗(wt − w∗)‖2 ≤ 2 max{2µβ2k − 1, 1− 2µα2k}‖ΠS∗(wt − w∗)‖

≤ 2 max{2µβ2k − 1, 1− 2µα2k}‖(wt − w∗)‖

To analyze the second term, let us denote S′ = supp(wt) ∪ supp(w∗). We can then write the second
term as 4µ‖ΠS∗Φ

TΦΠSc
∗
ΠS′(wt − w∗)‖2, and given the fact that |S′ ∪ S∗| ≤ 4k, we can apply

Lemma 3.2 directly which yields

4µ‖ΠS∗Φ
TΦΠSc

∗
ΠS′(wt − w∗)‖2 ≤ 4µ

β4k − α4k

2
‖ΠS′(wt − w∗)‖2

≤ 4µ
β4k − α4k

2
‖(wt − w∗)‖2

Finally, we can bound the third term as follows, where X = {x ∈ Rn | |‖x‖2 = 1}

‖ΠS∗Φ
T ε‖2 = max

x∈X
〈ΠS∗Φ

T ε, x〉
= max

x∈X
εTΦΠS∗x

= max
x∈X
〈ε,ΦΠS∗x〉

≤ max
x∈X
‖ε‖2‖ΦΠS∗x‖2

≤
√
β2k‖ε‖2

Combining the above inequalities yields the following iterative invariant

‖wt+1 − w∗‖2 ≤ 2 max{2µβ2k − 1, 1− 2µα2k}‖(wt − w∗)‖
+4µ

β4k − α4k

2
‖(wt − w∗)‖2

+4µ
√
β2k‖ε‖2

D Experiment Details
For the first experiment, construct a synthetic dataset with N = 1000 samples with M = 400
features each, such that each feature value is sampled from a univariate Gaussian distribution.
We construct the dataset such that 80% of the input vectors contain features sampled from some
univariate Gaussian distribution with mean µ1, and standard deviation σ1, and the remaining 20%
of the data contains features sampled from a different univariate Gaussian distribution with mean
µ2, and standard deviation σ2, such that cµ2 = µ1 and c2σ2 = σ1. Essentially 80% of the data has
features that are sampled from some Gaussian distribution, and the remaining 20% of the data has
features sampled from a scaled down version of the same Gaussian distribution.

In the second experiment, we observe the cost of the objective function using the hueristic
solution to the group sparsity problem across iterations, and compare this to the cost of the objective
using our proposed algorithm. We take the average across 10 trials, and the mean objective cost of
approach is represented by the solid lines, and the shaded regions represent the standard deviations.
Note that while the hueristic approach does produce a feasible solution to the group sparsity problem,
the points selected to be in the sample differ from the points selected by our proposed algorithm.
In the future, we hope to show empirically that the sample points selected by our algorithm are
qualitatively superior to the sample points selected by the hueristic. This intuitively makes sense as
our algorithm takes into account the full posterior, while the huerisitic only considers the group-wise
partioned posterior

11
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